JP2005272993A - Method for electrolyzing alkali metal chloride - Google Patents

Method for electrolyzing alkali metal chloride Download PDF

Info

Publication number
JP2005272993A
JP2005272993A JP2004092606A JP2004092606A JP2005272993A JP 2005272993 A JP2005272993 A JP 2005272993A JP 2004092606 A JP2004092606 A JP 2004092606A JP 2004092606 A JP2004092606 A JP 2004092606A JP 2005272993 A JP2005272993 A JP 2005272993A
Authority
JP
Japan
Prior art keywords
chlorine
water
alkali metal
metal chloride
brine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004092606A
Other languages
Japanese (ja)
Inventor
Takashi Kikuchi
隆 菊池
Yasuaki Hashimoto
泰明 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Rensui Co
Original Assignee
Nippon Rensui Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Rensui Co filed Critical Nippon Rensui Co
Priority to JP2004092606A priority Critical patent/JP2005272993A/en
Publication of JP2005272993A publication Critical patent/JP2005272993A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for electrolyzing an alkali metal chloride including a saturated brine preparation stage, an electrolysis stage, a chlorine degassing stage and a chlorine adsorption/removal stage with active carbon, improved in such a manner that the prevention in the reproduction of halobacteria in the chlorine adsorption/removal stage can be attained. <P>SOLUTION: A water feeding means is provided in a chlorine adsorption/removal stage to reduce the concentration of a salt in water contacted with active carbon. In a preferable embodiment after the chlorine adsorption/removal stage, as a Glauber's salt removal stage, the stage wherein plain brine and water are alternately passed into a separation column filled with an ion exchanger, an effluent mainly comprising an alkali metal chloride and an effluent comprising a sulfate are separated, so as to be recovered, further, the former is circulated through the saturated brine preparation stage and the latter is removed to the outside of the circulation system is provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、アルカリ金属塩化物の電解方法に関し、詳しくは、飽和ブライン調製工程、電解工程、塩素脱気工程、活性炭による塩素吸着除去工程を包含するアルカリ金属塩化物の電解方法であって、塩素吸着除去工程における好塩性菌の増殖防止が図られる様に改良された、工業的に有利な電解方法に関する。   The present invention relates to an alkali metal chloride electrolysis method, and more particularly, an alkali metal chloride electrolysis method including a saturated brine preparation step, an electrolysis step, a chlorine deaeration step, and a chlorine adsorption removal step by activated carbon, The present invention relates to an industrially advantageous electrolysis method improved so as to prevent the growth of halophilic bacteria in the adsorption removal step.

従来より、飽和ブライン調製工程、電解工程、塩素脱気工程、活性炭による塩素吸着除去工程を包含するアルカリ金属塩化物の電解方法は公知である。   Conventionally, alkali metal chloride electrolysis methods including a saturated brine preparation step, an electrolysis step, a chlorine deaeration step, and a chlorine adsorption removal step by activated carbon are known.

例えば、不純物として硫酸塩が含まれたアルカリ金属塩化物を水に溶解する飽和ブライン調製工程、飽和ブラインを電解するイオン交換膜方式の電解工程、電解工程から抜き出され且つアルカリ金属塩化物の濃度が低下した淡ブラインから塩素を脱気する塩素脱気工程、イオン交換体が充填された分離塔に上記の淡ブラインと水とを交互に通液し、主としてアルカリ金属塩化物を含有する流出液と硫酸塩を含有する流出液とを分離して回収すると共に、前者は上記の飽和ブライン調製工程へ循環し、後者は循環系外に除去する脱芒工程を包含するアルカリ金属塩化物の電解方法において、塩素脱気工程と脱芒工程の間に、塩素脱気工程から導出される淡ブライン中の残存塩素を活性炭で吸着除去するための塩素吸着除去工程を設けたアルカリ金属塩化物の電解方法が知られている。
特開2001−181877
For example, a saturated brine preparation process in which alkali metal chloride containing sulfate as an impurity is dissolved in water, an ion exchange membrane type electrolysis process in which saturated brine is electrolyzed, the concentration of alkali metal chloride extracted from the electrolysis process Chlorine degassing step for deaerating chlorine from the reduced brine, the effluent containing mainly alkali metal chloride, with the light brine and water alternately passed through the separation tower packed with the ion exchanger. And an effluent containing sulfate, and the former is circulated to the saturated brine preparation step and the latter is removed from the circulation system, and the alkali metal chloride electrolysis method includes a denitrification step to be removed from the circulation system. Provided with a chlorine adsorption removal step for adsorbing and removing residual chlorine in the light brine derived from the chlorine deaeration step with activated carbon between the chlorine deaeration step and the degassing step Genus electrolytic process of chloride are known.
JP2001-181877

上記の電解方法は、塩素脱気工程で除去されずに残存する淡ブライン中の塩素によって脱芒工程のイオン交換体が劣化するという問題を解決するために、塩素脱気工程と脱芒工程の間に塩素吸着除去工程を設けた改良方法である。   In order to solve the problem that the ion exchanger in the degassing step deteriorates due to chlorine in the light brine remaining without being removed in the chlorine degassing step, the above electrolysis method is used in the chlorine degassing step and the degassing step. This is an improved method in which a chlorine adsorption removal step is provided between them.

先行技術における塩素吸着除去工程は、脱芒工程のイオン交換体の劣化防止に限らず、配管腐食防止などの観点からも意義があるが、次の様な問題が見出された。すなわち、塩素吸着塔の活性炭充填層内に淡ブラインに適合した好塩性菌が増殖し、斯かる細菌やその老廃物が塩素吸着塔から流出し、後段の配管や設備を閉塞させ、運転圧力の増加や脱芒工程の性能を低下させる。   The chlorine adsorption removal process in the prior art is significant not only from the viewpoint of preventing the deterioration of the ion exchanger in the degassing process but also from the viewpoint of preventing pipe corrosion, but the following problems have been found. That is, halophilic bacteria suitable for light brine grow in the activated carbon packed bed of the chlorine adsorption tower, such bacteria and their waste products flow out of the chlorine adsorption tower, block the piping and equipment in the subsequent stage, and the operating pressure Increase the performance and decrease the performance of the stripping process.

本発明は、上記実情に鑑みなされたものであり、その目的は、飽和ブライン調製工程、電解工程、塩素脱気工程、活性炭による塩素吸着除去工程を包含するアルカリ金属塩化物の電解方法において、塩素吸着除去工程における好塩性菌の増殖防止が図られる様に改良されたアルカリ金属塩化物の電解方法を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to provide an alkali metal chloride electrolysis method including a saturated brine preparation step, an electrolysis step, a chlorine deaeration step, and a chlorine adsorption removal step using activated carbon. It is an object of the present invention to provide an alkali metal chloride electrolysis method improved so as to prevent the growth of halophilic bacteria in the adsorption removal step.

