JP2005268331A - Vapor dryer - Google Patents

Vapor dryer Download PDF

Info

Publication number
JP2005268331A
JP2005268331A JP2004075144A JP2004075144A JP2005268331A JP 2005268331 A JP2005268331 A JP 2005268331A JP 2004075144 A JP2004075144 A JP 2004075144A JP 2004075144 A JP2004075144 A JP 2004075144A JP 2005268331 A JP2005268331 A JP 2005268331A
Authority
JP
Japan
Prior art keywords
vapor
wafer
ipa
steam
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004075144A
Other languages
Japanese (ja)
Other versions
JP3910182B2 (en
Inventor
Hajime Onoda
元 小野田
Ken Hattori
建 服部
Kazutoshi Watanabe
和俊 渡辺
Norihisa Tanji
紀久 丹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OMEGA SEMICON DENSHI KK
Original Assignee
OMEGA SEMICON DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OMEGA SEMICON DENSHI KK filed Critical OMEGA SEMICON DENSHI KK
Priority to JP2004075144A priority Critical patent/JP3910182B2/en
Publication of JP2005268331A publication Critical patent/JP2005268331A/en
Application granted granted Critical
Publication of JP3910182B2 publication Critical patent/JP3910182B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor dryer capable of suppressing the production of watermarks even when the pattern face of a wafer is directed to the wall face of a processing tank. <P>SOLUTION: The vapor dryer is provided with an IPA supply tube 14 for supplying IPA, a vapor generating tank 13 for generating IPA vapor V; the processing tank 17 located inside the vapor generating tank and containing cleaned wafers W; a vapor rising duct 21 located between the vapor generating tank and the processing tank to introduce the IPA vapor from the upper part of the processing tank to its inside; a cooling coil 22 located at the upper part of the vapor rising duct for liquefying the IPA vapor rising through the vapor rising duct; and a surrounding wall 25 provided inside the cooling coil for suppressing variations of the vapor level at the upper part of the processing tank, and a temperature gradient inside the processing tank is selected higher at an upper region and lower at a lower region on the basis of a position of the wafers contained in the processing tank. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば洗浄後の半導体ウェーハ、液晶表示装置用の基板及び記録ディスク用の基板などの被乾燥物を乾燥させる蒸気乾燥装置に関する。   The present invention relates to a vapor drying apparatus for drying an object to be dried such as a cleaned semiconductor wafer, a substrate for a liquid crystal display device, and a substrate for a recording disk.

洗浄工程及び水洗い工程(以下リンス工程と呼ぶ)などの処理後の半導体ウェーハ(以下、単にウェーハと呼ぶ)などの被乾燥物を乾燥するための装置として、前記ウェーハの表面に付着した処理液としての純水を有機溶剤などと置換させ、その後、表面に付着した有機溶剤を蒸発させる蒸気乾燥装置が知られている。   As an apparatus for drying an object to be dried such as a semiconductor wafer (hereinafter simply referred to as a wafer) after processing such as a cleaning process and a water washing process (hereinafter referred to as a rinsing process), as a processing liquid adhering to the surface of the wafer There is known a steam drying apparatus that replaces the pure water with an organic solvent or the like and then evaporates the organic solvent adhering to the surface.

蒸気乾燥装置は、装置の外郭を構成する装置本体と、ウェーハを把持するロボットアームと、液回収部などを備えている。前記装置本体は、有機溶剤を収容する乾燥槽などを備えている。有機溶剤の一例として、イソプロピルアルコール(isopropyl alcohol :以下IPAと呼ぶ)が用いられる。乾燥槽の底部に加熱装置が設けられている。加熱装置は、IPAを加熱して、このIPAを含んだ蒸気を発生させるようになっている。   The vapor drying apparatus includes an apparatus main body that forms an outer shell of the apparatus, a robot arm that holds a wafer, a liquid recovery unit, and the like. The apparatus main body includes a drying tank for storing an organic solvent. As an example of the organic solvent, isopropyl alcohol (hereinafter referred to as IPA) is used. A heating device is provided at the bottom of the drying tank. The heating device heats the IPA and generates steam containing the IPA.

すなわち、従来の乾燥装置は、図6に示すように、乾燥装置1の外郭を構成するステンレス製の装置本体2を有し、この装置本体2の内部には上部開口の乾燥槽3が設けられている。この乾燥槽3は、例えばIPA等の有機溶剤によって腐食されにくい材料(例えば石英など)によって形成されている。この乾燥槽3にはIPA等の有機溶剤を供給する有機溶剤供給手段としてのIPA供給管4が接続されている。   That is, as shown in FIG. 6, the conventional drying apparatus has a stainless steel apparatus main body 2 that constitutes an outline of the drying apparatus 1, and a drying tank 3 having an upper opening is provided inside the apparatus main body 2. ing. The drying tank 3 is made of a material that is not easily corroded by an organic solvent such as IPA (for example, quartz). An IPA supply pipe 4 as an organic solvent supply means for supplying an organic solvent such as IPA is connected to the drying tank 3.

乾燥槽3の底部にはヒータブロック5が設けられ、上部内周部には同じくIPAによって腐食されにくい材料(例えば石英ガラスなど)によって形成された冷却コイル6が設けられている。さらに、乾燥槽3の内部には被乾燥物としての半導体ウェーハ(以下ウェーハWと呼ぶ)が収容されるようになっており、そのウェーハWの下方には例えばIPA等の有機溶剤によって腐食されにくい材料(例えば石英など)によって形成された受け皿7が設けられている。   A heater block 5 is provided at the bottom of the drying tank 3, and a cooling coil 6 formed of a material (for example, quartz glass) that is not easily corroded by IPA is provided at the upper inner periphery. Further, a semiconductor wafer (hereinafter referred to as a wafer W) as an object to be dried is accommodated in the drying tank 3, and below the wafer W is hardly corroded by an organic solvent such as IPA. A tray 7 made of a material (for example, quartz) is provided.

受け皿7は、逆テーパ形状をなし、加熱IPAを含むドレンを受けるようになっており、その下端排出口8にはIPAを含むドレンを装置本体2の外部に排出するドレン配管9の一端が接続されている。さらに、乾燥槽3の底部にはIPA等の有機溶剤を廃液する廃液管10が装置本体2の側壁を横方向に貫通して設けられている。   The tray 7 has a reverse taper shape and receives a drain containing heated IPA, and one end of a drain pipe 9 for discharging the drain containing IPA to the outside of the apparatus main body 2 is connected to the lower end discharge port 8 thereof. Has been. Further, a waste pipe 10 for draining an organic solvent such as IPA is provided at the bottom of the drying tank 3 so as to penetrate the side wall of the apparatus body 2 in the lateral direction.

なお、乾燥槽3内は、約82℃の十分なIPA蒸気が生成されている状態で、図6において、11は蒸気、12は空気、13は蒸気境界面(気相界面)である。   In addition, in the state where sufficient IPA vapor | steam of about 82 degreeC is produced | generated in the drying tank 3, in FIG. 6, 11 is a vapor | steam, 12 is air, 13 is a vapor | steam interface (gas phase interface).

ウェーハWは、乾燥槽3内に挿入される前に、洗浄工程において、処理液としてのフッ化水素や純水などの洗浄液によって洗浄されているとともに、この洗浄工程後のリンス工程において、処理液としての純水などのリンス液によって、水洗いされている。このため、乾燥槽3内に挿入される前のウェーハWは、その表面Waに純水などの処理液Wbが付着している。   Before being inserted into the drying tank 3, the wafer W is cleaned by a cleaning liquid such as hydrogen fluoride or pure water as a processing liquid in the cleaning process, and in the rinsing process after the cleaning process, It is washed with a rinse solution such as pure water. For this reason, the wafer W before being inserted into the drying tank 3 has a treatment liquid Wb such as pure water attached to its surface Wa.

