JP2005272956A - Insulation-coated metal particle and production method therefor - Google Patents

Insulation-coated metal particle and production method therefor Download PDF

Info

Publication number
JP2005272956A
JP2005272956A JP2004089824A JP2004089824A JP2005272956A JP 2005272956 A JP2005272956 A JP 2005272956A JP 2004089824 A JP2004089824 A JP 2004089824A JP 2004089824 A JP2004089824 A JP 2004089824A JP 2005272956 A JP2005272956 A JP 2005272956A
Authority
JP
Japan
Prior art keywords
metal
sol
metal oxide
group
metal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004089824A
Other languages
Japanese (ja)
Inventor
Hideaki Shinozaki
秀明 篠崎
Katsuhiro Shibuya
勝弘 澁谷
Kayoko Sannomiya
佳代子 三宮
Kazuya Orii
一也 折井
Akihiro Iikuma
明広 飯隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Infomedia Co Ltd
Original Assignee
Tokyo Magnetic Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Magnetic Printing Co Ltd filed Critical Tokyo Magnetic Printing Co Ltd
Priority to JP2004089824A priority Critical patent/JP2005272956A/en
Publication of JP2005272956A publication Critical patent/JP2005272956A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide insulation-coated metal particles in which a dense insulation coating having high bonding strength with the surface of each metal particle is formed, and to provide a production method capable of easily producing the insulation-coated metal particles. <P>SOLUTION: The insulation-coated metal particles are obtained by, using a metal organic compound capable of forming a hydroxyl group by hydrolysis, forming a coating derived from a metal oxide sol (such as a silica sol and an alumina sol) on the surface of each metal particle via a -O-Me-O- bond (Me is metals comprised in the metal organic compound). In the method for producing insulation-coated metal particles, after the regulation of the pH in a solution comprising metal particles, a metal organic compound and a metal oxide sol to 3 to 4, the solution is stirred and is left standing to allow a hydroxyl group derived from the metal organic compound to adsorb (bond) on the metal oxide sol or the metal particles; subsequently, the value of the pH in the solution is changed by ≥2 to promote dewatering and condensation reaction, so as to form a -O-Me-O bond; the metal oxide sol is allowed to adsorb (bond) on the metal particles via the bonding; and thereafter, the solution is filtered, dried and heat-treated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、絶縁被覆金属粒子およびその製造方法に関する。さらに詳しくは、金属粒子表面との結合力が強く、緻密な絶縁皮膜が形成された絶縁被覆金属粒子、およびその製造方法に関する。   The present invention relates to insulating coated metal particles and a method for producing the same. More specifically, the present invention relates to an insulating coated metal particle having a strong bonding force with the surface of the metal particle and having a dense insulating film formed thereon, and a method for producing the same.

金属粒子に絶縁性の皮膜を形成した絶縁被覆金属粒子は、近年、液晶表示装置などのパネル部材やプリント回路基板材料、高周波用圧粉磁心、電磁波抑制シート、磁気カードなど多くの用途で必要とされている。   Insulating coated metal particles in which an insulating film is formed on metal particles are required in many applications such as panel members such as liquid crystal display devices, printed circuit board materials, high frequency powder magnetic cores, electromagnetic wave suppression sheets, and magnetic cards in recent years. Has been.

かかる絶縁被覆金属粒子の製造方法としては、例えば、磁性粉末と絶縁性無機粉末との混合体を乾燥させて固形混合体としたものを粉末成形プレスで固化成形する方法(特許文献1)、機械的衝撃力を利用して金属粒子表面に絶縁性無機材料を被覆する方法(特許文献2)、金属アルコキシドを用いたゾル−ゲル法により被覆する方法(特許文献3)などが従来文献に示されている。   As a method for producing such insulating coated metal particles, for example, a method in which a mixture of magnetic powder and insulating inorganic powder is dried to form a solid mixture is solidified with a powder molding press (Patent Document 1), machine Conventionally, a method of coating an insulating inorganic material on the surface of metal particles using a mechanical impact force (Patent Document 2), a method of coating by a sol-gel method using a metal alkoxide (Patent Document 3), etc. ing.

特開平06−260319号公報Japanese Patent Laid-Open No. 06-260319 特開2002−368480号公報JP 2002-368480 A 特開平08−246002号公報Japanese Patent Laid-Open No. 08-246002

本発明者らが上記従来の方法で金属粒子に絶縁皮膜を形成することを試みたところ、金属粒子表面に絶縁性無機材料を機械的衝撃力により被覆する方法では、金属粒子表面に絶縁性無機粒子をまぶすことができ、絶縁性の向上はみられたが、金属粒子と絶縁性無機粒子の結合力が弱く、例えば、得られた絶縁被覆金属粒子を有機バインダと溶剤に分散して塗料を作製したところ、分散時の剪断力で絶縁皮膜の脱離が発生し、塗膜の絶縁性が十分に得られなかった。粉末成形プレスで固化成形する方法で得られる被覆も上記と同様の問題点を有する。   When the present inventors tried to form an insulating film on the metal particles by the above-mentioned conventional method, in the method of coating the metal particle surface with an insulating inorganic material by mechanical impact force, the metal particle surface is insulated with an insulating inorganic material. Particles could be sprayed and the insulation was improved, but the bonding force between the metal particles and the insulating inorganic particles was weak.For example, the obtained insulating coated metal particles were dispersed in an organic binder and a solvent. As a result, the insulation film was detached due to the shearing force at the time of dispersion, and the insulation of the coating film was not sufficiently obtained. The coating obtained by the method of solidification molding with a powder molding press also has the same problems as described above.

また、金属アルコキシドを用いたゾル−ゲル法では、相当の絶縁性は示すものの、絶縁皮膜の緻密性や厚みが十分とはいえず、より高い絶縁性を示す絶縁皮膜を形成する必要があることがわかった。   In addition, the sol-gel method using metal alkoxide exhibits considerable insulation, but the denseness and thickness of the insulation film are not sufficient, and it is necessary to form an insulation film exhibiting higher insulation. I understood.

本発明は上記事情に鑑みてなされたもので、金属粒子表面との結合力が強く、緻密な絶縁皮膜を形成した絶縁被覆金属粒子、および該絶縁被覆金属粒子を簡便に製造することができる製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and has a strong bonding force to the surface of metal particles, an insulation coated metal particle having a dense insulating film formed thereon, and a production capable of easily producing the insulation coated metal particle It aims to provide a method.

上記課題を達成するために本発明は、加水分解によりヒドロキシル基を形成し得る金属有機化合物を用いて、金属粒子表面に、−O−Me−O−結合(Me:上記金属有機化合物に含まれる金属)を介して、シリカゾル、チタニアゾル、アルミナゾル、および酸化セリウムゾルの中から選ばれる1種または2種以上を含む金属酸化物ゾル由来の皮膜を被覆形成してなる、絶縁被覆金属粒子を提供する。   In order to achieve the above object, the present invention uses a metal organic compound capable of forming a hydroxyl group by hydrolysis, and has a -O-Me-O- bond (Me: contained in the metal organic compound) on the metal particle surface. Provided is an insulating coated metal particle formed by coating a coating derived from a metal oxide sol containing one or more selected from silica sol, titania sol, alumina sol, and cerium oxide sol via (metal).

