JP2005268293A - Micromoving mechanism - Google Patents

Micromoving mechanism Download PDF

Info

Publication number
JP2005268293A
JP2005268293A JP2004074522A JP2004074522A JP2005268293A JP 2005268293 A JP2005268293 A JP 2005268293A JP 2004074522 A JP2004074522 A JP 2004074522A JP 2004074522 A JP2004074522 A JP 2004074522A JP 2005268293 A JP2005268293 A JP 2005268293A
Authority
JP
Japan
Prior art keywords
gas
mover
micro
gas receiving
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004074522A
Other languages
Japanese (ja)
Inventor
Katsumi Sasaki
勝美 佐々木
Tomoko Hirayama
朋子 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSC KK
Original Assignee
PSC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PSC KK filed Critical PSC KK
Priority to JP2004074522A priority Critical patent/JP2005268293A/en
Publication of JP2005268293A publication Critical patent/JP2005268293A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a micromoving mechanism employing gas in which high speed response can be improved. <P>SOLUTION: The micromoving mechanism 10 comprises a moving member 12 movable in a moving direction shown by an arrow, a section 14 for guiding the moving member 12 in the moving direction, a gas supply passage 18 provided in the bottom face member 16 of the guide section 14 and supplying gas to a gap in the upper surface of the bottom face member 16 where the guide section 14 faces the moving member 12, and a control section 20 causing predetermined micromovement of the moving member 12 in the arrow direction by controlling gas pressure being supplied to the gas supply passage 18. The gas having a gas pressure regulated at the control section 20 is led to the inlet of the gas supply passage 18, passed through a restriction part 26, and jetted from an opening provided in a gas receiving wall 24 toward the gas receiving surface 22 of the moving member 12. The moving member 12 floats from the gas receiving wall 24 to form a gap. Amount of the gap is controlled by the supply gas pressure. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、移動機構に係り、特にμmオーダーの移動量を有する微小移動機構に関する。   The present invention relates to a moving mechanism, and more particularly to a minute moving mechanism having a moving amount on the order of μm.

流体圧を用いるアクチュエータとしては、ピストンとシリンダーの機構で代表されるようなものがよく知られている。流体圧アクチュエータは、特許文献1に示されるように、流体圧サーボ機構を用い、流体圧を制御することで移動体を駆動することができる。特に、空気等の気体を用いる気体圧アクチュエータは、油圧を用いるものに比べてコンタミネーションの問題が少なく、扱いやすい位置決め装置として期待されている。ところで、一般的に用いられる気体圧アクチュエータは、応答性があまり良くない。それは、気体圧アクチュエータのバネ定数が、気体室の体積が大きいほど小さくなり、また使用気体の圧縮率が大きいほど小さくなる傾向にあるが、シリンダーにおける空気室の体積を小さくするには限度があるためである。   As actuators using fluid pressure, those represented by a piston and cylinder mechanism are well known. As shown in Patent Document 1, the fluid pressure actuator can drive the moving body by controlling the fluid pressure using a fluid pressure servo mechanism. In particular, a gas pressure actuator that uses a gas such as air is expected as a positioning device that is less likely to cause contamination and easier to handle than an actuator that uses oil pressure. By the way, generally used gas pressure actuators are not very responsive. The spring constant of the gas pressure actuator tends to decrease as the volume of the gas chamber increases, and decreases as the compression rate of the gas used increases, but there is a limit to reducing the volume of the air chamber in the cylinder. Because.

そこで、気体圧アクチュエータの応答性を改善するため、駆動部にバネ定数の高い部材を導入することが考えられている。例えば、特許文献2には空気圧により伸縮するベローズを用いて可動枠の移動を行うことが開示されているが、このベローズを金属製とすることができる。金属ベローズのバネ定数は、金属ベローズの形状及び用いられる金属の弾性定数で定まるので、上記の気体室の体積や圧縮率で定まる一般的な気体圧アクチュエータのバネ定数より大きな値とできる。   Therefore, in order to improve the responsiveness of the gas pressure actuator, it is considered to introduce a member having a high spring constant into the drive unit. For example, Patent Document 2 discloses that the movable frame is moved using a bellows that expands and contracts by air pressure. However, the bellows can be made of metal. Since the spring constant of the metal bellows is determined by the shape of the metal bellows and the elastic constant of the metal used, it can be set to a value larger than the spring constant of a general gas pressure actuator determined by the volume of the gas chamber and the compression rate.

特開昭57−51002号公報JP-A-57-5102 特開平8−11078号公報JP-A-8-11078

近年、位置決め装置において、その精度、分解能の向上の要求が著しい。例えば、半導体装置の露光装置では、半導体デバイスの最小線幅が100nmを切る。したがって、半導体デバイスの寸法精度の要求は10nm以下となり、そのための位置決めアクチュエータの位置決め精度は1nm以下、つまりサブnmのものが要望される。また、その高速性も同様に要求される。   In recent years, there has been a significant demand for improved accuracy and resolution in positioning devices. For example, in an exposure apparatus for a semiconductor device, the minimum line width of the semiconductor device is less than 100 nm. Therefore, the dimensional accuracy requirement of the semiconductor device is 10 nm or less, and the positioning accuracy for that purpose is 1 nm or less, that is, sub-nm. Further, the high speed is also required.

気体アクチュエータを用いる移動機構は、他の機構に較べ、上記のようにコンタミネーションが少ないほか、電磁的ノイズを発生せず、温度変化による影響、振動、騒音も少ない。そこで半導体装置等の位置決めアクチュエータの用途のほか、除振装置における振動を打ち消すためのアクチュエータの用途等に期待される。しかし、上記のように気体の性質から来る特性のため、要望される高精度、高速応答を達成するには高度かつ複雑な制御を用いても困難なことが多い。   A moving mechanism using a gas actuator is less contaminated as described above than other mechanisms, does not generate electromagnetic noise, and is less affected by temperature changes, vibration, and noise. Therefore, in addition to the use of a positioning actuator such as a semiconductor device, it is expected to be used as an actuator for canceling vibration in a vibration isolation device. However, due to the characteristics that come from the nature of the gas as described above, it is often difficult to achieve the desired high accuracy and high speed response even if sophisticated and complicated control is used.

また、金属ベローズ等を用いてバネ定数を向上させる試みも、そのバネ定数は金属材料の特性で定まるので、余り高い値が望めない。また、テーブルに直接取り付ける形態のときには、例えばXYテーブルのように2次元移動を行う場合の構造が複雑となる。   Also, an attempt to improve the spring constant using a metal bellows or the like cannot be expected to be too high because the spring constant is determined by the characteristics of the metal material. Further, in the case of directly attaching to the table, the structure for performing two-dimensional movement, such as an XY table, becomes complicated.

本発明の目的は、気体を用いる移動機構において、高速応答性を改善できる微小移動機構を提供することである。本発明の他の目的は、気体を用いる移動機構において、制御性を改善できる微小移動機構を提供することである。また、除振装置における気体を用いる移動機構において、除振性能を改善できる微小移動機構を提供することである。以下の請求項に係る発明は、これらの目的の少なくとも1つに貢献するものである。   An object of the present invention is to provide a minute moving mechanism capable of improving high-speed response in a moving mechanism using gas. Another object of the present invention is to provide a minute movement mechanism that can improve controllability in a movement mechanism that uses gas. Another object of the present invention is to provide a minute movement mechanism that can improve vibration isolation performance in a movement mechanism that uses gas in a vibration isolation device. The invention according to the following claims contributes to at least one of these objects.

