JP2005270046A - Fermentation apparatus for hydrogen production and method for producing hydrogen - Google Patents

Fermentation apparatus for hydrogen production and method for producing hydrogen Download PDF

Info

Publication number
JP2005270046A
JP2005270046A JP2004091018A JP2004091018A JP2005270046A JP 2005270046 A JP2005270046 A JP 2005270046A JP 2004091018 A JP2004091018 A JP 2004091018A JP 2004091018 A JP2004091018 A JP 2004091018A JP 2005270046 A JP2005270046 A JP 2005270046A
Authority
JP
Japan
Prior art keywords
hydrogen
fermentation
clostridium
bacteria
hydrogen production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004091018A
Other languages
Japanese (ja)
Inventor
Makiko Sakka
真紀子 粟冠
Kazuo Sakka
和郎 粟冠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mie TLO Co Ltd
Original Assignee
Mie TLO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mie TLO Co Ltd filed Critical Mie TLO Co Ltd
Priority to JP2004091018A priority Critical patent/JP2005270046A/en
Publication of JP2005270046A publication Critical patent/JP2005270046A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/36Means for collection or storage of gas; Gas holders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/26Means for regulation, monitoring, measurement or control, e.g. flow regulation of pH
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fermentation apparatus for hydrogen production, which enables practical production of hydrogen in high efficiency at a low cost by using a bacterial strain of the genus Clostridium as a hydrogen-producing fermentation bacteria. <P>SOLUTION: An apparatus controls the physical/chemical states of a substrate containing a plurality of microbial species such as heating, drying, moisture control, oxygen concentration and pH and a method for producing hydrogen. Concretely, fermentation reaction is carried out by using the apparatus to cause the selection of the microbial strains by the microbial flora exchanging reaction treatment to remarkably decrease the cell number of unnecessary species which is in an active state at the initial stage and activate a certain kind of hydrogen-producing bacteria of the genus Clostridium necessary for the production of hydrogen. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、糖類等のバイオマス基質を微生物により発酵させて、効率的且つ安価に水素ガスを産生する水素産生用発酵装置および水素産生方法に関わる。   The present invention relates to a hydrogen production fermentation apparatus and a hydrogen production method for producing a hydrogen gas efficiently and inexpensively by fermenting a biomass substrate such as a saccharide with a microorganism.

微生物を利用する発酵反応は、解糖、乳酸発酵または酪酸発酵等として知られており、炭酸ガス、水素等のガスを産生する。更に、産生された炭酸ガス、水素ガスは、乳酸菌、メタン細菌等の存在により、酢酸、乳酸、酪酸、アルコール等を合成する。これらの反応を利用して生ゴミを処理し、生ゴミを減容又は水と炭酸ガスに消滅させる、又は発酵産生物を肥料、飼料とする、又はメタンガス等を産生させてバイオマスエネルギーとする等の研究および工業化が既に実施されている(特許文献1参照)。   Fermentation reactions using microorganisms are known as glycolysis, lactic acid fermentation, butyric acid fermentation, and the like, and produce gases such as carbon dioxide and hydrogen. Further, the produced carbon dioxide gas and hydrogen gas synthesize acetic acid, lactic acid, butyric acid, alcohol and the like due to the presence of lactic acid bacteria, methane bacteria and the like. Treating garbage using these reactions, reducing the volume of garbage, or extinguishing it into water and carbon dioxide gas, or using fermented products as fertilizer, feed, or producing methane gas etc. as biomass energy Has already been studied and industrialized (see Patent Document 1).

特開2004−25035号公報Japanese Patent Laid-Open No. 2004-25035

一方、燃料電池、ニッケルー水素電池等の電池、化学品合成用または燃料等は、水素(水素ガスを含む)の状態で供給されることが望ましい場合がある。しかし、発酵反応により水素ガスを安価で効率的に取り出す技術については、様々な検討が行われているにも関わらず、未だ工業的に満足できるものはなく、改善の余地があった。   On the other hand, it may be desirable that a battery such as a fuel cell or a nickel-hydrogen battery, for chemical synthesis, or for fuel is supplied in the state of hydrogen (including hydrogen gas). However, the technology for efficiently and efficiently extracting hydrogen gas by fermentation reaction has not yet been industrially satisfactory despite various studies, and there is room for improvement.