本発明者らは、鋭意検討を重ねた結果、淡ブラインに適合した好塩性菌は、低濃度塩環境では増殖し得ずに死滅するとの知見を得た。   As a result of intensive studies, the present inventors have found that halophilic bacteria adapted to light brine cannot be grown in a low concentration salt environment and die.

本発明は上記の知見に基づき更に検討を重ねて完成されたものであり、その要旨は、不純物として硫酸塩が含まれたアルカリ金属塩化物を水に溶解する飽和ブライン調製工程、飽和ブラインを電解するイオン交換膜方式の電解工程、電解工程から抜き出され且つアルカリ金属塩化物の濃度が低下した淡ブラインから塩素を脱気する塩素脱気工程、塩素脱気工程から導出される淡ブライン中の残存塩素を活性炭で吸着除去するための塩素吸着除去工程を包含するアルカリ金属塩化物の電解方法において、塩素吸着除去工程に水供給手段を設けて塩素吸着除去工程の活性炭に接触する水の塩濃度を低下させることを特徴とするアルカリ金属塩化物の電解方法に存する。   The present invention has been completed based on the above findings and has been completed. The gist of the present invention is a saturated brine preparation step for dissolving an alkali metal chloride containing sulfate as an impurity in water, and electrolyzing the saturated brine. In an ion exchange membrane type electrolysis process, a chlorine deaeration process for degassing chlorine from a light brine extracted from the electrolysis process and having a reduced concentration of alkali metal chloride, and a light brine derived from a chlorine deaeration process In an alkali metal chloride electrolysis method including a chlorine adsorption removal process for adsorbing and removing residual chlorine with activated carbon, the salt concentration of water in contact with activated carbon in the chlorine adsorption removal process by providing a water supply means in the chlorine adsorption removal process The present invention resides in a method for electrolyzing an alkali metal chloride, characterized in that it lowers.

そして、本発明の好ましい態様においては、塩素吸着除去工程の後に、脱芒工程として、イオン交換体が充填された分離塔に淡ブラインと水とを交互に通液し、主としてアルカリ金属塩化物を含有する流出液と硫酸塩を含有する流出液とを分離して回収すると共に、前者は上記の飽和ブライン調製工程へ循環し、後者は循環系外に除去する工程を設けられる。   In a preferred embodiment of the present invention, after the chlorine adsorption removal step, as a degassing step, light brine and water are alternately passed through a separation tower packed with an ion exchanger, and mainly alkali metal chloride is added. The effluent contained and the effluent containing sulfate are separated and recovered, and the former is circulated to the saturated brine preparation step, and the latter is removed from the circulation system.

本発明によれば、塩素吸着除去工程における好塩性菌の増殖防止が図られるため、塩素吸着塔から細菌やその老廃物が流出することがなく、後段の配管や設備の閉塞、運転圧力の増加や脱芒工程の性能低下の問題を一挙に解決することが出来る。   According to the present invention, the growth of halophilic bacteria in the chlorine adsorption removal process is prevented, so that bacteria and waste products do not flow out from the chlorine adsorption tower, the piping and equipment in the subsequent stage are blocked, and the operating pressure is reduced. It is possible to solve the problem of the increase and the performance degradation of the dehulling process all at once.

以下、本発明を添付図面に基づき詳細に説明する。図1は、本発明の電解方法の一例を示す工程説明図である。図中、符号(1)は飽和ブライン調製工程の溶解槽、(6)は必要に応じて設けられる精製設備、(7)は電解工程の電解槽、(13)は塩素脱気工程の塩素脱気塔、(15)は好ましい態様として設けられる脱芒工程の分離塔、(23)は塩素吸着除去工程の塩素吸着塔を示す。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a process explanatory view showing an example of the electrolysis method of the present invention. In the figure, reference numeral (1) is a dissolution tank for a saturated brine preparation process, (6) is a purification facility provided as necessary, (7) is an electrolytic tank for an electrolysis process, and (13) is a chlorine degassing process for a chlorine deaeration process. A gas tower, (15) is a separation tower in the degassing step provided as a preferred embodiment, and (23) is a chlorine adsorption tower in the chlorine adsorption removal step.

図1に示す電解方法は、塩素吸着除去工程の後に脱芒工程を設け、しかも、塩素吸着除去工程での還元剤の使用量の節減を図る観点から、塩素脱気工程から回収される淡ブラインの一部を脱芒工程に供給する様にした方法であり、基本的には、特開2001−181877に記載された電解方法と同じである。   The electrolysis method shown in FIG. 1 is provided with a degassing step after the chlorine adsorption removal step, and from the viewpoint of reducing the amount of reducing agent used in the chlorine adsorption removal step, the light brine recovered from the chlorine deaeration step Is partly supplied to the degassing step, and is basically the same as the electrolysis method described in JP-A-2001-181877.

先ず、溶解槽(1)において送給路(2)から送られるアルカリ金属塩化物の原塩(不純物として硫酸塩を含有する)と、導管(3)の枝管(3a)からの溶解水、電解槽(7)から循環される淡ブライン及び硫酸塩が実質的に除去された分画液を使用して電解槽(7)に供給する高濃度塩水を調製する。上記の分画液とは、分離塔(15)によって硫酸塩が実質的に除去されたアルカリ金属塩化物含有分画液を指す。すなわち、アルカリ金属塩化物水溶液を電解槽(7)で電解処理した後、電解槽(7)から排出されるアルカリ金属塩化物の含有割合が低下しているアルカリ金属塩化物水溶液(淡ブライン)をクロマトグラフ手法に従って分画した、硫酸塩を実質的に含まず、アルカリ金属塩化物を含有する様に処理した液であって、この分画液は導管(4)を経て溶解槽(1)に導出される。   First, a raw salt of alkali metal chloride (containing sulfate as an impurity) sent from the feed path (2) in the dissolution tank (1), dissolved water from the branch pipe (3a) of the conduit (3), A high-concentration salt water to be supplied to the electrolytic cell (7) is prepared using a fraction solution from which the light brine and sulfate circulated from the electrolytic cell (7) are substantially removed. The above fraction liquid refers to an alkali metal chloride-containing fraction liquid from which sulfate has been substantially removed by the separation tower (15). That is, after the electrolytic treatment of the alkali metal chloride aqueous solution in the electrolytic cell (7), the alkali metal chloride aqueous solution (light brine) in which the content ratio of the alkali metal chloride discharged from the electrolytic cell (7) is lowered is reduced. A liquid fractionated according to a chromatographic method and treated so as to contain substantially no sulfate and contain an alkali metal chloride, and this fraction liquid is passed through a conduit (4) to a dissolution tank (1). Derived.

