JP2005272238A - Method of producing slaked lime - Google Patents

Method of producing slaked lime Download PDF

Info

Publication number
JP2005272238A
JP2005272238A JP2004089864A JP2004089864A JP2005272238A JP 2005272238 A JP2005272238 A JP 2005272238A JP 2004089864 A JP2004089864 A JP 2004089864A JP 2004089864 A JP2004089864 A JP 2004089864A JP 2005272238 A JP2005272238 A JP 2005272238A
Authority
JP
Japan
Prior art keywords
slaked lime
lime
water
quicklime
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004089864A
Other languages
Japanese (ja)
Inventor
Chiyo Asa
チョ 朝
Yoshimi Goto
義己 後藤
Tetsushi Iwashita
哲志 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yahashi Kogyo KK
Original Assignee
Yahashi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yahashi Kogyo KK filed Critical Yahashi Kogyo KK
Priority to JP2004089864A priority Critical patent/JP2005272238A/en
Publication of JP2005272238A publication Critical patent/JP2005272238A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce slaked lime remarkably efficient to treat an SO<SB>2</SB>or the like-containing gas by using quicklime powder and a small quantity of a reaction retarder. <P>SOLUTION: The method of manufacturing slaked lime by slaking quicklime to produce slaked lime includes (a) a fine pore base construction step for preparing a "slaking liquid" containing 10-40 wt.% solid lime and 60-90 wt.% water by slaking quicklime for the "slaking liquid" with the excess quantity of a "slaking water" containing 2-50 pts.wt. reaction retarder per 100 pts.wt. quicklime for the "slaking liquid", (b) a pore growth step for producing wet slaked lime powder having 10-30 wt.% water using the "slaking liquid" obtained by (a) to slake quicklime for main slaking and (c) a drying step for obtaining dry slaked lime powder containing <1.0 wt.% water by heating at ≤500°C to dry or by adding a proper quantity of drying quicklime to react with water in the wet slaked lime to remove water. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は消石灰粒子の製造方法に関し、まず反応遅延剤を含む過剰な量の水により「消化用液体」用生石灰を消化して「消化用液体」と名付けられた石灰と水の混合物を得て、次に、調製された「消化用液体」を大きな細孔容積を有する湿潤消石灰粉末を得るために主消化用生石灰の消化に使用し、最後に湿潤消石灰粉末を加熱又は乾燥用生石灰の添加により乾燥することにより、SO2等を含有する煙道ガスの処理に好適な消石灰粒子を製造する方法に関する。   The present invention relates to a method for producing slaked lime particles, first digesting quick lime for "digestion liquid" with an excess amount of water containing a reaction retarder to obtain a mixture of lime and water named "digestion liquid" Next, the prepared “digestion liquid” is used for digestion of main digested quicklime to obtain wet slaked lime powder having a large pore volume, and finally the wet slaked lime powder is heated or added with quicklime for drying. The present invention relates to a method for producing slaked lime particles suitable for treatment of flue gas containing SO2 and the like by drying.

消石灰は水処理、ガス流からの有害ガスの除去、酸性廃棄物の中和などの過程を含む多種多様な用途を有している。これらの過程における作用及び効率は、個々の用法に適合する特性を持つ消石灰を利用することによって飛躍的に向上させることができる。例えば、乾燥消石灰を使用した煙道ガスの脱硫・脱塩酸工程の分野においては、通常、大きな細孔容積を有する消石灰が、ガス排出物をより清浄化し、運転効率を一層向上させ、石灰使用量をさらに少なくして、大幅なコスト削減をもたらすことにつながると一般に考えられている。   Slaked lime has a wide variety of uses, including processes such as water treatment, removal of toxic gases from gas streams, and neutralization of acidic waste. The action and efficiency in these processes can be dramatically improved by utilizing slaked lime with properties that are adapted to the individual usage. For example, in the field of flue gas desulfurization and dehydrochlorination processes using dry slaked lime, slaked lime with a large pore volume usually cleans gas emissions, further improves operating efficiency, and uses lime It is generally believed that this can lead to significant cost savings.

生石灰を水と反応させる場合、生成される消石灰の品質及び特性は、生石灰の水に対する反応性、生石灰の粒径分布、使用される水の量及び質、水の温度、石灰と水との添加のパターンなどにより左右される。これに加えて、グリコール類、アミン類、アルコール類、ケトン類、エーテル類、アルデヒド類、糖類、クエン酸など、好適にはエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、メタノール、エタノール、プロパノール、ブタノールのような反応遅延剤を利用することが、目的にぴったり適合するように特別に高められた性質を有する消石灰を生成するための重要な手段となる。   When quicklime is reacted with water, the quality and properties of the resulting slaked lime are: reactivity of quicklime to water, size distribution of quicklime, amount and quality of water used, water temperature, addition of lime and water It depends on the pattern. In addition, glycols, amines, alcohols, ketones, ethers, aldehydes, sugars, citric acid, etc., preferably ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol Use of reaction retardants such as tripropylene glycol, polypropylene glycol, monoethanolamine, diethanolamine, triethanolamine, methanol, ethanol, propanol, butanol, specially enhanced properties to fit the purpose It becomes an important means for producing slaked lime having slag.