水素ガスを産生する微生物としては、らん藻や緑藻などの藻類と嫌気性細菌が知られており、これらの細菌を含めて微生物中に存在するヒドロゲナーゼ(水素産生を触媒する酵素)が、水素産生に関与していることは公知である。さらに、一般的な嫌気性細菌であるクロストリディウム(Clostridium)属が、グルコース、キチン等の糖類を次の反応式により分解して、水素ガスを発生することも周知である(非特許文献1参照)。   Algae such as cyanobacterium and green algae and anaerobic bacteria are known as microorganisms that produce hydrogen gas, and hydrogenases (enzymes that catalyze hydrogen production) present in microorganisms including these bacteria produce hydrogen. It is known to be involved in Furthermore, it is also well known that the genus Clostridium, which is a general anaerobic bacterium, generates hydrogen gas by decomposing sugars such as glucose and chitin by the following reaction formula (Non-Patent Document). 1).

Figure 2005270046
Figure 2005270046

Gerhard Gottschalk, 「Bacterial Metabolism」 second edition, Springer-Verlag,1986, pp.230-231Gerhard Gottschalk, `` Bacterial Metabolism '' second edition, Springer-Verlag, 1986, pp.230-231 特開2003−102482(P2003−102482A)号公報Japanese Patent Laid-Open No. 2003-102482 (P2003-102482A)

上記の反応式によれば、理論的には1モルのグルコースから4モルの水素ガスが得られる筈であるが、実際には1〜2モルの水素ガス発生に止まっている。そこで、より効率的な微生物学的水素ガス生産方法が、本発明者らの一人により提案された(特許文献2参照)。又、特許文献2は、新規なヒドロゲナーゼ遺伝子を導入した組み換え体を提供することにより、高効率な水素ガス生産方法を目標とするものであるが、複雑な工程を経ることと組み換え体の大量生産が難しく、コスト高となることが問題であった。   According to the above reaction formula, theoretically, 4 moles of hydrogen gas should be obtained from 1 mole of glucose, but in reality, only 1 to 2 moles of hydrogen gas is generated. Therefore, a more efficient microbiological hydrogen gas production method has been proposed by one of the present inventors (see Patent Document 2). Patent Document 2 aims to provide a highly efficient hydrogen gas production method by providing a recombinant into which a novel hydrogenase gene has been introduced. However, it was difficult and expensive.

水素産生発酵菌としてクロストリディウム属細菌を用いて、実用的で高効率且つ安価に水素を産生する方法およびそのための水素産生発酵装置を提供することが、本発明の課題である。   It is an object of the present invention to provide a practical, highly efficient and inexpensive method of producing hydrogen using a Clostridium bacterium as a hydrogen-producing fermentative bacterium and a hydrogen-producing fermentation apparatus therefor.

本発明者らは上記の課題を解決するため、細菌の菌叢交代反応に着目した。菌叢交代反応の目的は、複数の菌種を含む基質に、物理的処理および/又は化学的処理を加えることにより、菌淘汰を生ぜしめて、これにより初期状態で活性であった不必要な菌種の菌数を激減させ、必要とする菌種を活性化することにある。ここで物理的処理とは、加熱・冷却等の温度管理および圧力管理が主なものであり、化学的処理とは、pH管理、水分管理および酸素濃度管理を主とした処理を言う。そして、これらの管理条件を適正に制御する装置を開発することによって、水素産生に必要な発酵細菌を活性化させることが可能となり、本発明に到達した。   In order to solve the above-mentioned problems, the present inventors paid attention to bacterial flora alternation reaction. The purpose of the bacterial flora alternation reaction is to create a fungus by adding a physical treatment and / or chemical treatment to a substrate containing a plurality of bacterial species, thereby unnecessary bacteria that were active in the initial state. The aim is to drastically reduce the number of bacteria in the species and activate the necessary species. Here, the physical treatment is mainly for temperature management and pressure management such as heating and cooling, and the chemical treatment is treatment mainly for pH management, moisture management and oxygen concentration management. And by developing the apparatus which controls these management conditions appropriately, it became possible to activate the fermentation bacteria required for hydrogen production, and reached the present invention.