本発明は、気体軸受機構のバネ定数が高いことに着目し、気体軸受の隙間をそこに供給する気体圧の制御により変化させ、この隙間の変化を対象物の微小移動に用い、応答性の良い微小移動機構を実現しようというものである。ここで気体軸受機構とは、一般的にステージ等の載荷をベースに対し、適当な気体圧で浮上させて支える軸受機構である。気体軸受機構は、流体の一般的性質により、載荷の変動によりその隙間が狭くなろうとするときに、それに抗する作用を有する。例えば、気体軸受の隙間を約10μmとして、これを1μm変化させるにはおよそ10Nの力を要する。すなわち、バネ定数=力/変位は、およそ10N/cmとなり、一般的なピストン・シリンダ型の気体圧アクチュエータに比べ、格段に大きな値となる。また、気体軸受の隙間と供給気体圧との関係は、単純な構造のため、圧縮性気体の流れの理論に乗ることが予想され、その場合には、制御圧力と微小移動の関係の再現性が良く、複雑な制御を要しない。このような気体軸受機構の気体圧制御により、およそ数10μm程度の範囲で、nmオーダーの精度により微小移動を行わせることが可能である。これらは、移動量の計測をフィードバックしなくても実現可能であるが、さらに移動量を計測してフィードバック制御することで、より高精度の微小移動をさせることも可能となる。 The present invention pays attention to the high spring constant of the gas bearing mechanism, changes the gap of the gas bearing by controlling the gas pressure supplied thereto, and uses this change in the gap for the minute movement of the object. This is to achieve a good micro-movement mechanism. Here, the gas bearing mechanism is a bearing mechanism that generally supports a load such as a stage, which is levitated and supported by an appropriate gas pressure with respect to the base. The gas bearing mechanism has an action to counteract when the gap is narrowed due to the variation of the load due to the general properties of the fluid. For example, if the gap of the gas bearing is about 10 μm and this is changed by 1 μm, a force of about 10 N is required. That is, the spring constant = force / displacement is approximately 10 5 N / cm, which is a significantly larger value than a general piston / cylinder type gas pressure actuator. In addition, the relationship between the clearance of the gas bearing and the supply gas pressure is a simple structure, so it is expected to ride on the theory of compressible gas flow. Is good and does not require complicated control. By controlling the gas pressure of such a gas bearing mechanism, a minute movement can be performed with an accuracy of the order of nm within a range of about several tens of μm. These can be realized without feedback of movement amount measurement, but it is also possible to perform fine movement with higher accuracy by further measuring the movement amount and performing feedback control.

本発明に係る微小移動機構は、外形の一部に気体受面を有し、出力に用いられる可動子と、可動子を案内し、気体受面に向かい合う気体受壁を有する案内部と、気体受面又は気体受壁に開口し、気体受面と気体受壁との間の隙間に気体を供給する気体供給路と、気体受壁に向かって気体を圧縮しつつ可動子を押し付ける押付力発生部と、気体供給路に供給する気体圧を制御し、押付力と釣り合わせつつ気体受面と気体受壁との間の隙間量を調整して可動子を微小移動させる制御部と、を備えることを特徴とする。   The minute movement mechanism according to the present invention has a gas receiving surface in a part of the outer shape, a mover used for output, a guide unit that guides the mover and has a gas receiving wall facing the gas receiving surface, and a gas A gas supply path that opens to the receiving surface or the gas receiving wall and supplies gas to the gap between the gas receiving surface and the gas receiving wall, and a pressing force that presses the mover while compressing the gas toward the gas receiving wall And a control unit that controls the gas pressure supplied to the gas supply path and adjusts the gap amount between the gas receiving surface and the gas receiving wall while balancing with the pressing force, and moves the mover slightly. It is characterized by that.

上記構成により、可動子の気体受面と案内部の気体受壁との間で気体軸受を形成し、その隙間に供給する気体圧を制御する。したがって、可動子の微小移動に関するバネ定数は、一般的な気体圧アクチュエータに比べ格段に高い値となり、高速応答性が改善される。   By the said structure, a gas bearing is formed between the gas receiving surface of a needle | mover, and the gas receiving wall of a guide part, and the gas pressure supplied to the clearance gap is controlled. Therefore, the spring constant relating to the minute movement of the mover is significantly higher than that of a general gas pressure actuator, and the high-speed response is improved.

また、本発明に係る微小移動機構において、可動子は、微小移動の軸方向の両端部にそれぞれ気体受面を有し、案内部は、可動子の各気体受面にそれぞれ対応する気体受壁を有し、気体供給路は、可動子と案内部との間に形成される各隙間にそれぞれ気体を供給し、一方の隙間において発生する力を他方の隙間に向かう押付力とする複数の気体供給路であり、制御部は、各気体供給路に供給する気体圧をそれぞれ制御して可動子を微小移動させることが好ましい。上記構成により、押付力発生部を特に要せず、構成が簡単となる。   Further, in the micro movement mechanism according to the present invention, the mover has a gas receiving surface at both ends in the axial direction of the micro movement, and the guide part has a gas receiving wall corresponding to each gas receiving surface of the mover. The gas supply path supplies a gas to each gap formed between the mover and the guide portion, and a plurality of gases having a force generated in one gap as a pressing force toward the other gap. It is a supply path, and it is preferable that the control unit finely moves the mover by controlling the gas pressure supplied to each gas supply path. According to the above configuration, the pressing force generator is not particularly required, and the configuration is simple.

また、本発明に係る微小移動機構において、微小移動の軸方向は、互いに直交するX軸方向とY軸方向とを有し、可動子は、X軸方向の両端部と、Y軸方向の両端部にそれぞれ気体受面を有することが好ましい。上記構成により、いわゆるXY移動機構を構成することができる。   In the micro movement mechanism according to the present invention, the axial direction of the micro movement has an X-axis direction and a Y-axis direction orthogonal to each other, and the mover has both ends in the X-axis direction and both ends in the Y-axis direction. Each part preferably has a gas receiving surface. With the above configuration, a so-called XY moving mechanism can be configured.

また、本発明に係る微小移動機構において、さらに、微小移動の軸方向は、X軸方向及びY軸方向に直行するZ軸方向を有し、可動子は、Z軸方向の一端部に気体受面を有することが好ましい。上記構成により、いわゆるXYZ移動機構を構成することができる。   In the micro movement mechanism according to the present invention, the axial direction of the micro movement has a Z-axis direction orthogonal to the X-axis direction and the Y-axis direction, and the mover receives gas at one end in the Z-axis direction. It is preferable to have a surface. With the above configuration, a so-called XYZ moving mechanism can be configured.

また、本発明に係る微小移動機構は、ベースと可動ステージとの間に6つの微小移動アクチュエアータを所定の位置関係で接続し、各微小移動アクチュエータをそれぞれ制御して駆動することで可動ステージをベースに対し6自由度の運動を行わせる微小移動機構であって、各微小移動アクチュエータは、外形の一部に気体受面を有し、出力に用いられる可動子と、可動子を案内し、気体受面に向かい合う気体受壁を有する案内部と、気体受面又は気体受壁に開口し、気体受面と気体受壁との間の隙間に気体を供給する気体供給路と、気体受壁に向かって気体を圧縮しつつ可動子を押し付ける押付力発生部と、気体供給路に供給する気体圧を制御し、押付力と釣り合わせつつ気体受面と気体受壁との間の隙間量を調整して可動子を微小移動させる制御部と、を備えることを特徴とする。上記構成により、いわゆる6自由度パラレルリンク機構を構成することができる。   Further, the micro movement mechanism according to the present invention connects six micro movement actuators between the base and the movable stage in a predetermined positional relationship, and controls each micro movement actuator to drive the movable stage. A micro-movement mechanism that performs a motion of 6 degrees of freedom with respect to a base, and each micro-movement actuator has a gas receiving surface in a part of the outer shape, guides the mover used for output, and the mover, A guide part having a gas receiving wall facing the gas receiving surface; a gas supply path that opens to the gas receiving surface or the gas receiving wall and supplies gas to a gap between the gas receiving surface and the gas receiving wall; and a gas receiving wall The pressing force generation part that presses the mover while compressing the gas toward the gas and the gas pressure supplied to the gas supply path are controlled, and the amount of the gap between the gas receiving surface and the gas receiving wall is balanced with the pressing force. Adjust and move the mover slightly A control unit that, characterized in that it comprises a. With the above configuration, a so-called 6-degree-of-freedom parallel link mechanism can be configured.

また、本発明に係る微小移動機構は、複数の可動子を微小移動の軸方向に直列に配列する微小移動機構であって、外形の一部に気体受面を有し、出力に用いられる可動子と、微小移動の軸方向の両端部にそれぞれ気体受面を有する中間可動子と、中間可動子の一方の気体受面に向かい合う気体受壁を有し、中間可動子の他方の気体受面に出力用の可動子の気体受面が向かい合うように、中間可動子及び出力用の可動子を直列に配置して案内する案内部と、気体受面又は気体受壁に開口し、案内部と中間可動子との間の隙間及び中間可動子と出力用の可動子との間の隙間に、それぞれ気体を供給する複数の気体供給路と、各隙間の気体を圧縮しつつ、案内部の気体受壁に向かって出力用の可動子及び中間可動子を押し付ける押付力発生部と、各気体供給路に供給する気体圧をそれぞれ制御し、押付力と釣り合わせつつ各隙間の隙間量を調整して出力用の可動子を微小移動させる制御部と、を備えることを特徴とする。ここで、中間可動子の数は複数であってもよい。このように、案内部の気体受壁から出力可動子との間に中間可動子を配置し、これらも気体軸受機構により微小移動するものとすることで、最終的な出力可動子の案内部に対する微小移動の範囲を広げることができる。   The micro-movement mechanism according to the present invention is a micro-movement mechanism in which a plurality of movers are arranged in series in the axial direction of the micro movement, and has a gas receiving surface in a part of the outer shape and is used for output. An intermediate mover having gas receiving surfaces at both ends in the axial direction of the micro movement, and a gas receiving wall facing one gas receiving surface of the intermediate mover, the other gas receiving surface of the intermediate mover A guide portion that guides the intermediate mover and the output mover arranged in series so that the gas receiving surface of the output mover faces each other, and opens to the gas receiving surface or the gas receiving wall; A plurality of gas supply paths for supplying gas to the gap between the intermediate mover and the gap between the intermediate mover and the output mover, and the gas in the guide portion while compressing the gas in each gap A pressing force generator for pressing the output mover and the intermediate mover toward the receiving wall; and The gas pressure supplied to the body supply path to control respectively, characterized in that it comprises a control unit for the movable element is finely moved for output by adjusting the gap amount of the gap while balanced with the pressing force. Here, the number of intermediate movers may be plural. Thus, the intermediate mover is arranged between the gas receiving wall of the guide part and the output mover, and these are also moved minutely by the gas bearing mechanism, so that the final output mover with respect to the guide part The range of minute movement can be expanded.

