JP2005271102A - Sintered gear and manufacturing method of the gear - Google Patents

Sintered gear and manufacturing method of the gear Download PDF

Info

Publication number
JP2005271102A
JP2005271102A JP2004085242A JP2004085242A JP2005271102A JP 2005271102 A JP2005271102 A JP 2005271102A JP 2004085242 A JP2004085242 A JP 2004085242A JP 2004085242 A JP2004085242 A JP 2004085242A JP 2005271102 A JP2005271102 A JP 2005271102A
Authority
JP
Japan
Prior art keywords
tooth
gear
shot
sintered
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004085242A
Other languages
Japanese (ja)
Inventor
Katsuto Nakazawa
克仁 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Priority to JP2004085242A priority Critical patent/JP2005271102A/en
Publication of JP2005271102A publication Critical patent/JP2005271102A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sintered gear, heightening the fatigue strength and wear resistance of a tooth part by a method advantageous in cost, and a manufacturing method of the gear. <P>SOLUTION: In this sintered gear 1, the carbonized quenched tooth flank has skin subjected to shot-peening, and the texture of a part 0.06 mm deep from the surface of the tooth flank is made as dense as hole percentage of 3% or less. This sintered gear 1 is manufactured by a method of peening the tooth flank with a shot whose particle diameter is ϕ0.3 mm or less. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、歯部の疲労強度や耐摩耗性を高めた焼結歯車とその歯車の製造方法に関する。   The present invention relates to a sintered gear with improved tooth fatigue strength and wear resistance and a method of manufacturing the gear.

焼結歯車の歯部、特に歯元の疲労強度を高めるために、下記特許文献1は、歯部となる歯形形成部を備えた鉄系焼結体の素材を加熱し、この素材に転造型を強圧して歯形形成部に組織の緻密化された歯部を創成する焼結歯車の製造方法を提案している。   In order to increase the fatigue strength of the tooth portion of the sintered gear, particularly the tooth root, Patent Document 1 below heats a material of an iron-based sintered body provided with a tooth profile forming portion serving as a tooth portion, and forms a rolling mold on this material. A method of manufacturing a sintered gear is proposed in which a tooth portion with a dense structure is created in the tooth profile forming portion by applying high pressure.

さらに、この特許文献1は、熱間転造工程を経る前にサイジングや回転ロールの強圧などによって素材の歯形形成部の表面の緻密化を行うことや、熱間転造、焼き入れ、焼き戻しの各工程を経た後に、必要に応じてショットピーニング加工を行うことも述べている。   Furthermore, this patent document 1 describes that densification of the surface of the tooth profile forming part of the material is performed by sizing or strong pressure of a rotating roll before the hot rolling process, or hot rolling, quenching, and tempering. It also describes that shot peening is performed as necessary after each step.

しかしながら、この特許文献1の製造方法は、熱間転造工程を必要とし、コスト面で不利になる。   However, the manufacturing method of Patent Document 1 requires a hot rolling process, which is disadvantageous in terms of cost.

また、特許文献1が述べているように熱処理後にショットピーニング加工を行うと、歯部の疲労強度を更に高めることができるが、この特許文献1が述べている粒径が0.3〜0.8mmのショットを使用すると、歯面の面粗度の低下や歯車の精度低下が大きくなる。   Further, when shot peening is performed after heat treatment as described in Patent Document 1, the fatigue strength of the teeth can be further increased, but the particle diameter described in Patent Document 1 is 0.3 to 0.00. When an 8 mm shot is used, the reduction in the surface roughness of the tooth surface and the reduction in the accuracy of the gear increase.

