JP2005269857A - Non-contact power feeder apparatus - Google Patents

Non-contact power feeder apparatus Download PDF

Info

Publication number
JP2005269857A
JP2005269857A JP2004082375A JP2004082375A JP2005269857A JP 2005269857 A JP2005269857 A JP 2005269857A JP 2004082375 A JP2004082375 A JP 2004082375A JP 2004082375 A JP2004082375 A JP 2004082375A JP 2005269857 A JP2005269857 A JP 2005269857A
Authority
JP
Japan
Prior art keywords
power
power supply
core
receiving coil
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004082375A
Other languages
Japanese (ja)
Inventor
Harumasa Yamamoto
治正 山本
Original Assignee
Hitachi Kiden Kogyo Ltd
日立機電工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kiden Kogyo Ltd, 日立機電工業株式会社 filed Critical Hitachi Kiden Kogyo Ltd
Priority to JP2004082375A priority Critical patent/JP2005269857A/en
Publication of JP2005269857A publication Critical patent/JP2005269857A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-contact feeder apparatus capable of improving the efficiency of feeding to a power receiving coil section by reducing the magnetic resistance of a magnetic circuit with a closed magnetic path formed by a core. <P>SOLUTION: This feeder apparatus supplies electric power to coils 3, 4 wound around the cores from feeders 5, 6 with no contact by means of electromagnetic induction. The two cylindrical cores 1, 2 are provided side by side and the coils 3, 4 are wound around the respective cores 1, 2 to form the power receiving coil section. Moreover, the feeders 5, 6 are provided so as to be passed through the respective cores 1, 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、非接触給電装置に関し、特に、コアが形成する閉磁路により磁気回路の磁気抵抗を削減し、受電コイル部への給電効率を向上させる非接触給電装置に関するものである。   The present invention relates to a non-contact power supply device, and more particularly to a non-contact power supply device that reduces the magnetic resistance of a magnetic circuit by a closed magnetic circuit formed by a core and improves the power supply efficiency to a power receiving coil unit.

例えば、非接触で負荷に電力を常時給電する場合、下記の特許文献1に示すように、給電線にE型コアがまたがるように設置し、給電線に沿って搬送装置が移動する。
このような給電装置は、長距離の搬送には適するが、給電線を支持するために、コアの一部に開口を設けてE型の開磁路となすことから、磁気回路の磁気抵抗が空隙の間隔で増大し、給電効率が低下する欠点を有している。
For example, when power is constantly supplied to the load in a non-contact manner, as shown in Patent Document 1 below, the power supply line is installed so that the E-type core is straddled, and the transfer device moves along the power supply line.
Such a power supply device is suitable for long-distance conveyance, but in order to support the power supply line, an opening is formed in a part of the core to form an E-type open magnetic circuit, so that the magnetic resistance of the magnetic circuit is reduced. There is a disadvantage that power supply efficiency decreases due to an increase in gap spacing.

また、2軸以上に移動する複数の移動体に給電線の励磁電流をカスケード接続する場合、下記の特許文献2では、前段の受電電力を高周波電源に供給し、この高周波電源で後段に接続する給電線に励磁電流を流すか、あるいは、前段の受電で生じた高周波電圧を変圧器で変圧し、後段に接続する給電線の励磁を行うようにしている。
しかしながら、変圧器で変圧する場合は、受電電圧を安定化できない欠点があり、また、高周波電源を別途使用する場合には、この電源のコストが発生する。
Also, when cascade-connecting exciting currents of power supply lines to a plurality of moving bodies that move more than two axes, in Patent Document 2 below, the received power at the previous stage is supplied to a high-frequency power source and connected to the subsequent stage with this high-frequency power source. An excitation current is passed through the power supply line, or a high-frequency voltage generated by power reception at the previous stage is transformed with a transformer, and the power supply line connected to the subsequent stage is excited.
However, when the voltage is transformed by a transformer, there is a drawback that the received voltage cannot be stabilized. In addition, when a high frequency power supply is used separately, the cost of the power supply is generated.

特開平9−93704号公報JP-A-9-93704 特開平7−2311号公報Japanese Patent Laid-Open No. 7-2311

本発明は、上記従来の非接触給電装置が有する問題点に鑑み、コアが形成する閉磁路により磁気回路の磁気抵抗を削減し、受電コイル部への給電効率を向上させる非接触給電装置を提供することを目的とする。   The present invention provides a non-contact power supply apparatus that reduces the magnetic resistance of a magnetic circuit by a closed magnetic circuit formed by a core and improves the power supply efficiency to a power receiving coil unit in view of the problems of the conventional non-contact power supply apparatus. The purpose is to do.