塩水中のアルカリ金属塩化物濃度はできるだけ高濃度であることが好ましく、通常飽和濃度の塩水(飽和ブライン)が調製される。溶解槽(1)で調製された飽和ブラインは、導管(5)により精製設備(6)に送られ、原塩に由来する飽和ブライン中のカルシウム塩、マグネシウム塩、ストロンチウム塩などの不純物が除去される。精製方法としては、例えば、炭酸ソーダ、苛性ソーダを順次添加して、炭酸カルシウム、水酸化マグネシウムとして沈澱させる方法が採用される。更に必要であれば、キレ−ト樹脂処理などの精製法を併用してもよい。次いで、飽和ブラインはイオン交換膜方式の電解槽(7)に送られ常法に従って電解が行われる。   The alkali metal chloride concentration in the salt water is preferably as high as possible, and normally saturated salt water (saturated brine) is prepared. The saturated brine prepared in the dissolution tank (1) is sent to the purification facility (6) through the conduit (5) to remove impurities such as calcium salt, magnesium salt and strontium salt in the saturated brine derived from the raw salt. The As a purification method, for example, a method in which sodium carbonate and caustic soda are sequentially added and precipitated as calcium carbonate and magnesium hydroxide is employed. If necessary, a purification method such as a chelate resin treatment may be used in combination. Next, the saturated brine is sent to an ion exchange membrane type electrolytic cell (7), and electrolysis is performed according to a conventional method.

電解槽(7)はイオン交換膜からなる隔膜(20)により陰極室と陽極室とに分けられ、陰極室で生成した苛性アルカリは導管(11)から、また、水素ガスは導管(9)から排出され、陽極室で生成した塩素ガスは導管(8)から排出され、夫々回収される。なお、符号(10)は電解槽(7)から苛性アルカリを押し出すために供給される水の導管である。電解により飽和ブライン中のアルカリ金属塩化物の約50%及び水の約20%が消費され、残った塩水(淡ブライン)は導管(12)から抜き出され溶解槽(1)へ循環される。電解槽(7)からから抜き出される淡ブライン中には、通常、アルカリ金属塩化物が180〜200g/L、硫酸塩が6〜12g/L程度含まれている。また、そのpHは通常2〜4程度である。斯かる淡ブラインは、好適には例えば塩酸により1〜2にpH調節した後、塩素脱気塔(13)でのエアーレーションにより塩素が脱気される。そして、要すれば、図示されていない貯槽に貯えた後、バルブ(14a)の開により、少くともその一部を一定量づつ、導管(24)を経て塩素吸着塔(23)へ送給した後、導管(25)を経て分離塔(15)へ送給する。   The electrolytic cell (7) is divided into a cathode chamber and an anode chamber by a diaphragm (20) made of an ion exchange membrane. Caustic alkali generated in the cathode chamber is from the conduit (11), and hydrogen gas is from the conduit (9). Chlorine gas discharged and generated in the anode chamber is discharged from the conduit (8) and recovered. In addition, the code | symbol (10) is a conduit | pipe of the water supplied in order to extrude caustic from an electrolytic cell (7). The electrolysis consumes about 50% of the alkali metal chloride and about 20% of the water in the saturated brine, and the remaining brine (fresh brine) is withdrawn from the conduit (12) and circulated to the dissolution tank (1). The light brine extracted from the electrolytic cell (7) usually contains about 180 to 200 g / L of alkali metal chloride and about 6 to 12 g / L of sulfate. The pH is usually about 2 to 4. Such light brine is preferably deaerated by aeration in a chlorine deaeration tower (13) after pH adjustment to 1-2 with hydrochloric acid, for example. Then, if necessary, after being stored in a storage tank (not shown), at least a part thereof is sent to the chlorine adsorption tower (23) via the conduit (24) by opening a valve (14a). Then, it is fed to the separation tower (15) through the conduit (25).

上記の塩素吸着塔(23)においては粒状活性炭が好適に使用され、その粒径は、通常0.5〜10mm、好ましくは1.0〜5.0mmである。活性炭は塩素吸着塔(23)に槽高0.5〜4.0mの高さで充填される。そして、通液は通常ダウンフローで行われ、その速度は、線速度で通常5.0〜25m/h、通液温度は通常50〜90℃とされる。   In said chlorine adsorption tower (23), granular activated carbon is used suitably, and the particle size is 0.5-10 mm normally, Preferably it is 1.0-5.0 mm. The activated carbon is packed in the chlorine adsorption tower (23) at a tank height of 0.5 to 4.0 m. And the liquid flow is normally performed by a downflow, the speed is usually 5.0 to 25 m / h in linear velocity, and the liquid flow temperature is usually 50 to 90 ° C.

分離塔(15)には、陰イオン交換基と陽イオン交換基とを有し、これら両イオンが内部塩を形成している両性イオン交換体が充填されている。内部塩を形成している両性イオン交換体としては、例えば一般にスネークケージ型と呼ばれている樹脂が挙げられる。スネークケージ型樹脂とは、スチレン又はアクリル系の強塩基性イオン交換体にアクリル酸を含浸、重合させた複合体であり、ダウケミカル社の「リタ−デイオン11A−8」、三菱化学社の「ダイヤイオンSR−1」等の名称で市販されている。また、内部塩を形成している両性イオン交換体としては、アクリル系またはスチレン系の架橋共重合体から成る樹脂母体に直接結合した次の一般式(1)で示されるイオン交換基を有する樹脂も使用される。   The separation column (15) is packed with an amphoteric ion exchanger having an anion exchange group and a cation exchange group, and these both ions forming an internal salt. Examples of the amphoteric ion exchanger forming the internal salt include a resin generally called a snake cage type. The snake cage resin is a composite obtained by impregnating and polymerizing acrylic acid with a strong basic ion exchanger of styrene or acrylic, and “Rita Deion 11A-8” manufactured by Dow Chemical Company, “ It is marketed under names such as “Diaion SR-1”. In addition, as the amphoteric ion exchanger forming an internal salt, a resin having an ion exchange group represented by the following general formula (1) directly bonded to a resin matrix composed of an acrylic or styrene cross-linked copolymer Also used.