従来の消石灰の製造方法は、乾燥消石灰粉末を生産するのに必要な理論量の1.3〜2倍の水と生石灰との反応である。しかしながら、既に良く知られているように、蒸気消化が生じるため、形成される細孔の大部分が半径250Å以上のマクロ孔の範囲内となり、このような従来の消石灰の酸性ガスに対する反応性は非常に低く、ガス清浄/処理工程より排出されるスラッジにはかなり大量の未反応石灰が含まれることになる。   A conventional method for producing slaked lime is a reaction between water and quick lime that is 1.3 to 2 times the theoretical amount necessary to produce dry slaked lime powder. However, as already well known, since steam digestion occurs, most of the pores formed are within the range of macropores having a radius of 250 mm or more, and the reactivity of such conventional slaked lime to acid gas is The sludge that is very low and discharged from the gas cleaning / treatment process will contain a significant amount of unreacted lime.

現在では、反応遅延剤を使用する方法により、有害ガスに対して明確に高い反応性を有する総細孔容積が0.200cc/g以上の消石灰が一般に生産されている。しかしながら、現在の方法では湿式消化で得られた消石灰脱水ケーキあるいは残留水分20-30重量%の消石灰湿粉体を加熱により乾燥しているため乾燥コストが非常に高くなる。   At present, slaked lime with a total pore volume of 0.200 cc / g or more having a clearly high reactivity to harmful gases is generally produced by a method using a reaction retarder. However, in the current method, the slaked lime dehydrated cake obtained by wet digestion or the slaked lime wet powder having a residual water content of 20-30% by weight is dried by heating, so that the drying cost is very high.

特開平10-167775号公報に開示された方法は、消石灰スラリーと生石灰微粉末を利用している。しかしこの方法は、スラリーが形成された後にのみスラリーに反応遅延剤を加えるものである。反応遅延剤の細孔形成の効果は水和反応が生じている時に用いられた場合に限り最も発揮されるので、この発明の方法では十分な効果が期待できない。また、その後の乾式消化過程が行われる段階において、蒸気消化に伴う激烈な反応のため、細孔の圧潰が非常に生じやすい。これらの理由が有害ガスとの反応に有効ではない細孔構造の消石灰を生成する過程につながる。   The method disclosed in Japanese Patent Application Laid-Open No. 10-167775 uses slaked lime slurry and quick lime fine powder. However, this method adds a reaction retarder to the slurry only after the slurry is formed. Since the effect of pore formation of the reaction retarder is most exhibited only when it is used when the hydration reaction is occurring, the method of the present invention cannot be expected to have a sufficient effect. In addition, at the stage where the subsequent dry digestion process is performed, pore crushing is very likely to occur due to the intense reaction accompanying steam digestion. These reasons lead to a process of producing slaked lime with a pore structure that is not effective for reaction with harmful gases.

湿式消化の有利点を利用した別の方法として、米国特許第6322769号特許公報には水分21-23重量%の湿潤消石灰を調製し、次に乾燥することにより、優れたSO2等の処理特性を有する乾燥製品が得られることが記述されている。しかしこの方法は、乾燥のために熱エネルギーを多く必要とする。   As another method utilizing the advantages of wet digestion, U.S. Pat.No. 6,322,769 discloses a wet slaked lime with a moisture content of 21-23% by weight, and then dried to provide excellent processing characteristics such as SO2. It is described that a dry product having is obtained. However, this method requires a large amount of heat energy for drying.

特開平10-167775JP 10-167775 A 米国特許第6322769号特許公報U.S. Patent No. 6322769

本発明の主たる目的は、生石灰と少量の反応遅延剤とを用いることにより、SO2等の含有ガスの処理に極めて効率的な消石灰を生産するための過程を提供することにある。また本発明は、加熱により、または湿潤消石灰中のメソ孔構造を損なわない程度の適量の生石灰の添加により、湿潤消石灰粉末を乾燥することを含む。   The main object of the present invention is to provide a process for producing slaked lime that is extremely efficient for the treatment of gas containing SO2, etc. by using quick lime and a small amount of reaction retarder. The present invention also includes drying the wet slaked lime powder by heating or adding an appropriate amount of quick lime that does not impair the mesoporous structure in the wet slaked lime.

本発明に係る方法は、SO2ガス等との反応において高い効率を示す消石灰を製造する方法であって、
(a)まず、「消化用液体」用生石灰を、「消化用液体」用生石灰100重量部に対して2-50重量部の反応遅延剤を含む水で消化して、10-40重量%の石灰の固体と60-90重量%の水分とを含む「消化用液体」を得る細孔基礎構築過程と、
(b)(a)より得られた「消化用液体」を、主消化用生石灰を消化するために使用して、水分10-30重量%を有する湿潤消石灰粉末を得る細孔成長過程と、
(c)(b)より得られた湿潤消石灰粉末を、加熱手段により、または乾燥用生石灰を添加して水分と反応させて除去することにより、水分が1.0重量%より少ない乾燥消石灰粉末を得る乾燥過程と
を含むことを特徴とする。
The method according to the present invention is a method for producing slaked lime showing high efficiency in the reaction with SO2 gas or the like,
(A) First, digestion of “digestion liquid” quicklime with 100 to 50 parts of “digestion liquid” quicklime with water containing 2-50 parts by weight of a reaction retarder, The pore foundation construction process to obtain a “digestion liquid” containing lime solids and 60-90% by weight moisture,
(B) A pore growth process to obtain wet slaked lime powder having a water content of 10-30% by weight, using the “digestion liquid” obtained from (a) to digest main digested quicklime;
(C) Drying to obtain dry slaked lime powder having a moisture content of less than 1.0% by weight by removing the wet slaked lime powder obtained from (b) by heating means or reacting with moisture by adding quick lime for drying Including a process.