上記目的を達成するため、本発明の非接触給電装置は、コアに巻回したコイルに、給電線から電磁誘導により非接触で電力を供給する非接触給電装置において、筒状のコアを2個連設し、各コアにそれぞれコイルを巻回して受電コイル部を形成するとともに、各コアを貫通するように給電線を設置したことを特徴とする。   In order to achieve the above object, a contactless power supply device according to the present invention includes two cylindrical cores in a contactless power supply device that supplies power to a coil wound around a core in a contactless manner by electromagnetic induction from a power supply line. The power receiving coil portion is formed by winding the coils around each core to form a power receiving coil portion, and a feed line is installed so as to penetrate each core.

この場合において、受電コイル部の移動範囲を非磁性体の筐体により被覆することができる。   In this case, the moving range of the power receiving coil portion can be covered with a non-magnetic housing.

また、2軸以上に移動する複数の移動体に給電線の励磁電流をカスケード接続する非接触給電装置において、前段の受電コイル部と後段の給電線とを直列に接続し、後段の給電線に共振回路電流を流すようにすることができる。   In a non-contact power supply device that cascades the excitation current of the power supply line to a plurality of moving bodies that move more than two axes, the power receiving coil section at the front stage and the power supply line at the rear stage are connected in series, and the power supply line at the rear stage A resonance circuit current can be allowed to flow.

本発明の非接触給電装置によれば、コアに巻回したコイルに、給電線から電磁誘導により非接触で電力を供給する非接触給電装置において、筒状のコアを2個連設し、各コアにそれぞれコイルを巻回して受電コイル部を形成するとともに、各コアを貫通するように給電線を設置することから、コアが形成する閉磁路により磁気回路の磁気抵抗を削減し、受電コイル部への給電効率を向上させることができる。   According to the non-contact power supply device of the present invention, in the non-contact power supply device that supplies electric power to the coil wound around the core in a non-contact manner by electromagnetic induction from the power supply line, two cylindrical cores are connected in series. Each coil is wound around a core to form a power receiving coil part, and since a power supply line is installed so as to penetrate each core, the magnetic resistance of the magnetic circuit is reduced by the closed magnetic circuit formed by the core, and the power receiving coil part The power feeding efficiency can be improved.

この場合、受電コイル部の移動範囲を非磁性体の筐体により被覆することにより、受電コイル部の磁気シールドをするとともに、受電コイル部と人との接触を防止することができる。   In this case, by covering the moving range of the power receiving coil portion with a non-magnetic housing, it is possible to shield the power receiving coil portion and prevent contact between the power receiving coil portion and a person.

また、2軸以上に移動する複数の移動体に給電線の励磁電流をカスケード接続する非接触給電装置において、前段の受電コイル部と後段の給電線とを直列に接続し、後段の給電線に共振回路電流を流すことにより、後段の給電線用電源装置を省略するとともに、前段の負荷の大小に関係なくほぼ一定の電流を後段の給電線に流し、安定した励磁を行うことができる。   In a non-contact power supply device that cascades the excitation current of the power supply line to a plurality of moving bodies that move more than two axes, the power receiving coil section at the front stage and the power supply line at the rear stage are connected in series, and the power supply line at the rear stage By supplying the resonance circuit current, the power supply device for the subsequent power supply line can be omitted, and a substantially constant current can be supplied to the power supply line in the subsequent stage regardless of the size of the load in the previous stage, so that stable excitation can be performed.

以下、本発明の非接触給電装置の実施の形態を、図面に基づいて説明する。   Hereinafter, embodiments of the non-contact power feeding device of the present invention will be described with reference to the drawings.

図1に、本発明の非接触給電装置の一実施例を示す。
この非接触給電装置は、コア1、2に巻回したコイル3、4に、給電線5、6から電磁誘導により非接触で電力を供給するものであり、筒状のコア1、2を2個連設し、各コア1、2にそれぞれコイル3、4を巻回して受電コイル部を形成するとともに、各コア1、2を貫通するように給電線5、6を設置している。
FIG. 1 shows an embodiment of the non-contact power feeding device of the present invention.
This non-contact power supply device supplies power to the coils 3 and 4 wound around the cores 1 and 2 from the power supply lines 5 and 6 by electromagnetic induction in a non-contact manner. The coils 3 and 4 are wound around the cores 1 and 2 to form a power receiving coil portion, and the feeder lines 5 and 6 are installed so as to penetrate the cores 1 and 2.