また本発明は、金属粒子を溶媒中に分散し、ここに加水分解によりヒドロキシル基を形成し得る金属有機化合物と、シリカゾル、チタニアゾル、アルミナゾル、および酸化セリウムゾルの中から選ばれる1種または2種以上を含む金属酸化物ゾルを添加してなる溶液を撹拌した後、該溶液のpHを3〜4に調整して撹拌・放置することにより、金属有機化合物の加水分解により形成されたヒドロキシル基を金属酸化物ゾル、あるいは金属粒子に吸着(結合)させる加水分解・吸着(結合)工程、および、該加水分解・吸着(結合)工程後の溶液のpHを、pH3〜4に対しpHの値を2以上変化させて維持することにより、溶液中で脱水・縮合反応を促進させて、−O−Me−O結合(Me:上記金属有機化合物に含まれる金属)を形成し、該−O−Me−O結合を介して、金属酸化物ゾルを金属粒子に吸着(結合)させる脱水・縮合反応促進工程、および、該脱水・縮合反応促進工程後の溶液を濾過し、乾燥・熱処理する工程、を含む、絶縁被覆金属粒子の製造方法を提供する。   The present invention also includes a metal organic compound in which metal particles are dispersed in a solvent and capable of forming a hydroxyl group by hydrolysis, and one or more selected from silica sol, titania sol, alumina sol, and cerium oxide sol. After stirring the solution to which the metal oxide sol containing is added, the pH of the solution is adjusted to 3 to 4 and stirred and allowed to stand, whereby the hydroxyl group formed by hydrolysis of the metal organic compound is converted to metal. The hydrolysis / adsorption (bonding) step for adsorbing (bonding) to the oxide sol or metal particles, and the pH of the solution after the hydrolysis / adsorption (bonding) step is set to 2 with respect to pH 3-4. By maintaining the above changes, the dehydration / condensation reaction is promoted in the solution to form —O—Me—O bond (Me: metal contained in the metal organic compound), A dehydration / condensation reaction accelerating step for adsorbing (bonding) metal oxide sol to metal particles via —O—Me—O bond, and a solution after the dehydration / condensation reaction accelerating step is filtered and dried / heat treated. A method for producing insulating coated metal particles, comprising the step of:

上記の絶縁被覆金属粒子およびその製造方法において、上記金属有機化合物が、Me(RO)(R)(ただし、MeはSi、Ti、Zr、Alのいずれかの金属元素を示し、Rは炭素原子数1〜8のアルキル基を示し、m+nはMeの原子価に等しい数を示し、mは2以上の数を示し、nは0または1以上の数を示す)で表される金属アルコキシド、またはMe(RO)(Y)(ただし、Me、R、m+n、m、nは、それぞれ上記で定義したとおりであり、Yは炭素原子数1〜12の炭化水素基、アミノ基、エポキシ基、ビニル基、アクリル基、メタクリル基から選ばれる有機官能基、またはアルキルアセテートを示す)で表されるカップリング剤の中から選ばれる1種または2種以上であるのが好ましい。 In the insulating coated metal particles and the manufacturing method thereof, the metal organic compound is Me (RO) m (R) n (where Me represents a metal element of Si, Ti, Zr, or Al, and R represents An alkyl group having 1 to 8 carbon atoms, m + n represents a number equal to the valence of Me, m represents a number of 2 or more, and n represents a number of 0 or 1). Or Me (RO) m (Y) n (where Me, R, m + n, m, n are as defined above, respectively, Y is a hydrocarbon group having 1 to 12 carbon atoms, an amino group, It is preferably one or more selected from coupling agents represented by an organic functional group selected from an epoxy group, a vinyl group, an acrylic group, and a methacryl group, or an alkyl acetate.

また金属酸化物ゾルに含まれる金属酸化物の1次粒子サイズが5〜100nmであるのが好ましい。   Moreover, it is preferable that the primary particle size of the metal oxide contained in the metal oxide sol is 5 to 100 nm.

また金属酸化物ゾルに含まれる金属酸化物の2次粒子サイズが200nm以下であるのが好ましい。   The secondary particle size of the metal oxide contained in the metal oxide sol is preferably 200 nm or less.

本発明の絶縁被覆金属粒子は、皮膜と金属粒子表面との結合が強固で、緻密な絶縁皮膜を有する。また本発明の製造方法により、簡便に該絶縁被覆金属粒子を製造することができる。   The insulating coated metal particles of the present invention have a tight bond between the film and the metal particle surface and have a dense insulating film. Further, the insulating coated metal particles can be easily produced by the production method of the present invention.

以下、本発明について詳説する。   Hereinafter, the present invention will be described in detail.

本発明に係る絶縁被覆金属粒子は、金属粒子の表面に、加水分解によりヒドロキシル基を形成し得る金属有機化合物を用いることによって、−O−Me−O−結合(Me:上記金属有機化合物に含まれる金属)を介して、金属酸化物ゾル由来の皮膜を被覆形成してなる。   The insulating coated metal particles according to the present invention use a metal organic compound capable of forming a hydroxyl group by hydrolysis on the surface of the metal particle, whereby an -O-Me-O- bond (Me: included in the metal organic compound). A metal oxide sol-derived film is formed through a metal).

上記金属粒子は、特に限定されるものでなく、用途に応じて適宜、選択され得るが、例えばFe、NiまたはCoを主成分とする金属磁性粒子等が好適に用いられる。   The metal particles are not particularly limited and may be appropriately selected depending on the application. For example, metal magnetic particles mainly composed of Fe, Ni, or Co are preferably used.

上記金属有機化合物としては、加水分解によりヒドロキシル基を形成し得るものが用いられる。本発明では低級アルコール、水・低級アルコール系溶媒との反応で加水分解して、ヒドロキシル基を形成し得るものが好ましく用いられる。このような金属有機化合物として、本発明では、金属アルコキシド、カップリング剤、金属セチルアセトネート、金属カルボキシレート等が例示される。中でも、反応性に富み、金属−酸素の結合からなる重合体を生成しやすい等の点から、金属アルコキシド、カップリング剤が好ましく用いられる。   As said metal organic compound, what can form a hydroxyl group by hydrolysis is used. In the present invention, those which can be hydrolyzed by reaction with a lower alcohol or water / lower alcohol solvent to form a hydroxyl group are preferably used. Examples of such metal organic compounds include metal alkoxides, coupling agents, metal cetyl acetonates, metal carboxylates and the like in the present invention. Of these, metal alkoxides and coupling agents are preferably used because they are highly reactive and easily produce a polymer composed of a metal-oxygen bond.

上記金属アルコキシドとしては、Me(RO)(R)(ただし、MeはSi、Ti、Zr、Alのいずれかの金属元素を示し、Rは炭素原子数1〜8のアルキル基を示し、m+nはMeの原子価に等しい数を示し、mは2以上の数を示し、nは0または1以上の数を示す)で表されるものが好適に用いられる。すなわち該金属アルコキシドはアルコキシ基を少なくとも2つ以上有するものが好適に用いられる。なお一分子内にアルコキシ基(RO)を多く含み、炭素鎖が短いものほど金属粒子と金属酸化物ゾルの結合力を強くすることができ、反応性を高めることができる。上記式において、アルコキシ基(RO)は短鎖(炭素原子数1〜8、好ましくは1〜4)であることから、金属粒子と金属酸化物ゾル(後述)との結合力が強められ、反応性を高められるため好ましい。またnは0であるのが好ましい。 As the metal alkoxide, Me (RO) m (R) n (where Me represents a metal element of Si, Ti, Zr, Al, R represents an alkyl group having 1 to 8 carbon atoms, m + n represents a number equal to the valence of Me, m represents a number of 2 or more, and n represents a number of 0 or 1). That is, the metal alkoxide having at least two alkoxy groups is preferably used. Note that as the number of alkoxy groups (RO) in one molecule increases and the carbon chain is shorter, the bonding force between the metal particles and the metal oxide sol can be increased, and the reactivity can be increased. In the above formula, since the alkoxy group (RO) is a short chain (1 to 8, preferably 1 to 4 carbon atoms), the bonding force between the metal particles and the metal oxide sol (described later) is enhanced, and the reaction This is preferable because the properties can be improved. N is preferably 0.

かかる金属アルコキシドの具体例としては、Si(OCH、Si(OC、CHSi(OCH、CHSi(OC、等のSi系アルコキシド、Ti(OC、Ti(OC、(OCTi−Ti(OC、Ti(OC17等のTi系アルコキシド、Zr(OC、Zr(OC等のZr系アルコキシド、Al(OC、Al(OC等のAl系アルコキシドなどが例示されるが、これら例示に限定されるものではない。 Specific examples of such metal alkoxides include Si-based alkoxides such as Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , CH 3 Si (OCH 3 ) 3 , and CH 3 Si (OC 2 H 5 ) 3 . Ti-based alkoxides such as Ti (OC 3 H 7 ) 4 , Ti (OC 4 H 9 ) 4 , (OC 4 H 9 ) 3 Ti—Ti (OC 4 H 9 ) 3 , Ti (OC 8 H 17 ) 4 Zr alkoxides such as Zr (OC 3 H 7 ) 4 and Zr (OC 4 H 9 ) 4 , Al alkoxides such as Al (OC 3 H 7 ) 3 and Al (OC 4 H 9 ) 3 However, it is not limited to these examples.