発明者らは、同じ総細孔容積であれば、より多数のメソ孔(半径10-250Åの細孔)部分、特にサイズが半径50-100Åの範囲の細孔を有する消石灰が、煙道ガスに含有されたSO2等との反応に、より効果的であるという傾向を見出した。   The inventors have found that slaked lime with a larger number of mesopores (pores with a radius of 10-250 mm), especially pores with a size in the range of radius 50-100 mm, has the same total pore volume. We found a tendency to be more effective in the reaction with SO2 contained in.

上述に基づいて、発明者らはスラリー及び湿潤粉末にすることで、主として半径50-100Åのメソ孔からなる細孔を有する消石灰粒子をより多く生成することができると考えた。また発明者らは、上述のように形成された多数の半径50-100Åのメソ孔が乾燥消石灰粉末にそのまま現れるように工夫した。   Based on the above, the inventors considered that more slaked lime particles having pores mainly consisting of mesopores with a radius of 50-100 mm can be generated by using slurry and wet powder. In addition, the inventors devised so that a large number of mesopores having a radius of 50-100 mm formed as described above appear as they are in the dried slaked lime powder.

様々な実験を通じて、発明者らは湿式消化の間における反応遅延剤の種類・量等により、形成される細孔の特性、すなわち細孔容積、細孔分布などを制御できることを発見した。またスラリー中で生ずる消石灰粒子の細孔構造は総細孔容積の約20-30体積%を占める半径50-100Åの範囲の細孔を有しており、これは純粋な水のみで消化して得られた消石灰スラリーにおける消石灰粒子の半径50-100Åの範囲の細孔に比較して、非常に多いこともわかった。さらに発明者らは、上述の消石灰スラリーを「消化用液体」として、主消化用生石灰を消化し10-30重量%の水分が含まれる湿潤消石灰を得た場合、「消化用液体」と比べて総細孔容積はほぼ同一であるが、半径50-100Åの範囲の細孔は大幅に増加し総細孔容積の50体積%以上を占めることを発見した。特に「消化用液体」は半径50-100Åの範囲の細孔を構築する基礎を有しており、これを主消化用生石灰の消化に用いることで半径50-100Åの範囲の細孔が発達、拡張されると考えた。   Through various experiments, the inventors have found that the characteristics of pores formed, that is, pore volume, pore distribution, and the like, can be controlled by the type and amount of reaction retarder during wet digestion. The pore structure of slaked lime particles generated in the slurry has pores with a radius of 50-100 mm, which occupies about 20-30% by volume of the total pore volume, which is digested with pure water only. It was also found that the number of slaked lime particles in the obtained slaked lime slurry was very large compared to the pores having a radius of 50-100 mm. Furthermore, the inventors made the above-mentioned slaked lime slurry “digestion liquid”, digested main digested quicklime and obtained wet slaked lime containing 10-30% by weight of water, compared with “digestion liquid” The total pore volume was almost the same, but it was found that the pores in the radius range of 50-100 mm increased significantly, accounting for more than 50% by volume of the total pore volume. In particular, the “digestion liquid” has a foundation for constructing pores with a radius of 50-100 mm, and by using this for digestion of main digested quicklime, pores with a radius of 50-100 mm are developed. I thought it would be expanded.

上述のようにして得られた総細孔容積の50体積%以上が半径50-100Åの範囲の細孔からなる湿潤消石灰粉末を500℃以下の加熱により、あるいは適量の乾燥用生石灰を添加して乾燥を実施することで優れた反応性に富んだ消石灰粉末が得られた。   Wet slaked lime powder consisting of pores with a radius of 50-100 mm or more of 50% by volume or more of the total pore volume obtained as described above is heated at 500 ° C. or less, or an appropriate amount of dry lime is added. Slaked lime powder with excellent reactivity was obtained by carrying out drying.

よって本発明の目的は、湿式消化の領域を基本とする消化工程を提供することにあり、(a)総細孔容積の20-30体積%の半径50-100Åの範囲のメソ孔を有する細孔構造の基礎を設け、続いて(b)新たなメソ孔を形成すると同時にメソ孔の基礎を拡張及び発達させて、半径50-100Åの範囲のメソ孔部分が総細孔容積の半分以上を占めるようにすることからなる。そしてそれを加熱により、又は適量の乾燥用生石灰の添加により湿潤消石灰を乾燥することにある。乾燥用生石灰と湿潤消石灰粉末の残余の水分との間の反応は緩慢に進行し、これにより湿潤消石灰のメソ孔構造を損なわずに残すことができる。   Accordingly, an object of the present invention is to provide a digestion process based on the area of wet digestion, and (a) 20-30% by volume of the total pore volume has a mesopore with a radius of 50-100 mm. The foundation of the pore structure was established, and then (b) the formation of new mesopores and at the same time the mesopore foundation was expanded and developed, so that the mesopores with a radius of 50-100 mm had more than half of the total pore volume. To make up. And it is to dry wet slaked lime by heating it or by adding an appropriate amount of quicklime for drying. The reaction between the dry lime for drying and the remaining moisture of the wet slaked lime powder proceeds slowly so that the mesopore structure of the wet slaked lime can be left intact.

本明細書を通じて、用語「消化水」は「消化用液体」用生石灰を消化するために使用される反応遅延剤の水溶液を示し、用語「消化用液体」は過剰な量の「消化水」で「消化用液体」用生石灰を消化することにより得られた60-90重量%の水分と10-40重量%の石灰の固体を含む混合物を表す。   Throughout this specification, the term “digestion water” refers to an aqueous solution of a reaction retardant used to digest quick lime for “digestion liquid”, and the term “digestion liquid” refers to an excessive amount of “digestion water”. Represents a mixture containing 60-90 wt% moisture and 10-40 wt% lime solids obtained by digesting quick lime for "digestive liquid".