具体的には、フェライトを焼成したコア1、2の夫々にコイル3、4を巻いた受電コイル部を往路給電線5、復路給電線6を貫通させる。給電線は高周波電源7により高周波電流を給電線に流し励磁する。高周波電源7の周波数は10kHz近傍の周波数を使用するが、それ以上の周波数でもよい。
コア1とコア2では電流の貫通する方向が逆方向になるため、コイル3コイル4の出力は極性を反転して直列あるいは並列に接続する。
コア1、2は全く同一形状のコアを2個連結して使用することもできるし、あるいは2個分を一体で成型し焼成しても効果は変わらない。
フェライトコアは高周波特性に優れ、また電気抵抗が大きいため渦電流による損失が少ない。コイルの貫通する方向に珪素鋼板を積層したコアでも動作可能であり、珪素鋼板はフェライト材料に対して飽和磁束密度が高い利点を有するが、10kHz以上の高周波特性では損失が増加すること、コア長さ方向の中心部では給電線に対して垂直な面だけに磁界ができるが、中心から外れるにしたがって、給電線方向の磁界が発生し、この磁界による渦電流損失が増加するため、受電コイル部の長さがコイルの高さと同等あるいはその近傍のアスペクト比をもつ受電コイル部形状においては珪素鋼板は適さない。
コアの高さに対し長さの短い(概ね1/5以下)形状、あるいは長さが長い(概ね5倍以上)では珪素鋼板の積層も有効になる。
Specifically, the power receiving coil portion in which the coils 3 and 4 are wound around the cores 1 and 2 baked with ferrite are passed through the forward feed line 5 and the return feed line 6. The feed line is excited by flowing a high-frequency current through the feed line from the high-frequency power source 7. The frequency of the high frequency power supply 7 uses a frequency in the vicinity of 10 kHz, but may be a frequency higher than that.
In the core 1 and the core 2, the current passing direction is opposite, so that the outputs of the coils 3 and 4 are connected in series or in parallel with the polarity reversed.
The cores 1 and 2 can be used by connecting two cores having exactly the same shape, or the effect is not changed even if the two cores are integrally molded and fired.
Ferrite cores have excellent high frequency characteristics and high electrical resistance, so there is little loss due to eddy currents. It is possible to operate even with a core in which silicon steel plates are laminated in the direction through which the coil penetrates. Silicon steel plates have the advantage that the saturation magnetic flux density is higher than that of ferrite materials. In the central part in the vertical direction, a magnetic field can be generated only on a plane perpendicular to the feeder line. However, as it moves away from the center, a magnetic field in the direction of the feeder line is generated, and eddy current loss due to this magnetic field increases. A silicon steel sheet is not suitable for the shape of the receiving coil portion having a length equal to or higher than the coil height.
Lamination of silicon steel sheets is also effective when the shape is short (approximately 1/5 or less) of the core height or long (approximately 5 times or more).

図2に、前記受電コイル部を、受電コイル部と給電線を覆う筐体に入れる方法を示す。
受電コイル部と給電線を、例えば、下部に切り欠きを設けた、アルミニウム等の非磁性体からなるカバー8に入れる。
カバー8はアルミニウム製の押し出し材で容易に作成でき、給電線のノイズを外部にもらさないシールドになる。受電コイル部は、アルミニウム等の非磁性体からなる固定部材9でリニアガイド11に固定する。リニアガイドのレール10はカバー8に固定する。
FIG. 2 shows a method of placing the power receiving coil portion in a casing that covers the power receiving coil portion and the power feeding line.
For example, the power receiving coil portion and the power supply line are placed in a cover 8 made of a nonmagnetic material such as aluminum and provided with a notch in the lower portion.
The cover 8 can be easily made of an extruded material made of aluminum, and serves as a shield that does not let the noise of the feeder line be exposed to the outside. The power receiving coil portion is fixed to the linear guide 11 by a fixing member 9 made of a nonmagnetic material such as aluminum. The linear guide rail 10 is fixed to the cover 8.