具体的には、糖類を含む基質を微生物によって発酵させる装置おいて、基質を60℃〜120℃の範囲に温度制御する加熱部と、基質の水分比率を1〜10重量%に制御する乾燥部と、基質の水分比率を15%以上且つペーハー(pH)を6.0〜10.0且つ温度を30℃〜45℃且つ嫌気性雰囲気状態に制御する発酵部と、産生されたガスを系外に取り出す産生ガス導出部と、発酵残渣を系外に取り出す発行残渣排出部とで構成される水素産生用発酵装置にある。   Specifically, in a device for fermenting a saccharide-containing substrate with microorganisms, a heating unit that controls the temperature of the substrate in a range of 60 ° C. to 120 ° C., and a drying unit that controls the moisture ratio of the substrate to 1 to 10% by weight. And a fermentation part for controlling the moisture ratio of the substrate to 15% or more, pH (pH) 6.0 to 10.0, temperature 30 ° C. to 45 ° C. and anaerobic atmosphere, and produced gas outside the system. In a fermentation apparatus for hydrogen production, which is composed of a production gas outlet part to be taken out and an issue residue discharge part to take out fermentation residues out of the system.

ここで糖類を含む基質とは、適量の水分を含む多糖/オリゴ糖/グルコース等の細菌培養に好適な基質を言い、デンプン、セルロース、ショ糖、果汁、キチン、タンパク質、脂肪等を含む食物又は生ごみを用いても良いし、人工的に合成しても良い。生ゴミは、本発明を完成する上で必須な、内生胞子形成桿菌又は球菌であるクロストリディウム属細菌等を含む上に、安価に入手できるため資源の有効活用の点からも望ましい。   Here, the saccharide-containing substrate refers to a substrate suitable for bacterial culture such as polysaccharide / oligosaccharide / glucose containing an appropriate amount of water, and food containing starch, cellulose, sucrose, fruit juice, chitin, protein, fat, etc. Garbage may be used or artificially synthesized. Garbage is desirable from the viewpoint of effective utilization of resources because it contains the endospore-forming bacilli or Clostridium bacteria that are cocci that are essential for completing the present invention and is available at low cost.

ところで、生ゴミは言うに及ばず、糖類等の基質は、一般的にクロストリディウム属細菌以外に古細菌、グラム陽性菌またはプロテオバクテリア類等の細菌を含んでいる。しかし、本発明においては、水素産生に必要なクロストリディウム属細菌を活性化させ、その他の細菌は死滅または不活化する必要がある。 そのために、最初に基質を60℃〜120℃に加熱すると共に、基質の水分比率を10%以下とすることにより、大腸菌、カビ、酵母等の熱及び/又は乾燥に弱い細菌を死滅させる。一方、クロストリディウム属細菌は内生胞子を形成するため、耐熱性および耐乾燥性を有しており、上述の加熱乾燥工程を経ても死滅することなく生存可能である。   By the way, it goes without saying that garbage, and substrates such as saccharides generally contain bacteria such as archaea, Gram-positive bacteria or proteobacteria in addition to Clostridium bacteria. However, in the present invention, it is necessary to activate Clostridium bacteria necessary for hydrogen production and to kill or inactivate other bacteria. For this purpose, the substrate is first heated to 60 ° C. to 120 ° C., and the moisture content of the substrate is set to 10% or less, thereby killing bacteria susceptible to heat and / or drying such as Escherichia coli, mold, and yeast. On the other hand, since Clostridium bacteria form endospores, they have heat resistance and drought resistance, and can survive without being killed even after the above-mentioned heat drying step.

次の水素産生工程では、クロストリディウム属細菌が最も活発に発酵反応を行える環境を与える必要がある。すなわち、クロストリディウム属細菌は、30℃〜45℃、より好ましくは35℃〜40℃の嫌気性状態で、基質の水分比率が15%以上、望ましくは30%以上、且つ、pHが6.0〜10.0、より好ましくは、6.5〜7.5の条件で活発に発酵活動を行い、効率的に水素が産生される。ここで、加熱工程と乾燥工程を別々に行っても良いが、加熱・乾燥を1工程で行う方が効率的である。   In the next hydrogen production process, it is necessary to provide an environment in which Clostridium bacteria can perform the fermentation reaction most actively. That is, Clostridium bacteria are in an anaerobic state of 30 ° C. to 45 ° C., more preferably 35 ° C. to 40 ° C., and the moisture content of the substrate is 15% or more, desirably 30% or more, and the pH is 6 Hydrogen is efficiently produced by vigorous fermentation under the conditions of 0.0 to 10.0, more preferably 6.5 to 7.5. Here, the heating step and the drying step may be performed separately, but it is more efficient to perform the heating and drying in one step.