それぞれ意図されたガス吸収の用途に適合する細孔分布を有する適切な消石灰を得るには、一般的に反応遅延剤の種類及び量などで調節するが、本発明では「消化用液体」及び湿潤消石灰の水分を調節することで、よりガス吸収に最適なメソ孔が得られる。   In order to obtain suitable slaked lime having a pore distribution suitable for each intended gas absorption application, it is generally controlled by the type and amount of reaction retarder, but in the present invention, “digestion liquid” and wet By adjusting the water content of slaked lime, mesopores more optimal for gas absorption can be obtained.

本発明に係る方法によると、最初の細孔基礎構築過程(a)は、「消化用液体」用生石灰100重量部に対して2-50重量部の反応遅延剤を含む過剰な量の「消化水」で「消化用液体」用生石灰を反応させることにより、60-90重量%の水分と10-40重量%の石灰の固体である「消化用液体」を調製することにより達成できる。「消化用液体」は、好ましくは水分75-90重量%と石灰の固体10-25重量%とからなる。   According to the method of the present invention, the first pore foundation construction step (a) is carried out by adding an excessive amount of “digestion” containing 2-50 parts by weight of a reaction retarder to 100 parts by weight of quicklime for “digestion liquid”. It can be achieved by reacting quick digestion liquid for “digestion liquid” with “water” to prepare “digestion liquid” which is a solid of 60-90 wt% water and 10-40 wt% lime. The “digestion liquid” preferably consists of 75-90% by weight moisture and 10-25% by weight lime solids.

さらに、細孔成長過程(b)は、上記工程により得られた「消化用液体」を用いて、湿潤消石灰粉末が10-30重量%、好ましくは13-23重量%の残余水分を含有しているように主消化用生石灰を消化することにより達成できる。また省エネルギー的に見ると、湿潤消石灰粉末の残余水分を13-18重量%とすることが有利である。   Further, in the pore growth process (b), using the “digestion liquid” obtained by the above process, the wet slaked lime powder contains residual moisture of 10-30 wt%, preferably 13-23 wt%. This can be achieved by digesting the main digested quicklime. From the viewpoint of energy saving, it is advantageous that the residual moisture of the wet slaked lime powder is 13 to 18% by weight.

最後に、上記過程(b)より得られた水分10-30重量%の湿潤消石灰粉末から水分1重量%未満の乾燥消石灰粉末を得る乾燥は、500℃以下の温度での熱風乾燥等、または適量の乾燥用生石灰を添加して湿潤消石灰中の水分と反応させて除去することにより実行しうる。熱風乾燥等を行う場合は、CO2濃度が高い熱風および雰囲気は避けたほうが良い。周知の通り消石灰はCO2と容易に反応して炭酸カルシウムとなる。この時、細孔容積や比表面積等が減少するため、SO2等の酸性有害ガスの吸着能力も低下する。従って、乾燥時には極力CO2との接触を避け、好ましくは大気中のCO2濃度である500mg/Nm3以下のCO2濃度の熱風あるいは雰囲気で乾燥を行う。さらに、温度については消石灰が脱水して生石灰に変化する温度が550℃であり、この温度より少し低い500℃以下で行う必要がある。熱効率等を考慮すると350〜450℃で乾燥することが望ましい。一方乾燥用生石灰を使用した乾燥では乾燥機を省くことができ、乾燥エネルギーも削減できるので、コスト上最も好ましい。乾燥工程の後に粉砕・分級工程を設け、適切な粒度に調整することは、実用上の除去効率向上につながる。   Finally, drying to obtain a dry slaked lime powder having a moisture content of less than 1% by weight from the wet slaked lime powder having a moisture content of 10-30% obtained by the above step (b) may be performed by hot air drying at a temperature of 500 ° C. or lower, or an appropriate amount. It can be carried out by adding quick lime for drying and reacting with moisture in the wet slaked lime to remove it. When performing hot air drying, etc., it is better to avoid hot air and atmosphere with high CO2 concentration. As is well known, slaked lime easily reacts with CO2 to form calcium carbonate. At this time, since the pore volume, specific surface area, and the like are reduced, the adsorption ability of acidic harmful gases such as SO2 is also lowered. Accordingly, contact with CO2 is avoided as much as possible during drying, and drying is preferably performed with hot air or an atmosphere having a CO2 concentration of 500 mg / Nm3 or less, which is the CO2 concentration in the air. Furthermore, regarding the temperature, the temperature at which slaked lime is dehydrated and converted to quick lime is 550 ° C., and it is necessary to carry out at 500 ° C. or less, which is slightly lower than this temperature. Considering thermal efficiency, it is desirable to dry at 350 to 450 ° C. On the other hand, drying using quicklime for drying can save the dryer and can reduce the drying energy, which is most preferable in terms of cost. Providing a pulverization / classification step after the drying step and adjusting to an appropriate particle size leads to an improvement in practical removal efficiency.