また、本発明に係る微小移動機構において、微小移動機構が設置される設置部又は出力に用いられる可動子に設けられ、設置部と出力に用いられる可動子との間の相対的な振動を検出する振動センサと、可動子の変位を検出する変位センサと、を備え、制御部は、さらに、振動センサから検出された振動状態を示す信号を受け取り、この振動を打ち消す除振制御手段と、変位センサから検出された変位状態を示す信号を受け取り、予め入力される可動子の目標位置との差を打ち消す位置制御手段と、を含むことを特徴とする。上記構成により、可動部に与える外部振動の影響を抑制できる。かかる微小移動機構をステージに設けることで、微小移動ステージを構成できるほか、ステージ自体を除振ステージとすることができる。   Further, in the micro movement mechanism according to the present invention, a relative vibration between the installation section where the micro movement mechanism is installed or a mover used for output is detected and the mover used for output is detected. And a vibration sensor for detecting the displacement of the mover, and the control unit further receives a signal indicating the vibration state detected from the vibration sensor and cancels the vibration. Position control means for receiving a signal indicating the displacement state detected from the sensor and canceling the difference from the target position of the mover inputted in advance. With the above configuration, it is possible to suppress the influence of external vibrations on the movable part. By providing such a fine movement mechanism on the stage, a fine movement stage can be configured, and the stage itself can be used as a vibration isolation stage.

また、気体供給路は、くぼみ状のポケット開口と、ポケット開口の上流側に設けられる絞り部を有することが好ましい。気体軸受への気体圧供給路の途中に絞り部を設けることで、気体回路を構成する流体抵抗を増加させ、安定した気体圧の供給を図ることができる。   Moreover, it is preferable that the gas supply path has a hollow pocket opening and a throttle portion provided on the upstream side of the pocket opening. By providing the throttle part in the middle of the gas pressure supply path to the gas bearing, the fluid resistance constituting the gas circuit can be increased and stable gas pressure can be supplied.

また、絞り部は、気体の流れ方向に沿い所定の間隔を有する平行隙間を含み、平行隙間の整流作用により絞り部に流れる気体を乱れなく形成する平行隙間絞りであることが好ましい。また、絞り部は、多孔質材料を含み、多孔質の微小孔の整流作用により絞り部に流れる気体を乱れなく形成する多孔質材絞りであることが好ましい。   Moreover, it is preferable that the throttle portion is a parallel gap throttle that includes a parallel gap having a predetermined interval along the gas flow direction, and that forms the gas flowing through the throttle portion without disturbance by the rectifying action of the parallel gap. Moreover, it is preferable that the throttle part is a porous material throttle that includes a porous material and forms the gas flowing in the throttle part without disturbance by the rectifying action of the porous micropores.

上記構成により、平行隙間や微小孔の整流作用により絞り部に流れる気体を乱れなく形成するので、例えば絞りの代表的なオリフィス絞り等により気体を絞る場合に生ずる、乱流や渦流等を抑制し、特に、高圧かつ高速の気体を扱うときにオリフィスのエッジ等から生ずる衝撃波を抑制する。したがって、気体圧制御において、このようなノイズの影響を少なくでき、微小移動機構の制御性の向上を図ることができる。   With the above configuration, the gas flowing through the throttle is formed without any disturbance due to the rectifying action of parallel gaps or micro holes, so that turbulent flow or vortex flow that occurs when the gas is throttled by a typical orifice throttle, for example, is suppressed. Particularly, shock waves generated from the edge of the orifice or the like are suppressed when a high-pressure and high-speed gas is handled. Therefore, in the gas pressure control, the influence of such noise can be reduced, and the controllability of the micro movement mechanism can be improved.

また、絞り部は、自成絞り又は表面絞り又はスリット絞り又は複合絞りの中のいずれか1つの絞りであることが好ましい。より簡単な構成の絞り部により、微小移動機構の制御性の向上を図ることができる。   Moreover, it is preferable that a diaphragm part is any one diaphragm among a self-made diaphragm, a surface diaphragm, a slit diaphragm, or a composite diaphragm. The controllability of the minute movement mechanism can be improved by a simpler throttle unit.

以上のように、本発明に係る微小移動機構によれば、気体を用いる移動機構において高速応答性を改善することができる。また、本発明に係る微小移動機構によれば、気体を用いる移動機構において、制御性を改善できる。また、本発明に係る微小移動機構を用いることで、除振装置の除振性能を改善できる。   As described above, according to the micro movement mechanism according to the present invention, high-speed response can be improved in the movement mechanism using gas. Moreover, according to the micro movement mechanism according to the present invention, the controllability can be improved in the movement mechanism using gas. Further, the vibration isolation performance of the vibration isolation device can be improved by using the micro movement mechanism according to the present invention.

以下に図面を用いて本発明に係る実施の形態につき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、微小移動機構10の構成を示す図である。微小移動機構10は、図1の矢印で示す移動方向に移動可能な可動子12と、可動子12を移動方向に案内する案内部14と、案内部14の底面部材16に設けられ、底面部材16の上面において案内部14と可動子12とが向かい合う隙間に気体を供給する気体供給路18と、気体供給路18に供給される気体圧を制御して可動子12を矢印の方向に所定の微小移動を行わせる制御部20とを含む。   FIG. 1 is a diagram showing a configuration of the minute movement mechanism 10. The micro-movement mechanism 10 is provided on a movable element 12 that can move in the movement direction indicated by an arrow in FIG. 1, a guide part 14 that guides the movable element 12 in the movement direction, and a bottom surface member 16 of the guide part 14. A gas supply path 18 that supplies gas to a gap between the guide portion 14 and the movable element 12 on the upper surface of 16 and a gas pressure supplied to the gas supply path 18 to control the movable element 12 in the direction of the arrow. And a control unit 20 for performing minute movement.

可動子12は、例えば移動テーブル等の移動対象物に接続されて移動対象物を微小移動させるためのアクチュエータ可動子としての機能を有する部材である。例えば、円柱形状の金属部材又はセラミック部材を用いることができる。可動子12の底面は、気体供給路18からの気体を受ける気体受面22である。気体受面22は、平坦に加工されることが望ましい。図1の例では、矢印で示す移動方向を重力方向とするので、可動子12は案内部14の底面部材16に向かって自重で押し付けられる形になっている。   The mover 12 is a member having a function as an actuator mover that is connected to a moving object such as a moving table and moves the moving object minutely. For example, a cylindrical metal member or ceramic member can be used. The bottom surface of the mover 12 is a gas receiving surface 22 that receives gas from the gas supply path 18. The gas receiving surface 22 is preferably processed flat. In the example of FIG. 1, since the moving direction indicated by the arrow is the direction of gravity, the mover 12 is pressed against the bottom member 16 of the guide portion 14 by its own weight.

案内部14は、可動子12を移動方向に沿って移動自在に支持する部材で、可動子12の外形より若干大きめの案内穴を有する部材である。かかる案内部14は、金属製又はセラミック製の筒に底面部材16をはめ込んで得ることができる。もちろん一体成形で製作することもできる。   The guide portion 14 is a member that supports the mover 12 movably along the moving direction, and is a member having a guide hole that is slightly larger than the outer shape of the mover 12. Such a guide portion 14 can be obtained by fitting the bottom member 16 into a metal or ceramic tube. Of course, it can also be manufactured by integral molding.