又、発酵により短時間で効率的に水素生産を行うためには、基質を湿潤化するとともに発酵装置内の雰囲気を嫌気性状態に制御する必要がある。更に、pHが9.5以上のアルカリ性では、バチルス属細菌が活性となる一方、クロストリディウム属細菌が不活性となる。又、pHが6.0以下ではクロストリディウム属細菌の活性が弱くなる。   In order to efficiently produce hydrogen in a short time by fermentation, it is necessary to wet the substrate and control the atmosphere in the fermentation apparatus to an anaerobic state. Furthermore, when the pH is 9.5 or higher, Bacillus bacteria are active, while Clostridium bacteria are inactive. In addition, when the pH is 6.0 or less, the activity of Clostridium bacteria is weakened.

上記の工程を経ることにより、水素を活発に産生するクロストリディウム・アセトブチリカム(Clostridium acetobutyricum), クロストリディウム・テルチウム(Clostridium tertium)、クロストリディウム・サルタゴフォルム(Clostridium sartagoforme)、クロストリディウム・ブチリカム(Clostridium butyricum)、クロストリディウム・フィメタリウム(Clostridium fimetarium)を活性化する。そして、これらの細菌のうち、2種類以上の菌株を主構成成分とすることにより、基質から効率的に水素を生産することが可能となる。なお、これらのクロストリディウム属細菌のうち、クロストリディウム・ブチリカムのある種の株に弱い病原性が認められるものの、その他の菌は病原性が無いとされている。   Through the above process, hydrogen is actively produced by Clostridium acetobutyricum, Clostridium tertium, Clostridium sartagoforme, Cross Activates Clostridium butyricum and Clostridium fimetarium. And it becomes possible to produce hydrogen efficiently from a substrate by making 2 or more types of strains into these main bacteria among these bacteria. Of these Clostridium bacteria, some strains of Clostridium butyricum are found to be weakly pathogenic, but other bacteria are considered not to be pathogenic.

本発明の水素産生用発酵装置および水素産生方法の提供により、安価で高効率な水素生産が可能となる。これにより燃料用水素ガスまたは燃料電池原料としての水素ガスの供給の他に、水素発生用バイオ分子デバイス又は微生物電池にも使用できる。又、水素生産のための原料として、農林業、水産業または家庭等からの食物性廃棄物を利用できるので、資源の有効活用が図れる。   By providing the fermentation apparatus for hydrogen production and the hydrogen production method of the present invention, inexpensive and highly efficient hydrogen production can be achieved. Thus, in addition to supplying hydrogen gas for fuel or hydrogen gas as a fuel cell material, it can be used for biomolecular devices for hydrogen generation or microbial cells. In addition, food waste from agriculture, forestry, fisheries, or households can be used as a raw material for hydrogen production, so resources can be effectively used.

本発明の実施形態について下記に説明するが、本発明の技術的範囲は下記の実施形態によって限定されるものではなく、その要旨を変更することなく様々に改変して実施することができる。また、本発明の技術的範囲は、均等の範囲にまで及ぶものである。   Although embodiments of the present invention will be described below, the technical scope of the present invention is not limited by the following embodiments, and various modifications can be made without changing the gist of the present invention. Further, the technical scope of the present invention extends to an equivalent range.

本発明における装置概念図を図1に示す。ここで、基質を60℃〜120℃に加熱する方法は、一般的に抵抗加熱、誘導過熱、マイクロ波加熱、ガス加熱、蒸気加熱等の定法を用いることができ、抵抗加熱または蒸気加熱による場合は、外熱型または内熱型の何れを用いてもよいが、必ずしもこれに限定されるものではない。次の乾燥工程では、上述の加熱乾燥の他にスクリューフィーダ又は押出し機又は圧搾機のように基質に圧力を加えて脱水する方法、又は遠心分離機を用いて脱水する方法、又は真空脱水により乾燥する方法等の何れを用いてもよい。ここで、スクリューフィーダ又は押出し機又は圧搾機を用いると、加熱工程と乾燥工程を1工程とすることができるので望ましい。   A conceptual diagram of the apparatus in the present invention is shown in FIG. Here, as a method for heating the substrate to 60 ° C. to 120 ° C., a general method such as resistance heating, induction overheating, microwave heating, gas heating, or steam heating can be generally used. Either an external heat type or an internal heat type may be used, but is not necessarily limited thereto. In the next drying step, in addition to the above-mentioned heating and drying, a method of dehydrating by applying pressure to the substrate like a screw feeder, an extruder or a press, a method of dehydrating using a centrifuge, or drying by vacuum dehydration Any method may be used. Here, it is desirable to use a screw feeder, an extruder, or a squeezer because the heating step and the drying step can be performed in one step.