「消化用液体」用生石灰、主消化用生石灰及び乾燥用生石灰は、それぞれ粒度5mm以下の粉粒体であることが好ましく、望ましくは粒度1mm以下の粉体である。特に乾燥用生石灰は、湿潤消石灰との均一な混合が容易に行えるように、粒度1mm以下の粉体であることが非常に望ましい。各生石灰の反応性は生石灰−水活性度t60=100秒以下が好ましく、望ましくは40秒以下である。過程(a)において60-90重量%の水分と10-40重量%の石灰からなる「消化用液体」を得るための「過剰な量の水」の目安としては、もちろん消化装置や反応条件等によっても異なるが、「消化用液体」用生石灰100重量部に対して水250-1250重量部である。   The “digestion liquid” quicklime, the main digestive quicklime and the dry quicklime are preferably powders having a particle size of 5 mm or less, preferably powders having a particle size of 1 mm or less. In particular, quick lime for drying is very preferably a powder having a particle size of 1 mm or less so that uniform mixing with wet slaked lime can be easily performed. The reactivity of each quicklime is preferably quicklime-water activity t60 = 100 seconds or less, desirably 40 seconds or less. In order to obtain an “excess amount of water” for obtaining a “digestion liquid” consisting of 60-90% by weight of water and 10-40% by weight of lime in step (a), of course, digester, reaction conditions, etc. The amount of water is 250-1250 parts by weight with respect to 100 parts by weight of quicklime for “digestion liquid”.

(実施例1)
(a)の細孔基礎構築過程において、「消化用液体」用生石灰として矢橋工業株式会社製のJIS特号生石灰(CaO95重量%以上、-0.1mm粉末、生石灰−水活性度t60=20s)200gを、撹拌羽根を備えた容器中で、5分間に亘り、60gのポリエチレングリコールを含有する1860gの水(35℃)で消化した。生じた「消化用液体」は87重量%の水分を含有していた。生石灰−水活性度はt60と述べたが、熱量計中の20℃の水600mLに、規定された範囲の粉末度の生石灰150gを加え、60℃に到達するのに要した時間を計測することよりなるAmerican Water Works Association(AWWA B202)及びASTMの規格C110の石灰の物性試験に準拠した方法を使用して決定された。
(Example 1)
In the basic pore construction process of (a), JIS special quick lime (CaO 95% by weight or more, -0.1 mm powder, quick lime-water activity t60 = 20 s) manufactured by Yabashi Kogyo Co., Ltd. as quick lime for “digestion liquid” 200 g Was digested with 1860 g of water (35 ° C.) containing 60 g of polyethylene glycol for 5 minutes in a vessel equipped with a stirring blade. The resulting “digestion liquid” contained 87% by weight of water. Although the quick lime-water activity is t60, add 150g of quick lime in the specified range to 600mL of water at 20 ° C in the calorimeter, and measure the time required to reach 60 ° C. It was determined using a method conforming to the American Water Works Association (AWWA B202) and ASTM standard C110 lime physical property test.

その後、(b)の細孔成長過程において、主消化用生石灰1800gを容器内に装入し、10分間に亘って「消化用液体」と混合した。生じた湿潤消石灰粉末は19重量%の水分を含んでいた。   Then, in the pore growth process of (b), 1800 g of main digested quicklime was charged into the container and mixed with the “digestion liquid” for 10 minutes. The resulting wet slaked lime powder contained 19% water by weight.

最後に120℃の気密真空乾燥機内で(c)の湿潤消石灰の乾燥が実行され、水分0.3重量%の乾燥消石灰粉末が得られた。   Finally, drying of the wet slaked lime (c) was carried out in a hermetic vacuum dryer at 120 ° C. to obtain a dry slaked lime powder having a moisture content of 0.3% by weight.

消石灰の細孔特性は、Quantachrome corporationのNOVA3000ガス収着アナライザを利用して計測された。細孔容積は半径5-1000Åの範囲内の窒素吸収計測により決定された(細孔は円筒状であるとみなすBJH法により計算)。よって、本明細書を通じて、総細孔容積とはBJH法に基づく窒素吸収により計測される半径5-1,000Åの細孔の容積を表す。実施例1に関しては、細孔基礎構築段階の「消化用液体」中で発達した消石灰粒子は、0.220cc/gの総細孔容積を有し、半径50-100Åの細孔が0.056cc/gを占めていた(半径50-100Åの範囲は、発明者らにより、実験上、消石灰粒子のSO2ガス反応における最適な細孔サイズということが発見されている)。細孔成長過程の湿潤消石灰中において生成された消石灰粒子は、0.227cc/gの総細孔容積を有し、半径50-100Åの細孔により総細孔容積の半分以上を占める0.124cc/gが占有されている。   The pore characteristics of slaked lime were measured using NOVA3000 gas sorption analyzer of Quantachrome corporation. The pore volume was determined by nitrogen absorption measurement within a radius of 5-1000 mm (calculated by the BJH method assuming that the pores are cylindrical). Therefore, throughout this specification, the total pore volume represents the volume of pores having a radius of 5-1,000 mm measured by nitrogen absorption based on the BJH method. With respect to Example 1, the slaked lime particles developed in the “digestion liquid” in the pore foundation construction stage have a total pore volume of 0.220 cc / g, and a pore with a radius of 50-100 mm has a pore size of 0.056 cc / g. (The range of radius 50-100 mm has been experimentally found by the inventors to be the optimum pore size in the SO2 gas reaction of slaked lime particles). Slaked lime particles produced in wet slaked lime during the pore growth process have a total pore volume of 0.227 cc / g, 0.124 cc / g occupying more than half of the total pore volume by pores with a radius of 50-100 mm Is occupied.