案内部14の底面部材16は、その上面、すなわち案内部14の筒状案内の内部に向かう面は、可動子12の気体受面22に向かい合う気体受壁24である。気体受壁24は平坦に加工されることが好ましい。底面部材16が案内部14を構成する組立部材であるとして、その組立の際には、可動子12が案内部14の筒状案内に案内されて下方にあるときに、その気体受面22と気体受壁24とがほぼ平行となるように案内部14の筒状案内部材に位置決めされて固定される。   The bottom surface member 16 of the guide portion 14 has a gas receiving wall 24 facing the gas receiving surface 22 of the mover 12 on the upper surface thereof, that is, the surface facing the inside of the cylindrical guide of the guide portion 14. The gas receiving wall 24 is preferably machined flat. Assuming that the bottom surface member 16 is an assembly member constituting the guide portion 14, when the movable element 12 is guided by the cylindrical guide of the guide portion 14 and is below the gas receiving surface 22, It is positioned and fixed to the cylindrical guide member of the guide portion 14 so that the gas receiving wall 24 is substantially parallel.

案内部14の内壁には、ちょうど底面部材16がはめ込まれた上面の位置に対応して、リング状の溝が設けられ、その一部は外部に導通して排気口28となる。排気口28は、気体供給路18から供給され、気体受面22と気体受壁24との隙間を通ってくる気体を外部に排出する機能を有するものである。   The inner wall of the guide portion 14 is provided with a ring-shaped groove corresponding to the position of the upper surface where the bottom surface member 16 is fitted, and part of the groove is connected to the outside to become the exhaust port 28. The exhaust port 28 has a function of discharging the gas supplied from the gas supply path 18 and passing through the gap between the gas receiving surface 22 and the gas receiving wall 24 to the outside.

気体供給路18は、図示されていない気体源からの気体を、気体受面22と気体受壁24との隙間に供給するための気体通路である。供給される気体の圧力等は制御部20の制御の下に置かれる。気体供給路18は、底面部材16の底面側、すなわち案内部14の外側底面に入口を有し、底面部材16を気体受壁24側に向かって貫通し、気体受壁24で開口する。開口の手前の上流側には絞り部26が設けられる。絞り部26の詳細については後述する。   The gas supply path 18 is a gas passage for supplying a gas from a gas source (not shown) to the gap between the gas receiving surface 22 and the gas receiving wall 24. The pressure of the supplied gas and the like are placed under the control of the control unit 20. The gas supply path 18 has an inlet on the bottom surface side of the bottom surface member 16, that is, the outer bottom surface of the guide portion 14, penetrates the bottom surface member 16 toward the gas receiving wall 24 side, and opens at the gas receiving wall 24. A throttle portion 26 is provided on the upstream side before the opening. Details of the diaphragm 26 will be described later.

制御部20は、図示されていない気体源からの気体の圧力を調整して気体供給路18に供給する機能を有するものである。具体的には、可動子12の所望の微小移動量に対応する気体圧を気体供給路18に供給する。可動子12の気体受面22と案内部14の気体受壁24との間に気体が供給されれば、供給された気体は、その圧力に応じて、可動子12の自重である押し付け力に抗して可動子12を浮上させようとする。そのときの供給気体圧と浮上量すなわち隙間の関係は、実験の結果、圧縮性気体の流れ理論からの計算値とほぼ一致する。例えば、押し付け圧力を0.4Mpaとして、供給気体圧を0.25−0.60MPaに変化させると、隙間は、10−20μmに線形的に変化する。供給気体圧の変化が小さければ、(隙間変化量/気体圧変化量)はほぼ一定値になる。この例では、例えば、(10μm/0.35Mpa)あるいは、(10nm/0.35kpa)を用いることができる。   The control unit 20 has a function of adjusting the pressure of a gas from a gas source (not shown) and supplying the pressure to the gas supply path 18. Specifically, a gas pressure corresponding to a desired minute movement amount of the mover 12 is supplied to the gas supply path 18. If a gas is supplied between the gas receiving surface 22 of the mover 12 and the gas receiving wall 24 of the guide portion 14, the supplied gas is subjected to a pressing force that is the weight of the mover 12 according to the pressure. It tries to float the mover 12 against it. As a result of the experiment, the relationship between the supply gas pressure and the flying height, that is, the gap at that time, almost coincides with the calculated value from the flow theory of the compressible gas. For example, when the pressing pressure is 0.4 Mpa and the supply gas pressure is changed to 0.25 to 0.60 MPa, the gap linearly changes to 10 to 20 μm. If the change in the supply gas pressure is small, (gap change amount / gas pressure change amount) becomes a substantially constant value. In this example, for example, (10 μm / 0.35 Mpa) or (10 nm / 0.35 kpa) can be used.

制御部20は、指令値30と、減算器32と、減算器32の出力を信号増幅するプリアンプ34と、プリアンプ34の出力を駆動電流のレベルに増幅する電流増幅器36と、電流増幅器36の出力に応じて図示されていない気体源からの気体の圧力を調整する気体圧弁38と、気体供給路18の実際の気体圧を検出し、減算器32へ戻す圧力センサ40とを含んで構成される。気体圧弁38は、一般的な電子制御のサーボ弁等を用いることができる。圧力センサ40は、電気信号を出力できる一般的な圧力検出素子や、電子圧力計等を用いることができる。また、圧力センサを用いないこともできる。例えば、サーボ弁に、電気信号に比例した圧力を出力できる精密圧力制御弁等を用いることで圧力センサを省略できる。   The control unit 20 includes a command value 30, a subtractor 32, a preamplifier 34 that amplifies the output of the subtractor 32, a current amplifier 36 that amplifies the output of the preamplifier 34 to a drive current level, and an output of the current amplifier 36. A gas pressure valve 38 that adjusts the pressure of a gas from a gas source that is not shown in accordance with the pressure, and a pressure sensor 40 that detects the actual gas pressure in the gas supply path 18 and returns it to the subtractor 32. . As the gas pressure valve 38, a general electronically controlled servo valve or the like can be used. As the pressure sensor 40, a general pressure detecting element capable of outputting an electric signal, an electronic pressure gauge, or the like can be used. Further, the pressure sensor can be omitted. For example, the pressure sensor can be omitted by using a precision pressure control valve or the like that can output a pressure proportional to an electrical signal as the servo valve.

かかる構成の作用を説明する。最初は、初期定常状態、すなわち標準的な浮上量になるように指令値30が設定される。例えば、可動子12の自重に相当する押し付け圧力を0.1Mpaとして、標準隙間を15μm、そのときの制御気体圧を0.4MPaとすると、指令値30は、P=0.4MPaに対応する値が出力される。指令値30はアナログ指令値でもディジタル指令値でもよい。指令値30は、プリアンプ34、電流増幅器36を経て気体圧弁38を駆動できる電流に換算、増幅され、気体圧弁38はそれに応じて動作し、図示されていない気体源からの気体の圧力を調整し、所定の0.4MPaにして出力する。   The operation of this configuration will be described. Initially, the command value 30 is set so as to achieve an initial steady state, that is, a standard flying height. For example, if the pressing pressure corresponding to the dead weight of the mover 12 is 0.1 Mpa, the standard gap is 15 μm, and the control gas pressure at that time is 0.4 MPa, the command value 30 is a value corresponding to P = 0.4 MPa. Is output. The command value 30 may be an analog command value or a digital command value. The command value 30 is converted and amplified into a current that can drive the gas pressure valve 38 via the preamplifier 34 and the current amplifier 36, and the gas pressure valve 38 operates accordingly to adjust the pressure of the gas from a gas source (not shown). The output is set to a predetermined 0.4 MPa.

出力された0.4MPaは、気体供給路18の入口に導かれ、絞り部26を通り、気体受壁24に設けられる開口から、可動子12の気体受面22へ向かって噴き出される。そして、可動子12は気体受壁24から浮上する。その浮上隙間は、設定により15μmである。この浮上により隙間を形成して可動子12を案内部14に対して支持する作用は、いわゆる気体軸受機構として知られるものである。   The outputted 0.4 MPa is guided to the inlet of the gas supply path 18, passes through the throttle portion 26, and is ejected from the opening provided in the gas receiving wall 24 toward the gas receiving surface 22 of the mover 12. Then, the mover 12 floats from the gas receiving wall 24. The flying gap is 15 μm depending on the setting. This action of forming a gap by floating and supporting the mover 12 with respect to the guide portion 14 is known as a so-called gas bearing mechanism.

供給された気体は、その浮上隙間を維持しつつ、その隙間を通って、筒状案内の内側のリング状溝を通り、排気口28から外部に排出される。排出される気体は、図示されていない気体源に再び戻すこともできる。気体供給路18に供給される気体圧は圧力センサ40により減算器32に戻され、外乱等でその気体圧が変動すると、それに応じ誤差をゼロにするようにフィードバックされる。   The supplied gas is discharged from the exhaust port 28 through the ring-shaped groove inside the cylindrical guide through the gap while maintaining the floating gap. The exhausted gas can also be returned to a gas source not shown. The gas pressure supplied to the gas supply path 18 is returned to the subtractor 32 by the pressure sensor 40, and when the gas pressure fluctuates due to disturbance or the like, feedback is made so as to make the error zero accordingly.

