JP2005272859A - Method for operating electric furnace - Google Patents

Method for operating electric furnace Download PDF

Info

Publication number
JP2005272859A
JP2005272859A JP2004083709A JP2004083709A JP2005272859A JP 2005272859 A JP2005272859 A JP 2005272859A JP 2004083709 A JP2004083709 A JP 2004083709A JP 2004083709 A JP2004083709 A JP 2004083709A JP 2005272859 A JP2005272859 A JP 2005272859A
Authority
JP
Japan
Prior art keywords
scrap
electric furnace
waste
steel
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004083709A
Other languages
Japanese (ja)
Inventor
Koji Tanda
浩司 丹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2004083709A priority Critical patent/JP2005272859A/en
Publication of JP2005272859A publication Critical patent/JP2005272859A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for blending materials by which as steelmaking raw material for electric furnace, Cu content as harmful element to the steel is guaranteed to <0.20% and cheap waste car pressed scraps are used as much as possible. <P>SOLUTION: In the method for realizing the cheap scrap blending, the waste car-pressed scrap is used as much as possible in the scrap-blending combined based on the influence on the Cu value when the blended scrap in one heat melted with the electric furnace is tapped off from the electric furnace, in the range satisfying formula (1); 0.20>0.000A+0.083B-0.066C+1.469D-0.066E+0.083F+0.017G+0.12. In formula (1), respective weights of A to F are expressed by ton unit. wherein A: returned scrap in the work, B: purchased scrap, C: new shearing scrap, D: waste car pressed scrap, E: waste pig iron, F: machining chip and G: pressed can scrap. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、電気炉操業における製鋼原料のスクラップの配合方法に関する。   The present invention relates to a method for blending scraps of steelmaking raw materials in electric furnace operation.

製鋼における電気炉操業では、製鋼原料のスクラップとして廃車をプレスした廃自動車プレス品は安価なスクラップであるので、できるだけ多く使用したい。しかし、自動車に使用されている銅板、銅線などの内、多数のものを除去しないままプレスするため、廃自動車プレス品には多量のCuが含まれている。しかも、含まれているCuの量にバラツキがある。   In electric furnace operation in steelmaking, waste car press products that press scrap cars as scrap for steelmaking raw materials are inexpensive scraps, so we want to use them as much as possible. However, in order to press without removing many of the copper plates and copper wires used in automobiles, waste car press products contain a large amount of Cu. In addition, there is variation in the amount of Cu contained.

ところで機械構造用鋼は、その鋼中のCu含有量がアップするに伴い、熱間圧延時あるいは鍛造時の疵発生率が高くなり、特に、図1に見られるように、Cuの含有量が0.20%以上になると圧延時の疵発生が顕著となる。そのため、電気炉用の製鋼原料の配合においては、Cuの含有量を0.20%未満に安定してなるように保証する必要がある。しかし、上記のように廃自動車プレス品には多量のCuが含まれており、かつ、その量のぱらつきも大きい。このため電気炉用の材料として廃自動車プレス品を多量に使用することはできなかった。   By the way, as for steel for machine structure, as the Cu content in the steel increases, the rate of occurrence of defects during hot rolling or forging increases, and in particular, as shown in FIG. When the content is 0.20% or more, wrinkling during rolling becomes significant. Therefore, in blending steelmaking raw materials for electric furnaces, it is necessary to ensure that the Cu content is stable to less than 0.20%. However, as described above, waste car press products contain a large amount of Cu, and the amount of variation is large. For this reason, it was not possible to use a large amount of waste automobile press products as materials for electric furnaces.

一方、自販機の回収品をスクラップとして、電気炉や転炉の製鋼原料として装入する方法が知られている(例えば、特許文献1、または特許文献2参照。)。しかし、この方法は、自販機の回収品のスクラップに着目したものであるが、製鋼における電気炉操業では種々のスクラップを製鋼原料として最も適した配合割合で装入される。従ってこのような実操業に適した各種のスクラップの配合割合が求められている。   On the other hand, there is known a method of charging a collected product of a vending machine as scrap and charging it as a steelmaking raw material for an electric furnace or a converter (see, for example, Patent Document 1 or Patent Document 2). However, this method pays attention to the scraps of the collected goods of the vending machine. However, in the electric furnace operation in steelmaking, various scraps are charged at the most suitable blending ratio as a steelmaking raw material. Therefore, there is a demand for blend ratios of various scraps suitable for such actual operation.