ここで、下記特許文献2は、熱処理後に機械加工した鉄系焼結合金製部材の表面粗さピッチよりも粒径の小さなショットを使用して表面の荒れや傷つきを防止することを述べている。しかし、この特許文献2が実施例に示しているショットは、粒径0.044mmと極めて小さく、コストアップが懸念される。
特開平7−112231号公報 特開平6−49509号公報
Here, Patent Document 2 described below uses a shot having a particle diameter smaller than the surface roughness pitch of a ferrous sintered alloy member machined after heat treatment to prevent surface roughness and scratches. . However, the shot shown in this embodiment by Patent Document 2 is extremely small with a particle size of 0.044 mm, and there is a concern about an increase in cost.
JP-A-7-112231 JP-A-6-49509

この発明は、コスト面で有利な方法で歯部の疲労強度や耐摩耗性を高めることができる焼結歯車と、その歯車の製造方法を提供することを課題としている。   An object of the present invention is to provide a sintered gear capable of increasing the fatigue strength and wear resistance of a tooth portion in a cost-effective manner, and a method for manufacturing the gear.

上記の課題を解決するため、この発明においては、浸炭焼き入れされた歯面にショットピーニング加工された地肌を持ち、歯面の表面から深さ0.06mm以下の部分の組織が空孔率3%以下に緻密化された焼結歯車を提供する。   In order to solve the above-described problems, in the present invention, a carburized and hardened tooth surface has a ground surface shot-peened, and a structure having a depth of 0.06 mm or less from the surface of the tooth surface has a porosity of 3 % To provide a sintered gear densified to less than or equal to%.

また、微小X線応力測定装置による歯底部の残留圧縮応力の測定値が−500MPa以上ある焼結歯車を提供する。   Further, the present invention provides a sintered gear having a measured value of residual compressive stress at the bottom of the tooth by a minute X-ray stress measuring device of −500 MPa or more.

これらの焼結歯車は、浸炭焼き入れ後に粒径がφ0.3mm以下のショットを用いて歯面をピーニング加工し、歯の表面から深さ0.06mm以下の部分の組織を空孔率3%以下に緻密化する方法で製造することができる。この発明においては、かかる焼結歯車の製造方法も併せて提供する。この方法で使用するショットは、加工コストを考慮すると粒径の下限をφ0.1mm程度に止めるのがよい。   These sintered gears, after carburizing and quenching, peening the tooth surface using a shot having a particle diameter of φ0.3 mm or less, and the structure of a portion having a depth of 0.06 mm or less from the tooth surface has a porosity of 3%. It can manufacture by the method of densifying below. In this invention, the manufacturing method of this sintered gear is also provided. In the shot used in this method, the lower limit of the particle diameter is preferably limited to about φ0.1 mm in consideration of the processing cost.

なお、ここで言う空孔率とは、表面と平行位置の断面の面積に占める空孔の割合であり、以下では、その空孔率が3%以下の部分を緻密化層と言う。この緻密化層の厚みは、歯部の断面を研磨仕上げし、光学顕微鏡にて観察される研磨仕上げした断面の歯表面層より空孔率が3%以下となったところまでの深さを調べることによって測定することができる。   In addition, the porosity mentioned here is the ratio of the void | occupy to the area of the cross section of a surface and a parallel position, and the part whose porosity is 3% or less is called a densified layer below. The thickness of the densified layer is obtained by polishing the cross section of the tooth portion and examining the depth until the porosity is 3% or less from the tooth surface layer of the polished cross section observed with an optical microscope. Can be measured.

この発明の焼結歯車は、粉末冶金の一般的な方法、すなわち、粉末を最終製品に近い形状に成形して成形体を焼結する方法で製造する。この方法によれば、熱間転造工程がなく、工程増によるコストアップが起こらない。しかし、その一方で、特許文献1が述べている熱間転造による歯部の組織の緻密化がなされない。   The sintered gear of the present invention is manufactured by a general method of powder metallurgy, that is, a method of forming a powder into a shape close to the final product and sintering the compact. According to this method, there is no hot rolling process, and no cost increase occurs due to an increase in the number of processes. However, on the other hand, densification of the tooth structure by hot rolling described in Patent Document 1 is not performed.