上記カップリング剤としては、Me(RO)(Y)(ただし、Me、R、m+n、m、nは、それぞれ上記で定義したとおりであり、Yは炭素原子数1〜12の炭化水素基、アミノ基、エポキシ基、ビニル基、アクリル基、メタクリル基から選ばれる有機官能基、またはアルキルアセテートを示す)で表されるものが好適に用いられる。 As the coupling agent, Me (RO) m (Y) n (where Me, R, m + n, m, and n are as defined above, respectively, and Y is a hydrocarbon having 1 to 12 carbon atoms. An organic functional group selected from a group, an amino group, an epoxy group, a vinyl group, an acrylic group, and a methacryl group, or an alkyl acetate) is preferably used.

かかるカップリング剤としては、アルキルアセトアセテートアルミニウムジイソプロピレート等のAl系カップリング剤、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のシランカップリング剤、チタンアセチルアセテート、チタンエチルアセテート等のTi系カップリング剤、ジルコニウムジブトキシビス(アセチルアセトネート)、ジルコニウムトリブトキシエチルアセトアセテート等のZr系カップリング剤などが例示されるが、これら例示に限定されるものではない。   Examples of the coupling agent include Al coupling agents such as alkyl acetoacetate aluminum diisopropylate, and silane cups such as γ-glycidoxypropyltrimethoxysilane and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. Examples include ring coupling agents, Ti coupling agents such as titanium acetyl acetate and titanium ethyl acetate, Zr coupling agents such as zirconium dibutoxybis (acetylacetonate) and zirconium tributoxyethyl acetoacetate. It is not limited to.

金属アルコキシドの製造は、特に限定されるものでなく、金属とアルコールとを接触させる等、常法により得たものを用いることができる。   The production of the metal alkoxide is not particularly limited, and a metal alkoxide obtained by a conventional method such as bringing a metal and an alcohol into contact with each other can be used.

本発明に用いられる金属酸化物ゾルは、シリカゾル、チタニアゾル、アルミナゾル、および酸化セリウムゾルの中から選ばれる1種または2種以上の金属酸化物が溶媒中に分散された分散体が好ましく用いられる。上記特定の金属酸化物ゾルは、絶縁性を得る上で特に好ましい。   The metal oxide sol used in the present invention is preferably a dispersion in which one or more metal oxides selected from silica sol, titania sol, alumina sol, and cerium oxide sol are dispersed in a solvent. The specific metal oxide sol is particularly preferable for obtaining insulation.

金属酸化物ゾルは、金属酸化物の粒子径が小さいもののほうが緻密な皮膜を形成するこができることから、1次粒子サイズが5〜100nmのものが好ましく、特には5〜20nmのものが好ましく、また、2次粒子サイズが200nm以下のものが好ましく、特には50nm以下のものが好ましい。金属酸化物の1次粒子が100nmより大きく、2次粒子が200nmより大きいものを使用すると、絶縁皮膜の密着力が低下する傾向がみられ、均一な皮膜形成が困難となりがちである。なお、金属酸化物ゾルの表面は、金属アルコキシドのアルコキシ基と強く結合するためにヒドロキシル基を多く有しているものが好ましい。   Since the metal oxide sol has a smaller particle diameter of the metal oxide and can form a denser film, the primary particle size is preferably 5 to 100 nm, particularly preferably 5 to 20 nm. The secondary particle size is preferably 200 nm or less, and particularly preferably 50 nm or less. When the primary particle of the metal oxide is larger than 100 nm and the secondary particle is larger than 200 nm, the adhesion strength of the insulating film tends to be reduced, so that uniform film formation tends to be difficult. The surface of the metal oxide sol preferably has a large number of hydroxyl groups in order to bond strongly with the alkoxy group of the metal alkoxide.

金属酸化物ゾルの製造は、特に限定されるものでなく、ゾル−ゲル法により金属アルコキシドを出発原料として加水分解・縮合したものを分散媒に分散させる、等により得たものを好適に用いることができ、金属酸化物ゾルの表面におけるヒドロキシル基の数を多くすることができる。なお分散媒としては水、低級アルコール等が好ましく用いられ、中でも水が好ましい。ただしこれに限定されるものではない。   The production of the metal oxide sol is not particularly limited, and it is preferable to use a product obtained by dispersing a hydrolyzed / condensed metal alkoxide as a starting material in a dispersion medium by a sol-gel method. And the number of hydroxyl groups on the surface of the metal oxide sol can be increased. As the dispersion medium, water, lower alcohol or the like is preferably used, and water is particularly preferable. However, it is not limited to this.

本発明に係る絶縁被覆金属粒子の製造は、以下の製造方法によって製造するのが好ましい。   The insulation-coated metal particles according to the present invention are preferably produced by the following production method.

[加水分解・吸着(結合)工程]
まず、金属粒子を溶媒中に分散し、ここに上記金属有機化合物(以下、金属アルコキシドを代表例として説明する)と金属酸化物ゾルを添加して溶液を作成する。
[Hydrolysis / adsorption (bonding) process]
First, metal particles are dispersed in a solvent, and a solution is prepared by adding the metal organic compound (hereinafter, metal alkoxide will be described as a representative example) and a metal oxide sol.

上記溶媒としては、金属粒子と金属アルコキシドと金属酸化物ゾルの分散性を著しく損なわないものを用いる。本発明では水とメタノール、エタノール、イソプロパノールなどの低級アルコールとを配合した水・アルコール系溶媒を好適に使用することができる。   As the solvent, a solvent that does not significantly impair the dispersibility of the metal particles, the metal alkoxide, and the metal oxide sol is used. In the present invention, a water / alcohol solvent containing water and a lower alcohol such as methanol, ethanol or isopropanol can be preferably used.

金属粒子はあらかじめ酸処理などによって洗浄しておくことが好ましい。酸としてはリン酸、塩酸、硫酸などの無機酸、および有機カルボン酸などの有機酸などが使用でき、例えば、塩酸5%水溶液を液温20℃で一定に保ち、金属磁性粉を適当な時間浸漬させた後、フィルターにより洗浄液を除去し、さらに水洗するなどの方法をとることができるが、これに限定されるものではない。   The metal particles are preferably washed beforehand by acid treatment or the like. Examples of acids that can be used include inorganic acids such as phosphoric acid, hydrochloric acid, and sulfuric acid, and organic acids such as organic carboxylic acids. For example, a 5% hydrochloric acid aqueous solution is kept constant at a liquid temperature of 20 ° C., and the metal magnetic powder is kept at an appropriate time. After the immersion, a method of removing the cleaning liquid with a filter and further washing with water can be used, but the method is not limited to this.

次いで、このように酸処理した金属粒子を水・アルコール系溶媒中に分散する。金属粒子の分散は、ビーズミルや超音波分散などにより行うことができるが、これら方法に限定されるものではない。金属粒子は水・アルコール系溶媒中に、好ましくは5〜50質量%、より好ましくは10〜30質量%程度添加される。このようにして金属粒子を1次粒子に分散してから、金属アルコキシドと金属酸化物ゾルを添加する。   Subsequently, the acid-treated metal particles are dispersed in a water / alcohol solvent. The metal particles can be dispersed by a bead mill or ultrasonic dispersion, but is not limited to these methods. The metal particles are preferably added to the water / alcohol solvent in an amount of about 5 to 50% by mass, more preferably about 10 to 30% by mass. After the metal particles are dispersed in the primary particles in this manner, the metal alkoxide and the metal oxide sol are added.

金属アルコキシドは、金属粒子に対して0.05〜30質量%、特には0.1〜10質量%の比率で添加することが好ましい。金属アルコキシドの添加量が少なすぎると、金属酸化物ゾルの結合力が弱く、酸化皮膜が脱離するなどの現象が生じやすくなり、一方、添加量が過剰な場合、酸化皮膜金属粉同士の凝集体が強固に形成される傾向がみられ、好ましくない。   The metal alkoxide is preferably added at a ratio of 0.05 to 30% by mass, particularly 0.1 to 10% by mass with respect to the metal particles. If the addition amount of the metal alkoxide is too small, the bonding strength of the metal oxide sol is weak and a phenomenon such as detachment of the oxide film is likely to occur. There is a tendency for the aggregates to be firmly formed, which is not preferable.