つぎに、可動子12を上方に2μm移動させる指示が出されるときの様子を説明する。このとき、上記の(隙間変化量/気体圧変化量)=(10μm/0.35Mpa)を用いると、2μmに対応する0.07Mpaを元の0.4MPaに加えた0.47MPaが指令値30となる。上記のプロセスと同様にして、気体圧弁38は、その指令に対応して図示されていない気体源の気体の圧力を調整し、0.47MPaの気体圧を出力する。この気体圧が気体供給路18に供給され、絞り部26を経て気体受面22と気体受壁24との間の隙間に噴き出す。そのときの浮上隙間量は、設定により先ほどの15μmから+2μmの17μmである。このようにして、可動子12は、図1の矢印方向に、案内部14に案内され、+2μm上方に微小移動する。   Next, a state when an instruction to move the mover 12 upward by 2 μm is issued will be described. At this time, when (gap change amount / gas pressure change amount) = (10 μm / 0.35 Mpa) is used, 0.47 MPa obtained by adding 0.07 Mpa corresponding to 2 μm to the original 0.4 MPa is the command value 30. It becomes. Similarly to the above process, the gas pressure valve 38 adjusts the gas pressure of a gas source (not shown) corresponding to the command, and outputs a gas pressure of 0.47 MPa. This gas pressure is supplied to the gas supply path 18, and is ejected to the gap between the gas receiving surface 22 and the gas receiving wall 24 through the throttle portion 26. The amount of the clearance gap at that time is 17 μm, which is 15 μm to +2 μm, depending on the setting. In this way, the mover 12 is guided by the guide portion 14 in the direction of the arrow in FIG. 1 and moves slightly +2 μm upward.

すなわち、可動子12と案内部14との間に形成される気体軸受において、供給される気体圧を制御することで、可動子12を案内部14に対し微小移動させることができる。そして、その制御は、気体圧の制御で足り、位置制御や速度制御等の複雑な制御を要せず、μmオーダーの微小移動を実現できる。また、気体軸受のバネ定数は上記のように高いので、高速応答が可能である。   That is, in the gas bearing formed between the mover 12 and the guide part 14, the mover 12 can be moved minutely with respect to the guide part 14 by controlling the gas pressure supplied. And the control is sufficient by controlling the gas pressure, and complicated movement such as position control and speed control is not required, and micro movement on the order of μm can be realized. Further, since the spring constant of the gas bearing is high as described above, a high-speed response is possible.

ここで絞り部26について説明する。絞り部26は、気体軸受への気体圧供給路の途中に設けられる流体抵抗を増加させる機能を有する素子又は構造である。図2は、具体的な絞り部の構成の例で、ここではポケット開口48の中に設けられる平行隙間絞り50が示される。平行隙間絞り50は、ドーナツ状に中央穴を有する円環板52と、円環板52と外形が同じの円板54とが狭い平行隙間で配置され、その平行隙間の間を気体が流れる間に整流され、その流れが乱れなく形成されるものである。平行隙間は、例えば、気体供給路18に供給される気体圧を0.5Mpaとし、その流速を30m/secとして、これを絞りにより流速300m/secの流れとするときの場合で、数10μmが好ましい。そのときの円環板52と円板54との間の平行隙間の長さは、数10μmに対し、十分長いことが望ましい。例えば5−10mm程度とすることができる。   Here, the diaphragm 26 will be described. The throttle part 26 is an element or a structure having a function of increasing a fluid resistance provided in the middle of the gas pressure supply path to the gas bearing. FIG. 2 shows an example of the configuration of a specific throttle part, and here, a parallel gap throttle 50 provided in the pocket opening 48 is shown. The parallel gap stop 50 includes a ring plate 52 having a central hole in a donut shape and a circular plate 54 having the same outer shape as the ring plate 52 and a narrow parallel gap, and gas flows between the parallel gaps. The flow is rectified and the flow is formed without disturbance. The parallel gap is, for example, a case where the gas pressure supplied to the gas supply path 18 is 0.5 Mpa, the flow rate is 30 m / sec, and the flow rate is 300 m / sec by throttling. preferable. At this time, the length of the parallel gap between the annular plate 52 and the circular plate 54 is desirably sufficiently long with respect to several tens of μm. For example, it can be about 5-10 mm.

このように平行隙間絞りの整流作用により絞り部に流れる気体を乱れなく形成することで、例えば絞りとして一般的に用いられる後述のオリフィス絞り等により気体を絞る場合に生ずる、乱流や渦流等を抑制できる。特に、高圧かつ高速の気体を扱うときにオリフィスのエッジ等から生ずる衝撃波を抑制することもできる。したがって、気体圧制御において、このようなノイズの影響を少なくでき、微小移動機構の制御性の向上を図ることができる。   In this way, by forming the gas flowing through the throttle part without turbulence by the rectifying action of the parallel gap throttle, for example, turbulent flow or vortex flow generated when the gas is throttled by an orifice throttle, which will be described later, which is generally used as a throttle Can be suppressed. In particular, it is possible to suppress a shock wave generated from an edge of the orifice or the like when a high-pressure and high-speed gas is handled. Therefore, in the gas pressure control, the influence of such noise can be reduced, and the controllability of the micro movement mechanism can be improved.

図3は、絞り部の例として、多孔質材料56をポケット開口48の中に配置するものを示す図である。この場合も、多孔質の微小孔の整流作用により絞り部に流れる気体を乱れなく形成することができる。   FIG. 3 is a diagram showing an example in which the porous material 56 is disposed in the pocket opening 48 as an example of the throttle portion. Also in this case, the gas flowing in the throttle portion can be formed without disturbance by the rectifying action of the porous micropores.

図4は、その他の絞り部の例を示す図で、(a)はごく一般的なオリフィス絞り58である。(b)は、気体供給路18を細く絞るとともに、気体受壁24にごく浅い溝を開口から外周側に向かって放射状に設ける複合絞り60である。ごく浅い溝の深さは、気体受壁24と気体受面22との隙間より少なめが好ましく、例えば7−20μmとすることができる。(c)は、単純に細い開口を設ける自成絞り62である。(d)は、細いスロットを用いるスロット絞り64である。(e)は、複合絞り60において気体供給路18を細く絞らず、単純に気体受壁24にごく浅い溝を開口から外周側に向かって放射状に設ける表面絞り66である。   FIG. 4 is a diagram showing an example of another throttle section, and FIG. 4A shows a very general orifice throttle 58. (B) is a composite restrictor 60 that narrows the gas supply path 18 and provides a shallow groove in the gas receiving wall 24 radially from the opening toward the outer peripheral side. The depth of the very shallow groove is preferably smaller than the gap between the gas receiving wall 24 and the gas receiving surface 22 and can be, for example, 7 to 20 μm. (C) is a self-contained diaphragm 62 that simply provides a narrow opening. (D) is a slot stop 64 using a thin slot. (E) is a surface diaphragm 66 that does not narrow the gas supply path 18 in the composite diaphragm 60, and simply provides a very shallow groove in the gas receiving wall 24 radially from the opening toward the outer peripheral side.

これらの絞り部は、製作の容易性、整流性、絞り特性等がそれぞれ特徴がある。したがって、微小移動機構10に要求される応答性、耐ノイズ性、気体条件等を考慮し、コストと性能の兼ね合いで最も適する構成を選択することが好ましい。   Each of these throttle parts is characterized by ease of manufacture, rectification, diaphragm characteristics, and the like. Therefore, it is preferable to select a configuration that is most suitable in terms of cost and performance in consideration of responsiveness, noise resistance, gas conditions, and the like required for the minute movement mechanism 10.

上記構成において、案内部14は、筒状の穴に可動子12を案内し、微小移動方向に移動自在に支持するものとしたが、案内部14の内壁と可動子12の側壁との間に気体軸受を設けてもよい。図5はそのような構成の例で、図1の構成に加え、径方向の気体軸受のための軸受給気口70と、その供給された気体を排出する排気口72が設けられる。   In the above configuration, the guide unit 14 guides the mover 12 through the cylindrical hole and supports the mover 12 so as to be movable in the minute movement direction. However, the guide unit 14 is provided between the inner wall of the guide unit 14 and the side wall of the mover 12. A gas bearing may be provided. FIG. 5 shows an example of such a configuration. In addition to the configuration of FIG. 1, a bearing air supply port 70 for a radial gas bearing and an exhaust port 72 for discharging the supplied gas are provided.