そこで、浸炭焼き入れ後にショットピーニング加工を施して歯面の表層部に空孔の少ない緻密化層を生じさせる。歯面の表層部の緻密化は、焼結後に行うサイジングによってもなされるが、それだけでは不十分であるので、浸炭焼き入れ後にショットピーニング加工を施す。   Therefore, shot peening is performed after carburizing and quenching to form a densified layer with few voids in the surface layer portion of the tooth surface. Densification of the surface layer portion of the tooth surface is also performed by sizing performed after sintering, but it is not sufficient by itself, so shot peening is performed after carburizing and quenching.

発明者の実施した試験から、その緻密化層の厚み(表面からの深さ)が大きくなるほど歯面に付与される圧縮残留応力が低くなることがわかった。緻密化層の厚み(歯面の表面からの深さ)が0.06mm以下で−600MPa弱の圧縮残留応力が得られ、歯部の疲労強度が十分に満足できるものになる。   From the test conducted by the inventors, it was found that the compressive residual stress applied to the tooth surface decreases as the thickness of the densified layer (depth from the surface) increases. When the thickness of the densified layer (depth from the surface of the tooth surface) is 0.06 mm or less, a compressive residual stress of slightly less than −600 MPa is obtained, and the fatigue strength of the tooth portion is sufficiently satisfied.

また、ピーニング加工の条件にもよるが、ショットの硬度、噴射圧、噴射時間などの条件が同一である場合には、使用するショットの粒径が大きくなるほど歯面の寸法精度や面粗度が低下すること、および、粒径の大きなショットを使用すると緻密化層の厚みが厚くなる傾向にあることもわかった。粒径がφ0.1mm以上のショットを用いることでショットピーニングによるコストアップを小さく抑えることができ、また、0.3mm以下のショットを使用することで歯面の寸法精度と面粗度を許容限界内に納め、かつ、緻密化層の厚みも0.06mm以下に制御することが容易となる。   Also, depending on the conditions of peening, if the conditions such as shot hardness, injection pressure, and injection time are the same, the dimensional accuracy and surface roughness of the tooth surface increase as the particle size of the shot used increases. It has also been found that the thickness of the densified layer tends to increase when a shot having a large particle size is used. By using shots with a particle size of φ0.1 mm or more, the cost increase due to shot peening can be kept small, and by using shots of 0.3 mm or less, the dimensional accuracy and surface roughness of the tooth surface are acceptable. It is easy to control the thickness of the densified layer within 0.06 mm.

以下、この発明の実施の形態を添付図面に基づいて説明する。図1は、この発明の焼結歯車の一例を示している。例示の焼結歯車1は、平歯車であるが、歯車の種類は特に限定されない。粉末成形によって歯部を創成し、その後に焼結して製造される歯車の全てにこの発明を適用できる。   Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows an example of a sintered gear of the present invention. The illustrated sintered gear 1 is a spur gear, but the type of gear is not particularly limited. The present invention can be applied to all of the gears that are manufactured by creating a tooth portion by powder molding and then sintering.

この発明の焼結歯車1は、鉄系焼結合金を構成する粉末を、金型で圧縮成形して最終製品に近い形状の成形体を作り、その成形体をプッシャ−炉などの焼結炉に導入し、必要な温度、例えば1300℃で焼結する。その後、浸炭焼き入れを実施し、さらに、歯面2にショットピーニング加工を行って製造する。   A sintered gear 1 according to the present invention is a method of compressing a powder constituting an iron-based sintered alloy with a mold to form a molded body having a shape close to the final product, and forming the molded body into a sintering furnace such as a pusher furnace. And sintered at a required temperature, for example, 1300 ° C. Thereafter, carburizing and quenching is performed, and the tooth surface 2 is manufactured by performing shot peening.

粉末の成形は、高圧、例えば、600MPa以上の圧力で行って成形体の理論密度を88%以上にするのがよい。   The powder is preferably molded at a high pressure, for example, a pressure of 600 MPa or more, so that the theoretical density of the compact is 88% or more.

また、寸法精度を高めるために、浸炭焼き入れを行う前にサイジングを行うのが望ましい。   In order to increase dimensional accuracy, it is desirable to perform sizing before carburizing and quenching.