本実施例では給電する区間の範囲は2m程度を想定し、この範囲であれば給電線5は、一端を固定し、もう一端から張力をかけて引っ張る構造とする。給電線はその自重で給電区間の中央部分ではその位置が5’、6’の位置まで下がる。
フェライトは硬度の高い材料であり、給電線と接触すると給電線の絶縁被服に傷をつけるため、振動などで接触する可能性がある場合は、コアの内側の面にフッ素樹脂等の摩擦の少ないシート材12をコアに貼付けておくことで給電線を保護することができる。
また、図2は水平方向に給電線を設置する場合を示しているが、垂直方向に設置する場合は、給電線は重力で位置が変化することはないが、装置の動作時の振動や加速度により変位することがあり、接触防止にはコイル部分も覆うシート材料を適宜使用する。
In this embodiment, the range of the section to be fed is assumed to be about 2 m, and within this range, the feed line 5 has a structure in which one end is fixed and tension is applied from the other end. The position of the feeder line is lowered to the positions 5 ′ and 6 ′ by its own weight in the central portion of the feeding section.
Ferrite is a material with high hardness, and when it comes into contact with the power supply line, it damages the insulation of the power supply line, so if there is a possibility of contact due to vibration, etc., there is little friction such as fluororesin on the inner surface of the core The power supply line can be protected by pasting the sheet material 12 to the core.
In addition, FIG. 2 shows a case where the power supply line is installed in the horizontal direction. However, in the case where the power supply line is installed in the vertical direction, the position of the power supply line does not change due to gravity, but the vibration and acceleration during the operation of the device. In order to prevent contact, a sheet material that also covers the coil portion is appropriately used.

また、図3に示すように、給電線5、6は一本でなく複数本を使用し、コア1、2の中を複数回(n回)貫通させることで、等価1次電流を貫通した回数分増加し、電流をn倍化することもでき、これにより、出力電流の小さい高周波電源で、大容量の給電に対応することができる。   Further, as shown in FIG. 3, the feeders 5 and 6 are not one, but a plurality of wires are used, and the equivalent primary current is passed through the cores 1 and 2 a plurality of times (n times). The current can be increased by a factor of n and the current can be multiplied by n. Thus, a high-frequency power supply with a small output current can be used for large-capacity power feeding.

図4に、非接触給電装置の全体的な構造を示す。
カバー8の中を受電コイル部が移動する。
給電線5、6は手前側で固定する(図示は省略)。もう一端の給電線の折り返し部分は、その間隔を保持するよう保持具13をばね14で半固定し、張力を与え、給電線が垂れ下がることなくコアの中を貫通するように支持する。
FIG. 4 shows the overall structure of the non-contact power feeding device.
The power receiving coil portion moves in the cover 8.
The feeder lines 5 and 6 are fixed on the near side (not shown). The folded portion of the power supply line at the other end is half-fixed with a spring 14 so as to maintain the gap, and tension is applied to support the power supply line so that it passes through the core without drooping.

図5に、本実施例を応用し、2軸以上に移動する複数の移動体に給電線の励磁電流をカスケード接続する非接触給電装置の概略を示す。
本体15の両側部にリニアモータ等で駆動するリニアアクチュエータ16を配置し、その上を門型のガントリー17が矢印方向に移動する。さらにその上にリニアアクチュエータ19を設け、可動部分21が移動する。
このようなXY軸平面内で任意の位置に稼動する構造の設備としては、電子部品をプリント配線板に搭載するチップマウンタ等がある。
このリニアアクチュエータに併設する非接触給電装置18、20から可動部分の電源を供給する。
FIG. 5 shows an outline of a non-contact power feeding apparatus in which the present embodiment is applied and the exciting current of the power feeding line is cascade-connected to a plurality of moving bodies that move in two or more axes.
A linear actuator 16 that is driven by a linear motor or the like is disposed on both sides of the main body 15, and a portal gantry 17 moves in the direction of the arrow. Furthermore, the linear actuator 19 is provided thereon, and the movable part 21 moves.
As equipment having a structure that operates at an arbitrary position in the XY axis plane, there is a chip mounter for mounting electronic components on a printed wiring board.
The power of the movable part is supplied from the non-contact power feeding devices 18 and 20 provided alongside the linear actuator.