次工程の発酵装置には、原料である基質投入管、pH調整のためのpH調整原料導入管、水分補給のための水分導入管、嫌気状態保持のための窒素ガスまたは炭酸ガス等の不活性ガス導入管、発酵により得られる水素及び炭酸ガス等を系外に取り出す産生ガス導出管および発酵残渣を系外に取り出す発酵残渣排出管の他に、温度測定のための熱電対、pH測定のためのpHセンサー計、酸素濃度測定のための酸素濃度計が設備されている。そして、発酵装置は、発酵装置に付随する加熱または冷却装置により30℃〜45℃に温度制御される。ここで、加熱は上述と同様の方法を用いることができ、冷却は、一般的に冷媒または冷風を用いるが、必ずしもこれに限定されるものではない。なお、発酵反応中の基質を攪拌するための攪拌装置を備えていても良い。   In the fermentation apparatus of the next step, the raw material substrate input pipe, pH adjustment raw material introduction pipe for pH adjustment, moisture introduction pipe for water replenishment, nitrogen gas or carbon dioxide gas for maintaining anaerobic state, etc. In addition to a gas inlet tube, a production gas outlet tube for extracting hydrogen and carbon dioxide obtained from fermentation outside the system, and a fermentation residue discharge tube for extracting fermentation residue outside the system, a thermocouple for temperature measurement, for pH measurement PH sensor meter and oxygen concentration meter for measuring oxygen concentration are installed. The temperature of the fermentation apparatus is controlled at 30 ° C. to 45 ° C. by a heating or cooling device associated with the fermentation apparatus. Here, the same method as described above can be used for heating, and cooling is generally performed using a refrigerant or cold air, but is not necessarily limited thereto. In addition, you may provide the stirring apparatus for stirring the substrate in fermentation reaction.

なお、pH調整は、消石灰等の水酸化物塩が一般に用いられるが、必ずしもこれに限定されるものではない。本発明においては、発酵開始時に消石灰を添加してPHを7〜10とするが、細菌による発酵により有機酸が生成するため徐々にpHが低下し、pH調整を行わない場合にはpH6.0以下となる。このpHでは、クロストリディウム属細菌の活性が弱くなり、水素の産生が十分でない。従って、pH計によりpHを測定し、至適pHである6.5〜7.5に制御することが望ましい。   In addition, although hydroxide salt, such as slaked lime, is generally used for pH adjustment, it is not necessarily limited to this. In the present invention, slaked lime is added at the start of fermentation to adjust the pH to 7 to 10. However, since an organic acid is generated by fermentation by bacteria, the pH is gradually lowered, and pH 6.0 is adjusted when pH adjustment is not performed. It becomes as follows. At this pH, the activity of Clostridium bacteria is weak and hydrogen production is not sufficient. Therefore, it is desirable to measure the pH with a pH meter and control it to the optimum pH of 6.5 to 7.5.

発酵により産生されるガスには、水素ガスの他に炭酸ガス、窒素ガス等を含むため、水素ガスのみを取り出したい場合には、物理的吸着法、化学的吸収法または分離膜法等の定法により、分離することができる。又、発酵残渣は肥料等として有効活用ができる。ところで、基質として生ゴミ等を用いる場合は、食中毒菌等の病原菌を含む場合があるので、前もって殺菌により除外することが望ましい。   Since the gas produced by fermentation contains carbon dioxide gas, nitrogen gas, etc. in addition to hydrogen gas, when it is desired to extract only hydrogen gas, a standard method such as a physical adsorption method, a chemical absorption method or a separation membrane method is used. Can be separated. The fermentation residue can be effectively used as a fertilizer. By the way, when using garbage etc. as a substrate, since pathogens such as food poisoning bacteria may be included, it is desirable to exclude them by sterilization in advance.