サイジング後に行う浸炭焼き入れや、焼き戻しの方法は、一般的に行われている方法でよい。   The carburizing quenching or tempering method performed after sizing may be a generally performed method.

さらに、歯部を強化するためのショットピーニング加工は、浸炭焼き入れされた歯車の歯面の硬度よりも高硬度のショットを用いて行うと加工効率の低下が起こらない。また、粒径がφ0.1mm以上のショットを用いることでショットピーニングによるコストアップを抑えることができ、さらに、0.3mm以下のショットを用いることで歯面の精度低下、面粗度低下を小さく抑えることができる。   Further, if the shot peening process for strengthening the tooth part is performed using a shot having a hardness higher than the hardness of the tooth surface of the carburized and quenched gear, the processing efficiency does not decrease. In addition, the use of shots with a particle size of φ0.1 mm or more can suppress the cost increase due to shot peening, and the use of shots with a particle size of 0.3 mm or less reduces the reduction in tooth surface accuracy and surface roughness. Can be suppressed.

図2に、ショットピーニング加工の一例の概要を示す。加工機の処理室3内には、モータ4で回転させるワークテーブル5を設けてある。このワークテーブル5は、上面中心に起立した支持軸6を有する。その支持軸6をワーク中心の軸穴に通してワーク(焼結歯車1)を動かないように保持し、この状態でワークテーブル5上にワーク(焼結歯車1)を複数個積み重ねる。そして、ワークのセッティング終了後にワークテーブル5を回転させ、さらに、処理室3内のノズル7を支持軸6に沿って往復運動させ、このノズル7からショット8をワーク、即ち、焼結歯車1の外周の歯面2に高速度で吹きつけて歯面2に微小な窪みを生成する。   FIG. 2 shows an outline of an example of shot peening. A work table 5 that is rotated by a motor 4 is provided in the processing chamber 3 of the processing machine. The work table 5 has a support shaft 6 standing at the center of the upper surface. The support shaft 6 is passed through the shaft hole at the center of the workpiece, and the workpiece (sintered gear 1) is held so as not to move. In this state, a plurality of workpieces (sintered gear 1) are stacked on the workpiece table 5. Then, after the work setting is completed, the work table 5 is rotated, the nozzle 7 in the processing chamber 3 is reciprocated along the support shaft 6, and the shot 8 is moved from the nozzle 7 to the work, that is, the sintered gear 1. A small depression is generated in the tooth surface 2 by spraying the outer tooth surface 2 at a high speed.

以下により詳細な実施例を挙げる。
鉄基焼結合金HMC−90(Fe−Mn−C)を材料にして焼結歯車を製造した。この焼結歯車は、800MPaの圧力で成形した粉末成形体をプッシャー炉に入れて1300℃で焼結し、次いで、しごき代0.02%でのサイジングを行い、その後に浸炭焼き入れと焼き戻しを行っている。
More detailed examples are given below.
Sintered gears were manufactured using iron-based sintered alloy HMC-90 (Fe-Mn-C) as a material. In this sintered gear, a powder compact formed at a pressure of 800 MPa is put in a pusher furnace and sintered at 1300 ° C., and then sizing is performed at an ironing cost of 0.02%, followed by carburizing and tempering. It is carried out.

次に、この浸炭焼き入れした焼結歯車の歯面に、粒径φ0.10mm、φ0.17mm、φ0.3mm、φ0.6mmの4種類のショットを用いて図2の方法でピーニング加工を施した。ピーニング加工の条件は、ショットの粒径とは無関係に、噴射圧0.5MPa、噴射時間60秒で統一した。また、ショットの硬度も全てHRC53±2とした。 Next, a peening process is performed on the tooth surfaces of the carburized and quenched sintered gear by the method shown in FIG. 2 using four types of shots having particle diameters of φ0.10 mm, φ0.17 mm, φ0.3 mm, and φ0.6 mm. did. The conditions for peening were unified at an injection pressure of 0.5 MPa and an injection time of 60 seconds regardless of the shot particle size. The shot hardness was also H R C53 ± 2.