純水などの処理液Wbが付着したウェーハWは、例えば50枚がウェーハボートに一定間隔を存して立位状態に保持されている。そして、ウェーハボートを、例えばロボットアームによって把持され、乾燥槽3内に挿入されることによって蒸気に晒される。この状態になるとウェーハWの表面において蒸気が凝縮し、ウェーハWの表面WaにIPAが付着する。   For example, 50 wafers W to which a processing liquid Wb such as pure water adheres are held in a standing state at a predetermined interval on a wafer boat. Then, the wafer boat is gripped by, for example, a robot arm and is exposed to steam by being inserted into the drying tank 3. In this state, the vapor condenses on the surface of the wafer W, and IPA adheres to the surface Wa of the wafer W.

このため、ウェーハWの表面Waに付着していた純水などの処理液WbがIPAと置換する。置換した処理液WbはウェーハWの表面から流れ落ち、液回収部によって回収される。そしてウェーハWの表面WaのIPAが蒸発することにより、ウェーハWが短時間に乾燥する。また、ウェーハWの表面Waに付着していた異物であるパーティクルは、ウェーハWの表面Waから処理液Wbが流れ落ちる際に、この処理液Wbとともに流れ落ちるようになっている。   For this reason, the treatment liquid Wb such as pure water that has adhered to the surface Wa of the wafer W replaces the IPA. The replaced processing liquid Wb flows down from the surface of the wafer W and is recovered by the liquid recovery unit. As the IPA on the surface Wa of the wafer W evaporates, the wafer W is dried in a short time. In addition, particles, which are foreign matters attached to the surface Wa of the wafer W, flow down together with the processing liquid Wb when the processing liquid Wb flows down from the surface Wa of the wafer W.

さらに、説明を加えると、乾燥槽3内は、約82℃の十分なIPA蒸気が生成されている状態で、洗浄の最終工程の温度の低い(20〜25℃)ウェーハWが乾燥槽3内に投入されると、ウェーハWの表面Waで瞬時に多量の蒸気の凝縮(液化)が起こり、蒸気の発生量が凝縮量に追いつかないため蒸気ゾーンが一時的に下降する(図7参照。)。   Furthermore, to add a description, in the drying tank 3, a sufficient IPA vapor of about 82 ° C. is generated, and the wafer W having a low temperature (20 to 25 ° C.) in the final cleaning process is in the drying tank 3. , A large amount of vapor condensation (liquefaction) occurs instantaneously on the surface Wa of the wafer W, and the vapor zone temporarily lowers because the amount of vapor generated cannot catch up with the condensation amount (see FIG. 7). .

蒸気ゾーンが下降した状態から次々と発生するIPA蒸気により、ウェーハWが加熱され凝縮が少なくなって蒸気ゾーンが上昇し、ウェーハW全体が蒸気で覆われ、ウェーハWの全面に凝縮IPAが生じる。この時点では、ウェーハWの両面でIPAの凝縮が起こっている。この凝縮IPAは、ウェーハW自体の温度が蒸気温度に達するまで継続する。   With the IPA vapor generated one after another from the state where the vapor zone is lowered, the wafer W is heated and condensation is reduced, the vapor zone is raised, the entire wafer W is covered with the vapor, and condensed IPA is generated on the entire surface of the wafer W. At this point, condensation of IPA has occurred on both sides of the wafer W. This condensation IPA continues until the temperature of the wafer W itself reaches the vapor temperature.

以下、この凝縮工程を初期凝縮と呼ぶ。ウェーハWの面上の処理液Wbは、この凝縮IPAに溶解し、ウェーハWの面上を流下するドレンとして受け皿7を経てIPA廃液管10から除去される(図8参照。)。ウェーハW自体の温度が蒸気雰囲気温度に達した後も、ウェーハWの表面Waでは更に凝縮が継続するが、この場合の凝縮は前述のウェーハW自体の温度が低いことによって蒸気の熱を吸収し、ウェーハW自体の温度が蒸気温度にまで上がっていく状況とは異なる。   Hereinafter, this condensation process is called initial condensation. The processing liquid Wb on the surface of the wafer W is dissolved in the condensed IPA and removed from the IPA waste liquid pipe 10 through the tray 7 as a drain flowing down on the surface of the wafer W (see FIG. 8). Even after the temperature of the wafer W itself reaches the vapor atmosphere temperature, the condensation continues on the surface Wa of the wafer W. In this case, the condensation absorbs the heat of the vapor due to the low temperature of the wafer W itself. This is different from the situation where the temperature of the wafer W itself rises to the vapor temperature.

以下、この凝縮工程を熱平衡時の凝縮と呼ぶ。蒸気ゾーンにおいて、熱的に飽和したウェーハWの表面Waでの凝縮は次のように行われる。すなわち、ウェーハWは例えば50枚ずつウェーハボートに一定間隔を存して保持されている。そして、図9(a)(b)に示すように、ウェーハボートに保持されたウェーハWの内側(他のウェーハWに隣り合う面)をA側とし、外側をB側とすると、ウェーハWのB側表面で凝縮が起きると、その熱(蒸気の潜熱)はウェーハWに吸収されるが、この蒸気雰囲気内での熱的平衡を維持するため、その裏面であるA側表面からは同量の熱の放出が行われる。これはA側表面に凝縮しようとする(又は凝縮した)IPAに気化熱を与えることになり、結果としてA側表面では蒸気が凝縮出来ずに乾き状態になる。   Hereinafter, this condensation process is referred to as condensation during thermal equilibrium. In the vapor zone, condensation on the surface Wa of the thermally saturated wafer W is performed as follows. In other words, for example, 50 wafers W are held on the wafer boat at a predetermined interval. Then, as shown in FIGS. 9A and 9B, when the inside of the wafer W held by the wafer boat (the surface adjacent to the other wafer W) is the A side and the outside is the B side, When condensation occurs on the B-side surface, the heat (vapor latent heat) is absorbed by the wafer W. However, in order to maintain thermal equilibrium in this vapor atmosphere, the same amount is received from the A-side surface, which is the back side. The heat is released. This gives heat of vaporization to IPA which is to be condensed (or condensed) on the surface on the A side, and as a result, the steam cannot be condensed on the surface on the A side and becomes dry.

このウェーハWの表面凝縮に関与している蒸気は、ウェーハWのA側もB側も同一状態で存在するため、どちらかの面が凝縮状態になると、その裏面が乾き状態となるという現象がどちら側へも移行しやすい非常に不安定な状態となっている。結果としてウェーハWの両面が交互に凝縮と乾燥を繰り返すことになる。   Since the vapor involved in the surface condensation of the wafer W exists in the same state on both the A side and the B side of the wafer W, the phenomenon that the back surface of the wafer W is in a dry state when either surface is condensed. It is in a very unstable state that is easy to move to either side. As a result, both surfaces of the wafer W are alternately condensed and dried.

浸漬時間終了で、図10に示すように、ウェーハWを上昇させ、蒸気雰囲気外にウェーハWを移動して置換したIPAを自然蒸発(5分程度)させ乾燥工程は終了する。   At the end of the immersion time, as shown in FIG. 10, the wafer W is raised, the wafer W is moved out of the vapor atmosphere, and the substituted IPA is naturally evaporated (about 5 minutes), thereby completing the drying process.