(式中R及びRは、夫々炭素数1〜3のアルキル基を示し、m及びnは夫々1〜4の数を示す。) (Wherein R 1 and R 2 each represent an alkyl group having 1 to 3 carbon atoms, and m and n each represent a number 1 to 4)

一般式(1)で示されるイオン交換基を有する樹脂は、例えば特公昭60−45942号公報に記載されている方法に従い、スチレン系の架橋共重合体にハロメチル基を導入し、次いで、N,N’−ジメチルグリシンの酸無水物、酸アマイド、酸ハロゲン化物、低級アルキルエステル等のN−置換−アミノ酸の酸誘導体を反応させた後、加水分解する方法およびこれに準ずる方法により製造される。   A resin having an ion exchange group represented by the general formula (1) is prepared by introducing a halomethyl group into a styrene-based cross-linked copolymer according to a method described in, for example, Japanese Patent Publication No. 60-45942. It is produced by a method in which an acid derivative of N-substituted amino acid such as acid anhydride, acid amide, acid halide, lower alkyl ester or the like of N′-dimethylglycine is reacted, followed by hydrolysis and a method analogous thereto.

上記の両性イオン交換体は球状であり、その粒径は、通常100〜1200μm、好ましくは150〜350μmである。両性イオン交換体の内部塩を形成する交換容量は、通常1〜6meq/g樹脂、好ましくは2.0〜4.5meq/g樹脂である。また、両性イオン交換体の水分は、通常20〜80重量%、好ましくは30〜60重量%である。分離塔(15)に充填する両性イオン交換体の層高は、イオン交換体の種類や処理水の量(電解プラントの容量)によるが、通常1〜4m程度がよい。   The amphoteric ion exchanger has a spherical shape, and the particle size thereof is usually 100 to 1200 μm, preferably 150 to 350 μm. The exchange capacity for forming the internal salt of the amphoteric ion exchanger is usually 1 to 6 meq / g resin, preferably 2.0 to 4.5 meq / g resin. Moreover, the water | moisture content of an amphoteric ion exchanger is 20 to 80 weight% normally, Preferably it is 30 to 60 weight%. The bed height of the amphoteric ion exchanger packed in the separation tower (15) depends on the type of ion exchanger and the amount of treated water (capacity of the electrolysis plant), but is usually about 1 to 4 m.

分離塔(15)へ供給する淡ブラインの量は、原塩中の硫酸塩量や電解槽(7)に供給される飽和ブライン中に許容される硫酸塩濃度などを考慮して決められる。淡ブライン中の硫酸塩は完全に除去する必要は無く、電解の障害にならない濃度以下に維持すればよい。少なくとも、新たに添加される原塩に伴う硫酸塩量を除くことにより、飽和ブラインへの硫酸塩の更なる蓄積を阻止すればよい。そのためには電解槽(7)に循環されるブラインを分離塔(15)で処理すればよい。分離塔(15)に供給する1回の淡ブラインの量は充填イオン交換体容積の0.1〜0.5倍容量であり、通水流速は空間速度(SV)で1〜5h−1がよい。通水温度は40〜80℃が好ましい。1回量の淡ブラインを通水した後バルブ(14a)を閉じ、バルブ(14b)を開いて導管(3b)から水を分離塔(15)へ通水してクロマトグラフ手法に従って、最初に硫酸塩を溶離、流出させ、次いで、アルカリ金属塩化物を溶離流出させる。この水としては、導管(3)からの溶解水を1ミクロン程度のフィルターで濾過したもの、または、それを軟化した軟水の使用が好ましい。1回の通水量は充填イオン交換体容積の0.2〜1.1倍で、通水流速はSVで通常1〜5h−1、好ましくは上記淡ブラインの通水流速と同じにするのがよい。通水温度は40〜80℃であり、上記淡ブラインの通水温度と同じにするのがよい。 The amount of the fresh brine supplied to the separation tower (15) is determined in consideration of the amount of sulfate in the raw salt, the concentration of sulfate allowed in the saturated brine supplied to the electrolytic cell (7), and the like. The sulfate in the light brine does not need to be completely removed and may be maintained at a concentration that does not hinder electrolysis. What is necessary is just to prevent the further accumulation | storage of the sulfate to a saturated brine by removing the amount of sulfate accompanying the raw salt newly added at least. For that purpose, the brine circulated to the electrolytic cell (7) may be treated in the separation tower (15). The amount of the fresh brine supplied to the separation tower (15) is 0.1 to 0.5 times the packed ion exchanger volume, and the water flow rate is 1 to 5 h −1 in space velocity (SV). Good. The water passing temperature is preferably 40 to 80 ° C. After passing a single amount of fresh brine, the valve (14a) is closed, the valve (14b) is opened, water is passed from the conduit (3b) to the separation tower (15), and the sulfuric acid is first added according to the chromatographic technique. The salt is eluted and flushed out, and then the alkali metal chloride is eluted and flushed out. As this water, it is preferable to use a solution obtained by filtering dissolved water from the conduit (3) with a filter of about 1 micron, or soft water obtained by softening it. The amount of water flow at one time is 0.2 to 1.1 times the packed ion exchanger volume, and the water flow rate is usually 1 to 5 h -1 in SV, preferably the same as the water flow rate of the above-mentioned light brine. Good. The water flow temperature is 40 to 80 ° C., and the water flow temperature is preferably the same as that of the light brine.

淡ブライン及び溶解水の通水方向は、充填イオン交換体が分離塔(15)内を完全に充満するように充填されている場合は上向流または下向流の何れでもよく、イオン交換体が空塔部分を残して充填されている場合は下向流とし、充填イオン交換体が流動しない様に通水する。分離塔(15)から流出してくる液中の成分濃度の変化は電導度計または屈折率計等からなる検出器(16)で検出し、伝達路(21)及び(22)によってバルブ(18)及び(19)に伝達し、主として硫酸塩を含有する流出分画液を流出管(17)を経て系外に排出し、一方、主としてアルカリ金属塩化物を含有する流出分画液は導管(4)を経て溶解槽(1)へ循環する。再びバルブ(14a)を開けて淡ブラインの通水を供給し、次いで、溶解水を通水する操作が繰り返し行われる。溶解槽(1)では導管(12)から分離塔(15)を経由せずに直接循環される淡ブライン、分離塔(15)からのアルカリ金属含有流出分画液に、要すれば更に溶解水を加え、新たに原塩を追加し、飽和ブラインを調製する。両性イオン交換体に吸着された淡ブラインは水により容易に溶離され、酸やアルカリによる再生処理をすることなく再び淡ブラインの処理に使用できる。   The flow direction of the fresh brine and the dissolved water may be either an upward flow or a downward flow when the packed ion exchanger is packed so as to completely fill the separation tower (15). Is filled with leaving an empty portion, the water is passed downward so that the packed ion exchanger does not flow. The change in the component concentration in the liquid flowing out from the separation tower (15) is detected by a detector (16) comprising a conductivity meter, a refractometer or the like, and a valve (18) is transmitted by transmission paths (21) and (22). ) And (19), and the effluent fraction mainly containing sulfate is discharged out of the system via the effluent pipe (17), while the effluent fraction mainly containing alkali metal chloride is discharged into the conduit ( It circulates to a dissolution tank (1) through 4). An operation of opening the valve (14a) again to supply water of light brine and then passing water of dissolved water is repeated. In the dissolution tank (1), the fresh brine circulated directly from the conduit (12) without going through the separation tower (15), the alkali metal-containing effluent fraction from the separation tower (15), and if necessary, further dissolved water Add fresh salt and prepare saturated brine. The light brine adsorbed on the amphoteric ion exchanger is easily eluted with water and can be used again for the treatment of the light brine without regenerating with acid or alkali.