金属酸化物ゾルは、金属粒子に対して1.0〜30質量%、特には1.5〜15質量%の比率(固形分比率)で添加することが好ましい。金属酸化物ゾルの添加量が少なすぎると、絶縁不良(ブレークダウンなど)等の現象が生じやすくなり、一方、添加量が過剰な場合、絶縁被覆金属粒子のゾルの占有率が高いため金属粒子の特性(例えば磁気特性など)を著しく低下させる傾向がみられ、好ましくない。   The metal oxide sol is preferably added at a ratio (solid content ratio) of 1.0 to 30% by mass, particularly 1.5 to 15% by mass with respect to the metal particles. If the addition amount of the metal oxide sol is too small, a phenomenon such as poor insulation (breakdown, etc.) is likely to occur. On the other hand, if the addition amount is excessive, the metal sol There is a tendency to remarkably reduce the characteristics (for example, magnetic characteristics), and this is not preferable.

続いて、このように金属粒子、金属アルコキシド、金属酸化物ゾルを溶媒中に添加した溶液を均一に撹拌する。撹拌時間は数分間程度行えばよく、特に限定されるものでない。液温は20〜60℃程度とするのが反応速度を制御する点から好ましい。   Subsequently, the solution in which the metal particles, the metal alkoxide, and the metal oxide sol are added in the solvent is uniformly stirred. The stirring time may be about several minutes and is not particularly limited. The liquid temperature is preferably about 20 to 60 ° C. from the viewpoint of controlling the reaction rate.

次いで、上記溶液のpHを3〜4に調整した後、該溶液を撹拌・放置する。   Next, after adjusting the pH of the solution to 3 to 4, the solution is stirred and allowed to stand.

上記一連の処理において、まず、金属アルコキシドの加水分解処理が行われる。この金属アルコキシドの加水分解により、金属アルコキシドのアルコキシ基はヒドロキシル基となる。そしてこの金属アルコキシド由来のヒドロキシル基は、金属粒子表面あるいは金属酸化物ゾル表面のヒドロキシル基と、それぞれ水素結合的に吸着する。より具体的には、上記金属アルコキシド由来のヒドロキシル基は、金属粒子表面の活性点に吸着して、(金属粒子−OHHO−Me−OR)結合を形成し、あるいは、その後順次形成されるヒドロキシル基のうち他のヒドロキシル基が金属酸化物ゾルに吸着して、(金属酸化物ゾル−OHHO−Me−OR)結合を形成する。そしてこれらが縮合して(金属粒子−OHHO−Me−OHHO−金属酸化物ゾル)結合を形成する。   In the above series of treatments, first, the metal alkoxide is hydrolyzed. By hydrolysis of the metal alkoxide, the alkoxy group of the metal alkoxide becomes a hydroxyl group. The hydroxyl group derived from the metal alkoxide is adsorbed in a hydrogen bond manner with the hydroxyl group on the surface of the metal particle or the metal oxide sol. More specifically, the hydroxyl group derived from the metal alkoxide is adsorbed on an active site on the surface of the metal particle to form a (metal particle-OHHO-Me-OR) bond, or subsequently formed sequentially. Among them, other hydroxyl groups are adsorbed on the metal oxide sol to form a (metal oxide sol-OHHO-Me-OR) bond. These then condense (metal particles-OHHO-Me-OHHO-metal oxide sol) to form a bond.

加水分解処理時間は、金属有機化合物種(金属種、アルキル基種、アルコキシ基種)、や溶液のpHと温度、溶液の水とアルコールの比率等によっても異なるが、通常、1〜3時間程度で終了する。   The hydrolysis treatment time varies depending on the metal organic compound species (metal species, alkyl group species, alkoxy group species), the pH and temperature of the solution, the ratio of water to alcohol in the solution, etc., but usually about 1 to 3 hours. End with.

このとき、金属粒子あるいは金属酸化物ゾルと吸着するまでの過程で、金属アルコキシド由来の一部のヒドロキシル基が、金属アルコキシド由来の他のヒドロキシル基と縮合して、溶液中で不均一にオリゴマー化する可能性がある。オリゴマー分子量の増大は、金属粒子を金属酸化物ゾルで均一に被覆すること、強く結着させることに対して不利に働くことがある。そこで金属アルコキシドのアルコキシ基を加水分解するときに、ヒドロキシル基どうしの脱水・縮合反応を抑制し、このような反応を起こさずにヒドロキシル基の状態で安定維持させ、上記結合・吸着を進めることが、金属粒子を金属酸化物ゾルで均一処理する上で適している。   At this time, some hydroxyl groups derived from the metal alkoxide condense with other hydroxyl groups derived from the metal alkoxide in the process of adsorbing with the metal particles or metal oxide sol, resulting in non-uniform oligomerization in the solution. there's a possibility that. The increase in the molecular weight of the oligomer may be disadvantageous for uniformly coating the metal particles with the metal oxide sol and strongly binding them. Therefore, when hydrolyzing the alkoxy group of the metal alkoxide, the dehydration / condensation reaction between the hydroxyl groups can be suppressed, the hydroxyl group can be stably maintained without causing such a reaction, and the above binding / adsorption can be promoted. It is suitable for uniformly treating metal particles with a metal oxide sol.

このような脱水・縮合反応の抑制は、溶液のpHを調整することで可能であり、pH3〜4で最も反応が抑制される。これにより、金属アルコキシド由来のヒドロキシル基の金属粒子への吸着、金属酸化物ゾルへの吸着(結合)を、それぞれ安定に行わせることできる。   Such dehydration / condensation reaction can be suppressed by adjusting the pH of the solution, and the reaction is most suppressed at pH 3-4. Thereby, the adsorption of the hydroxyl group derived from the metal alkoxide to the metal particles and the adsorption (bonding) to the metal oxide sol can be performed stably.

なお、pH調整は、例えば酸を添加すること等によって行うことができる。酸としては特に限定されるのでなく、例えば酢酸、有機カルボン酸等の有機酸、塩酸、リン酸、塩酸、硫酸等の無機酸等を用いることができるが、これら例示に限定されるものでない。   In addition, pH adjustment can be performed by adding an acid etc., for example. The acid is not particularly limited, and for example, organic acids such as acetic acid and organic carboxylic acids, inorganic acids such as hydrochloric acid, phosphoric acid, hydrochloric acid, and sulfuric acid can be used, but the acid is not limited to these examples.

[脱水・縮合反応促進工程]
上記加水分解・吸着(結合)工程後は、溶液の脱水・縮合反応を促進して、(金属粒子−OHHO−Me−OHHO−金属酸化物ゾル)結合を、(金属粒子−O−Me−O−金属酸化物ゾル)結合とする。これにより、金属粒子と金属酸化物ゾルとが、−O−Me−O結合(メタロキサン結合)を介して、強固に結合(吸着)される。
[Dehydration and condensation reaction acceleration process]
After the hydrolysis / adsorption (bonding) step, the dehydration / condensation reaction of the solution is promoted to bond (metal particle-OHHO-Me-OHHO-metal oxide sol) bond to (metal particle-O-Me-O). -Metal oxide sol) bond. As a result, the metal particles and the metal oxide sol are firmly bonded (adsorbed) via the —O—Me—O bond (metalloxane bond).

脱水・縮合反応速度は、pH3〜4の溶液を、pH2以上の値変化させることにより促進することができる。具体的には、例えばpH3(〜4)の溶液をpH5(〜6)若しくはそれ以上にする、あるいはpH3(〜4)の溶液をpH1(〜2)若しくはそれ以下にする、等により行うことができる。このpH値変化は大きいほど効果が高いので、脱水・縮合反応速度を高めるという点だけを考慮すれば、pHを1若しくは14に近づけることで特に効果的に促進させることができる。pHの調整は酸添加、あるいはアルカリ添加等により行うことができる。   The dehydration / condensation reaction rate can be promoted by changing the pH 3 to 4 solution to a value of pH 2 or higher. Specifically, for example, the pH 3 (~ 4) solution is adjusted to pH 5 (~ 6) or higher, or the pH 3 (~ 4) solution is adjusted to pH 1 (~ 2) or lower. it can. The greater the change in pH value, the higher the effect. Therefore, considering only the point of increasing the dehydration / condensation reaction rate, it can be promoted particularly effectively by bringing the pH closer to 1 or 14. The pH can be adjusted by acid addition or alkali addition.