しかしながら、ウェーハWを浸漬した瞬間、蒸気レベルの低下が生じ、ウェーハWの下部から次第に上方に凝縮が進み、蒸気レベルが復帰して、ウェーハWが再度蒸気雰囲気に包まれるまでに、相当の時間(例えば、8インチで50枚のウェーハWで8.4kWのヒータブロック5で加熱する場合、30秒位)が費やされる。また、IPA蒸気は温度の低い箇所で瞬時に凝縮するため、ウェーハWの周辺部から凝縮が始まり、ウェーハWの温度の上昇とともにウェーハWの面全体に凝縮が生じていく傾向にある。よって、ウェーハWの面内で不均一な凝縮が生じている。   However, at the moment when the wafer W is immersed, a decrease in the vapor level occurs, the condensation gradually proceeds upward from the lower part of the wafer W, the vapor level is restored, and it takes a considerable time until the wafer W is again enveloped in the vapor atmosphere. (For example, in the case where heating is performed by the heater block 5 of 8.4 kW with 50 wafers of 8 inches, about 30 seconds). Further, since the IPA vapor is instantaneously condensed at a low temperature portion, the condensation starts from the peripheral portion of the wafer W, and the whole surface of the wafer W tends to be condensed as the temperature of the wafer W rises. Therefore, non-uniform condensation occurs in the plane of the wafer W.

また、IPA蒸気乾燥方式は、水洗後のウェーハW上の残留水滴、付着水を凝縮IPAによりほぼ完璧に置換を行うため、ウォータマークと呼ばれるしみや自然酸化膜の発生がしにくいのが特徴である。しかしながら、IPA蒸気乾燥方式でもフッ酸での洗浄処理後のようにウェーハWの表面が疎水性になっている時には、ウェーハWの表面が活性化する洗浄工程での乾燥ではウォータマークが発生する場合が多く、最も注意が必要である。また、前述の通り、洗浄装置の最終工程終了後のウェーハWを乾燥槽3内に投入すると、蒸気ゾーンが一時的に下降し、その結果、ウェーハWの全体に凝縮IPAが生じて水が除去されるまでの間、ウェーハWは空気中(酸素雰囲気)に露出されるため、自然酸化膜生成反応が進行していくからである。   In addition, the IPA vapor drying method is characterized by the fact that water droplets and adhering water on the wafer W after washing are almost completely replaced with condensed IPA, so that it is difficult for water marks and natural oxide films to occur. is there. However, even in the case of the IPA vapor drying method, when the surface of the wafer W is hydrophobic as after the cleaning treatment with hydrofluoric acid, a water mark is generated in the drying process in which the surface of the wafer W is activated. There are many, and the most attention is needed. Further, as described above, when the wafer W after the final process of the cleaning apparatus is put into the drying tank 3, the vapor zone is temporarily lowered, and as a result, condensed IPA is generated in the entire wafer W to remove water. This is because the wafer W is exposed to the air (oxygen atmosphere) until it is processed, and thus a natural oxide film formation reaction proceeds.

また、IPA蒸気乾燥装置は、ウェーハボートに多数のウェーハWを実装した場合、両端のウェーハWにおいて、パターン面が乾燥槽3の壁面に向いているとウォータマークが発生し易い。例えば、8インチのウェーハW、50枚の処理の場合、ウェーハWが浸漬されると、ウェーハWの1枚目から50枚目間の蒸気濃度は薄くなるが、蒸気レベルは低下せず、ウェーハWの面上では瞬時にIPAの凝縮が生じる。これはウェーハWの相互間が6.35mmピッチと狭く、そして、早いスピードで乾燥槽3内に浸漬されるため、ウェーハW相互間の蒸気の逃げ(拡散)場所がなく、ウェーハW間に蒸気が滞留するからである。   Further, in the IPA vapor drying apparatus, when a large number of wafers W are mounted on a wafer boat, if the pattern surface faces the wall surface of the drying tank 3 in the wafers W at both ends, a watermark is likely to occur. For example, in the case of processing 50 wafers of 8 inches, when the wafer W is immersed, the vapor concentration between the first and 50th wafers becomes thin, but the vapor level does not decrease. On the surface of W, condensation of IPA occurs instantaneously. This is because the distance between the wafers W is as narrow as 6.35 mm and is immersed in the drying bath 3 at a high speed, so there is no escape (diffusion) place for the steam between the wafers W. Is retained.

しかしながら、乾燥槽3の壁面と1枚目のウェーハW及び50枚目のウェーハWの間隔は、一般的に60mm程度以上の隙間があるため、ウェーハWが乾燥槽3内に浸漬された瞬間、乾燥槽3の壁面とウェーハW間の蒸気レベルが低下するとともに蒸気が拡散され、1枚目のウェーハW〜50枚目間のウェーハWの面上のようには瞬時にIPAの凝縮が生じない。よって、1枚目のウェーハW及び50枚目のウェーハWのパターン面が乾燥槽3の壁面に向いていると、ウォータマークが発生する場合がある。   However, since the gap between the wall surface of the drying tank 3 and the first wafer W and the 50th wafer W is generally about 60 mm or more, the moment when the wafer W is immersed in the drying tank 3, The vapor level between the wall surface of the drying tank 3 and the wafer W is lowered and the vapor is diffused, so that the IPA is not condensed instantaneously as on the surface of the wafer W between the first wafer W to the 50th wafer. . Accordingly, when the pattern surfaces of the first wafer W and the 50th wafer W face the wall surface of the drying tank 3, a watermark may occur.

また、ウェーハWが乾燥槽3内に浸漬されると、ウェーハW(20〜25℃)とIPA蒸気(82℃)の温度差により、ウェーハWの面上にIPAが凝縮(初期凝縮)される。そして、ウェーハWが蒸気温度に達した時点で、ウェーハWと蒸気が熱平衡状態となり、ウェーハWの温度が蒸気温度より低い時の凝縮状況(初期凝縮)とは異なり、ウェーハWの両面(パターン面と裏面)が同時に凝縮することはなく交互に凝縮する。この凝縮がウェーハW面上にパーティクルが残留したまま、乾燥槽3内に浸漬された時、残留パーティクルの除去に多大に寄与する。   Further, when the wafer W is immersed in the drying tank 3, IPA is condensed (initially condensed) on the surface of the wafer W due to a temperature difference between the wafer W (20 to 25 ° C.) and the IPA vapor (82 ° C.). . When the wafer W reaches the vapor temperature, the wafer W and the vapor are in a thermal equilibrium state. Unlike the condensation state (initial condensation) when the temperature of the wafer W is lower than the vapor temperature, both surfaces of the wafer W (pattern surface) And backside) do not condense at the same time, but condense alternately. This condensation greatly contributes to the removal of residual particles when immersed in the drying tank 3 while particles remain on the wafer W surface.

例えば、8インチのウェーハW、50枚の処理の場合、熱平衡状態の2枚目のウェーハW〜49枚目のウェーハWにおいては、パターン面と裏面が交互に凝縮し、残留パーティクルの問題はほとんど発生しないが、1枚目のウェーハWと50枚目のウェーハWの場合、乾燥槽3の壁面に向いている面上で凝縮が生じ、逆面では凝縮が生じない傾向にある。よって、パターン面が乾燥槽3の壁面と逆の場合、パターン面上で残留パーティクルの除去に寄与するIPAの凝縮が得られず、パターン面上にパーティクルが残留していた場合、パーティクルが残留したまま乾燥される時がある。   For example, when processing an 8-inch wafer W and 50 wafers, in the second wafer W to the 49th wafer W in a thermal equilibrium state, the pattern surface and the back surface are condensed alternately, and there is almost no problem of residual particles. Although not generated, in the case of the first wafer W and the 50th wafer W, condensation tends to occur on the surface facing the wall surface of the drying tank 3, and condensation does not occur on the opposite surface. Therefore, when the pattern surface is opposite to the wall surface of the drying tank 3, condensation of IPA that contributes to the removal of residual particles cannot be obtained on the pattern surface, and when particles remain on the pattern surface, particles remain. There are times when it is dried.