淡ブラインの処理量が適性量であれば原料塩の添加による新たな硫酸塩の蓄積を防止することが出来、また、両性イオン交換体の溶離に使用する水は電解槽(7)で消費される水量の範囲内であるから、分離塔(15)から流出される主としてアルカリ金属塩化物からなる流出分画液を全量溶解槽(1)へ循環することが出来、電解に使用する水の量および系外に漏出するアルカリ金属塩化物の量を最小にすることが出来る。また、廃水の量も少なく経済的である。   If the treatment amount of the light brine is an appropriate amount, accumulation of new sulfate due to addition of the raw material salt can be prevented, and water used for elution of the amphoteric ion exchanger is consumed in the electrolytic cell (7). The amount of water used for electrolysis can be circulated to the dissolution tank (1) in the entire amount of the effluent fraction consisting mainly of alkali metal chlorides flowing out from the separation tower (15). In addition, the amount of alkali metal chloride leaking out of the system can be minimized. In addition, the amount of waste water is small and economical.

上記に説明した例の場合は、アルカリ等の薬剤を使用しない脱芒工程、すなわち、イオン交換体が充填された分離塔に淡ブラインと水とを交互に通液する脱芒工程として特開平7−3485号公報に記載のクロマト分離的態様の脱芒工程を採用したが、本発明においては、吸脱着的態様の脱芒工程であってもよい。斯かる態様においては、水によって再生(樹脂に吸着された硫酸根または硫酸塩の脱着)可能な適宜のイオン交換樹脂が使用される。斯かるイオン交換樹脂の硫酸根または硫酸塩に対する吸着力は一般に弱いため、破過点に到達する前の再生、すなわち、淡ブラインと交互に通液する水のサイクルは、前記のクロマト分離的態様の場合と同様になることが多い。   In the case of the example described above, as a degassing step that does not use a chemical such as an alkali, that is, a dewatering step in which light brine and water are alternately passed through a separation column packed with an ion exchanger, Although the chromatographic separation mode desorption process described in Japanese Patent No. 3485 is adopted, the adsorption / desorption mode desorption process may be used in the present invention. In such an embodiment, an appropriate ion exchange resin that can be regenerated with water (desorption of sulfate radical or sulfate adsorbed on the resin) is used. Since the adsorptive power of such ion exchange resins to sulfate radicals or sulfates is generally weak, the regeneration before reaching the breakthrough point, that is, the cycle of water that is alternately passed through the light brine is the chromatographic separation mode described above. It is often the same as in the case of.

本発明の最大の特徴は、上記の様なアルカリ金属塩化物の電解方法において、塩素吸着除去工程に水供給手段を設けて塩素吸着除去工程の活性炭に接触する水の塩濃度を低下させる点にある。すなわち、図示した例の場合、塩素吸着塔(23)の導管(24)にバルブ(28a)付の分岐導管(26)、導管(25)にバルブ(28b)付の分岐導管(27)をそれぞれ設け、更に、導管(25)の分岐導管(27)接続部より後流の位置にバルブ(28c)を設け、バルブ(14a)と(28c)とを閉状態とし、バルブ(28a)と(28b)とを開状態とし、導管(27)から水を供給して導管(26)から排出させる。   The greatest feature of the present invention is that, in the alkali metal chloride electrolysis method as described above, a water supply means is provided in the chlorine adsorption removal step to reduce the salt concentration of water in contact with the activated carbon in the chlorine adsorption removal step. is there. That is, in the case of the illustrated example, the branch conduit (26) with a valve (28a) is connected to the conduit (24) of the chlorine adsorption tower (23), and the branch conduit (27) with a valve (28b) is connected to the conduit (25). Further, a valve (28c) is provided at a position downstream from the branch pipe (27) connecting portion of the pipe (25), the valves (14a) and (28c) are closed, and the valves (28a) and (28b) are closed. ) Are opened, water is supplied from the conduit (27) and discharged from the conduit (26).

上記の様にして塩素吸着塔(23)の活性炭に接触する水の塩濃度を低下させることにより、それまで活性炭の充填層内で増殖した好塩性細菌を死滅させることが出来る。そして、上記の様にアップフローの水によって洗浄する場合は、性炭の充填層内に堆積した細菌の老廃物と共に死滅した細菌を浮上分離することが出来る利点がある。勿論、水洗浄はダウンフローであっても構わない。水の供給量は、特に制限されないが、洗浄効果を考慮し、塩素吸着塔(23)内の活性炭に対し、容量比で2〜10倍とされる。通液する水の線速度は通常10〜25m/hである。斯かる洗浄処理の頻度は、好塩性細菌の増殖速度などを考慮して適宜決定されるが、通常1〜6ケ月に1回、好ましくは2〜3ケ月に1回である。なお、上記の洗浄処理に先立ち、塩素吸着塔(23)内に滞留する淡ブラインを空気で押し出すことも出来る。具体的には、バルブ(14a)と(28c)とを閉状態とし、バルブ(28a)と(28b)とを開状態とし、導管(26)から空気を供給して導管(26)から淡ブラインを押し出して回収する。   By reducing the salt concentration of water in contact with the activated carbon of the chlorine adsorption tower (23) as described above, halophilic bacteria that have been grown in the activated carbon packed bed can be killed. And when washing | cleaning with the water of an upflow as mentioned above, there exists an advantage which can carry out the floating separation of the dead bacteria with the waste product of the bacteria deposited in the packed bed of sex charcoal. Of course, the water washing may be a down flow. Although the supply amount of water is not particularly limited, the volume ratio is 2 to 10 times that of the activated carbon in the chlorine adsorption tower (23) in consideration of the cleaning effect. The linear velocity of water passing through is usually 10 to 25 m / h. The frequency of such washing treatment is appropriately determined in consideration of the growth rate of halophilic bacteria, but is usually once every 1 to 6 months, preferably once every 2 to 3 months. Prior to the above washing treatment, the light brine staying in the chlorine adsorption tower (23) can be pushed out with air. Specifically, the valves (14a) and (28c) are closed, the valves (28a) and (28b) are opened, air is supplied from the conduit (26), and light brine is supplied from the conduit (26). Extrude and collect.