また、さらに、案内部14の開口側、すなわち可動子12の移動する出口側に真空口74を設けてもよい。真空口74は、気体供給路18や軸受給気口70から供給される気体が、排気口28,72から回収されずに、案内部14の内壁と可動子12の外周との間の隙間を通って外部に漏れることを防ぐ機能を有する。真空口74を設けることで、微小移動機構10を、真空雰囲気の中でも使用可能とすることができる。   Furthermore, a vacuum port 74 may be provided on the opening side of the guide portion 14, that is, on the exit side where the mover 12 moves. In the vacuum port 74, the gas supplied from the gas supply path 18 and the bearing air supply port 70 is not collected from the exhaust ports 28 and 72, and a gap between the inner wall of the guide portion 14 and the outer periphery of the mover 12 is formed. It has a function to prevent leaking outside. By providing the vacuum port 74, the micro movement mechanism 10 can be used even in a vacuum atmosphere.

上記構成において、気体受面22と気体受壁24との間の押し付け力は、可動子12の自重によるものとしたが、これとは別に適当な圧力を可動子12に加え、押付力を発生するものとしてもよい。図6はそのような構成の例を示す図で、可動子12を段つき構造とし、その段差の部分に一定圧力の加圧気体を供給するための加圧口76が設けられる。また、加圧口76から供給される気体を排出するための排気口78が設けられる。図6では、図5と同様に径方向の気体軸受のための軸受給気口70と、その供給された気体を排出する排気口72が設けられ、真空口80は、まとめて1ケ所に設けられる。このように、押し付け力を可動子12の自重と独立して発生させるようにすることで、微小移動機構を単独に横置きにして用いることが可能となる。   In the above configuration, the pressing force between the gas receiving surface 22 and the gas receiving wall 24 is based on the weight of the mover 12, but apart from this, an appropriate pressure is applied to the mover 12 to generate a pressing force. It is good also as what to do. FIG. 6 is a diagram showing an example of such a configuration. The movable element 12 has a stepped structure, and a pressurizing port 76 for supplying a pressurized gas having a constant pressure to the stepped portion is provided. In addition, an exhaust port 78 for discharging the gas supplied from the pressurizing port 76 is provided. In FIG. 6, a bearing air supply port 70 for a radial gas bearing and an exhaust port 72 for discharging the supplied gas are provided as in FIG. 5, and the vacuum port 80 is provided in one place. It is done. In this way, by generating the pressing force independently of the dead weight of the mover 12, it is possible to use the minute movement mechanism independently in a horizontal position.

また、気体供給路18から供給される気体は、案内部14の内壁に設けられたリング状の溝を通り排気口28から排出されるものとしたが、底面部材16側から排出することもできる。図7はそのような構成の例を示すもので、(a)は底面部材16の上面図、(b)は、底面部材16と可動子12との関係を示す側面断面図である。底面部材16には、リング状に排気用溝82が設けられ、気体供給路18から供給される気体は、この排気用溝82で集められ、排気口84を通って外部に排出される。また、排気用溝82の外側にリング状の真空引き用溝86を設け、真空口88を用いて、排気口84から排気しきれない気体を回収するものとしてもよい。   In addition, the gas supplied from the gas supply path 18 passes through a ring-shaped groove provided on the inner wall of the guide portion 14 and is discharged from the exhaust port 28. However, the gas can be discharged from the bottom member 16 side. . FIGS. 7A and 7B show examples of such a configuration, in which FIG. 7A is a top view of the bottom member 16, and FIG. 7B is a side sectional view showing the relationship between the bottom member 16 and the mover 12. The bottom member 16 is provided with an exhaust groove 82 in a ring shape, and the gas supplied from the gas supply path 18 is collected in the exhaust groove 82 and discharged to the outside through the exhaust port 84. Alternatively, a ring-shaped vacuuming groove 86 may be provided outside the exhaust groove 82, and a gas that cannot be exhausted from the exhaust port 84 may be recovered using the vacuum port 88.

微小移動機構の可動子と案内部の部分を1つのセットとし、これを2セット用い、お互いに向かい合わせて用いることで、押付力発生機構を省略でき、全体を無反動化に近い構成とすることができる。図8は、図5で説明した構成の可動子12と案内部14を2セット用いる微小移動機構100の構成を示す図である。図1以下の図面における要素と同様のものには同一の符号を付し、詳細な説明を省略する。この微小移動機構100は、ベース102上に、図5と同様な可動子12と案内部14を1つのセットとし、これらを相互に向かい合うように直線上に配置し、2つの可動子12の間にスライダ104をはさみ込むように配置して構成される。スライダ104には、ベース102との間を軸受支持する支持部材106が設けられる。それぞれの底面部材16の気体供給路18には、それぞれ別の制御部20から制御された気体圧が供給される。   The mover and guide part of the micro-movement mechanism are made into one set, and two sets are used so as to face each other, so that the pressing force generation mechanism can be omitted, and the entire structure is close to non-reaction. be able to. FIG. 8 is a diagram illustrating a configuration of the minute moving mechanism 100 using two sets of the movable element 12 and the guide unit 14 having the configuration described in FIG. Elements similar to those in the drawings of FIG. 1 and subsequent drawings are denoted by the same reference numerals, and detailed description thereof is omitted. The micro-movement mechanism 100 includes a movable element 12 and a guide unit 14 similar to those shown in FIG. 5 as a set on a base 102, which are arranged on a straight line so as to face each other, and between the two movable elements 12. The slider 104 is arranged so as to be sandwiched therebetween. The slider 104 is provided with a support member 106 that supports a bearing with the base 102. A gas pressure controlled by a separate control unit 20 is supplied to the gas supply path 18 of each bottom member 16.

上記構成において、例えば左側のセットの気体供給路18に供給される気体圧が、右側のセットの気体供給路18に供給される気体圧より大きければ、スライダ104は図8に示す矢印方向の右向きの方向に変位する。その変位の大きさは、左側のセットの気体供給路18に供給される気体圧に対応する隙間量と、右側のセットの気体供給路18に供給される気体圧に対応する隙間量との差になる。   In the above configuration, for example, if the gas pressure supplied to the gas supply passage 18 in the left set is larger than the gas pressure supplied to the gas supply passage 18 in the right set, the slider 104 faces right in the direction of the arrow shown in FIG. Displaces in the direction of. The magnitude of the displacement is the difference between the gap amount corresponding to the gas pressure supplied to the left set gas supply passage 18 and the gap amount corresponding to the gas pressure supplied to the right set gas supply passage 18. become.

この構成においては、変位量が差分となるので、図1に示す微小移動機構10に比べ、より細かい微小移動を行うことができる。同様に、それぞれの可動子12からスライダ104が受ける力が差し引かれ、全体として小さな力で移動が行われ、無反動化に近い動作とできる。また、スライダ104の両側にそれぞれ可動子12が配置されるので、一方の可動子12により発生する力が、他方の可動子をその案内部のほうへ押し付けるように働く。したがって、微小移動機構を横置きにして重力による押付力を用いていないにもかかわらず、特別な押し付け力発生機構を要しない。   In this configuration, since the amount of displacement is a difference, finer movement can be performed compared to the movement mechanism 10 shown in FIG. Similarly, the force received by the slider 104 from each movable element 12 is subtracted, and the movement is performed with a small force as a whole, and an operation close to non-reaction can be achieved. Further, since the movable element 12 is disposed on both sides of the slider 104, the force generated by one movable element 12 works to press the other movable element toward the guide portion. Therefore, a special pressing force generating mechanism is not required even though the minute moving mechanism is placed horizontally and the pressing force due to gravity is not used.

図9は、図8における可動子を省略し、底面部材16の気体受壁24を直接スライダ104の受面108に向かい合わせる構成の例を示す図である。この構成では、気体受壁24と受面108との間で気体軸受機構が形成され、その間の隙間を気体供給路18に供給される気体圧により制御し、スライダ104を微小移動させることができる。   FIG. 9 is a diagram illustrating an example of a configuration in which the mover in FIG. 8 is omitted, and the gas receiving wall 24 of the bottom surface member 16 is directly opposed to the receiving surface 108 of the slider 104. In this configuration, a gas bearing mechanism is formed between the gas receiving wall 24 and the receiving surface 108, and the gap therebetween can be controlled by the gas pressure supplied to the gas supply path 18 to move the slider 104 minutely. .

可動子の気体受面と案内部の気体受壁とで形成される気体軸受隙間調整機構を1組として、これらをX軸方向、Y軸方向のそれぞれの方向で動作するように配置することでXY微小移動機構を構成することができる。これにさらにZ軸方向で動作する組を加えることで、XYZ微小移動機構を構成することもできる。   By arranging the gas bearing gap adjustment mechanism formed by the gas receiving surface of the mover and the gas receiving wall of the guide portion as one set, so as to operate in the X axis direction and the Y axis direction, respectively. An XY minute movement mechanism can be configured. In addition, an XYZ minute movement mechanism can be configured by adding a set that operates in the Z-axis direction.