ただし金属粒子の種類によって、強酸、強アルカリで腐食することが考えられるため、変化させるpH値とpH調整剤を種々選択する必要がある。pH調整剤は急激に添加すると縮合反応が処理液中で不均一に発生しやすくなるため、攪拌しながら徐々に添加することが望ましい。   However, since it is considered that the metal particles corrode with strong acid or strong alkali, it is necessary to select various pH values and pH adjusters to be changed. If the pH adjuster is added rapidly, the condensation reaction tends to occur non-uniformly in the treatment liquid, so it is desirable to add gradually while stirring.

脱水・縮合反応工程では、過剰な脱水・縮合で凝集体を形成しないよう、炭素原子数の大きいアルキル基を有するカップリング剤や界面活性剤を処理液に添加することが望ましい。例えばデシルトリメトキシシランやアミン系界面活性剤などが使用できる。特にポリオキシエチレン(POE)ココナットアルキルアミンの界面活性剤は凝集体防止効果が認められる。   In the dehydration / condensation reaction step, it is desirable to add a coupling agent or surfactant having an alkyl group having a large number of carbon atoms to the treatment liquid so as not to form an aggregate due to excessive dehydration / condensation. For example, decyltrimethoxysilane or amine surfactant can be used. In particular, a surfactant of polyoxyethylene (POE) coconut alkylamine has an effect of preventing aggregation.

このようなpH調整や凝集体防止材料を用いなくとも、金属酸化物ゾルで被覆した金属粒子を製造することが可能であるが、皮膜の均一性、絶縁抵抗値の安定性(再現性)が良好となる。   Although it is possible to produce metal particles coated with a metal oxide sol without using such pH adjustment or aggregate prevention material, the uniformity of the film and the stability (reproducibility) of the insulation resistance value It becomes good.

[濾別・乾燥・熱処理工程]
上記脱水・縮合工程後の溶液を、フィルターなどで濾過し、熱処理炉などで処理粉体を乾燥させる。また脱水・縮合反応が完了していない液部分を熱処理によって完全に完了させることが望ましい。熱処理温度は100℃以上が好ましく、金属粒子の酸化が進行しない程度の温度と時間に調整する必要がある。
[Filtering, drying, heat treatment process]
The solution after the dehydration / condensation step is filtered with a filter or the like, and the treated powder is dried with a heat treatment furnace or the like. In addition, it is desirable that the liquid part in which the dehydration / condensation reaction is not completed is completely completed by heat treatment. The heat treatment temperature is preferably 100 ° C. or higher, and it is necessary to adjust the temperature and time so that the oxidation of the metal particles does not proceed.

乾燥・熱処理によって脱水・縮合反応を促進させ、強固に結合された金属酸化物ゾル由来の皮膜で被覆された絶縁被覆金属粒子を得ることができる。   The dehydration / condensation reaction can be promoted by drying / heat treatment to obtain insulating coated metal particles coated with a strongly bonded metal oxide sol-derived coating.

本発明について以下に実施例を挙げてさらに詳述するが、本発明はこれによりなんら限定されるものではない。配合量は特記しない限り、その成分が配合される系に対する質量%で示す。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. Unless otherwise specified, the blending amount is expressed in mass% with respect to the system in which the component is blended.

I.絶縁被覆金属粒子
(実施例1〜4)
金属粒子としてFe−Ni偏平金属磁性粉(同和鉄粉工業(株)製)を使用した。パーマロイ粉を酸洗浄した後、イソプロピルアルコールと水(5:5(質量比))の混合溶液100mLに10g添加し、超音波分散機により10分間攪拌した。
I. Insulation coated metal particles (Examples 1 to 4)
Fe-Ni flat metal magnetic powder (manufactured by Dowa Iron Powder Industry Co., Ltd.) was used as metal particles. After the permalloy powder was acid washed, 10 g was added to 100 mL of a mixed solution of isopropyl alcohol and water (5: 5 (mass ratio)), and the mixture was stirred for 10 minutes with an ultrasonic disperser.

次いで、下記表1に示す各金属アルコキシドを0.8g添加し、さらに水に分散された各金属酸化物ゾル(表1)を固形分で1g添加し、5分間攪拌した。攪拌後、酢酸を添加して、溶液のpHを4に調整して処理液を作製した。処理液を25℃一定で攪拌を2時間行った。   Next, 0.8 g of each metal alkoxide shown in Table 1 below was added, and 1 g of each metal oxide sol (Table 1) dispersed in water was added as a solid content and stirred for 5 minutes. After stirring, acetic acid was added to adjust the pH of the solution to 4 to prepare a treatment liquid. The treatment liquid was stirred at a constant temperature of 25 ° C. for 2 hours.

その後、攪拌しながらアンモニアを徐々に添加して、pH7に調整した。該溶液のpH値を1時間維持した。   Thereafter, ammonia was gradually added while stirring to adjust the pH to 7. The pH value of the solution was maintained for 1 hour.

上記方法で作製された処理液を濾過して溶媒を除去し、処理粉末を取り出し、水洗浄後、再度濾過してから、120℃で2時間熱処理乾燥を行い、絶縁被覆金属粒子を作製した。   The treatment liquid produced by the above method was filtered to remove the solvent, the treated powder was taken out, washed with water, filtered again, and then heat-treated and dried at 120 ° C. for 2 hours to produce insulating coated metal particles.

なお表1中、Si系金属アルコキシドは「KBM04」(信越化学(株)製)を、Ti系金属アルコキシドは「オルガノチックTA−25」(味の素ファインテクノ(株)製)を、それぞれ用いた。シリカゾルは「PL−07」(多摩化学(株)製)を、アルミナゾルは「アルミゾル−10」(川研ファインケミカル(株)製)を、それぞれ用いた。後述の比較例についても、該当成分につき上記製品を用いた。   In Table 1, “KBM04” (manufactured by Shin-Etsu Chemical Co., Ltd.) was used as the Si-based metal alkoxide, and “organotic TA-25” (manufactured by Ajinomoto Fine Techno Co., Ltd.) was used as the Ti-based metal alkoxide. “PL-07” (manufactured by Tama Chemical Co., Ltd.) was used as the silica sol, and “aluminum sol-10” (manufactured by Kawaken Fine Chemical Co., Ltd.) was used as the alumina sol. For the comparative examples described later, the above products were used for the corresponding components.

また表1中、実施例2では、2種類のシリカゾルを質量比で1:1となるように混合した。   In Table 1, in Example 2, two types of silica sols were mixed at a mass ratio of 1: 1.

実施例3では、金属アルコキシドとして、Si(OCHとTi(OCを質量比で9:1となるよう混合して用いた。 In Example 3, Si (OCH 3 ) 4 and Ti (OC 3 H 7 ) 4 were mixed and used as a metal alkoxide so as to have a mass ratio of 9: 1.

実施例4では、金属アルコキシドとして、Si(OCHと(CH)Si(OCHを質量比で9:1となるように混合して用いた。 In Example 4, as the metal alkoxide, Si (OCH 3 ) 4 and (CH 3 ) Si (OCH 3 ) 3 were mixed and used at a mass ratio of 9: 1.

(比較例1)
本発明の絶縁被覆を施さなかったFe−Ni偏平金属磁性粉(未処理パーマロイ粉)を比較例1とした。
(Comparative Example 1)
The Fe—Ni flat metal magnetic powder (untreated permalloy powder) that was not provided with the insulation coating of the present invention was used as Comparative Example 1.

(比較例2)
実施例1において、金属アルコキシドを添加しなかった以外は、実施例1と同様にして被覆金属粉を得た。
(Comparative Example 2)
In Example 1, a coated metal powder was obtained in the same manner as in Example 1 except that the metal alkoxide was not added.

すなわち、金属粒子として偏平Fe−Ni金属磁性粉(パーマロイ粉)を使用した。該パーマロイ粉を酸洗浄した後、イソプロピルアルコールと水(5:5(質量比))の混合溶液100mLに10g添加し、超音波分散機により10分間攪拌した。その後、水に分散された酸化物ゾルを各添加量で添加し、5分間攪拌した。   That is, flat Fe—Ni metal magnetic powder (permalloy powder) was used as the metal particles. After the permalloy powder was acid washed, 10 g was added to 100 mL of a mixed solution of isopropyl alcohol and water (5: 5 (mass ratio)), and the mixture was stirred for 10 minutes with an ultrasonic disperser. Thereafter, the oxide sol dispersed in water was added at each addition amount, and stirred for 5 minutes.