また、本発明においては、特開2001−181877に記載の電解方法と同様、前記の塩素脱気工程から導出される淡ブラインを2分割し、3〜50%は前記の塩素吸着除去工程に導入し、残余は直接に前記の前記の飽和ブライン調製工程へ循環するのが好ましい。   In the present invention, as in the electrolysis method described in JP-A No. 2001-181877, the light brine derived from the chlorine degassing step is divided into two, and 3 to 50% is introduced into the chlorine adsorption removal step. The residue is preferably recycled directly to the aforementioned saturated brine preparation step.

すなわち、上記の様に、淡ブライン中の残存塩素の吸着除去工程を設けることにより脱芒工程のイオン交換体の劣化防止を図ることが出来るが、淡ブラインの全量を脱芒工程に供給する必要はなく、従って、脱芒工程に供給される量見合いの量の淡ブラインについて残存塩素の吸着除去を行なえばよい。上記3〜50%の淡ブライン量は斯かる観点から決定された量である。   That is, as described above, it is possible to prevent the deterioration of the ion exchanger in the desulfurization process by providing the adsorption removal process of residual chlorine in the light brine, but it is necessary to supply the entire amount of the light brine to the desulfurization process. Therefore, the residual chlorine may be adsorbed and removed with respect to the amount of light brine that is commensurate with the amount supplied to the degassing step. The amount of the light brine of 3 to 50% is an amount determined from this viewpoint.

塩素吸着除去工程に導入される淡ブライン量が3%未満の場合はイオン交換体の劣化防止を図りつつ脱芒処理される淡ブラインの量が少なすぎるため、電解プラント内に蓄積される芒硝(NaSO)の量が増加し、その結果、電解工程においてイオン交換膜の劣化や消費電力の増加という問題が惹起される。一方、塩素吸着除去工程に導入される淡ブライン量が50%を超える場合は、不必要な量の淡ブラインを処理する結果となり、塩素吸着除去工程で使用する各種の薬剤(還元剤、pH調節剤など)や脱芒工程で使用するイオン交換体が不必要に多くなり経済的ではない。塩素吸着除去工程に導入する淡ブラインの好ましい量は5〜30%、更に好ましい量は5〜15%である。 If the amount of light brine introduced into the chlorine adsorption removal process is less than 3%, the amount of light brine to be degassed while preventing the deterioration of the ion exchanger is too small. The amount of Na 2 SO 4 ) increases, and as a result, problems such as deterioration of the ion exchange membrane and increase in power consumption are caused in the electrolysis process. On the other hand, if the amount of light brine introduced into the chlorine adsorption removal process exceeds 50%, an unnecessary amount of light brine is processed, and various chemicals used in the chlorine adsorption removal process (reducing agent, pH adjustment) Etc.) and ion exchangers used in the degassing process are unnecessarily large, which is not economical. The preferable amount of light brine introduced into the chlorine adsorption removing step is 5 to 30%, and a more preferable amount is 5 to 15%.

更に、本発明においては、前記の脱芒工程において、通水する水(クロマト分離的態様の場合の溶離液または吸脱着的態様の場合の樹脂の再生液)に工業用水を使用するのが経済的であり好ましい。ここで、工業用水とは、河川水、地下水の他、涌き水をポリ塩化アルミニウム(PAC)や硫酸バンド等の凝集剤で処理した水を指す。斯かる工業用水は、一般に、金属塩を主成分とする硬度分と共に藻類やコロイダル金属を主とする懸濁物質を含む。硬度分は、Ca、Mg等の2価イオンが主成分であり、炭酸カルシウム当量で表される。ここでいう工業用水の硬度分の量は、通常30〜200mg/L炭酸カルシウム当量である。また、懸濁物質(SS成分)の量は、ガラス繊維フィルターに捕捉されるSS成分として表され、カオリン濁度で通常1〜10度である。   Furthermore, in the present invention, it is economical to use industrial water as water to be passed (eluent in the case of chromatographic separation or resin regenerated solution in the case of adsorption / desorption) in the above-described degassing step. And preferred. Here, industrial water refers to water obtained by treating sprayed water with a flocculant such as polyaluminum chloride (PAC) or sulfuric acid band in addition to river water and groundwater. Such industrial water generally contains suspended substances mainly composed of algae and colloidal metals together with a hardness component mainly composed of metal salts. The hardness component is mainly composed of divalent ions such as Ca and Mg, and is expressed in terms of calcium carbonate equivalent. The amount of industrial water hardness here is usually 30 to 200 mg / L calcium carbonate equivalent. Moreover, the quantity of a suspended substance (SS component) is represented as SS component capture | acquired by a glass fiber filter, and is a kaolin turbidity normally 1-10 degree | times.

工業用水を使用した脱芒工程の場合は次の様に運転するのが更に好ましい。すなわち、イオン交換体の性能が低下した時点で運転を中止し、イオン交換体の酸洗浄、アルカリ洗浄またはこれらの交互洗浄を行った後に運転を再開する。ここで、イオン交換体の性能が低下した時点とは、概略、クロマト分離的態様の場合は前述の両性イオン交換体によるクロマト分離性能が低下した時点を意味し、吸脱着的態様の場合はイオン交換樹脂が破過点に到達した時点を意味する。斯かるイオン交換体の性能低下は、硬度分によるイオン交換体のコーティング汚染や懸濁物質によるイオン交換体充填層内への堆積汚染によって惹起される。   In the case of the denitrification process using industrial water, it is more preferable to operate as follows. That is, the operation is stopped when the performance of the ion exchanger is lowered, and the operation is restarted after performing the acid cleaning, alkali cleaning, or alternate cleaning of the ion exchanger. Here, the point in time when the performance of the ion exchanger is lowered generally means the point in time when the chromatographic separation performance by the amphoteric ion exchanger is lowered in the case of the chromatographic separation mode, and in the case of the adsorption / desorption mode. It means the time when the exchange resin reaches the breakthrough point. Such a decrease in the performance of the ion exchanger is caused by contamination of the ion exchanger coating due to the hardness component or deposition contamination in the ion exchanger packed layer due to suspended substances.

上記の酸洗浄は、硬度分によるコーティング汚染の際に適用される。そして、酸としてはHClが好適に使用され、その濃度は、通常10〜150g/L、好ましくは50〜100g/Lである。洗浄処理後の排水は系外に排出され、その後に水洗される。   The above-mentioned acid cleaning is applied in the case of coating contamination due to hardness. And HCl is used suitably as an acid, The density | concentration is 10-150 g / L normally, Preferably it is 50-100 g / L. The waste water after the washing treatment is discharged out of the system and then washed with water.