図10、図11は、制御部を除いたXYZ微小移動機構120の構成を示す図で、図10は平面図、図11は図10のAA線における断面図である。XY微小移動機構120は、矩形形状のステージ122と、ステージ122をXYZ方向に移動自在に支持する筐体124を含んで構成される。ステージ122と筐体124との間には、図10、図11に示すX軸方向の微小移動のための気体軸受隙間調整機構126が4組、Y軸方向の微小移動のための気体軸受隙間調整機構128が4組、Z軸方向の微小移動のための気体軸受隙間調整機構130が4組配置される。それぞれの気体軸受隙間調整機構は、筐体124側に気体供給路18が設けられ、ステージ122側に向かって、隙間を形成するための気体が噴き出る。その隙間調整の仕組みについては図1に関連して説明したと同様であるので省略する。   10 and 11 are diagrams showing the configuration of the XYZ minute movement mechanism 120 excluding the control unit, FIG. 10 is a plan view, and FIG. 11 is a cross-sectional view taken along the line AA in FIG. The XY minute moving mechanism 120 includes a rectangular stage 122 and a casing 124 that supports the stage 122 so as to be movable in the XYZ directions. Between the stage 122 and the housing 124, there are four sets of gas bearing gap adjusting mechanisms 126 for minute movement in the X-axis direction shown in FIGS. 10 and 11, and gas bearing gaps for minute movement in the Y-axis direction. Four sets of adjustment mechanisms 128 and four sets of gas bearing gap adjustment mechanisms 130 for minute movement in the Z-axis direction are arranged. In each gas bearing gap adjusting mechanism, the gas supply path 18 is provided on the casing 124 side, and gas for forming a gap is ejected toward the stage 122 side. The mechanism for adjusting the gap is the same as that described with reference to FIG.

図10、図11の構成によって、合計12の気体供給路18に供給される気体圧をそれぞれ調整することで、ステージ122は、筐体124の案内の範囲で、任意のXYZの位置を取ることができる。その動作は、X軸方向の動作、Y軸方向の動作、Z軸方向の動作に分解することで容易に理解できる。例えばX軸方向の動作については、4組の気体軸受隙間調整機構126の動作のみを考えればよい。さらに単純にするには、この4組を左半分の2組と右半分の2組に分け、左半分の2組は共に同じ動作をし、右半分の2組は共に同じ動作をする場合を考えればよい。この場合の動作は、X軸方向に互いに向かい合う底面部材があってその間にスライダが配置される図9の構成の動作と同じとなり、X軸方向の微小移動が制御できる。同様に、4組の気体軸受隙間調整機構128について上半分の2組と下半分の2組をそれぞれ同じ動作をするものとしてY軸方向の微小移動が制御でき、4組の気体軸受隙間調整機構130について全部が同じ動作をするものとしてZ軸方向の微小移動が制御できる。このように、XYZ移動機構を構成できる。   By adjusting the gas pressure supplied to the total 12 gas supply paths 18 with the configurations of FIGS. 10 and 11, the stage 122 can take any XYZ position within the range of guidance of the casing 124. Can do. The operation can be easily understood by breaking it down into an operation in the X-axis direction, an operation in the Y-axis direction, and an operation in the Z-axis direction. For example, regarding the operation in the X-axis direction, only the operation of the four gas bearing gap adjustment mechanisms 126 need be considered. To make it simpler, divide the four sets into two sets on the left half and two sets on the right half. The two sets on the left half perform the same operation and the two sets on the right half perform the same operation. Think about it. The operation in this case is the same as the operation of the configuration of FIG. 9 in which there are bottom surface members facing each other in the X-axis direction and the slider is disposed between them, and minute movement in the X-axis direction can be controlled. Similarly, four sets of gas bearing clearance adjustment mechanisms 128 can control minute movements in the Y-axis direction by assuming that the two sets of the upper half and the two sets of the lower half perform the same operation, and the four sets of gas bearing clearance adjustment mechanisms. It is possible to control the minute movement in the Z-axis direction assuming that all of 130 perform the same operation. In this way, an XYZ moving mechanism can be configured.

さらに、4組の気体軸受隙間調整機構126のうち、右上のものと左下のものとを組にし、右下のものと左上のものとを別の組にし、それぞれの組の移動量を異ならせることで、Z軸周りにステージ122を回転させることができる。4組の気体軸受隙間調整機構128を用いてもよい。同様にして、4組の気体軸受隙間調整機構130のうち、上半分の2組と下半分の2組との移動量を異ならせて、X軸周りのステージ122を回転させることができ、4組の気体軸受隙間調整機構130のうち、右半分の2組と左半分の2組との移動量を異ならせて、Y軸周りのステージ122を回転させることができる。このようにして、ステージ122を6自由度のもとで微小移動させることができる。   Further, among the four sets of the gas bearing clearance adjustment mechanisms 126, the upper right one and the lower left one are set as a pair, the lower right one and the upper left one are set as different sets, and the movement amount of each set is made different. Thus, the stage 122 can be rotated around the Z axis. Four sets of gas bearing gap adjustment mechanisms 128 may be used. Similarly, the stage 122 around the X axis can be rotated by changing the movement amount of the two sets of the upper half and the two sets of the lower half of the four sets of the gas bearing gap adjusting mechanisms 130. The stage 122 around the Y axis can be rotated by changing the amount of movement of the two sets of the right half and the two sets of the left half of the set of gas bearing gap adjusting mechanisms 130. In this way, the stage 122 can be finely moved with six degrees of freedom.

なお、これらの気体軸受隙間調整機構126,128,130は、それぞれ4つずつである必要はなく、例えばそれぞれ又はいずれかを4つ以外の数で構成してもよい。また、左右対称に配置する必要もなく、ステージ122の形状、要求性能等に合わせ適当な配置をとることができる。また、例えば、X軸方向について左右それぞれ2つずつでなくて、一方側を1つ、他方側を2つというように、左右について配置数を異ならせてもよい。Y軸方向、Z軸周りの配置についても同様に配置数を非対称としてもよい。   Note that these gas bearing gap adjusting mechanisms 126, 128, and 130 do not have to be four each, and each or any one of them may be configured by a number other than four. Further, it is not necessary to arrange them symmetrically, and an appropriate arrangement can be taken according to the shape of the stage 122, the required performance, and the like. In addition, for example, the number of arrangements on the left and right sides may be different, such as one on one side and two on the other side, instead of two each on the left and right sides in the X-axis direction. Similarly, the number of arrangements around the Y-axis direction and the Z-axis may be asymmetric.

図12は、ステージ122を筐体124の底面に向かって押し付け力を発生させる機構132を付加するときの構成を示す図である。ステージ122は自重があるので、それにより筐体124の底面に向かって適当な押し付け力を生じさせているが、微小移動の制御をよりよくする等のために、適切な押し付け力が望まれる場合がある。図12において、押し付け力を発生させる機構132は、ステージ122の上面側に下向きの力を印加するように、加圧口76から一定の加圧気体が供給される。   FIG. 12 is a diagram illustrating a configuration when a mechanism 132 that generates a pressing force for pressing the stage 122 toward the bottom surface of the casing 124 is added. Since the stage 122 has its own weight, it generates an appropriate pressing force toward the bottom surface of the casing 124. However, when an appropriate pressing force is desired for better control of minute movement, etc. There is. In FIG. 12, a mechanism 132 that generates a pressing force is supplied with a constant pressurized gas from the pressure port 76 so as to apply a downward force to the upper surface side of the stage 122.

図13は、別の機構により、ステージ122を筐体124の底面に向かって引き付ける力を発生させる例を示す図である。図13において、ステージ122の底面側にヨーク134が設けられ、これに対応する筐体124の底面上面側にヨーク136と磁石138が設けられる。ヨーク134,136と磁石138とで形成される磁気回路により、ステージ122は、筐体124の底面に向かって引き付けられる。この引付力は、上記の押付力と等価なものである。図12や図13の機構を用いて、適当な押付力を発生させることができる。   FIG. 13 is a diagram illustrating an example in which a force that attracts the stage 122 toward the bottom surface of the casing 124 is generated by another mechanism. In FIG. 13, a yoke 134 is provided on the bottom surface side of the stage 122, and a yoke 136 and a magnet 138 are provided on the bottom surface upper surface side of the casing 124 corresponding thereto. The stage 122 is attracted toward the bottom surface of the casing 124 by a magnetic circuit formed by the yokes 134 and 136 and the magnet 138. This attractive force is equivalent to the above-mentioned pressing force. An appropriate pressing force can be generated using the mechanism shown in FIGS.