このような電気炉の製鋼原料としての一般的な材料の配合は、実操業にあってはスクラップの在庫、溶製する鋼種の目標化学成分および操業方法に応じた材料配合を行う。この材料配合には、一般的には、先ずAの社内還元屑、Cの新断バラ、Eの銑源、Fのダライコのそれぞれの使用量が決定される。次にCuおよびSnの成分を考慮した上で、Dの廃自動車プレス品とGのカンプレス品の使用量が決定され、最後に規定のスクラップ総量となるまでBの購入屑を使用する。   In general operation of such materials as steelmaking raw materials for electric furnaces, in actual operation, materials are mixed according to the stock of scrap, the target chemical composition of the steel type to be melted, and the operation method. In general, the amount of each of A's in-house reduced waste, C's new rose, E's source, and F's dariko is first determined for this material formulation. Next, in consideration of Cu and Sn components, the usage amounts of the waste car press product of D and the cam press product of G are determined, and finally the purchased scraps of B are used until the specified total scrap amount is reached.

ここで各スクラップの特徴を説明すると、Aの社内還元屑とは、社内の製造工程で屑落しなどで発生するものである。購入品ではないため、その発生量は限られる。一方、鋼種によっては、例えばSNCM鋼のように社内還元屑が多量に存在する場合もある。材料配合上できるだけたくさん使用したいが、発生量に限界がある上、購入屑より溶解性が悪いため、使用量は制限される。しかし、社内還元屑であるがゆえに出鋼成分中のCuの値に与える影響は小さい。この社内還元屑を使用する場合、一般には炉容量が60t程度以上の電気炉においては一溶解当たり(以下、「/ch」と記載する。)10〜50tとして使用されることが多い。   Here, the characteristics of each scrap will be described. The in-house reduced waste A is generated by scrapping or the like in the in-house manufacturing process. Since it is not a purchased item, the amount of generation is limited. On the other hand, depending on the steel type, there may be a large amount of in-house reducing waste such as SNCM steel. We want to use as much as possible in terms of material composition, but the amount used is limited because the amount generated is limited and the solubility is worse than purchased waste. However, since it is in-house reduced scrap, the effect on the value of Cu in the steel output component is small. When this in-house reducing waste is used, generally in an electric furnace having a furnace capacity of about 60 t or more, it is often used as 10 to 50 t per melting (hereinafter referred to as “/ ch”).

Bの購入屑とは、社外より購入するスクラップであり、使用できる鉄源の中ではもっとも高価なものの一つで、できるだけ使用量を減らしたい。従って、上記したように他の種類のスクラップの使用量を決定した後、規定の総量まで使用することが多い。この購入屑を使用する場合は、一般に50t/ch以上使用されることが多い。   Purchase waste of B is scrap purchased from outside the company, and is one of the most expensive iron sources that can be used. Therefore, after determining the amount of other types of scrap as described above, it is often used up to a specified total amount. When using this purchase waste, generally it is often used 50t / ch or more.

Cの新断バラとは、同様に社外より購入するスクラップであり、使用できる鉄源の中ではもっとも高価なものの一つで、かつ、材料の嵩も比較的大きいため、できるだけ使用量を減らしたい。ところで、この新断バラはもともとCuの少ない良質な鉄源である。そこでスクラップ装入バケツの底敷きに使用されるため、通常20〜40t/chとして使用されることが多い。   C new roses are scraps purchased from outside as well, and are one of the most expensive iron sources that can be used, and the bulk of the material is relatively large. . By the way, this new rose is originally a high-quality iron source with little Cu. Therefore, it is usually used as 20 to 40 t / ch because it is used for the bottom of a scrap charging bucket.