図3に、ショットピーニング後の歯車の歯先の断面空孔写真を示す。図3(a)は、粒径φ0.17mmのショットを使用したもの(以下試料Bと言う)、図3(b)は、粒径φ0.3mmのショットを使用したもの(以下試料Cと言う)、図3(c)は、粒径φ0.6mmのショットを使用したもの(以下試料Dと言う)である。   FIG. 3 shows a cross-sectional hole photograph of the tooth tip of the gear after shot peening. FIG. 3A shows a shot using a shot having a particle size of φ0.17 mm (hereinafter referred to as sample B), and FIG. 3B shows a shot using a shot having a particle size of φ0.3 mm (hereinafter referred to as sample C). ), FIG. 3C shows a shot using a shot having a particle diameter of φ0.6 mm (hereinafter referred to as sample D).

各試料の歯面に生成された空孔率3%以下の緻密化層9の厚み(表面からの深さ)は、試料Bは0.04mm、試料Cは0.06mm、試料Dは0.1mmであった。なお、粒径φ0.1mmのショットを使用したもの(試料A)は、断面の空孔写真を省いたが、緻密化層厚みは0.02mmであった。   The thickness (depth from the surface) of the densified layer 9 having a porosity of 3% or less generated on the tooth surface of each sample is 0.04 mm for sample B, 0.06 mm for sample C, and 0. It was 1 mm. In addition, although what used the shot of particle diameter (phi) 0.1mm (sample A) omitted the hole photograph of a cross section, the densification layer thickness was 0.02 mm.

また、歯車の歯面の歯元における残留圧縮応力は、ショットピーニング加工を施す前は−55MPaであったものが、試料Aは−1024MPa、試料Bは−896MPa、試料Cは−594MPa、試料Dは−485MPaに増加していた。これにより、ショットピーニング加工を施した歯車は、歯部の過負荷曲げ疲労試験においてショットピーニング加工を施す前の歯車に比べて約30%の疲労強度向上が認められた。   The residual compressive stress at the tooth root of the gear tooth surface was −55 MPa before the shot peening process, but sample A was −1024 MPa, sample B was −896 MPa, sample C was −594 MPa, and sample D. Increased to -485 MPa. As a result, the gear subjected to shot peening was found to have improved fatigue strength by about 30% compared to the gear before being subjected to shot peening in a tooth overload bending fatigue test.

なお、過負荷曲げ疲労試験は、図4に示すサーボパルサー10を用い、固定した焼結歯車1の歯に係止させた部材を上下に往復移動させ、その往復移動を1サイクルとして歯部が疲労破壊するまでのサイクル数の差で評価した。   In the overload bending fatigue test, the servo pulsar 10 shown in FIG. 4 is used, the member locked to the teeth of the fixed sintered gear 1 is reciprocated up and down, and the reciprocating movement is taken as one cycle, and the tooth portion is Evaluation was based on the difference in the number of cycles until fatigue failure.

次に、各試料の精度を調べた。歯車精度として歯型誤差と歯筋誤差を調べた結果、試料A、B、Cは、歯型誤差の規格0.02mm、歯筋誤差の規格0.03mmの双方を共に満たしていたが、試料Dは歯型誤差と歯筋誤差とも規格値をオーバしていた。   Next, the accuracy of each sample was examined. As a result of examining the tooth shape error and the tooth trace error as the gear accuracy, the samples A, B and C satisfy both the tooth shape error standard 0.02 mm and the tooth trace error standard 0.03 mm. D exceeded the standard value for both the tooth type error and the tooth trace error.

また、歯面の面粗度は、試料A、Bは良好で、試料Cは許容範囲内にあったが、試料Dは、許容範囲を逸脱していた。   The surface roughness of the tooth surface was good for samples A and B, and sample C was within the allowable range, but sample D was outside the allowable range.