<細菌含有糖質性培地および菌叢交代反応>
クロストリディウム属細菌等を含んだ基質として生ゴミ(水分80重量%、pH5.5)500gを用い、水分比率が7重量%となるまで外熱法による抵抗加熱により80℃で加熱・乾燥した。次に、該基質を炭酸ガスで置換した発酵槽に移し、水分添加により水分比率を58重量%にすると共に、消石灰の添加により、pHを7.0、8.3及び12.0の3種類用意し、発酵槽中で嫌気的に37℃に放置した。
<Bacteria-containing saccharide-based medium and bacterial flora alternation reaction>
Using 500 g of garbage (water 80% by weight, pH 5.5) as a substrate containing Clostridium bacteria, etc., heated and dried at 80 ° C. by resistance heating by the external heating method until the water ratio reaches 7% by weight. did. Next, the substrate is transferred to a fermenter in which carbon dioxide is substituted, and the water ratio is adjusted to 58 wt% by adding water, and the pH is adjusted to 7.0, 8.3, and 12.0 by adding slaked lime. Prepared and left anaerobically at 37 ° C. in the fermenter.

<水素産生能の評価>
上記の3種類の基質各100g(水分比率58重量%)を、密閉容器中で嫌気的に37℃×60時間放置し、発生ガスをシリンダーに採取し、ガスクロマトグラフィーにてガス成分の分析を行った。その結果、発生全ガス量は1600ccであり、うち1015ccが水素ガスで、残りが炭酸ガスとなり、高効率な水素産生が確認された。
<Evaluation of hydrogen production ability>
100 g of each of the above three types of substrates (moisture ratio: 58% by weight) is left anaerobically in a sealed container at 37 ° C. for 60 hours, and the generated gas is collected in a cylinder and analyzed for gas components by gas chromatography. went. As a result, the total amount of generated gas was 1600 cc, of which 1015 cc was hydrogen gas and the remainder was carbon dioxide gas, confirming highly efficient hydrogen production.

<水素産生菌の同定>
上記3種類の基質について、水素産生前、水素産生中および水素産生後の試料を図2に示す方法で分析し、水素産生菌を同定した。図3に変性濃度勾配ゲル電気泳動による菌叢解析(DGGE法)結果を、又図4に同定された菌種を示すが、pH7.0及び8.3の場合に、水素産生前と比較し、水素産生中および水素産生後は、クロストリディウム・アセトブチリカム(Clostridium acetobutyricum), クロストリディウム・テルチウム(Clostridium tertium)、クロストリディウム・サルタゴフォルム(Clostridium sartagoforme)、クロストリディウム・ブチリカム(Clostridium butyricum)、クロストリディウム・フィメタリウム(Clostridium fimetarium)が顕著に検出され、菌叢交代反応処理が明瞭に認められた。一方、pH12.0では、発酵初期にバチルス属細菌が検出され、発酵が進んでpHが10.0以下になるとバチルス属細菌に代わり、クロストリディウム属細菌が検出され菌叢交代処理現象を示した。
<Identification of hydrogen producing bacteria>
With respect to the above three types of substrates, samples before, during and after hydrogen production were analyzed by the method shown in FIG. 2 to identify hydrogen-producing bacteria. Fig. 3 shows the results of microbiota analysis (DGGE method) by denaturing gradient gel electrophoresis, and Fig. 4 shows the microbial species identified. In the case of pH 7.0 and 8.3, the results are compared with those before hydrogen production. During and after hydrogen production, Clostridium acetobutyricum, Clostridium tertium, Clostridium sartagoforme, Clostridium Butyricum (Clostridium butyricum) and Clostridium fimetarium (Clostridium fimetarium) were remarkably detected, and the microbiota alternation treatment was clearly recognized. On the other hand, at pH 12.0, Bacillus bacteria were detected in the early stage of fermentation, and when fermentation progressed and the pH reached 10.0 or less, Clostridium bacteria were detected instead of Bacillus bacteria, and the fungus replacement treatment phenomenon was observed. Indicated.

本発明における水素産生装置の基本的思想を示す概念図である。It is a conceptual diagram which shows the basic idea of the hydrogen production apparatus in this invention. 水素産生細菌を同定するための分析手順を示すフロー図である。It is a flowchart which shows the analysis procedure for identifying hydrogen producing bacteria. 変性濃度勾配ゲル電気泳動による菌叢解析(DGGE法)結果の写真を示す図である。It is a figure which shows the photograph of the microflora analysis (DGGE method) result by denaturation concentration gradient gel electrophoresis. DGGE法により同定された菌種を示す図である。It is a figure which shows the microbial species identified by the DGGE method.