図6に、この非接触給電装置の接続を示す。
装置本体に設けた高周波電源7で前段の給電線24を励磁し、前段の受電コイル部22で受電する。
前段の給電線24と受電コイル部22が給電装置18に相当し、後段の給電線25と受電コイル部23が給電装置20に相当する。
前段の受電コイル部22と後段の給電線25を直列に接続し、この直列インダクタンスと共振コンデンサ26で共振回路を形成し、共振周波数は高周波電源7の近傍になるように共振コンデンサ26を選定する。可飽和リアクトル27は共振回路の電圧を一定値に安定化させる。このため、給電線25には負荷28の負荷の大小に関係なく、ほぼ一定の電流が流れる。
前記の特許文献2に示す従来の方法では、高周波トランスには無負荷時の共振電流が流れないため、給電線25の電流が無負荷時と負荷時で大きく異なる欠点を有するが、給電線と受電コイル部を直列にすることで安定した励磁を行う。
なお、負荷28はリニアアクチュエータ19とその制御に必要なセンサ類の電源に相当し、可動部21にはさらに別のアクチュエータ類、センサ類、制御装置などが配置され、これらが負荷31に相当する。
受電コイル部23は共振コンデンサ29と共振回路を構成し、共振コンデンサ29は、受電コイル部23と共振コンデンサ29による共振周波数が給電線25に流れる電流の周波数、すなわち高周波電源7の周波数近傍になるように選定する。
このように、本実施例の非接触給電装置は、カスケード接続する給電の構成において、高周波トランスや別電源を用いることなく、複数の給電を実現することができる。
FIG. 6 shows the connection of this non-contact power feeding device.
The power supply line 24 in the previous stage is excited by the high-frequency power source 7 provided in the apparatus main body, and the power is received by the power receiving coil unit 22 in the previous stage.
The front feed line 24 and the power receiving coil portion 22 correspond to the power feeding device 18, and the rear feed wire 25 and the power receiving coil portion 23 correspond to the power feeding device 20.
The receiving coil portion 22 at the front stage and the feeder line 25 at the rear stage are connected in series, and a resonance circuit is formed by the series inductance and the resonance capacitor 26, and the resonance capacitor 26 is selected so that the resonance frequency is in the vicinity of the high frequency power supply 7. . The saturable reactor 27 stabilizes the voltage of the resonance circuit at a constant value. Therefore, a substantially constant current flows through the feeder line 25 regardless of the load of the load 28.
In the conventional method shown in Patent Document 2 described above, since no resonance current does not flow through the high-frequency transformer, the current of the power supply line 25 has a drawback that differs greatly between no load and load. Stable excitation is achieved by connecting the receiving coil in series.
The load 28 corresponds to the power source of the linear actuator 19 and sensors necessary for its control. Further, another actuator, sensors, control device and the like are arranged on the movable portion 21, and these correspond to the load 31. .
The power receiving coil unit 23 forms a resonance circuit with the resonance capacitor 29, and the resonance capacitor 29 has a resonance frequency by the power receiving coil unit 23 and the resonance capacitor 29 near the frequency of the current flowing through the feeder line 25, that is, the frequency of the high frequency power supply 7. Select as follows.
As described above, the non-contact power feeding apparatus according to the present embodiment can realize a plurality of power feedings without using a high-frequency transformer or another power source in a cascade power feeding configuration.

図7に、受電コイル部の製作方法を示す。
フェライトコアは、一般に大型のものを一体で成型することは大型プレス設備が必要になり、製作できるメーカが限定され、また費用がかかるため好ましくない。そのため、小型のコアを複数組み立てることによって、大型にする方法が現実的である。
例えば、図7(a)に示すように、4つのコの字型のコアを使用し、その2つに先にコイル3、4を巻き、接着あるいはステンレスのベルトで締付け固定する。
また、図7(b)に示すように、E型とI型のコアのI型にコイル3、4を巻き、接着あるいはステンレスベルトでの締結を行う。
あるいは、図7(c)に示すように、2つのコの字型とI型で、I型にコイル3、4を巻き、接着あるいはステンレスベルトでの締結を行う。
これらの方法は、四角の穴のあいたコアにコイルを巻く方法に比較して、接着あるいは締結の工程が入るが、コイル巻き線作業は開いたコアに巻き線するため、作業が簡単で、自動化も可能である。
ちなみに、安価に製作できる受電コイル部の長さはフェライトでは30mm程度までが限度であり、それ以上では複数段のフェライトを接着し、長尺コイル製作に対応する。
FIG. 7 shows a method for manufacturing the power receiving coil portion.
In general, it is not preferable to integrally mold a large ferrite core because a large press facility is required, manufacturers that can be manufactured are limited, and costs are high. Therefore, a method of increasing the size by assembling a plurality of small cores is realistic.
For example, as shown in FIG. 7 (a), four U-shaped cores are used, and coils 3 and 4 are wound around the two cores, and are fastened and fixed with an adhesive or a stainless steel belt.
Further, as shown in FIG. 7B, coils 3 and 4 are wound around the I type of the E type and I type cores, and are bonded or fastened with a stainless steel belt.
Alternatively, as shown in FIG. 7 (c), two U-shaped and I-shaped coils are wound around the I-shaped coils 3, 4 and bonded or fastened with a stainless steel belt.
Compared with the method of winding a coil around a core with a square hole, these methods involve bonding or fastening, but the coil winding work is wound around an open core, so the work is simple and automated. Is also possible.
Incidentally, the length of the receiving coil portion that can be manufactured at a low cost is limited to about 30 mm for ferrite, and more than that, a plurality of stages of ferrite are bonded to cope with long coil manufacturing.