Dの廃自動車プレス品とは、廃自動車から有価金属などを除去した後にプレスしたものである。そこで銅板や銅線が多数除去されずに残っているため、多量に使用すると、出鋼成分のCu値が高くなるので、その使用量が限定される。さらに廃自動車にはブリキもー部使用されているため、電気炉から出鋼するときのSn値も高くなることがある。これらを考慮して一般には機械構造用鋼を溶製する場合、通常2〜4t/chとして使用される。ここで、電気炉から出鋼するときのSn値については、Cu値と同じく鋼中の含有量がアップするに伴い、熱間圧延時あるいは鍛造時の疵発生率が高くなる。   The waste car press product of D is a product that has been pressed after removing valuable metals from the waste car. Therefore, since many copper plates and copper wires remain without being removed, when used in large quantities, the Cu value of the steel output component becomes high, so the amount of use is limited. Furthermore, since the tin plate is used in scrap cars, the Sn value when steel is extracted from the electric furnace may increase. In consideration of these, generally, when melting steel for machine structure, it is usually used as 2 to 4 t / ch. Here, regarding the Sn value when steel is discharged from the electric furnace, the rate of occurrence of defects during hot rolling or forging increases as the content in the steel increases, as does the Cu value.

Eの銑源とは、鉄鉱石を原料とする製鉄所において溶銑を取り扱い中に発生する銑鉄の屑である。これは鉄鉱石を原料としているため、Cu、Snなどの不純物は少ないが、スラグが付着しているため、出鋼した溶鋼のPやSが高くなる恐れがある。またスラグが付着しているので、溶解性も悪い。上記の購入屑に比べればやや安価であるため、操業上問題が無ければ多めに使用したいが、上記の問題があるのでその使用量は制限され、一般には10t/ch未満として使用される。   The iron source of E is pig iron scrap generated during handling of hot metal in an iron mill made of iron ore. Since this uses iron ore as a raw material, there are few impurities, such as Cu and Sn, but since slag adheres, there exists a possibility that the P and S of the molten steel which came out may become high. Moreover, since slag adheres, solubility is also bad. Since it is slightly cheaper than the above-mentioned purchased waste, it is desired to use more if there is no problem in operation. However, because of the above-mentioned problem, the amount of use is limited, and it is generally used as less than 10 t / ch.

Fのダライコとは、旋盤などの機械加工のときに発生する切り屑の総称である。これは嵩が大きく不純物も多いが、その分購入屑の中ではやや安価である。そこで多量に使用したいが、Crなどの化学成分が含有されている問題や嵩が高いことによる材料装入に問題があり、使用量が制限される。そこで、一般には10〜30t/chとして使用される。   F Daraiko is a general term for chips generated when machining a lathe or the like. This is bulky and contains a lot of impurities, but it is a little cheaper than the purchased waste. Therefore, although it is desired to use a large amount, there is a problem that a chemical component such as Cr is contained or there is a problem in material charging due to its high bulk, and the amount of use is limited. Therefore, it is generally used as 10 to 30 t / ch.

Gのカンプレス品とは、回収された空缶をプレス成形したスクラップ品である。これは比較的安価な鉄源であるが、ブリキ缶が含まれているため、電気炉から出鋼するときのSn値が高くなる恐れがあるので、その使用量が制限される。そこで一般には使用量は0〜4t/ch程度として使用される。   The G stamped product is a scrap product obtained by press-molding a collected empty can. This is a relatively inexpensive iron source, but since tin cans are included, there is a risk that the Sn value at the time of steel removal from an electric furnace may be high, so the amount of use is limited. Therefore, generally, the amount used is about 0 to 4 t / ch.

特開2002−241827号公報JP 2002-241827 A 特開2002−241828号公報JP 2002-241828 A

本発明が解決しようとする課題は、電気炉用の製鋼原料として、鋼に有害なCuの含有量を0.20%未満に保証し、かつ安価な廃自動車プレス品を出来るだけ使用した材料配合とする方法を提供することである。   The problem to be solved by the present invention is as a steelmaking raw material for an electric furnace, a content of Cu that is harmful to steel is guaranteed to be less than 0.20%, and an inexpensive waste car press product is used as much as possible. Is to provide a method.