攪拌後、酢酸を添加して、溶液のpHを4に調整して処理液を作製した。処理液を25℃一定で攪拌を2時間行った後、攪拌しながらアンモニアを徐々に添加して、pH7に調整した。該溶液のpH値を1時間維持した。   After stirring, acetic acid was added to adjust the pH of the solution to 4 to prepare a treatment liquid. After stirring the treatment liquid at a constant temperature of 25 ° C. for 2 hours, ammonia was gradually added while stirring to adjust the pH to 7. The pH value of the solution was maintained for 1 hour.

上記方法で作製された処理液を濾過して溶媒を除去し、処理粉末を取り出し、水洗浄後、再度濾過してから、120℃で2時間熱処理乾燥を行い、絶縁被覆金属粒子を作製した。   The treatment liquid produced by the above method was filtered to remove the solvent, the treated powder was taken out, washed with water, filtered again, and then heat-treated and dried at 120 ° C. for 2 hours to produce insulating coated metal particles.

(比較例3)
実施例1において、金属酸化物ゾルを添加しなかった以外は、実施例1と同様にして被覆金属粉を得た。
(Comparative Example 3)
In Example 1, a coated metal powder was obtained in the same manner as in Example 1 except that the metal oxide sol was not added.

すなわち、金属粒子としてFe−Ni金属磁性粉(パーマロイ粉)を使用した。各形状のパーマロイ粉を酸洗浄した後、イソプロピルアルコールと水(5:5(質量比))の混合溶液100mLに10g添加し、超音波分散機により10分間攪拌した。その後、金属アルコキシドを0.8g添加して5分間攪拌した。   That is, Fe—Ni metal magnetic powder (permalloy powder) was used as the metal particles. After the permalloy powder of each shape was acid-washed, 10 g was added to 100 mL of a mixed solution of isopropyl alcohol and water (5: 5 (mass ratio)) and stirred for 10 minutes by an ultrasonic disperser. Thereafter, 0.8 g of metal alkoxide was added and stirred for 5 minutes.

攪拌後、酢酸を添加してpH4に調整して処理液を作製した。処理液を25℃一定で攪拌を2時間行った後、攪拌しながらアンモニアを徐々に添加してpH7に調整した。上記方法で作製された処理液を濾過して溶媒を除去し、処理粉末を取り出し、水洗浄後、再度濾過してから120℃で2時間熱処理乾燥を行い、絶縁被覆金属粒子を作製した。   After stirring, acetic acid was added to adjust the pH to 4 to prepare a treatment liquid. After stirring the treatment liquid at a constant temperature of 25 ° C. for 2 hours, ammonia was gradually added while stirring to adjust the pH to 7. The treatment liquid produced by the above method was filtered to remove the solvent, the treated powder was taken out, washed with water, filtered again, and then heat treated and dried at 120 ° C. for 2 hours to produce insulating coated metal particles.

(比較例4)
金属粒子に機械的摩擦力によりシリカ粉を被覆したものを比較例4とした。
(Comparative Example 4)
Comparative Example 4 was obtained by coating a metal particle with a silica powder by mechanical friction.

すなわち、金属粒子として、偏平パーマロイ粉100gに対し、シリカ粉体(平均粒径200nm)5gを混合し、ローター型表面処理装置を使用して、機械的摩擦力により金属粉表面にシリカ粉を密着させ、絶縁皮膜を形成した。   That is, as metal particles, 5 g of silica powder (average particle size 200 nm) is mixed with 100 g of flat permalloy powder, and the silica powder is adhered to the metal powder surface by mechanical friction using a rotor type surface treatment device. An insulating film was formed.

上記実施例1〜4、比較例1〜4で得た粉末(試料)を用いて、下記のようにして絶縁皮膜の厚みを算出し、被覆状態について観察した。   Using the powders (samples) obtained in Examples 1 to 4 and Comparative Examples 1 to 4, the thickness of the insulating film was calculated as follows, and the coating state was observed.

[絶縁被覆厚さ]
絶縁被覆処理した金属磁性粉と未処理の金属磁性粉を振動試料型磁力計(VSM)により飽和磁化を測定し、使用した金属酸化物ゾルの密度と飽和磁化の低下率から、絶縁皮膜の厚みを算出した。結果を表1に示す。
[Insulation coating thickness]
Measure the saturation magnetization of the insulation-treated metal magnetic powder and untreated metal magnetic powder with a vibrating sample magnetometer (VSM), and determine the thickness of the insulation film from the density of the metal oxide sol used and the rate of decrease in saturation magnetization. Was calculated. The results are shown in Table 1.

[被覆の状態]
被覆状態は電子顕微鏡(SEM)を使用して観察した。その結果、実施例1〜4では均一な被覆がされていた。比較例2〜3のものでは被覆厚さが不十分なため被覆がされていない部分もみられ不均一であった。比較例4では被覆厚さは十分であったが不均一であった。なお、実施例1の被覆粉末表面SEM写真を図1に、実施例3の被覆粉末表面のSEM写真を図2に、比較例1の未処理粉末SEM写真を図3に、比較例2の被覆粉末表面のSEM写真を図4に、比較例3の被覆粉末表面のSEM写真を図5に、それぞれ示す。
それぞれ示す。
[Coating condition]
The coating state was observed using an electron microscope (SEM). As a result, in Examples 1 to 4, uniform coating was performed. In Comparative Examples 2 to 3, the coating thickness was insufficient, so that a portion that was not coated was also found and was non-uniform. In Comparative Example 4, the coating thickness was sufficient but not uniform. In addition, the coating powder surface SEM photograph of Example 1 is shown in FIG. 1, the SEM photograph of the coating powder surface of Example 3 is shown in FIG. 2, the untreated powder SEM photograph of Comparative Example 1 is shown in FIG. An SEM photograph of the powder surface is shown in FIG. 4, and an SEM photograph of the coated powder surface of Comparative Example 3 is shown in FIG.
Each is shown.

実施例1〜4、比較例2、4で用いた金属酸化物ゾルの1次粒子径、2次粒子径についての測定結果を併せて表1に示す。   Table 1 shows the measurement results of the primary particle diameter and secondary particle diameter of the metal oxide sol used in Examples 1 to 4 and Comparative Examples 2 and 4.

II.塗布液評価
上記実施例1〜4、比較例1〜4で得た試料を用いて塗布液を調製し、該塗布液について絶縁性評価を行った。また下記比較例5(塗布液)についても絶縁性評価を行った。
II. Evaluation of Coating Solution A coating solution was prepared using the samples obtained in Examples 1 to 4 and Comparative Examples 1 to 4, and the insulating properties of the coating solution were evaluated. Insulation evaluation was also performed for the following comparative example 5 (coating solution).

(実施例1〜4、比較例1〜4の試料を用いた塗布液調製)
500mLのスチール缶容器に、実施例1〜4、比較例1〜4で得た試料(処理金属粉)を100g混合し、次いで直径2mmのスチールビーズを500g添加した。樹脂バインダーは、N−メチル−2ピロリドン(NMP)に「ポリエーテルサルフォン5003P」(住友化学(株)製)を溶解(固形分30質量%)させたものを100g使用した。分散剤として(POE)ココナットアルキルアミン「AMIET105」(花王(株)製)を0.5g添加した。
(Coating liquid preparation using samples of Examples 1 to 4 and Comparative Examples 1 to 4)
100 g of the sample (treated metal powder) obtained in Examples 1 to 4 and Comparative Examples 1 to 4 was mixed in a 500 mL steel can container, and then 500 g of steel beads having a diameter of 2 mm were added. As the resin binder, 100 g of “polyethersulfone 5003P” (manufactured by Sumitomo Chemical Co., Ltd.) dissolved in N-methyl-2pyrrolidone (NMP) (solid content: 30% by mass) was used. As a dispersant, 0.5 g of (POE) 7 coconut alkylamine “AMIET105” (manufactured by Kao Corporation) was added.

上記混合物をペイントシェーカーで30分間攪拌を行い、スチールビーズを除去して、金属磁性粉分散塗布液を調製した。   The mixture was stirred with a paint shaker for 30 minutes to remove the steel beads to prepare a metal magnetic powder dispersion coating solution.