ところで、閉磁路を構成する磁気回路では、コア材料の透磁率、加工寸法の誤差により受電コイル部のインダクタンスが変動する。
受電コイル部をトランスとして使用するのであれば、1次コイルと2次コイルの巻数比による2次電圧が得られるが、共振回路を構成するインダクタンスとして使用する場合、インダクタンスの誤差は共振周波数の変動要因になり好ましくない。
閉磁路の一部に狭い空隙を設けることにより、コアの透磁率、断面積できまる磁気抵抗と、空隙による磁気抵抗の直列回路が構成され、空隙の磁気抵抗は空隙の隙間で制御できる。コアの比透磁率は空隙の比透磁率1に対し2000〜3000程度と大きい。
By the way, in the magnetic circuit which comprises a closed magnetic circuit, the inductance of a receiving coil part changes with the errors of the magnetic permeability of a core material, and a processing dimension.
If the power receiving coil unit is used as a transformer, a secondary voltage can be obtained based on the turns ratio of the primary coil and the secondary coil. However, when used as an inductance constituting a resonance circuit, an inductance error is a fluctuation of the resonance frequency. It becomes a factor and is not preferable.
By providing a narrow gap in a part of the closed magnetic path, a series circuit of the magnetic permeability of the core, the magnetic resistance that can be obtained in the cross-sectional area, and the magnetic resistance by the gap is configured, and the magnetic resistance of the gap can be controlled by the gap of the gap. The relative permeability of the core is as large as about 2000 to 3000 with respect to the relative permeability 1 of the air gap.

コアの磁路長:Lc=0.2m
空隙:Lg=0.5×10−3m、
コアと空隙の断面積:S=1000mm=1×10−3
コアの比透磁率:μ=2000
磁気抵抗Rは、
R≒(0.2/(2000×1×10−3))+(0.5×10−3)/(1×10−3)≒0.1+0.5≒0.6
になる。
コアの比透磁率μが2000から1800に10%変動すると、第1項の0.1が0.111に約11%変動する。
しかしながら、磁気抵抗Rは、
R≒0.111+0.5≒0.611
になり、0.6に対し約2%の変動に緩和される。
なお、上記磁気抵抗Rの計算においては、真空透磁率μ(μ=4π×10−7H/m)はコアと空隙の両方に含まれる共通項であるので省略している。
Core magnetic path length: Lc = 0.2 m
Void: Lg = 0.5 × 10 −3 m,
Cross-sectional area of core and gap: S = 1000 mm 2 = 1 × 10 −3 m 2
Core relative permeability: μ = 2000
The magnetic resistance R is
R≈ (0.2 / (2000 × 1 × 10 −3 )) + (0.5 × 10 −3 ) / (1 × 10 −3 ) ≈0.1 + 0.5≈0.6
become.
When the relative permeability μ of the core fluctuates by 10% from 2000 to 1800, 0.1 in the first term fluctuates by approximately 11% from 0.111.
However, the magnetoresistance R is
R≈0.111 + 0.5≈0.611
And is relaxed to a fluctuation of about 2% with respect to 0.6.
In the calculation of the magnetic resistance R, the vacuum magnetic permeability μ 00 = 4π × 10 −7 H / m) is omitted because it is a common term included in both the core and the air gap.

このように、空隙を設けることで、完全な閉磁路に対してインダクタンスは低下するが、インダクタンスの個体差の少ない均質な受電コイル部を製作することができる。
また、フェライト材料の短所である温度による透磁率や飽和磁束密度の変動によるコイルの特性を空隙を設けることで同様に緩和することができる。
このような微細な空隙は、コアを接着する際にセラミック板あるいはエポキシ樹脂板等の非磁性の絶縁体を挟むことにより、寸法精度の高い空隙を容易に構成することができる。
また、インダクタンスの調整は、コイルの巻き数を調節することで一定のインダクタンス値に製作することも可能である。
Thus, by providing the air gap, the inductance is reduced with respect to a completely closed magnetic circuit, but a homogeneous power receiving coil portion with little individual difference in inductance can be manufactured.
In addition, the coil characteristics due to fluctuations in magnetic permeability and saturation magnetic flux density due to temperature, which is a disadvantage of ferrite materials, can be similarly mitigated by providing air gaps.
Such a fine gap can easily constitute a gap with high dimensional accuracy by sandwiching a non-magnetic insulator such as a ceramic plate or an epoxy resin plate when bonding the core.
In addition, the inductance can be adjusted to a constant inductance value by adjusting the number of turns of the coil.

以上、本発明の非接触給電装置について、複数の実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、各実施例に記載した構成を適宜組み合わせる等、その趣旨を逸脱しない範囲において適宜その構成を変更することができる。   As mentioned above, although the non-contact electric power feeder of this invention was demonstrated based on several Example, this invention is not limited to the structure described in the said Example, The structure described in each Example is combined suitably. For example, the configuration can be changed as appropriate without departing from the spirit of the invention.