上記の課題を解決するための本発明の手段は、電気炉で溶製する1チャージの各スクラップ別の電気炉から出鋼するときのCu値に及ぼす影響を組み合わせたスクラップ配合を下記の式(1)に基づいて実施し、式(1)を満足する範囲で廃自動車プレス品を最大限使用して材料組み込みをすることにより、安価な材料配合を実現する方法である。   The means of the present invention for solving the above-mentioned problem is a combination of scraps having a combination of effects on the Cu value when steel is produced from each electric furnace of each charge of one charge melted in an electric furnace according to the following formula ( This is a method that is implemented based on 1) and realizes inexpensive material blending by incorporating materials using the waste automobile press products to the maximum extent within the range satisfying the formula (1).

0.20>0.000A+0.083B−0.066C+1.469D−0.066E+0.083F+0.017G+0.12……(1)   0.20> 0.000A + 0.083B-0.066C + 1.469D-0.066E + 0.083F + 0.017G + 0.12 (1)

なお、式(1)において、Aは社内還元屑、Bは購入屑、Cは新断バラ、Dは廃自動車プレス品、Eは銑源、Fはダライコ、Gはカンプレス品の各トン数を示す。   In formula (1), A is in-house reduced waste, B is purchased waste, C is a new rose, D is a scrap car press product, E is a source of waste, F is a dariko, and G is a press product. Indicates.

従来の材料配合は、上記の従来技術に記載したように、Aの社内還元屑、Cの新断バラ、Eの銑源、Fのダライコの使用量を決定し、次にDの廃自動車プレス品とGのカンプレス品の使用量を決定し、最後に規定のスクラップ総量となるまでBの購入屑を使用する順で材料配合を行っていた。しかし、各材料毎にCuの含有量はばらつきを持っているため、廃自動車プレス品の使用量は、電気炉から出鋼するときのCu値を考慮してかなり控えめに使用せざるを得なかった。   As described in the above-mentioned prior art, the conventional material composition determines the amount of A internal reduction waste, C new rose, E source, F Daraico, and then D waste car press The amount of use of the product and the G-compressed product was determined, and the materials were blended in the order of using the purchased waste of B until the final scrap total amount was reached. However, since the Cu content varies from material to material, the amount of waste automobile press products used must be fairly conservative in view of the Cu value when steel is produced from an electric furnace. It was.

今回の発明においては、先ず、従来と同様にAの社内還元屑、Cの新断バラ、Eの銑源、Fのダライコの使用量を決定する。Aの社内還元屑は、その在庫の量と社内還元屑を多量に使用した場合での電気炉の溶解性悪化の程度を考慮して、使用量を決定する。Cの新断バラはスクラップ装入時のスクラップ組み込みバケツの底敷きとして適量(スクラップ装入1回当たり5〜20t程度)使用されることが多い。Eの銑源の使用量は主に溶製する鋼種のP規格の値により決定されることが多い。Fのダライコの使用量はスクラップの嵩が許される範囲でできるだけ多く、かつ機械構造用炭素鋼を溶製する場合にはそのCr規格の値に基づいて決定されることが多い。続いてGのカンプレス品の使用量を、溶製する鋼種のSn規格や用途に基づいて決定する。続いて式(1)に基づいて電気炉から出鋼するときのCu値を予測してBの購入屑およびDの廃自動車プレス品の使用量を決定する。このように式(1)を用いることにより、必要以上に出鋼成分のCuを恐れること無く廃自動車プレス品を多く使用できることとした。   In the present invention, first, as in the conventional case, the usage amounts of A internal reduction waste, C new rose, E source, and F Daraico are determined. The amount of in-house reduced waste A is determined in consideration of the amount of its stock and the degree of deterioration in solubility of the electric furnace when a large amount of in-house reduced waste is used. In many cases, a new cut rose of C is used in an appropriate amount (about 5 to 20 tons per scrap charging) as the bottom cover of the scrap-incorporating bucket at the time of scrap charging. The amount of E source used is often determined mainly by the value of the P standard of the steel type to be melted. The amount of F Dalaico used is as much as possible within the range where the bulk of the scrap is allowed, and is often determined based on the value of the Cr standard when melting the carbon steel for machine structure. Subsequently, the usage amount of the G pressed product is determined based on the Sn standard and application of the steel type to be melted. Subsequently, based on the formula (1), the Cu value when steeling out from the electric furnace is predicted, and the usage amount of the purchased waste of B and the waste automobile press product of D is determined. Thus, by using the formula (1), it was decided that a large number of waste automobile press products could be used without fear of undesired steel component Cu more than necessary.