加えて、SO2に対する消石灰の反応性を、50分間に亘り170℃で、0.100mm以下に破砕されたサンプル0.600gを直径34mmの反応器内に吸着面として全面にかつ均一に配置し、疑似煙道ガス混合物を通過させ、反応器から排出された排ガスを分析することにより測定した。ガスはおおよそ、30体積%の水分、1体積%のSO2及び残余のN2からなり、50分間に装入したガスの総量は、Ca/Sモル比が2になる体積とした。サンプルのSO2除去効率は、装入された全SO2に対するサンプルに保持されたSO2の量として以下のように計算された。
SO2除去効率% = (1-A/B)x100 Eq.(1)
ここで
A =反応器の排出したガス中のSO2
B =反応器に装入された総SO2
実施例1に係る消石灰のSO2除去効率は82%を示した。
In addition, the reactivity of slaked lime with respect to SO2 was placed on the entire surface and uniformly as a adsorption surface in a reactor with a diameter of 34 mm, and 0.600 g of a sample crushed to 0.100 mm or less at 170 ° C. for 50 minutes. Measurements were made by passing the road gas mixture and analyzing the exhaust gas discharged from the reactor. The gas was roughly composed of 30% by volume of water, 1% by volume of SO2 and the balance of N2, and the total amount of gas charged in 50 minutes was a volume at which the Ca / S molar ratio was 2. The sample SO2 removal efficiency was calculated as the amount of SO2 retained in the sample relative to the total SO2 charged as follows.
SO2 removal efficiency% = (1-A / B) x100 Eq. (1)
here
A = SO2 in the gas discharged from the reactor
B = total SO2 charged to the reactor
The SO2 removal efficiency of the slaked lime according to Example 1 was 82%.

(実施例2)
(b)の細孔成長過程から得られた湿潤消石灰に1000gの乾燥用生石灰を添加することにより乾燥を実行したことを除き、実施例1の手順と厳密に同じだった。得られた乾燥消石灰は0.190cc/gの総細孔容積を有し、半径50-100Åの細孔が0.094cc/gを占有しており、総細孔容積の半分近くが占められていた。SO2除去効率は77%だった。
(Example 2)
Exactly the same procedure as in Example 1 except that drying was performed by adding 1000 g quick lime for drying to the wet slaked lime obtained from the pore growth process of (b). The obtained dry slaked lime had a total pore volume of 0.190 cc / g, and pores with a radius of 50-100 mm occupied 0.094 cc / g, accounting for nearly half of the total pore volume. The SO2 removal efficiency was 77%.

(実施例3)
(a)の細孔基礎構築過程のために使用された「消化用液体」用生石灰、水及びポリエチレングリコールがそれぞれ400g、1860g及び60gであり、(b)の細孔成長過程において1850gの主消化用生石灰が使用されたことを除き、実施例1の手順と厳密に同じだった。(a)により得られた「消化用液体」は77重量%の水分を有し、その中の消石灰粒子は0.214cc/gの総細孔容積を有し、半径50-100Åの細孔が0.057cc/gを占有していた。(b)から得られた湿潤消石灰は13重量%の水分を有し、その中の消石灰粒子は0.221cc/gの総細孔容積を有しており、半径50-100Åの細孔が0.116cc/gを占有し、よって総細孔容積の半分以上が占められていた。SO2除去効率は80%だった。
(Example 3)
400g, 1860g and 60g of "digestion liquid" quick lime, water and polyethylene glycol used for the pore basic construction process of (a), respectively, and 1850g of main digestion in the pore growth process of (b) Exactly the same procedure as in Example 1 except that lime was used. The “digestion liquid” obtained by (a) has a water content of 77% by weight, the slaked lime particles therein have a total pore volume of 0.214 cc / g, and a pore with a radius of 50-100 mm is 0.057 occupied cc / g. The wet slaked lime obtained from (b) has a water content of 13% by weight, the slaked lime particles therein have a total pore volume of 0.221 cc / g, and pores with a radius of 50-100 mm are 0.116 cc. / g, and thus more than half of the total pore volume was occupied. The SO2 removal efficiency was 80%.

(実施例4)
(b)による湿潤消石灰の乾燥を乾燥用生石灰750gの添加により実行したことを除き、実施例1の手順と厳密に同じだった。得られた乾燥消石灰は0.155cc/gの総細孔容積を有し、半径50-100Åの細孔が0.078cc/gを占有し、よって総細孔容積のほぼ半分が占められていた。SO2除去効率は75%だった。
Example 4
Exactly the same procedure as in Example 1 except that the drying of wet slaked lime according to (b) was carried out by adding 750 g of quicklime for drying. The obtained dry slaked lime had a total pore volume of 0.155 cc / g, and pores with a radius of 50-100 occupy 0.078 cc / g, and thus almost half of the total pore volume. The SO2 removal efficiency was 75%.

(比較例1)
ポリエチレングリコール60gを含む水1860gで生石灰2000gを消化し、生じた水分19重量%の湿潤消石灰粉末を真空乾燥機中で乾燥して乾燥消石灰粉末を得た。乾燥消石灰は0.211cc/gの総細孔容積を有し、半径50-100Åの細孔が0.082cc/gを占有し、総細孔容積の50体積%未満であった。SO2除去効率は74%だった。
(Comparative Example 1)
1860 g of water containing 60 g of polyethylene glycol was digested with 2000 g of quicklime, and the resulting wet slaked lime powder with a moisture content of 19% by weight was dried in a vacuum dryer to obtain a dried slaked lime powder. The dried slaked lime had a total pore volume of 0.211 cc / g, and pores with a radius of 50-100 occupy 0.082 cc / g, less than 50% by volume of the total pore volume. The SO2 removal efficiency was 74%.