これは、一般的に乾燥槽3は冷却されたステンレス槽で覆われており、乾燥槽3内で乾燥槽3の壁面は、放熱板の役割を持っていることから、乾燥槽3の内部の熱は乾燥槽3の壁面を通じて装置本体2に放出される。また、乾燥槽3の内部ではその放出された熱を補うため、乾燥槽3の壁側へのIPA蒸気の流れが発生し、乾燥槽3の壁面と1枚目のウェーハW(50枚目のウェーハW)間のIPA蒸気温度と1枚目のウェーハW(50枚目のウェーハW)と2枚目のウェーハW(49枚目のウェーハW)間のIPA蒸気温度を比較した場合、乾燥槽3の壁面と1枚目のウェーハW(50枚目のウェーハW)間の温度の方が低く、乾燥槽3の壁面に向いている面上で凝縮が生じ、逆面では凝縮が生じない。   This is because the drying tank 3 is generally covered with a cooled stainless steel tank, and the wall surface of the drying tank 3 in the drying tank 3 functions as a heat sink. Heat is released to the apparatus main body 2 through the wall surface of the drying tank 3. Further, in order to compensate for the released heat inside the drying tank 3, a flow of IPA vapor to the wall side of the drying tank 3 is generated, and the wall surface of the drying tank 3 and the first wafer W (the 50th sheet) When the IPA vapor temperature between the wafers W) and the IPA vapor temperature between the first wafer W (the 50th wafer W) and the second wafer W (the 49th wafer W) are compared, a drying bath The temperature between the wall surface 3 and the first wafer W (the 50th wafer W) is lower, and condensation occurs on the surface facing the wall surface of the drying tank 3, and no condensation occurs on the opposite surface.

さらに、従来の受け皿7では、受け皿7の深さが低く、ヒータブロック5に近いため、IPA蒸気とIPAのミストや水滴などが混入した状態となっているため、IPA蒸気だけでなく、IPAのミストや水滴なども受け皿7に入り込んでしまう。これらがウェーハWの待機状態にドレン配管9から廃液として処理されるため待機状態においてのIPAの消費が多いという問題がある。   Furthermore, in the conventional tray 7, since the depth of the tray 7 is low and close to the heater block 5, IPA vapor and IPA mist, water droplets, and the like are mixed therein. Mist, water droplets and the like also enter the tray 7. Since these are processed as waste liquid from the drain pipe 9 in the standby state of the wafer W, there is a problem that the IPA is consumed in the standby state.

本発明は前記事情に着目してなされたもので、その目的とするところは、ウェーハの表面にウォータマークの発生を抑制することができ、またウェーハのパターン面上にパーティクルが残留したまま、処理槽内に浸漬された時でも残留パーティクルが除去でき、さらに処理時間の短縮とIPA消費量の低減を図る蒸気乾燥装置を提供することにある。   The present invention has been made paying attention to the above circumstances, and the object of the present invention is to suppress the generation of watermarks on the surface of the wafer and to process the particles while remaining on the pattern surface of the wafer. It is an object of the present invention to provide a steam drying apparatus that can remove residual particles even when immersed in a bath, and further shortens processing time and reduces IPA consumption.

この発明は、前記目的を達成するために、有機溶剤を供給する有機溶剤供給手段及び有機溶剤を含んだ蒸気を発生する蒸気発生手段を備えた上部開口の蒸気発生槽と、前記蒸気発生槽の内部に設けられ洗浄された被乾燥物を収容する上部開口の処理槽と、前記蒸気発生槽と処理槽との間に設けられ前記蒸気発生手段によって発生した有機溶剤を含んだ蒸気を前記処理槽の上部からその内部に導く蒸気上昇通路と、前記蒸気上昇通路の上部に設けられ、該蒸気上昇通路を上昇する有機溶剤を含んだ蒸気を液化する冷却手段と、冷却手段の内側に設けられ、前記処理槽の上部の蒸気レベルの変動を抑制する抑制手段とを備え、前記処理槽に収容される被乾燥物の設置位置を基準として前記処理槽の内部の温度勾配を上方域が高く、下方域を低くし、有機溶剤蒸気から過飽和蒸気を生成して被乾燥物の残留水分を除去することを特徴とする。   In order to achieve the above object, the present invention provides an organic solvent supply means for supplying an organic solvent and a steam generation tank having an upper opening provided with a steam generation means for generating a vapor containing the organic solvent, and the steam generation tank. A treatment tank having an upper opening for accommodating a to-be-dried material provided therein, and a vapor containing an organic solvent provided between the vapor generation tank and the treatment tank and generated by the vapor generation means. A vapor rising passage leading from the upper portion of the vapor to the inside thereof, a cooling means for liquefying the vapor containing the organic solvent that rises in the vapor rising passage, and provided inside the cooling means, Suppression means for suppressing fluctuations in the vapor level in the upper part of the processing tank, and the upper region has a higher temperature gradient inside the processing tank based on the installation position of the object to be dried accommodated in the processing tank, and the lower part Lower the area To generate supersaturated steam from organic solvent vapor and removing residual moisture from the material to be dried.

本発明によれば、次のような効果が得られる。   According to the present invention, the following effects can be obtained.

a.ウェーハの表面にウォータマークの発生を抑制し、ウェーハボート等に多数枚のウェーハを保持し、その両端側のウェーハのパターン面が処理槽の壁面に向いている場合でもウォータマークの発生を抑制することができる。   a. Suppresses the generation of watermarks on the surface of the wafer, holds a large number of wafers on a wafer boat, etc., and suppresses the generation of watermarks even when the pattern surface of the wafers on both ends of the wafer faces the wall of the processing tank be able to.

b.ウェーハのパターン面上にパーティクルが残留したまま、処理槽内に浸漬された時でも残留パーティクルが除去できる。   b. Even when the particles remain on the pattern surface of the wafer and are immersed in the processing tank, the remaining particles can be removed.

c.ウェーハの温度上昇とともにウェーハの面全体で凝縮され、均一な凝縮が得られる。   c. As the temperature of the wafer rises, it is condensed over the entire surface of the wafer, and uniform condensation is obtained.

d.ウェーハの全面で同時に凝縮が起こるため処理時間が短くなる。   d. Since condensation occurs simultaneously on the entire surface of the wafer, the processing time is shortened.

e.待機時のIPA消費量が極めて少なくなる。   e. IPA consumption during standby is extremely reduced.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は蒸気乾燥装置の縦断正面図、図2は同じく縦断側面図、図3は処理槽の斜視図、図4は蒸気乾燥装置の縦断正面図である。   1 is a longitudinal front view of the steam drying apparatus, FIG. 2 is a longitudinal side view of the same, FIG. 3 is a perspective view of a treatment tank, and FIG. 4 is a longitudinal front view of the steam drying apparatus.

図1及び図2に示すように、蒸気乾燥装置11の外郭を構成するステンレス製の装置本体12の内部には上部開口の蒸気発生槽13が設けられている。この蒸気発生槽13は、例えばIPA等の有機溶剤によって腐食されにくい材料(例えば石英ガラスなど)によって形成されている。この蒸気発生槽13にはIPA等の有機溶剤を供給する有機溶剤供給手段としてのIPA供給管14が接続されている。さらに、蒸気発生槽13の底部にはIPA等の有機溶剤を廃液する廃液管15が装置本体2の側壁を横方向に貫通して設けられている。   As shown in FIGS. 1 and 2, a steam generation tank 13 having an upper opening is provided inside a stainless steel apparatus main body 12 that constitutes the outline of the steam drying apparatus 11. The steam generation tank 13 is formed of a material that is not easily corroded by an organic solvent such as IPA (for example, quartz glass). An IPA supply pipe 14 as an organic solvent supply means for supplying an organic solvent such as IPA is connected to the steam generation tank 13. Further, a waste pipe 15 for draining an organic solvent such as IPA is provided at the bottom of the steam generation tank 13 so as to penetrate the side wall of the apparatus main body 2 in the lateral direction.

蒸気発生槽13の底部にはヒータブロック16が設けられている。蒸気発生槽13の内部には洗浄された被乾燥物としてのウェーハWが収容される上部開口の処理槽17が設けられている。   A heater block 16 is provided at the bottom of the steam generation tank 13. Inside the steam generation tank 13, there is provided a processing tank 17 having an upper opening in which a wafer W as a dried object to be dried is accommodated.