上記のアルカリ洗浄は、懸濁物質による堆積汚染の際に適用される。そして、アルカリとしては、食塩電解の場合はNaOH水溶液が好適に使用され、その濃度は、通常1〜100g/L、好ましくは5〜50g/Lである。洗浄処理後の排水は系外に排出され、その後に水洗される。   The above alkaline cleaning is applied in the case of sedimentation contamination by suspended substances. And as an alkali, in the case of salt electrolysis, NaOH aqueous solution is used suitably, and the density | concentration is 1-100 g / L normally, Preferably it is 5-50 g / L. The waste water after the washing treatment is discharged out of the system and then washed with water.

上記の様に、脱芒工程の酸洗浄および/またはアルカリ洗浄を定期的に行なっても、斯かる洗浄のインターバルは長期間であるため、薬剤に掛かるコストは非常に少なく、工業的な有利性は何ら損なわれない。   As described above, even if the acid cleaning and / or alkali cleaning in the degassing step is periodically performed, the cleaning interval is long, so that the cost for the medicine is very low, and the industrial advantage Will not be damaged.

本発明は、上記の様にして実施されるが、以下に本発明の特徴部分、すなわち、淡ブライン中の残存塩素を活性炭で吸着除去するための塩素吸着除去工程の実施例を当該工程に続く脱芒工程と共に示すが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。   The present invention is carried out as described above. The following is an example of a characteristic portion of the present invention, that is, an example of a chlorine adsorption removal step for adsorbing and removing residual chlorine in light brine with activated carbon. Although it shows with a dehulling process, this invention is not limited to a following example, unless the summary is exceeded.

実施例1:
電解槽(7)から45m/hで淡ブラインを流出させ、pHを約2に調節し、塩素脱気塔(13)でエアレーションし、61mg−Cl/Lの遊離塩素と5.0g/L硫酸根を含有する淡ブラインを得た。そして、得られた淡ブラインの内の3.6m/h(全体の約8%)について、再度、pHを約11に調節し、平均粒径5mmの活性炭5.0tが充填された塩素吸着塔(23)(内径2600mm×長さ6500mm)にダウンフローで通液した。液温は60℃であった。塩素吸着塔(23)から流出する淡ブラインの遊離塩素を測定したところ、0.10mg−Cl/L未満であり、淡ブライン中の硫酸根濃度の変化は見られなかった。
Example 1:
Pale brine was drained from the electrolytic cell (7) at 45 m 3 / h, the pH was adjusted to about 2, aerated in the chlorine degassing tower (13), 61 mg-Cl / L free chlorine and 5.0 g / L A pale brine containing sulfate radicals was obtained. Then, about 3.6 m 3 / h (about 8% of the whole) of the obtained light brine, the pH was adjusted to about 11 again, and chlorine adsorption filled with activated carbon 5.0 t having an average particle diameter of 5 mm was used. The solution was passed through the column (23) (inner diameter 2600 mm × length 6500 mm) in a down flow. The liquid temperature was 60 ° C. When the free chlorine in the light brine flowing out from the chlorine adsorption tower (23) was measured, it was less than 0.10 mg-Cl / L, and no change in the sulfate group concentration in the light brine was observed.

その後、内径1200mm×長さ4000mmのカラムに両性イオン交換樹脂(三菱化学社製「ダイヤイオンDSR01」)2.4mが充填された分離塔(15)に上記の淡ブラインを供給し、次のクロマトグラフト手法により硫酸根を除去した。すなわち、淡ブライン3.6mを5回に分けて0.72m毎処理し、1時間で全量の3.6mを処理した。(1)先ず、SV4.0h−1の流速で淡ブライン0.72mを通液する。(2)次いで、淡ブラインの通液を止め、SV4.0h−1の流速で水1.2mを通液する。以後(1)と(2)の操作を5回繰り返す。ただし、淡ブラインのpHは通液前に約11に調製した。 Thereafter, the above-mentioned light brine was supplied to a separation tower (15) in which 2.4 m 3 of an amphoteric ion exchange resin (“Diaion DSR01” manufactured by Mitsubishi Chemical Corporation) was packed in a column having an inner diameter of 1200 mm × length of 4000 mm. The sulfate radical was removed by chromatographic grafting. That is, 3.6m 3 of light brine was divided into five times and processed every 0.72m 3 , and the entire amount of 3.6m 3 was processed in one hour. (1) First, 0.72 m 3 of light brine is passed at a flow rate of SV 4.0 h −1 . (2) Next, the flow of light brine is stopped, and 1.2 m 3 of water is passed at a flow rate of SV 4.0 h −1 . Thereafter, the operations (1) and (2) are repeated five times. However, the pH of the light brine was adjusted to about 11 before passing.

分離塔(15)からの流出液の電気伝導率を測定し、電気伝導率5.0S/m以上の液は回収して溶解槽(1)に循環し、5.0S/m未満の液は廃棄した。この操作により、260kg/dの硫酸根除去能力が得られ、電解プラント全体の硫酸根濃度が管理できた。   The electrical conductivity of the effluent from the separation tower (15) is measured, and a liquid having an electric conductivity of 5.0 S / m or more is recovered and circulated to the dissolution tank (1). Discarded. By this operation, a sulfate radical removal capability of 260 kg / d was obtained, and the sulfate radical concentration of the entire electrolytic plant could be managed.

上記の運転を連続して行い、3ケ月毎に塩素吸着塔(23)への淡ブラインの供給を停止、圧空気で塩素吸着塔(23)内の淡ブラインを押し出して回収した後、線速度20m/hで30分間に亘り塩素吸着塔(23)に水をアップフローで通液して洗浄を行った。なお、水の量は、塩素吸着塔(23)内の活性炭に対し、容量比で5.3倍である。その後、淡ブラインの供給を再開した。これらの操作は、バルブ(14a)、(28a)、(28b)、(28c)の操作によって行った。   The above operation is performed continuously, the supply of the light brine to the chlorine adsorption tower (23) is stopped every three months, the light brine in the chlorine adsorption tower (23) is pushed out and recovered with pressurized air, and then the linear velocity Washing was performed by passing water through the chlorine adsorption tower (23) at 20 m / h for 30 minutes in an upflow. In addition, the quantity of water is 5.3 times by volume ratio with respect to the activated carbon in a chlorine adsorption tower (23). Thereafter, the supply of light brine was resumed. These operations were performed by operating the valves (14a), (28a), (28b), and (28c).