上記の式(1)は、社内操業データを基に、各材料配合が出鋼成分中のCu値に与える影響を計算し、これにバラツキを標準偏差1シグマで考慮して係数を算出したものである。この式(1)で計算した値は、下記の実施例に見られるように、実際に操業して得られる値よりもほとんどの場合高いが、これは前述のように材料中のCuのバラツキを考慮したためである。逆に言うと式(1)を満たす材料配合であれば、安定して0.20%未満のCuの成分値を有する溶鋼を得ることが出来る。
なお、Dの廃自動車プレス品を最大限使用するためには、式(1)の値が0.16以上、好ましくは0.18以上で、0.20未満となるようなDの量を多くすれば良い。
The above formula (1) is based on in-house operation data, calculated the effect of each material composition on the Cu value in the steel output components, and calculated the coefficient considering the variation with a standard deviation of 1 sigma. It is. The value calculated by this equation (1) is almost always higher than the value obtained by actual operation, as seen in the following examples, but this is due to the variation of Cu in the material as described above. This is because of consideration. Conversely, if the material composition satisfies the formula (1), a molten steel having a Cu component value of less than 0.20% can be obtained stably.
In order to make maximum use of the waste automobile press product of D, the amount of D is large so that the value of formula (1) is 0.16 or more, preferably 0.18 or more and less than 0.20. Just do it.

本発明は、機械構造用鋼を熱間圧延したときに圧延疵が急増する要因である鋼成分中のCuの含有量が0.20%以上となることのないスクラップからなる材料配合とすることで、電気炉による鋼の溶製の低コスト化が実現できる優れた効果を奏するものである。   The present invention is made of a material composition consisting of scrap that does not cause the Cu content in the steel component to be 0.20% or more, which is a factor that causes a rapid increase in rolling defects when machine structural steel is hot-rolled. Thus, there is an excellent effect that the cost reduction of the melting of the steel by the electric furnace can be realized.

本発明を実施するための最良の形態を、実施例を通じて説明する。下記の表1に示す実施例1〜3と比較例1〜2の材料配合にて、A〜Gの各スクラップの合計量の165tを150t電気炉に装入して溶解し、機械構造用鋼を溶製した。
なお、本発明でいう機械構造用鋼とは、機械構造用炭素鋼(SC)および機械構造用合金鋼(SMn、SCr、SCM、SNC、SNCM)、およびこれらJIS規格の鋼をベースにして各種元素を添加して成分を改良した鋼をいう。
The best mode for carrying out the present invention will be described through examples. In the material blends of Examples 1 to 3 and Comparative Examples 1 and 2 shown in Table 1 below, 165 t of the total amount of each of A to G scraps was charged into a 150 t electric furnace and melted, and steel for machine structure Was melted.
In addition, the steel for machine structure referred to in the present invention includes various carbon steels for machine structure (SC) and alloy steels for machine structure (SMn, SCr, SCM, SNC, SNCM) and various steels based on these JIS standard steels. This is steel that has been improved by adding elements.

表1において、計算値は式(1)に基づく計算値であり、実測値は電気炉から出鋼するときのCu値の実測した含有量を示す。なお、鍋下値とは溶製した溶鋼を鋳込むときに採取した試料の分析値であり、そのヒートの代表成分値である。   In Table 1, the calculated value is a calculated value based on the formula (1), and the actually measured value indicates the actually measured content of the Cu value when steel is extracted from the electric furnace. In addition, the pan lower value is an analysis value of a sample collected when casting molten steel, and is a representative component value of the heat.