処理槽17は、図3にも示すように、IPA等の有機溶剤によって腐食されにくい材料(例えば石英ガラスなど)によって形成され、逆テーパ状の底部17aを有する胴部17bは例えば50枚のウェーハWを一定間隔を存して立位状態に保持するウェーハボート(図示しない)とともに収容できる大きさに形成されている。   As shown in FIG. 3, the processing tank 17 is formed of a material that is not easily corroded by an organic solvent such as IPA (for example, quartz glass), and the body portion 17 b having a reverse-tapered bottom portion 17 a is, for example, 50 wafers. It is formed in a size that can be accommodated together with a wafer boat (not shown) that holds W in a standing position with a certain interval.

処理槽17の底部17aは加熱IPAを含むドレンを受けるようになっており、その下端排出口18にはIPAを含むドレンを装置本体2の外部に排出するドレン配管19の一端が接続されている。さらに、胴部17bの左右両側面で、胴部17bの上縁部近傍には横長矩形状の開口部20が設けられている。   The bottom 17a of the treatment tank 17 receives drain containing heated IPA, and one end of a drain pipe 19 for discharging drain containing IPA to the outside of the apparatus main body 2 is connected to the lower end discharge port 18 thereof. . In addition, laterally long rectangular openings 20 are provided in the vicinity of the upper edge of the trunk portion 17b on the left and right side surfaces of the trunk portion 17b.

また、蒸気発生槽13の内周面と処理槽17の外周面との間にはIPAを含んだ蒸気を処理槽17の上部へ導く蒸気上昇通路21が設けられている。この蒸気上昇通路21の上方は処理槽17の開口部20を介して処理槽17の内部に連通しており、IPAを含んだ蒸気が処理槽17の内部に供給されるようになっている。   A steam rising passage 21 is provided between the inner peripheral surface of the steam generation tank 13 and the outer peripheral surface of the processing tank 17 to guide steam containing IPA to the upper part of the processing tank 17. The upper part of the steam rising passage 21 communicates with the inside of the processing tank 17 through the opening 20 of the processing tank 17 so that steam containing IPA is supplied into the processing tank 17.

蒸気上昇通路21の上方で、かつ処理槽17の開口部20より上部には蒸気発生槽13の内周面に沿ってIPAを含んだ蒸気を液化する冷却手段としての石英製の冷却コイル22が設けられている。この冷却コイル22の下部には樋23が設けられ、この樋23によって冷却コイル22は蒸気上昇通路21と区画されている。従って、蒸気上昇通路21を上昇するIPAを含んだ蒸気の大部分は、温度の低い冷却コイル22の方向に導かれ、残りのIPAを含んだ蒸気が開口部20から処理槽17の内部に導かれるようになっている。   A quartz cooling coil 22 is provided above the steam rising passage 21 and above the opening 20 of the processing tank 17 as a cooling means for liquefying the steam containing IPA along the inner peripheral surface of the steam generating tank 13. Is provided. A flange 23 is provided at the lower part of the cooling coil 22, and the cooling coil 22 is partitioned from the steam rising passage 21 by the flange 23. Therefore, most of the steam containing IPA rising through the steam rising passage 21 is guided toward the cooling coil 22 having a low temperature, and the remaining steam containing IPA is introduced into the processing tank 17 from the opening 20. It has come to be.

さらに、冷却コイル22の内側には処理槽17の上部の蒸気レベルLの変動を抑制する抑制手段として囲い壁部25が設けられ、この囲い壁部25は処理槽17の上縁部によって一体に構成されている。   Furthermore, an enclosure wall 25 is provided inside the cooling coil 22 as a suppression means for suppressing fluctuations in the steam level L at the top of the treatment tank 17, and the enclosure wall 25 is integrated by the upper edge of the treatment tank 17. It is configured.

前述のように構成された蒸気乾燥装置11によれば、IPA供給管14からIPAが蒸気発生槽13に供給されると、IPAはヒータブロック16によって加熱されて蒸気発生槽13内でIPA蒸気Vが発生する。   According to the steam drying device 11 configured as described above, when IPA is supplied from the IPA supply pipe 14 to the steam generation tank 13, the IPA is heated by the heater block 16 and the IPA steam V is generated in the steam generation tank 13. Occurs.

IPA蒸気Vは、蒸気上昇通路21を上昇し、そのIPA蒸気Vの大部分は、温度の低い冷却コイル22の方向に導かれ、残りのIPAを含んだ蒸気が開口部20から処理槽17の内部に導かれる。処理槽17内に供給されたIPA蒸気Vは、過飽和状態となって処理槽17の内部に貯蓄され、処理槽17内全体において上部から下部へと均一な流れとなる。   The IPA vapor V rises in the vapor rising passage 21, and most of the IPA vapor V is guided toward the cooling coil 22 having a low temperature, and the vapor containing the remaining IPA passes through the opening 20 to the treatment tank 17. Led inside. The IPA vapor V supplied into the processing tank 17 is supersaturated and stored in the processing tank 17, and the entire processing tank 17 has a uniform flow from top to bottom.

処理槽17の底部17aにたどりついたIPA過飽和蒸気Vaは、底部17aの温度で再加熱され、再びIPA蒸気Vとなって処理槽17内を上昇し、再度温度の低い箇所でIPA過飽和蒸気Vaとなって再び下部に流れ落ちる。すなわち、処理槽17内では、IPA過飽和蒸気Va→IPA蒸気V→IPA過飽和蒸気Vaのサイクルが発生する。   The IPA supersaturated vapor Va reaching the bottom 17a of the treatment tank 17 is reheated at the temperature of the bottom 17a, becomes IPA vapor V again, rises in the treatment tank 17, and again reaches the IPA supersaturated vapor Va at a location where the temperature is low. Then it flows down to the bottom again. That is, a cycle of IPA supersaturated steam Va → IPA steam V → IPA supersaturated steam Va occurs in the processing tank 17.

また、処理槽17の上部開口付近での大気放射によって冷却されたIPA蒸気Vが囲い壁部25の部分で乱れがない環境の中で全面的に凝縮核を多量に生成する。この凝縮核はIPA過飽和蒸気Vaを吸収して大きな粒となって液滴としてIPA蒸気V中を降下する。   In addition, the IPA vapor V cooled by atmospheric radiation in the vicinity of the upper opening of the treatment tank 17 generates a large amount of condensed nuclei entirely in an environment where there is no turbulence in the surrounding wall portion 25. The condensed nuclei absorb the IPA supersaturated vapor Va and become large particles, and descend in the IPA vapor V as droplets.

この液滴は、蒸気中を通過することで加熱され、凝縮熱を出して表面の一部が蒸発して過飽和状態を作り出す。液滴は処理槽17の底面に接触すると加熱され再蒸発し周囲のエネルギーを取るため、その部分は温度が下がる。この液滴が蒸気レベルLの下部から常に供給されるので、処理槽17内は全面均一にIPA液滴が雨のように降下する。   These droplets are heated by passing through the vapor and generate heat of condensation to evaporate a part of the surface to create a supersaturated state. When the droplet comes into contact with the bottom surface of the treatment tank 17, it is heated and re-evaporates to take the surrounding energy, and the temperature of the portion drops. Since these droplets are always supplied from the lower part of the vapor level L, the IPA droplets fall like rain in the treatment tank 17 uniformly over the entire surface.