(比較例2)
ポリエチレングリコール60gを含む水1860gで生石灰2000gを消化した。生じた水分19重量%の湿潤消石灰粉末を1000gの生石灰を添加して乾燥した。湿潤消石灰は0.215cc/gの総細孔容積を有し、半径50-100Åの細孔が0.081cc/gを占有していた。乾燥消石灰粉末は0.163cc/gの総細孔容積を有し、半径50-100Åの細孔が0.068cc/gを占有し、総細孔容積の50体積%未満であった。SO2除去効率は68%だった。
(Comparative Example 2)
2000 g of quicklime was digested with 1860 g of water containing 60 g of polyethylene glycol. The resulting wet slaked lime powder with a water content of 19% by weight was dried by adding 1000 g of quick lime. The wet slaked lime had a total pore volume of 0.215 cc / g, and pores with a radius of 50-100 mm occupied 0.081 cc / g. The dried slaked lime powder had a total pore volume of 0.163 cc / g, and pores with a radius of 50-100 occupy 0.068 cc / g, less than 50% by volume of the total pore volume. The SO2 removal efficiency was 68%.

(比較例3)
生石灰、水及びポリエチレングリコールをそれぞれ400g、1860g及び60g使用して、(a)の細孔基礎構築過程のみを実行し、水分77重量%の「消化用液体」を得た。次に、細孔成長過程を実施する代わりに、乾燥消石灰を得るために、「消化用液体」に生石灰2600gが加えられた。「消化用液体」中の消石灰粒子は0.224cc/gの総細孔容積を有し、半径50-100Åの細孔が0.067cc/gを占有していた。乾燥消石灰粉末は0.132cc/gの総細孔容積を有し、半径50-100Åの細孔が0.038cc/gを占有し、総細孔容積の50体積%未満であった。SO2除去効率は59%だった。
(Comparative Example 3)
Using 400 g, 1860 g, and 60 g of quick lime, water, and polyethylene glycol, respectively, only the pore basic construction process of (a) was performed to obtain a “digestion liquid” having a moisture content of 77% by weight. Next, instead of performing a pore growth process, 2600 g of quicklime was added to the “digestion liquid” to obtain dry slaked lime. The slaked lime particles in the “digestion liquid” had a total pore volume of 0.224 cc / g, and pores with a radius of 50-100 mm occupied 0.067 cc / g. The dried slaked lime powder had a total pore volume of 0.132 cc / g, and pores with a radius of 50-100 occupy 0.038 cc / g, less than 50% by volume of the total pore volume. The SO2 removal efficiency was 59%.

(比較例4)
ポリエチレングリコール60gを含む水1860gで生石灰3000gを消化した。生じた乾燥消石灰粉末は0.122cc/gの総細孔容積を有し、半径50-100Åの細孔が0.028cc/gを占有し、総細孔容積の50体積%未満であった。SO2除去効率は58%だった。
(Comparative Example 4)
3000 g of quicklime was digested with 1860 g of water containing 60 g of polyethylene glycol. The resulting dry slaked lime powder had a total pore volume of 0.122 cc / g, and pores with a radius of 50-100 occupy 0.028 cc / g, less than 50% by volume of the total pore volume. The SO2 removal efficiency was 58%.

これらの例より、「消化用液体」中の消石灰粒子は平均して0.220cc/gの総細孔容積を有しており、半径50-100Åの細孔が約25-30体積%を占有していることが明白になった。またこの「消化用液体」で主消化用生石灰を消化すると、湿潤消石灰として得られた消石灰粒子は約0.220cc/gの総細孔容積を有し、半径50-100Åの細孔が総細孔容積の50体積%以上を占有していた。「消化用液体」は半径50-100Åの範囲の細孔を構築する基礎を有しており、これを主消化用生石灰の消化に用いることで半径50-100Åの範囲の細孔を発達、拡張させると考える。従って呼称「細孔基礎構築」過程は「消化用液体」調製工程を指し、「細孔成長」過程は湿潤消石灰粉末を生成する消化工程を指す。   From these examples, the slaked lime particles in the “digestion liquid” have an average total pore volume of 0.220 cc / g, and pores with a radius of 50-100 mm occupy about 25-30% by volume. It became clear that In addition, when digesting the main digested quicklime with this “digestive liquid”, the slaked lime particles obtained as wet slaked lime have a total pore volume of about 0.220 cc / g, and pores with a radius of 50-100 mm are total pores. Occupied more than 50% by volume. “Digestion liquid” has a foundation to build pores with a radius of 50-100 mm, and this is used for digestion of quick digestion lime to develop and expand pores with a radius of 50-100 mm. I think. Thus, the designation “pore foundation construction” process refers to the “digestion liquid” preparation process, and the “pore growth” process refers to the digestion process that produces wet slaked lime powder.

これらの例より、上述した本発明における過程が、乾燥コストを激減させ、SO2ガスに対する高い反応性を有する消石灰を生成するために使用できるということが明らかにされた。   From these examples, it has been clarified that the above-described process in the present invention can be used to drastically reduce drying costs and produce slaked lime with high reactivity to SO2 gas.

実施例及び比較例の詳細な実験の条件及び結果を表1に示す。

Figure 2005272238
Table 1 shows the detailed experimental conditions and results of the examples and comparative examples.
Figure 2005272238

以上、本発明の実施例について説明したが、本発明は上記実施例に限定されるものではなく、本発明の要旨の範囲内において、適宜変形実施が可能であることは言うまでもない。   As mentioned above, although the Example of this invention was described, it cannot be overemphasized that this invention is not limited to the said Example, A deformation | transformation implementation is possible suitably in the range of the summary of this invention.