(比較例5(塗布液調製))
500mLのスチール缶に未処理のFe−Ni偏平金属磁性粉(パーマロイ)を100gとスチールビーズを500g混合し、さらにメチルエチルケトン(MEK)(ニッサン化学(株)製)に分散したシリカゾル(MEK−ST)を固形分換算で15g添加し、テトラメトキシシラン(信越化学(株)製)を1g添加した。樹脂バインダーとして、エポキシ樹脂をMEKで固形分30質量%に溶解したもの100gを添加した。
(Comparative Example 5 (coating solution preparation))
Silica sol (MEK-ST) in which 100 g of untreated Fe-Ni flat metal magnetic powder (Permalloy) and 500 g of steel beads are mixed in a 500 mL steel can and dispersed in methyl ethyl ketone (MEK) (manufactured by Nissan Chemical Co., Ltd.) Was added in an amount of 15 g in terms of solid content, and 1 g of tetramethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) was added. As a resin binder, 100 g of an epoxy resin dissolved in MEK at a solid content of 30% by mass was added.

上記混合物をペイントシェーカーで30分間攪拌を行い、スチールビーズを除去後、金属粒子分散塗布液を調製した。   The mixture was stirred with a paint shaker for 30 minutes to remove the steel beads, and a metal particle dispersion coating solution was prepared.

[絶縁性評価]
Cu貼り基板をエッチングにより配線(L)/間隔(S)=80μm/80μmのくし型配線パターンを形成した。
[Insulation evaluation]
A comb-type wiring pattern of wiring (L) / interval (S) = 80 μm / 80 μm was formed by etching the Cu-bonded substrate.

上記のようにして得た各各金属粒子分散塗布液をアプリケーターにより50μmの厚みで成膜し、配線間に10Vの直流電圧を印加して抵抗値を測定した。結果を表2に示す。   Each metal particle dispersion coating solution obtained as described above was formed into a film with a thickness of 50 μm by an applicator, and a resistance value was measured by applying a DC voltage of 10 V between the wirings. The results are shown in Table 2.

なお比較例1〜5のものはいずれも瞬時にブレークダウンし、測定できなかった。   All of Comparative Examples 1 to 5 broke down instantaneously and could not be measured.

本発明により得られる絶縁性被覆金属粒子は、緻密な絶縁皮膜が均一に被覆され、絶縁性に優れ、例えば半導体製造、電子部品製造、プリント基板製造等の分野に好適に適用される。   The insulating coated metal particles obtained by the present invention are uniformly coated with a dense insulating film and excellent in insulating properties, and are suitably applied to fields such as semiconductor manufacturing, electronic component manufacturing, and printed circuit board manufacturing.

実施例1で得られた絶縁性被覆金属粒子の表面を示す顕微鏡写真(SEM)である。2 is a micrograph (SEM) showing the surface of insulating coated metal particles obtained in Example 1. FIG. 実施例3で得られた絶縁性被覆金属粒子の表面を示す顕微鏡写真(SEM)である。4 is a micrograph (SEM) showing the surface of insulating coated metal particles obtained in Example 3. FIG. 比較例1で得られた未処理金属粒子の表面を示す顕微鏡写真(SEM)である。4 is a micrograph (SEM) showing the surface of untreated metal particles obtained in Comparative Example 1. 比較例2で得られた金属アルコキシドを用いない絶縁被覆金属粒子の表面を示す顕微鏡写真(SEM)である。It is a microscope picture (SEM) which shows the surface of the insulation coating metal particle which does not use the metal alkoxide obtained by the comparative example 2. 比較例3で得られた酸化物ゾルを用いない絶縁被覆金属粒子の表面を示す顕微鏡写真(SEM)である。It is a microscope picture (SEM) which shows the surface of the insulation coating metal particle which does not use the oxide sol obtained by the comparative example 3.

Claims (8)

加水分解によりヒドロキシル基を形成し得る金属有機化合物を用いて、金属粒子表面に、−O−Me−O−結合(Me:上記金属有機化合物に含まれる金属)を介して、シリカゾル、チタニアゾル、アルミナゾル、および酸化セリウムゾルの中から選ばれる1種または2種以上を含む金属酸化物ゾル由来の皮膜を被覆形成してなる、絶縁被覆金属粒子。   Using a metal organic compound capable of forming a hydroxyl group by hydrolysis, silica sol, titania sol, alumina sol is formed on the surface of the metal particle via —O—Me—O— bond (Me: metal contained in the metal organic compound). Insulating coated metal particles formed by coating a film derived from a metal oxide sol containing one or more selected from cerium oxide sol. 上記金属有機化合物が、Me(RO)m(R)n(ただし、MeはSi、Ti、Zr、Alのいずれかの金属元素を示し、Rは炭素原子数1〜8のアルキル基を示し、m+nはMeの原子価に等しい数を示し、mは2以上の数を示し、nは0または1以上の数を示す)で表される金属アルコキシド、またはMe(RO)m(Y)n(ただし、Me、R、m+n、m、nは、それぞれ上記で定義したとおりであり、Yは炭素原子数1〜12の炭化水素基、アミノ基、エポキシ基、ビニル基、アクリル基、メタクリル基から選ばれる有機官能基、またはアルキルアセテートを示す)で表されるカップリング剤の中から選ばれる1種または2種以上である、請求項1記載の絶縁被覆金属粒子。 The metal organic compound is Me (RO) m (R) n (where Me represents a metal element of Si, Ti, Zr, Al, R represents an alkyl group having 1 to 8 carbon atoms, m + n represents a number equal to the valence of Me, m represents a number of 2 or more, and n represents 0 or a number of 1 or more), or Me (RO) m (Y) n ( However, Me, R, m + n, m, and n are as defined above, respectively, and Y is a hydrocarbon group having 1 to 12 carbon atoms, an amino group, an epoxy group, a vinyl group, an acrylic group, and a methacryl group. The insulating coated metal particles according to claim 1, which is one or more selected from coupling agents represented by a selected organic functional group or alkyl acetate. 金属酸化物ゾルに含まれる金属酸化物の1次粒子サイズが5〜100nmである、請求項1または2記載の絶縁被覆金属粒子。   The insulation-coated metal particles according to claim 1 or 2, wherein the primary particle size of the metal oxide contained in the metal oxide sol is 5 to 100 nm. 金属酸化物ゾルに含まれる金属酸化物の2次粒子サイズが200nm以下である、請求項1〜3のいずれか1項に記載の絶縁被覆金属粒子。   The insulation coating metal particle according to any one of claims 1 to 3, wherein a secondary particle size of the metal oxide contained in the metal oxide sol is 200 nm or less. 金属粒子を溶媒中に分散し、ここに加水分解によりヒドロキシル基を形成し得る金属有機化合物と、シリカゾル、チタニアゾル、アルミナゾル、および酸化セリウムゾルの中から選ばれる1種または2種以上を含む金属酸化物ゾルを添加してなる溶液を撹拌した後、該溶液のpHを3〜4に調整して撹拌・放置することにより、金属有機化合物の加水分解により形成されたヒドロキシル基を金属酸化物ゾル、あるいは金属粒子に吸着(結合)させる加水分解・吸着(結合)工程、および、該加水分解・吸着(結合)工程後の溶液のpHを、pH3〜4に対しpHの値を2以上変化させて維持することにより、溶液中で脱水・縮合反応を促進させて、−O−Me−O結合(Me:上記金属有機化合物に含まれる金属)を形成し、該−O−Me−O結合を介して、金属酸化物ゾルを金属粒子に吸着(結合)させる脱水・縮合反応促進工程、および、該脱水・縮合反応促進工程後の溶液を濾過し、乾燥・熱処理する工程、を含む、絶縁被覆金属粒子の製造方法。   Metal oxide in which metal particles are dispersed in a solvent and a hydroxyl group can be formed by hydrolysis, and a metal oxide containing one or more selected from silica sol, titania sol, alumina sol, and cerium oxide sol After stirring the solution to which the sol has been added, the pH of the solution is adjusted to 3 to 4 and stirred and allowed to stand, whereby the hydroxyl group formed by hydrolysis of the metal organic compound is converted into a metal oxide sol, or The hydrolysis / adsorption (bonding) step for adsorbing (binding) to the metal particles and the pH of the solution after the hydrolysis / adsorption (binding) step are maintained by changing the pH value by 2 or more with respect to pH 3-4. Thus, the dehydration / condensation reaction is promoted in a solution to form an —O—Me—O bond (Me: metal contained in the metal organic compound), and the —O—Me— A dehydration / condensation reaction accelerating step for adsorbing (bonding) the metal oxide sol to the metal particles through the bond, and a step of filtering, drying and heat-treating the solution after the dehydration / condensation reaction accelerating step. A method for producing insulating coated metal particles. 上記金属有機化合物が、Me(RO)m(R)n(ただし、MeはSi、Ti、Zr、Alのいずれかの金属元素を示し、Rは炭素原子数1〜8のアルキル基を示し、m+nはMeの原子価に等しい数を示し、mは2以上の数を示し、nは0または1以上の数を示す)で表される金属アルコキシド、またはMe(RO)m(Y)n(ただし、Me、R、m+n、m、nは、それぞれ上記で定義したとおりであり、Yは炭素原子数1〜12の炭化水素基、アミノ基、エポキシ基、ビニル基、アクリル基、メタクリル基から選ばれる有機官能基、またはアルキルアセテートを示す)で表されるカップリング剤の中から選ばれる1種または2種以上である、請求項5記載の絶縁被覆金属粒子の製造方法。 The metal organic compound is Me (RO) m (R) n (where Me represents a metal element of Si, Ti, Zr, Al, R represents an alkyl group having 1 to 8 carbon atoms, m + n represents a number equal to the valence of Me, m represents a number of 2 or more, and n represents 0 or a number of 1 or more), or Me (RO) m (Y) n ( However, Me, R, m + n, m, and n are as defined above, respectively, and Y is a hydrocarbon group having 1 to 12 carbon atoms, an amino group, an epoxy group, a vinyl group, an acrylic group, and a methacryl group. The method for producing insulating coated metal particles according to claim 5, which is one or more selected from coupling agents represented by: an organic functional group selected or an alkyl acetate. 金属酸化物ゾルに含まれる金属酸化物の1次粒子サイズが5〜100nmである、請求項5または6記載の絶縁被覆金属粒子の製造方法。   The manufacturing method of the insulation coating metal particle of Claim 5 or 6 whose primary particle size of the metal oxide contained in metal oxide sol is 5-100 nm. 金属酸化物ゾルに含まれる金属酸化物の2次粒子サイズが200nm以下である、請求項5〜7のいずれか1項に記載の絶縁被覆金属粒子の製造方法。   The manufacturing method of the insulation coating metal particle of any one of Claims 5-7 whose secondary particle size of the metal oxide contained in metal oxide sol is 200 nm or less.
JP2004089824A 2004-03-25 2004-03-25 Insulation-coated metal particle and production method therefor Pending JP2005272956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004089824A JP2005272956A (en) 2004-03-25 2004-03-25 Insulation-coated metal particle and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004089824A JP2005272956A (en) 2004-03-25 2004-03-25 Insulation-coated metal particle and production method therefor