一方、ショットピーニングによる処理コストは、試料C、Dには差がなかったが、試料A、Bは、試料C、Dに比べて、コストが高くついた。   On the other hand, the processing cost by shot peening was not different between the samples C and D, but the costs of the samples A and B were higher than those of the samples C and D.

以上の試験結果を、表1に簡単にまとめる。この表1の◎は満足、○はほぼ満足、△は普通、×は不満足を表す。   The above test results are summarized in Table 1. In Table 1, ◎ indicates satisfaction, ○ indicates almost satisfactory, Δ indicates normal, and X indicates unsatisfactory.

この試験結果から、歯の疲労強度向上の面では表層部の緻密化層の厚みを0.06mm以下にするのがよいこと、歯面の精度面ではショットの粒径の上限をφ0.3mmにするのがよいこと、また、加工コスト面からは、ショットの粒径の下限をφ0.1mm程度に止めるのがよいことがわかる。   From this test result, it is recommended that the thickness of the densified layer in the surface layer is 0.06 mm or less in terms of improving the fatigue strength of the teeth, and the upper limit of the shot particle size is 0.3 mm in terms of the accuracy of the tooth surfaces. From the viewpoint of processing cost, it is understood that the lower limit of the shot particle size should be limited to about φ0.1 mm.

この発明の焼結歯車の一例を示す斜視図The perspective view which shows an example of the sintered gear of this invention ショットピーニング加工の一例の概要を示す図Diagram showing an example of shot peening ショットピーニング後の歯車の歯先の断面空孔写真Cross-sectional hole photo of gear teeth after shot peening 過負荷曲げ疲労試験に使用した試験機を示す図Diagram showing the testing machine used for the overload bending fatigue test

符号の説明Explanation of symbols

1 焼結歯車
2 歯面
3 処理室
4 モータ
5 ワークテーブル
6 支持軸
7 ノズル
8 ショット
9 緻密化層
10 サーボパルサー
1 Sintered gear 2 Tooth surface 3 Processing chamber 4 Motor 5 Worktable 6 Support shaft 7 Nozzle 8 Shot 9 Densified layer 10 Servo pulser

Claims (3)

浸炭焼き入れされた歯面にショットピーニング加工された地肌を持ち、歯面の表面から深さ0.06mm以下の部分の組織が空孔率3%以下に緻密化されている焼結歯車。   A sintered gear having a ground surface that has been shot peened on a carburized and hardened tooth surface, and the structure of a portion having a depth of 0.06 mm or less from the surface of the tooth surface is densified to a porosity of 3% or less. 微小X線応力測定装置による歯底部の残留圧縮応力の測定値が−500MPa以上ある請求項1に記載の焼結歯車。   The sintered gear according to claim 1, wherein a measured value of residual compressive stress in the tooth bottom portion by a minute X-ray stress measuring device is -500 MPa or more. 浸炭焼き入れ後に粒径がφ0.3mm以下のショットを用いて歯面をピーニング加工し、歯の表面から深さ0.06mm以下の部分の組織を空孔率3%以下に緻密化する請求項1に記載の焼結歯車の製造方法。   Claims wherein the tooth surface is peened using a shot having a particle size of φ0.3 mm or less after carburizing and quenching, and the structure of a portion having a depth of 0.06 mm or less from the tooth surface is densified to a porosity of 3% or less. 2. A method for producing a sintered gear according to 1.
JP2004085242A 2004-03-23 2004-03-23 Sintered gear and manufacturing method of the gear Pending JP2005271102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004085242A JP2005271102A (en) 2004-03-23 2004-03-23 Sintered gear and manufacturing method of the gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004085242A JP2005271102A (en) 2004-03-23 2004-03-23 Sintered gear and manufacturing method of the gear

Publications (1)

Publication Number Publication Date
JP2005271102A true JP2005271102A (en) 2005-10-06

Family

ID=35171289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004085242A Pending JP2005271102A (en) 2004-03-23 2004-03-23 Sintered gear and manufacturing method of the gear