上記の運転を連続して行った結果、2年経過した時点において、分離塔(15)の運転圧力の上昇もなく、順調であった。   As a result of continuously performing the above operation, the operation pressure of the separation tower (15) was not increased at the time when two years had passed, and the operation was smooth.

比較例1:
実施例1において、塩素吸着塔(23)の水洗浄を省略した以外は、実施例1と同様に操作した。次第に分離塔(15)の運転圧力が上昇し、1年目には初期の約2倍の圧力となり、淡ブラインの前記の流速SV4.0h−1の確保が困難となった。そこで、運転を停止して点検を行った結果、導管(25)内が懸濁物質で閉塞していた。懸濁物質を調べた結果、多数の好塩性菌が認められた。なお、分離塔(15)の樹脂を抜き出して調べたところ、特に遊離塩素で劣化した兆候は見られなかった。
Comparative Example 1:
In Example 1, the operation was performed in the same manner as in Example 1 except that the water washing of the chlorine adsorption tower (23) was omitted. The operating pressure of the separation tower (15) gradually increased, and in the first year, the pressure was about twice that of the initial stage, making it difficult to secure the above-mentioned flow rate SV4.0h -1 for light brine. Then, as a result of stopping and checking the operation, the inside of the conduit (25) was clogged with suspended solids. As a result of examining the suspended solids, many halophilic bacteria were observed. In addition, when the resin of the separation tower (15) was extracted and examined, there was no sign of deterioration due to free chlorine.

本発明の電解方法の一例を示す工程説明図Process explanatory drawing which shows an example of the electrolysis method of this invention

符号の説明Explanation of symbols

1:飽和ブライン調製工程の溶解槽
6:精製設備
7:電解工程の電解槽
13:塩素脱気工程の塩素脱気塔
15:脱芒工程の分離塔
23:塩素吸着除去工程の塩素吸着塔
1: Saturation brine preparation process dissolution tank 6: Purification equipment 7: Electrolysis process electrolysis tank 13: Chlorine deaeration process chlorine degassing tower 15: Degassing process separation tower 23: Chlorine adsorption removal process chlorine adsorption tower

Claims (2)

不純物として硫酸塩が含まれたアルカリ金属塩化物を水に溶解する飽和ブライン調製工程、飽和ブラインを電解するイオン交換膜方式の電解工程、電解工程から抜き出され且つアルカリ金属塩化物の濃度が低下した淡ブラインから塩素を脱気する塩素脱気工程、塩素脱気工程から導出される淡ブライン中の残存塩素を活性炭で吸着除去するための塩素吸着除去工程を包含するアルカリ金属塩化物の電解方法において、塩素吸着除去工程に水供給手段を設けて塩素吸着除去工程の活性炭に接触する水の塩濃度を低下させることを特徴とするアルカリ金属塩化物の電解方法。   Saturated brine preparation process in which alkali metal chloride containing sulfate as an impurity is dissolved in water, ion exchange membrane type electrolysis process to electrolyze saturated brine, and the concentration of alkali metal chloride is reduced from the electrolysis process Of alkali metal chloride including a chlorine deaeration process for degassing chlorine from the fresh brine, and a chlorine adsorption removal process for adsorbing and removing residual chlorine in the light brine derived from the chlorine deaeration process with activated carbon The method for electrolyzing an alkali metal chloride according to claim 1, wherein a water supply means is provided in the chlorine adsorption removal step to reduce the salt concentration of water that contacts the activated carbon in the chlorine adsorption removal step. 塩素吸着除去工程の後に、脱芒工程として、イオン交換体が充填された分離塔に淡ブラインと水とを交互に通液し、主としてアルカリ金属塩化物を含有する流出液と硫酸塩を含有する流出液とを分離して回収すると共に、前者は上記の飽和ブライン調製工程へ循環し、後者は循環系外に除去する工程を設けた請求項1に記載の電解方法。   After the chlorine adsorption removal process, as a degassing process, light brine and water are alternately passed through a separation tower packed with an ion exchanger, and mainly contain an effluent containing an alkali metal chloride and a sulfate. The electrolytic method according to claim 1, wherein the effluent is separated and recovered, and the former is circulated to the saturated brine preparation step, and the latter is removed outside the circulation system.
JP2004092606A 2004-03-26 2004-03-26 Method for electrolyzing alkali metal chloride Withdrawn JP2005272993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004092606A JP2005272993A (en) 2004-03-26 2004-03-26 Method for electrolyzing alkali metal chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004092606A JP2005272993A (en) 2004-03-26 2004-03-26 Method for electrolyzing alkali metal chloride

Publications (1)

Publication Number Publication Date
JP2005272993A true JP2005272993A (en) 2005-10-06

Family

ID=35172971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004092606A Withdrawn JP2005272993A (en) 2004-03-26 2004-03-26 Method for electrolyzing alkali metal chloride

Country Status (1)

Country Link
JP (1) JP2005272993A (en)

Similar Documents

Publication Publication Date Title
KR101092818B1 (en) Chlorine dioxide generator and method the same
WO2002000551A2 (en) A process and apparatus for brine purification
JP6972220B2 (en) Salt water purification method
JP2008049241A (en) Phosphorus adsorbent desorption and recycle method in treatment for wastewater
JP2012196632A (en) Water treatment method and water treatment system
JP2000070933A (en) Production of pure water
JPS6336890A (en) Apparatus for producing high-purity water
JP2010180445A (en) Method of electrolyzing alkaline metal chloride
JP3249677B2 (en) Electrolysis method of alkali metal chloride
JP2005272993A (en) Method for electrolyzing alkali metal chloride
JP2001181880A (en) Method for electrolyzing alkali metal chloride
JP4839949B2 (en) Electrolysis method of alkali metal chloride
JP2008049240A (en) Phosphorus recovery and phosphorus adsorbent disattacment measure in treatment for wastewater
JP2005281777A (en) Method for electrolyzing alkali metal chloride
JP2007291480A (en) Method of electrolyzing alkali metal chloride
JP2001181877A (en) Method for electrolyzing alkali metal chloride
JP2005272994A (en) Method for electrolyzing alkali metal chloride
JP2001181879A (en) Method for electrolyzing alkali metal chloride
JP2001181878A (en) Method for electrolyzing alkali metal chloride
JP2012196634A (en) Method and system for treatment of water
JP5023809B2 (en) Electrolysis method of aqueous sodium chloride solution
CN218491601U (en) Waste water treatment device
EP0609839B1 (en) Method for electrolyzing an alkali metal chloride
JP3269784B2 (en) Ozone water production method and ozone water production device
JPH0449485B2 (en)

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605