Figure 2005272859
Figure 2005272859

これらの各実施例および比較例により得られた機械構造用鋼を熱間で分塊圧延して、得られたビレット表面に生成された表面疵の発生数を調査し、鋼中のCu含有率と疵発生の割合を指数で示し、図1のグラフとした。図1のグラフから鋼中のCu含有率が0.20%を超えると指数的に疵の発生率が増加するが、本発明の実施例では式(1)を満足するものであるので、発生指数が1以下である。   The steel for machine structural use obtained by each of these Examples and Comparative Examples was hot and rolled, and the number of surface defects generated on the obtained billet surface was investigated, and the Cu content in the steel The ratio of the occurrence of wrinkles is indicated by an index, which is shown in the graph of FIG. From the graph of FIG. 1, when the Cu content in the steel exceeds 0.20%, the rate of occurrence of soot exponentially increases. However, in the examples of the present invention, since the formula (1) is satisfied, The index is 1 or less.

鋼中のCu含有率と疵発生の割合を指数で示すグラフである。It is a graph which shows the Cu content rate in steel, and the ratio of flaw generation | occurrence | production with an index | exponent.

Claims (3)

スクラップを製鋼原料とする電気炉による鋼の溶製方法において、電気炉で溶製する1チャージの各スクラップ別の電気炉から出鋼するときのCu値に及ぼす影響を組み合わせたスクラップ配合を下記の式(1)に基づいて実施し、式(1)を満足する範囲で廃自動車プレス品を最大限使用して材料配合することを特徴とする電気炉の操業方法。
0.20>0.000A+0.083B−0.066C+1.469D−0.066E+0.083F+0.017G+0.12……(1)
なお、式(1)において、Aは社内還元屑、Bは購入屑、Cは新断バラ、Dは廃自動車プレス品、Eは銑源、Fはダライコ、Gはカンプレス品の各トン数をスクラップ総量で除した値(総スクラップ中に占めるそれぞれのスクラップの比率)を示す。
In the steel melting method using an electric furnace using scrap as a steelmaking raw material, the following scrap composition is combined with the effect on the Cu value when steel is produced from each electric furnace of each charge that is melted in the electric furnace. A method for operating an electric furnace, which is carried out based on the formula (1) and blends materials by using a waste automobile press product to the maximum extent within a range satisfying the formula (1).
0.20> 0.000A + 0.083B-0.066C + 1.469D-0.066E + 0.083F + 0.017G + 0.12 (1)
In the formula (1), A is in-house reduced waste, B is purchased waste, C is a new rose, D is a scrap car press, E is a source, F is a dariko, and G is a tonnage of a press. Is a value obtained by dividing by the total amount of scrap (ratio of each scrap in the total scrap).
材料配合はAの社内還元屑、Cの新断バラ、Eの銑源、Fのダライコの使用量を決定した後、Gのカンプレス品の使用量を決定し、続いて式(1)に基づいて電気炉から出鋼するときのCu量の値を予測してDの廃自動車プレス品とBの購入屑の使用量を決定することからなることを特徴とする請求項1に記載の電気炉の操業方法。   After determining the usage amount of the internal reduction scrap of A, the new rose of C, the source of E source, and the Dalico of F, the usage amount of the Campless product of G is determined, and then the formula (1) The electric power according to claim 1, comprising predicting the value of the amount of Cu when the steel is discharged from the electric furnace based on the determination of the used amount of the waste car press product of D and the purchased waste of B. How to operate the furnace. 廃自動車プレス品の最大限の使用は式(1)の右辺が0.16以上、0.20未満となるDの重量を求めて廃自動車プレス品を使用することからなることを特徴とする請求項1又は2に記載の電気炉の操業方法。   The maximum use of the scrap car press product is to use the scrap car press product by determining the weight of D such that the right side of the formula (1) is 0.16 or more and less than 0.20. Item 3. An electric furnace operating method according to Item 1 or 2.
JP2004083709A 2004-03-22 2004-03-22 Method for operating electric furnace Pending JP2005272859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004083709A JP2005272859A (en) 2004-03-22 2004-03-22 Method for operating electric furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004083709A JP2005272859A (en) 2004-03-22 2004-03-22 Method for operating electric furnace