Country Status (1)

Country Link
JP (1) JP2005271102A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069938A (en) * 2006-09-15 2008-03-27 Hino Motors Ltd Gear and gearing assembly
JP2009006402A (en) * 2007-05-30 2009-01-15 Sintokogio Ltd Shot-peening device
JP2012026023A (en) * 2010-07-28 2012-02-09 Hitachi Powdered Metals Co Ltd Iron-based sintered material
CN103912655A (en) * 2014-04-04 2014-07-09 含山县恒翔机械制造有限公司 High-temperature-resistant and wear-resistant gear
WO2014136307A1 (en) * 2013-03-08 2014-09-12 新日鐵住金株式会社 Semi-finished material for induction hardened component and method for producing same
JP2015059579A (en) * 2013-09-17 2015-03-30 Ntn株式会社 Gear and motor actuator equipped therewith

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069938A (en) * 2006-09-15 2008-03-27 Hino Motors Ltd Gear and gearing assembly
JP2009006402A (en) * 2007-05-30 2009-01-15 Sintokogio Ltd Shot-peening device
JP2012026023A (en) * 2010-07-28 2012-02-09 Hitachi Powdered Metals Co Ltd Iron-based sintered material
WO2014136307A1 (en) * 2013-03-08 2014-09-12 新日鐵住金株式会社 Semi-finished material for induction hardened component and method for producing same
JP5994924B2 (en) * 2013-03-08 2016-09-21 新日鐵住金株式会社 Shaped material of induction-hardened parts and method for manufacturing the same
US10072314B2 (en) 2013-03-08 2018-09-11 Nippon Steel & Sumitomo Metal Corporation Roughly shaped material for induction hardened components and method for producing same
JP2015059579A (en) * 2013-09-17 2015-03-30 Ntn株式会社 Gear and motor actuator equipped therewith
CN103912655A (en) * 2014-04-04 2014-07-09 含山县恒翔机械制造有限公司 High-temperature-resistant and wear-resistant gear

Similar Documents

Publication Publication Date Title
WO2013136983A1 (en) Mechanical structural component, sintered gear, and methods for producing same
JP2009041109A (en) Powder metallurgical body with compacted surface
WO2003095855A1 (en) Method of producing bearing raceway member
JP2006523775A (en) Method and apparatus for toughening powder metal gears by ausforming
JP2005213649A (en) Method of producing parts from powdered metal
KR20110099105A (en) Method for manufacturing blasting material for shot-peening
JPH1029160A (en) Highly hard metal product shot peening method and highly hard metal product
Yaman et al. Enhancing surface integrity of additively manufactured Inconel 718 by roller burnishing process
JP2008207279A (en) Surface refining method of metal mold and metal mold
CN111002228B (en) Surface treatment method for gear for wave reduction gear mechanism
JP2005271102A (en) Sintered gear and manufacturing method of the gear
Bengtsson et al. Surface densified P/M transmission gear
JP5443358B2 (en) Powder metal gear with variable case depth and manufacturing method thereof
JP5969273B2 (en) Manufacturing method of sintered gear
JPWO2007023936A1 (en) Shot peening method
Güneşsu et al. Effect of Drag Finish Post-processing on Surface Integrity and Wear Behavior of Ti-6Al-4V Fabricated by Laser Powder Bed Fusion Additive Manufacturing
JP2017036488A (en) Hard metal tool and manufacturing method therefor
Sanchez et al. Effect of hot burnishing aided by infrared radiation on the modification of surface and subsurface of AISI 1045 steel
CN112639307B (en) Crankshaft and method for manufacturing same
JP2010269436A (en) Manufacturing method for ceramic ball and rolling element consisting of the ball
Guterres et al. The Effect of Temperature in Induction Surface Hardening on the Distortion of Gear
Flodin Powder metal through the process steps
JPH10100069A (en) Shot peening method and treated article
JP2000280120A (en) Manufacture of gear
JP6604105B2 (en) Carbide tool and manufacturing method thereof