Publications (1)

Publication Number Publication Date
JP2005272956A true JP2005272956A (en) 2005-10-06

Family

ID=35172934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004089824A Pending JP2005272956A (en) 2004-03-25 2004-03-25 Insulation-coated metal particle and production method therefor

Country Status (1)

Country Link
JP (1) JP2005272956A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302098A (en) * 2007-06-11 2008-12-18 Fujifilm Corp Ultrasonic probe, backing for ultrasonic probe, and method for producing the backing
JP2009220103A (en) * 2008-02-20 2009-10-01 Nsk Ltd Method of forming water- and oil-repellent membrane, water- and oil-repellent material, device equipped with water- and oil-repellent material, seal device and rolling bearing
JP2010162528A (en) * 2008-12-15 2010-07-29 Nsk Ltd Method of forming water-repellent and oil-repellent film
WO2013035496A1 (en) * 2011-09-08 2013-03-14 昭和電工株式会社 Method for producing metal powder-containing composition
WO2013118677A1 (en) * 2012-02-06 2013-08-15 Ntn株式会社 Powder for magnetic core and powder magnetic core
CN113292837A (en) * 2021-06-07 2021-08-24 广东顾纳凯材料科技有限公司 Metal appearance imitation master batch, preparation method thereof and polyolefin composite material
CN115124784A (en) * 2022-08-04 2022-09-30 浙江朗曼通信技术有限公司 High-voltage direct-current-resistant cable

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302098A (en) * 2007-06-11 2008-12-18 Fujifilm Corp Ultrasonic probe, backing for ultrasonic probe, and method for producing the backing
JP2009220103A (en) * 2008-02-20 2009-10-01 Nsk Ltd Method of forming water- and oil-repellent membrane, water- and oil-repellent material, device equipped with water- and oil-repellent material, seal device and rolling bearing
JP2010162528A (en) * 2008-12-15 2010-07-29 Nsk Ltd Method of forming water-repellent and oil-repellent film
WO2013035496A1 (en) * 2011-09-08 2013-03-14 昭和電工株式会社 Method for producing metal powder-containing composition
CN103747897A (en) * 2011-09-08 2014-04-23 昭和电工株式会社 Method for producing metal powder-containing composition
WO2013118677A1 (en) * 2012-02-06 2013-08-15 Ntn株式会社 Powder for magnetic core and powder magnetic core
US9773596B2 (en) 2012-02-06 2017-09-26 Ntn Corporation Powder for magnetic core and powder magnetic core
CN113292837A (en) * 2021-06-07 2021-08-24 广东顾纳凯材料科技有限公司 Metal appearance imitation master batch, preparation method thereof and polyolefin composite material
CN113292837B (en) * 2021-06-07 2023-03-10 广东顾纳凯材料科技有限公司 Metal appearance imitation master batch, preparation method thereof and polyolefin composite material
CN115124784A (en) * 2022-08-04 2022-09-30 浙江朗曼通信技术有限公司 High-voltage direct-current-resistant cable

Similar Documents

Publication Publication Date Title
US20030077448A1 (en) Ferromagnetic-metal-based powder, powder core using the same, and manufacturing method for ferromagnetic-metal-based powder
JP6616653B2 (en) Electromagnetic wave absorber and paste for film formation
CA2708830C (en) Powder and method for producing the same
EP1246209A2 (en) Ferromagnetic-metal-based powder, powder core using the same, and manufacturing method for ferromagnetic-metal-based powder
Jiang et al. Poly (methyl methacrylate)‐coated carbonyl iron particles and their magnetorheological characteristics
TWI363098B (en) Corrosion resistant rare earth magnets and making methods
JP2007153671A (en) Method for manufacturing anisotropic-shape silica sol
JP2005272714A (en) Insulating magnetic paint
JP2005272956A (en) Insulation-coated metal particle and production method therefor
KR100607297B1 (en) PROCESS FOR PRODUCING Fe-B-R BASED PERMANENT MAGNET HAVING A CORROSION-RESISTANT FILM
JP5330794B2 (en) Coated magnetite particles and method for producing the same
JP2011135045A (en) Method of manufacturing core-shell structured particle, paste composition using the same, and magnetic material composition using the same
JP2007145633A (en) Manufacturing method of anisotropic-shape silica sol
JP4164009B2 (en) Copper powder, copper paste and paint using the same, electrode
JP2009263645A (en) Paste composition and magnetic body composition using the same
JP2012201726A (en) Paste composition, and magnetic substance composition made using the same
JP2001176711A (en) Method of manufacturing for bonded magnet, method of manufacturing for bonded magnet powder, bonded magnet and bonded magnet powder
JP2022109276A (en) Manufacturing method of magnetic powder
JP4208705B2 (en) Method for producing metal powder
CN107492433A (en) A kind of iron-based soft magnetic composite of doping vario-property nickel powder and preparation method thereof
CN113724957A (en) Soft magnetic composite powder, soft magnetic powder core and preparation method thereof
CN113053651A (en) Preparation method of soft magnetic composite material and soft magnetic composite material
JP2012177044A (en) Core-shell structure particle, paste composition and magnetic body composition using the same
JP5657280B2 (en) Coated magnetite particles and method for producing the same
JP2006077309A (en) Agent for imparting silicate compound to surface of metal, and composite metal material having layer formed by imparting agent on surface of metal