この状態で、水洗終了後のウェーハW(ウェーハボートに所定間隔を存して立位状態に保持された50枚のウェーハW)を処理槽17の上部開口から処理槽17内に浸漬する。このとき、ウェーハWの面上には水滴27が付着した状態にあり、ウェーハWの温度は20〜25℃である。すると、処理槽17内のIPA過飽和蒸気Vaが瞬時に、50枚のウェーハW相互間の隙間に均一に供給され、ウェーハWの面上で初期凝縮(液化)が生じる。同時に、ウェーハWの面上に多量の凝縮IPA26が生じることにより、処理槽17内は減圧され、処理槽17の開口部20からIPA蒸気Vが連続で途絶えることなく、処理槽17内に流れ込む現象が起こる。   In this state, the wafers W after washing with water (50 wafers W held in a standing state with a predetermined interval on the wafer boat) are immersed in the processing tank 17 from the upper opening of the processing tank 17. At this time, the water droplet 27 is attached on the surface of the wafer W, and the temperature of the wafer W is 20 to 25 ° C. Then, the IPA supersaturated vapor Va in the processing tank 17 is instantaneously and uniformly supplied to the gap between the 50 wafers W, and initial condensation (liquefaction) occurs on the surface of the wafers W. At the same time, a large amount of condensed IPA 26 is generated on the surface of the wafer W, whereby the inside of the processing tank 17 is depressurized, and the IPA vapor V flows into the processing tank 17 from the opening 20 of the processing tank 17 without being continuously interrupted. Happens.

前述したように、処理槽17内でIPA蒸気Vは、IPA過飽和蒸気Vaとなり、ウェーハWの面がIPA過飽和蒸気雰囲気から露出されることなく、処理槽17の上部から下部に、つまりウェーハWの上部から下部に向かって50枚のウェーハW間の隙間に均一に供給される。ウェーハWの面上でIPAの凝縮が連続的に続き、凝縮IPA26と水滴27が混和し、IPA+水滴28となってウェーハWの下部から滴下する。そして、IPA+水滴28は処理槽17の底部17aに集溜してドレン配管19から装置本体12の外部へ排出される。   As described above, the IPA vapor V becomes the IPA supersaturated vapor Va in the processing tank 17, and the surface of the wafer W is not exposed from the IPA supersaturated vapor atmosphere, so that the wafer W It is uniformly supplied to the gap between the 50 wafers W from the top to the bottom. Condensation of IPA continues continuously on the surface of the wafer W, and the condensed IPA 26 and water droplets 27 are mixed to form IPA + water droplets 28, which are dropped from the lower portion of the wafer W. The IPA + water droplets 28 are collected at the bottom 17a of the processing tank 17 and discharged from the drain pipe 19 to the outside of the apparatus main body 12.

ここで、蒸気発生槽13内と処理槽17内の温度について述べると、蒸気発生槽13より処理槽17の方が低い。よって、ウェーハWが処理槽17内に浸漬している間、開口部20からIPA蒸気Vが連続で処理槽17に供給される。そして、処理槽17内でIPA過飽和蒸気Vaが連続で生成される。   Here, when the temperature in the steam generation tank 13 and the processing tank 17 is described, the processing tank 17 is lower than the steam generation tank 13. Therefore, the IPA vapor V is continuously supplied to the processing tank 17 from the opening 20 while the wafer W is immersed in the processing tank 17. And IPA supersaturated vapor | steam Va is continuously produced | generated in the processing tank 17. FIG.

従って、ウェーハWの面上の水滴27が完全にIPA蒸気Vで置換され、ウェーハWの温度がIPA過飽和蒸気Vaの温度と同じになった時点で、ウェーハWの面上でのIPAの凝縮は終了する。ただし、IPA過飽和蒸気Vaは、途絶えることなくウェーハWの上部から下部に向かって50枚のウェーハWの相互間の隙間に均一に供給される。   Therefore, when the water droplets 27 on the surface of the wafer W are completely replaced by the IPA vapor V, and the temperature of the wafer W becomes the same as the temperature of the IPA supersaturated vapor Va, the condensation of IPA on the surface of the wafer W is finish. However, the IPA supersaturated vapor Va is uniformly supplied to the gaps between the 50 wafers W from the upper part to the lower part of the wafers W without interruption.

前述したように、処理槽17内で、IPA過飽和蒸気Va→IPA蒸気V→IPA過飽和蒸気Vaのサイクルが発生しているときの処理槽17内の温度は、図5のグラフに曲線(イ)で示すように、81〜82℃である。この状態で、水洗終了後のウェーハWを処理槽17の上部開口から処理槽17内に浸漬したときのウェーハWの上部、中心部及び下部の温度を測定したところ、ウェーハWの上部は曲線(ロ)、ウェーハWの中心部は曲線(ハ)、ウェーハWの下部は曲線(ニ)に示すようになる。すなわち、ウェーハWを処理槽17に浸漬した瞬間(約4秒後)には処理槽17内の温度が60℃前後まで降下するが、約30秒を浸漬した瞬間からウェーハWの下部の温度が上昇するとともに、ウェーハWの上部の温度も6秒後には上昇し、初期凝縮がウェーハWでも始まっている。そして、30秒後に、処理槽17内の温度が81〜82℃に回復し、これに伴ってウェーハWの温度が処理槽17内の温度に接近し、熱平衡凝縮が始まる。   As described above, the temperature in the processing tank 17 when the cycle of IPA supersaturated vapor Va → IPA steam V → IPA supersaturated steam Va is generated in the processing tank 17 is shown by a curve (A) in the graph of FIG. It is 81-82 degreeC as shown by. In this state, when the temperature of the upper portion, the central portion and the lower portion of the wafer W when the wafer W after rinsing was immersed in the processing bath 17 from the upper opening of the processing bath 17 was measured, the upper portion of the wafer W was curved ( B) The center of the wafer W is shown by a curve (c), and the lower part of the wafer W is shown by a curve (d). That is, at the moment when the wafer W is immersed in the processing tank 17 (after about 4 seconds), the temperature in the processing tank 17 drops to around 60 ° C., but from the moment when the wafer W is immersed for about 30 seconds, the temperature below the wafer W As the temperature rises, the temperature of the upper portion of the wafer W also rises after 6 seconds, and the initial condensation has begun in the wafer W. Then, after 30 seconds, the temperature in the processing tank 17 recovers to 81 to 82 ° C., and accordingly, the temperature of the wafer W approaches the temperature in the processing tank 17 and thermal equilibrium condensation starts.

また、処理槽17内に温度センサを配置し、処理槽17にウェーハWを投入する前の大気状態における縦方向の温度分布を見ると、表1及び図4に示す通りとなる。すなわち、処理槽17に収容されるウェーハWの中心位置Woを基準とすると、中心位置Woより上方域に4個の温度センサを配置(1,2,3,4)し、中心位置Woより下方域に3個の温度センサを配置(5,6,7)した温度分布は、中心位置Woより上方域が(1,2,3,4)が高く、中心位置Woより下方域(5,6,7)が低く、その温度差は1℃未満である。処理槽17の上方域より下方域の温度が僅かながら低いのは、ウェーハWの面上における水滴27が処理槽17の下方域で気化するため、気化熱によって熱が奪われ、処理槽17の下方域の温度が下がると考えられる。

Figure 2005268331
Further, when a temperature sensor is arranged in the processing tank 17 and the vertical temperature distribution in the atmospheric state before the wafer W is put into the processing tank 17 is seen, it is as shown in Table 1 and FIG. That is, when the center position Wo of the wafer W accommodated in the processing tank 17 is used as a reference, four temperature sensors are disposed above the center position Wo (1, 2, 3, 4) and below the center position Wo. In the temperature distribution in which three temperature sensors are arranged (5, 6, 7) in the region, the upper region (1, 2, 3, 4) is higher than the center position Wo, and the lower region (5, 6) from the center position Wo. 7) is low and the temperature difference is less than 1 ° C. The reason why the temperature in the lower area is slightly lower than the upper area of the processing tank 17 is that the water droplets 27 on the surface of the wafer W are vaporized in the lower area of the processing tank 17, so that heat is taken away by the heat of vaporization. It is thought that the temperature in the lower area decreases.
Figure 2005268331