本発明の非接触給電装置は、閉磁路により磁気回路の磁気抵抗の増大を抑制し、給電効率の低下を防止するという特性を有していることから、例えば、半導体工場等のクリーンルーム内の発塵を最小限に抑制した搬送装置やロボットの用途に好適に用いることができる。   The non-contact power feeding device of the present invention has a characteristic of suppressing an increase in magnetic resistance of a magnetic circuit by a closed magnetic circuit and preventing a decrease in power feeding efficiency. It can be suitably used for a transfer device or a robot that minimizes dust.

本発明の非接触給電装置の一実施例を示す拡大図である。It is an enlarged view which shows one Example of the non-contact electric power feeder of this invention. 同非接触給電装置を示す断面図である。It is sectional drawing which shows the non-contact electric power feeder. 給電線を複数にした非接触給電装置の断面図である。It is sectional drawing of the non-contact electric power feeder which made the electric power feeding line plural. 同非接触給電装置の全体を示す斜視図である。It is a perspective view which shows the whole non-contact electric power feeder. 複数の移動体に応用した本発明の非接触給電装置の一実施例を示す斜視図である。It is a perspective view which shows one Example of the non-contact electric power feeder of this invention applied to the some mobile body. 同非接触給電装置の電気接続を示す説明図である。It is explanatory drawing which shows the electrical connection of the non-contact electric power feeder. 受電コイル部の製作例を示す分解図である。It is an exploded view which shows the manufacture example of a receiving coil part.

符号の説明Explanation of symbols

1 コア
2 コア
3 コイル
4 コイル
5 給電線
6 給電線
7 高周波電源
8 カバー
9 固定部材
10 レール
11 リニアガイド
12 シート材
13 保持具
14 ばね
15 本体
16 リニアアクチュエータ
17 ガントリー
18 非接触給電装置
19 リニアアクチュエータ
20 非接触給電装置
21 可動部分
22 前段の受電コイル部
23 後段の受電コイル部
24 前段の給電線
25 後段の給電線
26 共振コンデンサ
27 可飽和リアクトル
28 負荷
29 共振コンデンサ
30 可飽和リアクトル
31 負荷
DESCRIPTION OF SYMBOLS 1 Core 2 Core 3 Coil 4 Coil 5 Feed line 6 Feed line 7 High frequency power supply 8 Cover 9 Fixing member 10 Rail 11 Linear guide 12 Sheet material 13 Holder 14 Spring 15 Main body 16 Linear actuator 17 Gantry 18 Non-contact power supply device 19 Linear actuator DESCRIPTION OF SYMBOLS 20 Non-contact electric power feeder 21 Movable part 22 Power receiving coil part of the front | former stage 23 Power receiving coil part of the back | latter stage 24 Power feed line of the front | former stage 25 Power feed line of the back | latter stage 26 Resonance capacitor 27 Saturable reactor 28 Load 29 Resonance capacitor 30 Saturable reactor 31 Load

Claims (3)

コアに巻回したコイルに、給電線から電磁誘導により非接触で電力を供給する非接触給電装置において、筒状のコアを2個連設し、各コアにそれぞれコイルを巻回して受電コイル部を形成するとともに、各コアを貫通するように給電線を設置したことを特徴とする非接触給電装置。   In a non-contact power supply device that supplies power in a non-contact manner by electromagnetic induction from a power supply line to a coil wound around a core, two cylindrical cores are connected in series, and a coil is wound around each core to receive a coil portion A non-contact power feeding device characterized in that a feed line is installed so as to penetrate each core. 受電コイル部の移動範囲を非磁性体の筐体により被覆したことを特徴とする請求項1記載の非接触給電装置。   The contactless power feeding device according to claim 1, wherein a moving range of the power receiving coil portion is covered with a nonmagnetic housing. 2軸以上に移動する複数の移動体に給電線の励磁電流をカスケード接続する非接触給電装置において、前段の受電コイル部と後段の給電線とを直列に接続し、後段の給電線に共振回路電流を流すようにしたことを特徴とする請求項1又は2記載の非接触給電装置。   In a non-contact power feeding device that cascades the excitation current of a power feed line to a plurality of moving bodies that move more than two axes, the power receiving coil section of the front stage and the power feed line of the rear stage are connected in series, and a resonance circuit is connected to the power feed line of the rear stage. The contactless power feeding device according to claim 1, wherein an electric current is allowed to flow.
JP2004082375A 2004-03-22 2004-03-22 Non-contact power feeder apparatus Pending JP2005269857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004082375A JP2005269857A (en) 2004-03-22 2004-03-22 Non-contact power feeder apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004082375A JP2005269857A (en) 2004-03-22 2004-03-22 Non-contact power feeder apparatus