Claims (4)

生石灰を消化することにより消石灰を生成する消石灰の製造方法において、
(a)「消化用液体」用生石灰100重量部について2-50重量部の反応遅延剤を含む過剰な量の水で「消化用液体」用生石灰を消化することにより10-40重量%の石灰と60-90重量%の水分とを含む「消化用液体」を調製する気孔基礎構築過程と、
(b)主消化用生石灰を消化するために(a)より得られた「消化用液体」を使用して、水分10-30重量%を有する湿潤消石灰粉末を生成する気孔成長過程と、
(c)湿潤消石灰粉末を乾燥して水分1.0重量%未満の乾燥消石灰粉末を得る乾燥過程と
を含むことを特徴とする消石灰の製造方法。
In the method for producing slaked lime that produces slaked lime by digesting quick lime,
(A) About 100 parts by weight of quick lime for “digestion liquid” 10-40% by weight of lime by digesting quick lime for “digestion liquid” with an excessive amount of water containing 2-50 parts by weight of a reaction retarder And a stomatal foundation construction process for preparing a “digestion liquid” containing 60-90% by weight of water,
(B) a stomatal growth process for producing wet slaked lime powder having a water content of 10-30% by weight using the “digestion liquid” obtained from (a) in order to digest the main lime for digestion;
And (c) drying the wet slaked lime powder to obtain a dried slaked lime powder having a moisture content of less than 1.0% by weight.
乾燥過程は加熱手段により行われる請求項1に記載の消石灰の製造方法。 The method for producing slaked lime according to claim 1, wherein the drying process is performed by a heating means. 加熱手段による加熱は乾燥雰囲気中のCO2濃度が500mg/Nm3以下で、また温度が500℃以下で行われる請求項2に記載の消石灰の製造方法。 The method for producing slaked lime according to claim 2, wherein the heating by the heating means is performed at a CO2 concentration of 500 mg / Nm3 or less in a dry atmosphere and at a temperature of 500 ° C or less. 乾燥過程は、乾燥用生石灰を添加して水分を反応させて除去することにより行われる請求項1に記載の消石灰の製造方法。 The method for producing slaked lime according to claim 1, wherein the drying process is performed by adding quick lime for drying and reacting and removing moisture.
JP2004089864A 2004-03-25 2004-03-25 Method of producing slaked lime Pending JP2005272238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004089864A JP2005272238A (en) 2004-03-25 2004-03-25 Method of producing slaked lime

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004089864A JP2005272238A (en) 2004-03-25 2004-03-25 Method of producing slaked lime

Publications (1)

Publication Number Publication Date
JP2005272238A true JP2005272238A (en) 2005-10-06

Family

ID=35172290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004089864A Pending JP2005272238A (en) 2004-03-25 2004-03-25 Method of producing slaked lime

Country Status (1)

Country Link
JP (1) JP2005272238A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100450584C (en) * 2006-12-22 2009-01-14 清华大学 Preparation method of desulfurizer powder by quick hydration reaction and device thereof
JPWO2021019754A1 (en) * 2019-08-01 2021-02-04

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100450584C (en) * 2006-12-22 2009-01-14 清华大学 Preparation method of desulfurizer powder by quick hydration reaction and device thereof
JPWO2021019754A1 (en) * 2019-08-01 2021-02-04
CN112601609A (en) * 2019-08-01 2021-04-02 太平洋工程株式会社 Method and apparatus for producing desulfurizing agent, and method for desulfurizing cement kiln exhaust gas
JP7326448B2 (en) 2019-08-01 2023-08-15 太平洋エンジニアリング株式会社 Method for producing desulfurizing agent and method for desulfurizing exhaust gas from cement kiln

Similar Documents

Publication Publication Date Title
TWI415793B (en) Porous calcium oxide granules and porous calcium hydroxide granules
PL185091B1 (en) Ca (oh)2 particles
KR101753823B1 (en) Manufacturing high quality desulfrutization lime method using shell for wet desulfurization
CN109012575A (en) A method of improving roasting specific surface area of diatomite and adsorption capacity
JP2002293537A (en) Method for manufacturing calcium carbonate
Anthony et al. Pacification of high calcic residues using carbon dioxide
JP5306739B2 (en) Slaked lime and method for producing the same
JP2010180086A (en) Method for producing slaked lime
CN112403254A (en) Method for preparing desulfurizer by using red mud as raw material and desulfurizer prepared by method
JP4189390B2 (en) Method for producing porous slaked lime
US20190389735A1 (en) Small-pore calcium hydroxide particles and method for manufacturing same
JP4969527B2 (en) Porous slaked lime
JP2005272238A (en) Method of producing slaked lime
IE44193B1 (en) Active carbon
JP4691770B2 (en) Method for producing highly reactive calcium hydroxide
JP5895035B2 (en) Highly reactive slaked lime, method for producing the same, and exhaust gas treating agent
JP5205685B2 (en) High specific surface area slaked lime, its production method and its use
CN109482144A (en) A kind of desulfurization removes the preparation method of carbon adsorbent
CN109516912A (en) A kind of method of sequestration of carbon dioxide
KR101722954B1 (en) Hydrogen sulfide removing agent and the preparation thereof
JPH08277110A (en) Preparation of milk of lime
Hu et al. Modification of multi-source industrial solid waste with porous materials to produce highly polymerizeosilica gel: Microstructure optimization and CO2 mineralization enhancement mechanism
JP5158296B2 (en) High specific surface area slaked lime and its production and use
CN113663491A (en) Desulfurizing agent composition and preparation method thereof
JP2005320207A (en) Slaked dolomite powder and manufacturing method thereof