前述したように、蒸気発生槽13の内部に設置した処理槽17内の温度勾配を上方域が高く、下方域が低くなることによって、IPA過飽和蒸気VaがウェーハWの上部から下部に向かって連続的に流下する。従って、ウェーハWを浸漬した際、開口部20からIPA蒸気Vが連続で供給されるのと同時に、IPA過飽和蒸気Vaが生成し、IPA過飽和蒸気VaはIPA蒸気Vと違って温度の低い箇所での局部的な凝縮とはならず、ウェーハWの面の全体で凝縮が生じる。IPA過飽和蒸気VaがウェーハWの上部から下部に向かって連続的に流下するため、50枚のウェーハWの相互間の隙間に均一なIPA過飽和蒸気Vaの供給がなされ、ウェーハWを浸漬した瞬間から均一な凝縮が得られる。従って、平衡状態になるまでの時間を要しない。   As described above, the IPA supersaturated vapor Va continues from the upper part to the lower part of the wafer W by increasing the temperature gradient in the processing tank 17 installed in the steam generation tank 13 in the upper region and lowering the lower region. Flow down. Therefore, when the wafer W is immersed, the IPA vapor V is continuously supplied from the opening 20 and, at the same time, the IPA supersaturated vapor Va is generated. The IPA supersaturated vapor Va is different from the IPA vapor V at a low temperature. Condensation occurs over the entire surface of the wafer W. Since the IPA supersaturated vapor Va continuously flows from the upper part to the lower part of the wafer W, the uniform IPA supersaturated vapor Va is supplied to the gap between the 50 wafers W, and from the moment when the wafer W is immersed. Uniform condensation is obtained. Therefore, no time is required until the equilibrium state is reached.

さらに、蒸気発生槽13の内部に処理槽17を設けたことにより、IPA蒸気Vと水滴27の混合した廃液は、蒸気発生槽13に戻ることができず、全てドレン配管19から外部に排出され、ウェーハWの面には絶えず、新鮮なIPAだけが供給される。   Furthermore, by providing the treatment tank 17 inside the steam generation tank 13, the waste liquid mixed with the IPA vapor V and the water droplets 27 cannot return to the steam generation tank 13 and is entirely discharged from the drain pipe 19. The surface of the wafer W is constantly supplied with only fresh IPA.

蒸気発生槽13の内部に処理槽17を設けたことにより、ウェーハWが浸漬から搬出まで常にIPA過飽和蒸気Vaの雰囲気に浸っているため、ウォータマーク発生の抑制効果がある。また、IPA過飽和蒸気Vaの流下は処理槽17の壁面とウェーハWの間もウェーハWとウェーハW間の流下と同様になるため、両端のウェーハW(1枚目と50枚目)のパターン面が処理槽17の壁面に向いている場合でも(パターン面が壁面との向きに関わらず)、ウォータマーク発生の抑制効果がある。   Since the processing tank 17 is provided inside the steam generation tank 13, the wafer W is always immersed in the atmosphere of the IPA supersaturated vapor Va from the immersion to the carry-out, so that there is an effect of suppressing the generation of the watermark. Further, the flow of the IPA supersaturated vapor Va is the same between the wall of the processing tank 17 and the wafer W as the flow between the wafer W and the wafer W, so the pattern surfaces of the wafers W (first and 50th) at both ends Even when facing the wall surface of the processing tank 17 (regardless of the orientation of the pattern surface with respect to the wall surface), there is an effect of suppressing the generation of watermarks.

1枚目と50枚目のウェーハWのパターン面が処理槽17の壁面と逆の場合、パターン面上で残留パーティクルの除去に寄与するIPAの凝縮が得られず、パターン面上にパーティクルが残留していた場合、これを除去しきれない傾向にある。しかし、処理槽17内では、IPA過飽和蒸気Vaが連続でウェーハWの上部から下部に向かって処理槽17の壁面と1枚目のウェーハWとの間及び50枚目のウェーハWとの間の隙間に均一に供給されている。よって、1枚目と50枚目のウェーハWのパターン面上にパーティクルが残留したまま、処理槽17内に浸漬された時でも、パターン面が壁面との向きに関わらず、残留パーティクルが除去される。   When the pattern surfaces of the first and 50th wafers W are opposite to the wall surface of the processing tank 17, condensation of IPA that contributes to the removal of residual particles cannot be obtained on the pattern surface, and particles remain on the pattern surface. If this is the case, there is a tendency that this cannot be completely removed. However, in the processing tank 17, the IPA supersaturated vapor Va continuously flows from the upper part to the lower part of the wafer W between the wall surface of the processing tank 17 and the first wafer W and between the 50th wafer W. The gap is evenly supplied. Therefore, even when the particles remain on the pattern surfaces of the first and 50th wafers W and are immersed in the processing bath 17, the residual particles are removed regardless of the orientation of the pattern surface with the wall surface. The

さらに、処理槽17は、底部17aとこの底部17aの開口縁から連続する胴部17bを有し、この胴部17bにIPA蒸気Vを連続で供給する開口部20を設けた構造である。従って、開口部20から供給されたIPA蒸気Vは、IPA過飽和蒸気Vaとなり、処理槽17の上部から下部へと流れ落ち、処理槽17内の下部の壁面で再度IPA蒸気Vとなって上昇する。このIPA蒸気V→IPA過飽和蒸気Va→IPA蒸気Vのサイクルが発生しているため、ドレン配管19からIPAの排出が抑制される。表2は、従来の受け皿とこの発明の処理槽17を使用し、1時間の待機時に、ドレン配管19から排出されたIPA量の比較データーである。

Figure 2005268331
Further, the processing tank 17 has a structure having a bottom portion 17a and a body portion 17b continuous from the opening edge of the bottom portion 17a, and an opening portion 20 for continuously supplying the IPA vapor V to the body portion 17b. Therefore, the IPA vapor V supplied from the opening 20 becomes IPA supersaturated vapor Va, flows down from the upper part of the processing tank 17 to the lower part, and rises again as IPA vapor V on the lower wall surface in the processing tank 17. Since the cycle of this IPA steam V → IPA supersaturated steam Va → IPA steam V is generated, the discharge of IPA from the drain pipe 19 is suppressed. Table 2 shows comparison data of the amount of IPA discharged from the drain pipe 19 during the standby for 1 hour using the conventional tray and the treatment tank 17 of the present invention.
Figure 2005268331

なお、この発明の蒸気乾燥装置は、前述した実施形態に制約されるものではない。この発明は半導体ウェーハ以外の被乾燥物、例えば、液晶表示装置用のガラス基板や、光記録ディスクおよび磁気記録ディスク等の記録ディスク用基板などの各種基板を乾燥する用途にも適用できる。   In addition, the steam drying apparatus of this invention is not restrict | limited to embodiment mentioned above. The present invention can also be applied to applications for drying various substrates such as glass substrates for liquid crystal display devices and recording disk substrates such as optical recording disks and magnetic recording disks, other than semiconductor wafers.

この発明の第1の実施形態の蒸気乾燥装置の縦断正面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal front view of a steam drying apparatus according to a first embodiment of this invention. 同実施形態の蒸気乾燥装置の縦断側面図。The vertical side view of the steam drying apparatus of the embodiment. 同実施形態の処理槽の斜視図。The perspective view of the processing tank of the embodiment. 同実施形態の処理槽の温度分布を測定する温度センサの配置状態を示す説明図。Explanatory drawing which shows the arrangement | positioning state of the temperature sensor which measures the temperature distribution of the processing tank of the embodiment. 処理室及びウェーハの温度と時間との関係を示すグラフ。The graph which shows the relationship between the temperature of a process chamber and a wafer, and time. 従来の蒸気乾燥装置の縦断正面図。The longitudinal front view of the conventional steam dryer. 従来の蒸気乾燥装置の縦断正面図。The longitudinal front view of the conventional steam dryer. 従来の蒸気乾燥装置の縦断正面図。The longitudinal front view of the conventional steam dryer. (a)は従来の蒸気乾燥装置の縦断正面図、(b)はウェーハの側面図。(A) is a longitudinal front view of a conventional steam drying apparatus, (b) is a side view of a wafer. 従来の蒸気乾燥装置の縦断正面図。The longitudinal front view of the conventional steam dryer.