Claims (3)

糖類を含む基質を微生物によって発酵させる装置おいて、基質を60℃〜120℃に保持する加熱部と、基質の水分比率を1〜10重量%に制御する乾燥部と、基質の水分比率を15%以上且つペーハー(pH)を6.0〜10.0且つ温度を30℃〜45℃且つ嫌気性雰囲気状態に制御する発酵部と、産生されたガスを系外に取り出す産生ガス導出部と、発酵残渣を系外に取り出す発酵残渣排出部とで構成される水素産生用発酵装置。   In an apparatus for fermenting a substrate containing saccharides by a microorganism, a heating unit for holding the substrate at 60 ° C. to 120 ° C., a drying unit for controlling the moisture ratio of the substrate to 1 to 10% by weight, and a moisture ratio of the substrate of 15 % Or more, pH (6.0) to 10.0, a temperature of 30 ° C. to 45 ° C. and an anaerobic atmosphere state, a production gas extraction unit for taking out the produced gas out of the system, Fermentation apparatus for hydrogen production composed of a fermentation residue discharge unit that extracts fermentation residue out of the system. 前記において、加熱部と乾燥部が一体となっていることを特徴とする請求項1に記載の水素産生用発酵装置。   In the said, the heating part and the drying part are united, The fermentation apparatus for hydrogen production of Claim 1 characterized by the above-mentioned. 請求項1又は請求項2に記載の水素産生用発酵装置において、発酵部における水素産生発酵が、クロストリディウム・アセトブチリカム(Clostridium acetobutyricum), クロストリディウム・テルチウム(Clostridium tertium)、クロストリディウム・サルタゴフォルム(Clostridium sartagoforme)、クロストリディウム・ブチリカム(Clostridium butyricum)、クロストリディウム・フィメタリウム(Clostridium fimetarium)、のうち、2種類以上の菌株を主構成成分とする細菌群によりなされることを特徴とする水素産生方法。


The hydrogen production fermentation apparatus according to claim 1 or 2, wherein hydrogen production fermentation in the fermentation section is performed by Clostridium acetobutyricum, Clostridium tertium, or Clostridium. Depending on the bacterial group consisting of two or more strains of the main constituents: Clostridium sartagoforme, Clostridium butyricum, Clostridium fimetarium A hydrogen production method characterized by being made.


JP2004091018A 2004-03-26 2004-03-26 Fermentation apparatus for hydrogen production and method for producing hydrogen Pending JP2005270046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004091018A JP2005270046A (en) 2004-03-26 2004-03-26 Fermentation apparatus for hydrogen production and method for producing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004091018A JP2005270046A (en) 2004-03-26 2004-03-26 Fermentation apparatus for hydrogen production and method for producing hydrogen

Publications (1)

Publication Number Publication Date
JP2005270046A true JP2005270046A (en) 2005-10-06

Family

ID=35170344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004091018A Pending JP2005270046A (en) 2004-03-26 2004-03-26 Fermentation apparatus for hydrogen production and method for producing hydrogen

Country Status (1)

Country Link
JP (1) JP2005270046A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042691A (en) * 2004-08-05 2006-02-16 Takuma Co Ltd Method for continuously producing hydrogen
JP2006280362A (en) * 2004-10-15 2006-10-19 Takuma Co Ltd System for treating biomass
JP2007159457A (en) * 2005-12-13 2007-06-28 Hrein Energy:Kk Hydrogen generating system
DE102007063090A1 (en) * 2007-12-28 2009-07-02 Right-Way-Technologies Gmbh & Co. Kg Method and device for fermenting fluid plant raw materials as substrate for the production of hydrogen-containing biogas in special hydrogen fermenter, comprise controlling the fermenter over measuring variables of pH value and temperature
WO2009086810A3 (en) * 2008-01-10 2009-10-15 Schmack Biogas Ag Clostridium sartagoformum for the generation of biogas
WO2010102618A3 (en) * 2009-03-07 2011-02-24 Schmack Biogas Gmbh Microorganisms for liquefying biomasses
JP2017513468A (en) * 2014-04-16 2017-06-01 エリアス ハカレート,エイノ Production of hydrogen and other gaseous or liquid products in accelerated bioprocesses
JP2019047777A (en) * 2017-09-07 2019-03-28 エスペック株式会社 Hydrogen producing method and producing apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042691A (en) * 2004-08-05 2006-02-16 Takuma Co Ltd Method for continuously producing hydrogen
JP2006280362A (en) * 2004-10-15 2006-10-19 Takuma Co Ltd System for treating biomass
JP2007159457A (en) * 2005-12-13 2007-06-28 Hrein Energy:Kk Hydrogen generating system
DE102007063090A1 (en) * 2007-12-28 2009-07-02 Right-Way-Technologies Gmbh & Co. Kg Method and device for fermenting fluid plant raw materials as substrate for the production of hydrogen-containing biogas in special hydrogen fermenter, comprise controlling the fermenter over measuring variables of pH value and temperature
WO2009086810A3 (en) * 2008-01-10 2009-10-15 Schmack Biogas Ag Clostridium sartagoformum for the generation of biogas
JP2011509086A (en) * 2008-01-10 2011-03-24 シュマック ビオガス ゲゼルシャフト ミット ベシュレンクテル ハフツンク Clostridium sartagoformum for biogas production
WO2010102618A3 (en) * 2009-03-07 2011-02-24 Schmack Biogas Gmbh Microorganisms for liquefying biomasses
JP2017513468A (en) * 2014-04-16 2017-06-01 エリアス ハカレート,エイノ Production of hydrogen and other gaseous or liquid products in accelerated bioprocesses
JP7198572B2 (en) 2014-04-16 2023-01-04 エリアス ハカレート,エイノ Production of hydrogen and other gaseous or liquid products in accelerated bioprocesses
JP2019047777A (en) * 2017-09-07 2019-03-28 エスペック株式会社 Hydrogen producing method and producing apparatus