Publications (1)

Publication Number Publication Date
JP2005272859A true JP2005272859A (en) 2005-10-06

Family

ID=35172840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004083709A Pending JP2005272859A (en) 2004-03-22 2004-03-22 Method for operating electric furnace

Country Status (1)

Country Link
JP (1) JP2005272859A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248550A (en) * 2009-04-14 2010-11-04 Daido Steel Co Ltd Method for blending scrap
JP7207624B1 (en) * 2021-10-12 2023-01-18 Jfeスチール株式会社 Method for predicting impurity concentration in molten iron, method for manufacturing molten iron, method for creating trained machine learning model, and apparatus for predicting impurity concentration in molten iron
WO2023062905A1 (en) * 2021-10-12 2023-04-20 Jfeスチール株式会社 Method for predicting impurity concentration of molten iron, method for manufacturing molten iron, method for creating trained machine learning model, and apparatus for predicting impurity concentration of molten iron

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248550A (en) * 2009-04-14 2010-11-04 Daido Steel Co Ltd Method for blending scrap
JP7207624B1 (en) * 2021-10-12 2023-01-18 Jfeスチール株式会社 Method for predicting impurity concentration in molten iron, method for manufacturing molten iron, method for creating trained machine learning model, and apparatus for predicting impurity concentration in molten iron
WO2023062905A1 (en) * 2021-10-12 2023-04-20 Jfeスチール株式会社 Method for predicting impurity concentration of molten iron, method for manufacturing molten iron, method for creating trained machine learning model, and apparatus for predicting impurity concentration of molten iron

Similar Documents

Publication Publication Date Title
Boin et al. Melting standardized aluminum scrap: A mass balance model for Europe
Björkman et al. Recycling of steel
Hatayama et al. Assessment of the recycling potential of aluminum in Japan, the United States, Europe and China
US20060278042A1 (en) Method of producing stainless steel by re-using waste material of stainless steel producing process
CN101135021B (en) Aluminium magnesium ferroalloy for molten steel deoxidization desulfuration and alloying and preparation method thereof
Li et al. A novel recycling and reuse method of iron scraps from machining process
Dahlström et al. Iron, steel and aluminium in the UK: material flows and their economic dimensions
JP2005272859A (en) Method for operating electric furnace
KrzAK et al. Modern trade standards for steel raw materials
Nokhrina et al. Alloying and modification of iron-carbon melts with natural and man-made materials
Neto et al. Inventory of pollution reduction options for an aluminium pressure die casting plant
JP2005272860A (en) Method for operating electric furnace
JP2007146217A (en) Steelmaking method and refining facility for steelmaking
Hartley et al. Steelworks control of residuals
JP7377763B2 (en) Electric furnace steelmaking method
Amelin et al. Characteristic Features of the Gas Injection Process in Oxygen Converters That Use Iron-Containing Slag Produced During Steel Smelting
Kudliński et al. Research the impact of steel scrap participation in the metallic charge for the yield of liquid steel casted in BOF process
Sommerfeld et al. CO2-Minimized Ferrochrome Production Utilizing Silicon Wafer Cutting Slurry as an Alternative Reductant
RU2106423C1 (en) Charge for smelting ferrosilicon
US20060260438A1 (en) Method of treating metallic and non-metallic by-products
EP1624079B1 (en) Process for winning iron from waste material containing iron oxides and briquette for carrying out this process
Polishko Deoxidation and modification of steels with reduced silicon content
Borodin et al. Analysis of the Development of Steelmaking Processes.
Doostmohammadi et al. Use of computational thermodynamic calculations in studying the slag/steel equilibrium during vacuum degassing
SU1759891A1 (en) Charge for processing scrap of alloy steel and alloys