Publications (1)

Publication Number Publication Date
JP2005269857A true JP2005269857A (en) 2005-09-29

Family

ID=35093803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004082375A Pending JP2005269857A (en) 2004-03-22 2004-03-22 Non-contact power feeder apparatus

Country Status (1)

Country Link
JP (1) JP2005269857A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303707A (en) * 2006-05-10 2007-11-22 Tokyo Rika Kikai Kk Dryer
JP2007326064A (en) * 2006-06-09 2007-12-20 Hitachi Plant Technologies Ltd Paste applicator
CN101944781A (en) * 2010-10-09 2011-01-12 南京航空航天大学 Non-contact power supply closed type power collector
WO2013118745A1 (en) * 2012-02-06 2013-08-15 株式会社Ihi Non-contact power supply system
WO2014010057A1 (en) * 2012-07-12 2014-01-16 富士機械製造株式会社 Contactless electrical power supply device
CN107078394A (en) * 2014-12-09 2017-08-18 迪睿合株式会社 Antenna assembly and electronic equipment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303707A (en) * 2006-05-10 2007-11-22 Tokyo Rika Kikai Kk Dryer
JP2007326064A (en) * 2006-06-09 2007-12-20 Hitachi Plant Technologies Ltd Paste applicator
CN101944781A (en) * 2010-10-09 2011-01-12 南京航空航天大学 Non-contact power supply closed type power collector
WO2013118745A1 (en) * 2012-02-06 2013-08-15 株式会社Ihi Non-contact power supply system
US9345177B2 (en) 2012-02-06 2016-05-17 Ihi Corporation Wireless power supply system
EP2874482A4 (en) * 2012-07-12 2016-01-06 Fuji Machine Mfg Contactless electrical power supply device
CN104472030A (en) * 2012-07-12 2015-03-25 富士机械制造株式会社 Contactless electrical power supply device
WO2014010057A1 (en) * 2012-07-12 2014-01-16 富士機械製造株式会社 Contactless electrical power supply device
JPWO2014010057A1 (en) * 2012-07-12 2016-06-20 富士機械製造株式会社 Contactless power supply
CN104472030B (en) * 2012-07-12 2018-02-06 富士机械制造株式会社 Contactless power supply device
CN107078394A (en) * 2014-12-09 2017-08-18 迪睿合株式会社 Antenna assembly and electronic equipment
US10269487B2 (en) 2014-12-09 2019-04-23 Dexerials Corporation Antenna device and electronic apparatus
CN107078394B (en) * 2014-12-09 2021-03-12 迪睿合株式会社 Antenna device and electronic apparatus

Similar Documents

Publication Publication Date Title
JP6963045B2 (en) Contactless power supply system
KR100899468B1 (en) Linear actuator, and component holding apparatus and die bonder apparatus using the same
JP5150155B2 (en) Linear actuators and devices using linear actuators
US7342475B2 (en) Coil arrangement and method for its manufacture
DK2546843T3 (en) Magnetic element for wireless power transfer and power supply arrangement
US20070046410A1 (en) Printed circuit board transformer
KR20170080497A (en) Device for the Contact-Free Transfer of Electrical Energy into a Moving System of a Shifting Device
KR20120029433A (en) Electronic device having an inductive receiver coil with ultra-thin shielding layer and method
CN110690033A (en) Linear electromagnetic device
US8941271B2 (en) Linear motor for lifting and lowering suction nozzle, and electronic component mounting apparatus
EP2017635A1 (en) Magnetic device
KR100670409B1 (en) Non-contact power supply apparatus
JP2005269857A (en) Non-contact power feeder apparatus
JP6610605B2 (en) Electronic component demagnetizing device, taping electronic component series manufacturing device, electronic component demagnetizing method
CN107275053B (en) Electrical converter and electrical system
JP2008205350A (en) Magnetic device
JP5906457B2 (en) Contactless power supply
CN113302815B (en) Non-contact power supply system
CN106935376B (en) Transformer and switching power supply
JP3953457B2 (en) Variable inductor and contactless power supply equipment using this variable inductor
JP2020109777A (en) Coil device
JP2014225960A (en) Non-contact power-feeding device, moving body, and non-contact power-feeding system
US11867536B2 (en) Magnetostrictive position sensor with detector coil in a chip
US8054150B2 (en) Magnetic element
JP6497483B2 (en) Current detection element and power supply device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507