符号の説明Explanation of symbols

12…装置本体、13…蒸気発生槽、14…IPA供給管、16…ヒータブロック、17…処理槽、19…ドレン配管、20…開口部、21…蒸気上昇通路、22…冷却コイル、W…ウェーハ(被乾燥物) DESCRIPTION OF SYMBOLS 12 ... Apparatus main body, 13 ... Steam generation tank, 14 ... IPA supply pipe, 16 ... Heater block, 17 ... Processing tank, 19 ... Drain piping, 20 ... Opening part, 21 ... Steam rise passage, 22 ... Cooling coil, W ... Wafer (to be dried)

Claims (7)

有機溶剤を供給する有機溶剤供給手段及び有機溶剤を含んだ蒸気を発生する蒸気発生手段を備えた上部開口の蒸気発生槽と、
前記蒸気発生槽の内部に設けられ洗浄された被乾燥物を収容する上部開口の処理槽と、
前記蒸気発生槽と処理槽との間に設けられ前記蒸気発生手段によって発生した有機溶剤を含んだ蒸気を前記処理槽の上部からその内部に導く蒸気上昇通路と、
前記蒸気上昇通路の上部に設けられ、該蒸気上昇通路を上昇する有機溶剤を含んだ蒸気を液化する冷却手段と、
前記冷却手段の内側に設けられ、前記処理槽の上部の蒸気レベルの変動を抑制する抑制手段とを備え、
前記処理槽に収容される被乾燥物の設置位置を基準として前記処理槽の内部の温度勾配を上方域が高く、下方域を低くし、有機溶剤蒸気から過飽和蒸気を生成して前記被乾燥物の残留水分を除去することを特徴とする蒸気乾燥装置。
A steam generation tank having an upper opening provided with an organic solvent supply means for supplying an organic solvent and a steam generation means for generating a vapor containing the organic solvent;
A treatment tank with an upper opening that accommodates the object to be dried provided inside the steam generation tank;
A vapor rising passage for introducing a vapor containing an organic solvent generated between the vapor generation tank and the treatment tank and generated by the vapor generation means from an upper portion of the treatment tank;
A cooling means provided at an upper portion of the vapor rising passage, for liquefying vapor containing an organic solvent that rises in the vapor rising passage;
A suppression means provided inside the cooling means, for suppressing fluctuations in the vapor level at the top of the treatment tank,
The temperature gradient inside the treatment tank is high in the upper area and the lower area is lowered based on the installation position of the object to be dried contained in the treatment tank, and a supersaturated vapor is generated from the organic solvent vapor to generate the dried object. A steam drying apparatus for removing residual moisture from the water.
前記処理槽の内部で、前記有機溶剤が、蒸気−過飽和蒸気−蒸気のサイクルを繰り返し、前記有機溶剤の凝縮作用によって前記被乾燥物上の残留水分を除去することを特徴とする請求項1記載の蒸気乾燥装置。   2. The organic solvent repeats a steam-supersaturated steam-steam cycle inside the treatment tank, and removes residual moisture on the material to be dried by the condensation action of the organic solvent. Steam drying equipment. 前記処理槽内における温度勾配の高低差は1℃未満であることを特徴とする請求項1記載の蒸気乾燥装置。   The steam drying apparatus according to claim 1, wherein a difference in temperature gradient in the processing tank is less than 1 ° C. 前記処理槽は、上部開口付近に前記蒸気上昇通路を上昇する有機溶剤を含んだ蒸気を処理槽の内部に導く開口部を有していることを特徴とする請求項1記載の蒸気乾燥装置。   The steam drying apparatus according to claim 1, wherein the treatment tank has an opening that guides a vapor containing an organic solvent that rises in the vapor rising passage in the vicinity of an upper opening to the inside of the treatment tank. 前記冷却手段は、前記蒸気上昇通路の上部に設けられた冷却コイルであり、前記蒸気上昇通路とは区画されていることを特徴とする請求項1記載の蒸気乾燥装置。   The steam drying apparatus according to claim 1, wherein the cooling means is a cooling coil provided in an upper portion of the steam rising passage, and is partitioned from the steam rising passage. 前記抑制手段は、前記処理槽の周壁によって構成され、前記冷却手段の内側に突出して設けられていることを特徴とする請求項1記載の蒸気乾燥装置。   The steam drying apparatus according to claim 1, wherein the suppressing unit is configured by a peripheral wall of the processing tank and is provided to protrude inside the cooling unit. 前記有機溶剤は、イソプロピルアルコールであることを特徴とする請求項1〜6のいずれかに記載の蒸気乾燥装置。   The steam drying apparatus according to claim 1, wherein the organic solvent is isopropyl alcohol.
JP2004075144A 2004-03-16 2004-03-16 Steam dryer Expired - Lifetime JP3910182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004075144A JP3910182B2 (en) 2004-03-16 2004-03-16 Steam dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004075144A JP3910182B2 (en) 2004-03-16 2004-03-16 Steam dryer

Publications (2)

Publication Number Publication Date
JP2005268331A true JP2005268331A (en) 2005-09-29
JP3910182B2 JP3910182B2 (en) 2007-04-25

Family

ID=35092598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004075144A Expired - Lifetime JP3910182B2 (en) 2004-03-16 2004-03-16 Steam dryer

Country Status (1)

Country Link
JP (1) JP3910182B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141502A (en) * 2010-01-09 2011-07-21 Seiko Epson Corp Method of manufacturing liquid crystal device
CN115111879A (en) * 2022-06-23 2022-09-27 苏州睿智源自动化科技有限公司 Chemical drying equipment for crystal elements

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141502A (en) * 2010-01-09 2011-07-21 Seiko Epson Corp Method of manufacturing liquid crystal device
CN115111879A (en) * 2022-06-23 2022-09-27 苏州睿智源自动化科技有限公司 Chemical drying equipment for crystal elements
CN115111879B (en) * 2022-06-23 2024-03-19 苏州睿智源自动化科技有限公司 Wafer chemical drying equipment

Also Published As

Publication number Publication date
JP3910182B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
JP3897404B2 (en) Vapor dryer and drying method
TW502332B (en) Substrate processing unit
KR100372094B1 (en) Apparatus and Method for Drying
JP5522028B2 (en) Substrate processing apparatus, substrate processing method, and storage medium
JP2003297795A (en) Cleaner and dryer, and cleaning and drying method of semiconductor wafer
KR20030072189A (en) An apparatus and a method for drying washed objects
JPH0372626A (en) Cleaning treatment of substrate and device
JP3910182B2 (en) Steam dryer
JP3996345B2 (en) Method and apparatus for drying washed product and washing and drying apparatus
JP2010118498A (en) Method for processing substrate and substrate processing equipment
JPS63182818A (en) Drying device
JP5412218B2 (en) Substrate processing equipment
JP2005072598A (en) Apparatus and method for cleaning semiconductor substrate
WO2006030560A1 (en) Method and apparatus for treating substrate
JPH11162923A (en) Apparatus and method for washing and drying
JP3923193B2 (en) Vapor dryer
JP2001237211A (en) Substrate treating device
JPH06163508A (en) Method and equipment for drying substrate
JP2004172574A (en) Processing apparatus and method of substrate
JP2922194B1 (en) Drying equipment for washing
JPS62198126A (en) Processor
KR100862704B1 (en) Apparatus and method for treating waste liquid
JPS63160232A (en) Processing method and apparatus
JP2005093709A (en) Dryer
JPH0574753A (en) Drying method and equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070123

R150 Certificate of patent or registration of utility model

Ref document number: 3910182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250