Similar Documents

Publication Publication Date Title
Nkemka et al. Bioaugmentation with an anaerobic fungus in a two-stage process for biohydrogen and biogas production using corn silage and cattail
Krishnan et al. Process enhancement of hydrogen and methane production from palm oil mill effluent using two-stage thermophilic and mesophilic fermentation
Kim et al. Hydrogen fermentation of food waste without inoculum addition
Cibis et al. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants
EP1828065B1 (en) Method for increased production of biogas in thermophilic, anaerobic fermenters
Kargi et al. Hydrogen gas production from cheese whey powder (CWP) solution by thermophilic dark fermentation
Nielsen et al. Bioaugmentation of a two‐stage thermophilic (68° C/55° C) anaerobic digestion concept for improvement of the methane yield from cattle manure
Hernandez-Mendoza et al. Comparison of hydrogen-producing bacterial communities adapted in continuous and discontinuous reactors
Pakarinen et al. Batch dark fermentative hydrogen production from grass silage: the effect of inoculum, pH, temperature and VS ratio
Kumar et al. Mesophilic continuous fermentative hydrogen production from acid pretreated de-oiled jatropha waste hydrolysate using immobilized microorganisms
Ventorino et al. Pre-treatment and inoculum affect the microbial community structure and enhance the biogas reactor performance in a pilot-scale biodigestion of municipal solid waste
Zhou et al. Effect of steam explosion pretreatment on the anaerobic digestion of rice straw
Garcia-Depraect et al. Microbial ecology of a lactate-driven dark fermentation process producing hydrogen under carbohydrate-limiting conditions
Li et al. Dynamic microwave-assisted alkali pretreatment of cornstalk to enhance hydrogen production via co-culture fermentation of Clostridium thermocellum and Clostridium thermosaccharolyticum
Gorgec et al. Biohydrogen production from hydrolyzed waste wheat by dark fermentation in a continuously operated packed bed reactor: the effect of hydraulic retention time
Kamal et al. Pre-treatment effect of palm oil mill effluent (POME) during hydrogen production by a local isolate Clostridium butyricum
Hua et al. Pretreatment of non-sterile, rotted silage maize straw by the microbial community MC1 increases biogas production
Xiao et al. Evaluation of biohydrogen production from glucose and protein at neutral initial pH
Argun et al. Effects of sludge pre-treatment method on bio-hydrogen production by dark fermentation of waste ground wheat
Faloye et al. Optimization of biohydrogen inoculum development via a hybrid pH and microwave treatment technique–Semi pilot scale production assessment
Lin et al. Effects of temperature and initial pH on biohydrogen production from food-processing wastewater using anaerobic mixed cultures
Abubackar et al. Effects of size and autoclavation of fruit and vegetable wastes on biohydrogen production by dark dry anaerobic fermentation under mesophilic condition
WO2013000928A1 (en) Process for the digestion of organic material
Fonseca et al. Fermentative production of H2 from different concentrations of galactose by the new isolate Clostridium beijerinckii Br21
Rabelo et al. Isolation of Paraclostridium CR4 from sugarcane bagasse and its evaluation in the bioconversion of lignocellulosic feedstock into hydrogen by monitoring cellulase gene expression