図14、図15は、気体供給路18からの気体を排出するための排気用溝140と排気口142、および排気しきれない気体を回収するための真空引き用溝144と真空口146の配置の様子を示す図である。図14はXYZ微小移動機構120の断面図、図15は図14のBB線に沿って見るときの筐体124の内壁を示す図である。このように、排気用溝140と真空引き用溝144とは相互に分離されつつ、筐体124の内壁をぐるりと回って配置される。なお、筐体124の底面の気体供給路18についての排気用溝と真空用溝の配置は、例えば図7で説明したと同様の構成をとることができる。   14 and 15 show the arrangement of an exhaust groove 140 and an exhaust port 142 for exhausting gas from the gas supply path 18, and an evacuation groove 144 and a vacuum port 146 for collecting gas that cannot be exhausted. FIG. FIG. 14 is a cross-sectional view of the XYZ minute moving mechanism 120, and FIG. 15 is a view showing the inner wall of the casing 124 when viewed along the line BB in FIG. As described above, the exhaust groove 140 and the vacuuming groove 144 are arranged around the inner wall of the housing 124 while being separated from each other. The arrangement of the exhaust grooves and the vacuum grooves for the gas supply path 18 on the bottom surface of the casing 124 can be the same as that described in FIG. 7, for example.

図16は、微小移動機構を6つ用いて6自由度パラレルリンク機構150を構成する例を示す図である。6自由度パラレルリンク機構150は、ベース152と、可動ステージ154との間を6つの微小移動機構160を所定の角度配置で取り付けることで構成される。この構成は、一般的な6自由度パラレルリンクにおける構成の6つのアクチュエータを微小移動機構160に置き換えたもので、周知の制御法により、6つの微小移動機構160の変位量をそれぞれ制御することで、可動ステージ154をベース152に対し、X,Y,Z,φ,θ,ψの6自由度で運動させることができる。   FIG. 16 is a diagram illustrating an example in which the six-degree-of-freedom parallel link mechanism 150 is configured using six minute movement mechanisms. The 6-degree-of-freedom parallel link mechanism 150 is configured by attaching six minute movement mechanisms 160 between the base 152 and the movable stage 154 at a predetermined angular arrangement. This configuration is obtained by replacing the six actuators of the configuration in a general six-degree-of-freedom parallel link with a micro-movement mechanism 160, and by controlling the amount of displacement of each of the six micro-movement mechanisms 160 by a known control method. The movable stage 154 can be moved with respect to the base 152 with six degrees of freedom of X, Y, Z, φ, θ, and ψ.

図17は、微小移動機構160回りの構成を示す図である。微小移動機構160は、図6で説明した構成と同じものを用いることができるので、同様の要素には同一の符号を付し、詳細な説明を省略する。微小移動機構160の底面部材16にはベース側可撓継手162の一端が取り付けられ、ベース側可撓継手162の他端は、ベース152の所定位置に取り付けられる。また、可動子12には可動ステージ側可撓継手164の一端が取り付けられ、可動ステージ側可撓継手164の他端は、可動ステージ154の所定位置に取り付けられる。   FIG. 17 is a diagram showing a configuration around the minute movement mechanism 160. Since the minute movement mechanism 160 having the same configuration as that described with reference to FIG. 6 can be used, the same elements are denoted by the same reference numerals, and detailed description thereof is omitted. One end of a base side flexible joint 162 is attached to the bottom surface member 16 of the minute movement mechanism 160, and the other end of the base side flexible joint 162 is attached to a predetermined position of the base 152. Further, one end of a movable stage side flexible joint 164 is attached to the movable element 12, and the other end of the movable stage side flexible joint 164 is attached to a predetermined position of the movable stage 154.

各微小移動機構160の制御部は、それぞれの底面部材16に取り付けられる。図17において、制御弁166と回路ブロック172がその制御部を示し、制御弁166の部分には、図示されていない気体源から気体が供給される供給ポート168と、使用済みの気体を外部に排出する排気ポート170が示されている。   The control unit of each minute movement mechanism 160 is attached to each bottom surface member 16. In FIG. 17, a control valve 166 and a circuit block 172 indicate the control unit. The control valve 166 includes a supply port 168 to which gas is supplied from a gas source (not shown), and used gas to the outside. An exhaust port 170 for discharging is shown.

微小移動機構は、μmオーダーの移動を行うことができるが、複数の微小移動機構を複数直列に接続することで、その微小移動範囲を拡大することができる。具体的には、微小移動の軸方向の両端部にそれぞれ気体受面を有する中間可動子を用いる。図1で説明したような標準的な可動子を出力用の可動子と呼ぶことにすると、「出力用の可動子−中間可動子−中間可動子−・・・・−中間可動子−案内部の気体受壁」のように、中間可動子を必要な微小移動範囲に応じて増設して直列に配置すればよい。   The micro movement mechanism can move on the order of μm, but the micro movement range can be expanded by connecting a plurality of micro movement mechanisms in series. Specifically, an intermediate mover having gas receiving surfaces at both ends in the axial direction of minute movement is used. The standard mover as described in FIG. 1 is referred to as an output mover. The output mover-intermediate mover-intermediate mover --- intermediate mover-guide unit. As in the case of “gas receiving wall”, an intermediate mover may be added and arranged in series according to the required minute movement range.

図18は、微小移動の軸方向の両端部における一方側に開口を設け、その開口に向けて気体供給路18により制御された気体圧を供給する中間可動子200を3つ用いる例を示す図である。図1以下の図面に用いたものと同様の要素には同一の符号を付し、詳細な説明を省略する。また、案内部14に設けられる各ポートについてはその機能を示す符号を付してある。CPは隙間制御用気体圧の供給、EXは排気、SBは、中間可動子200または出力用の可動子12を支持するための軸受用気体の供給、CP2は、押付力発生用気体の供給、VPは真空引きを示す。   FIG. 18 is a diagram showing an example in which three intermediate movers 200 that provide openings on one side at both end portions in the axial direction of minute movement and supply gas pressure controlled by the gas supply path 18 toward the openings are shown. It is. Elements similar to those used in FIG. 1 and subsequent drawings are given the same reference numerals, and detailed description thereof is omitted. Further, each port provided in the guide unit 14 is given a symbol indicating its function. CP is a supply of gap control gas pressure, EX is exhaust, SB is a supply of bearing gas for supporting the intermediate mover 200 or the output mover 12, CP2 is a supply of pressing force generating gas, VP indicates evacuation.

図18の構成では、底面部材16における気体供給路18からの気体圧により、最右側の中間可動子200が所定の微小移動し、その状態で最右側の中間可動子200における気体供給路18からの気体圧により、その次の中間可動子200が所定の微小移動し、これを繰り返し、最左側の中間可動子200における気体供給路18からの気体圧により、出力用の可動子12が所定の微小移動する。したがって、案内部14に対する出力用の可動子12の微小移動量は、中間可動子200のそれぞれの移動量を加算したものとなり、微小移動範囲が拡大される。また、それぞれの微小移動量の方向を相互に逆方向とすることもでき、その場合には、移動量の減算が可能で、微小移動量を縮小することができる。   In the configuration of FIG. 18, the rightmost intermediate movable element 200 moves by a predetermined minute amount due to the gas pressure from the gas supply path 18 in the bottom member 16, and in this state, from the gas supply path 18 in the rightmost intermediate movable element 200. The next intermediate mover 200 moves by a predetermined minute amount due to the gas pressure, and this is repeated, and the output mover 12 becomes predetermined by the gas pressure from the gas supply path 18 in the leftmost intermediate mover 200. Move a little. Therefore, the minute movement amount of the output movable element 12 relative to the guide portion 14 is the sum of the movement amounts of the intermediate movable elements 200, and the minute movement range is expanded. Also, the directions of the minute movement amounts can be opposite to each other. In this case, the movement amount can be subtracted and the minute movement amount can be reduced.

図18の変形例を図19、図20に示す。図19は、出力用の可動子12に隣り合う中間可動子は図18と同じ中間可動子200を用い、その他は、底面部材16の気体供給路18からの気体圧をそのまま次の可動子に伝えるように貫通の気体通路208を有する中間可動子210を用いている。この中間可動子210は、その一端側から気体圧を受け、他端側で噴き出し、次の可動子の一端側における面との間で気体軸受機構を形成する。すなわち、この中間可動子210は、図4で説明した自成絞りを有することになる。つまり、微小移動の軸方向の両端部にそれぞれ気体受面を有し、それぞれの界面で気体軸受機構を形成することは図18と同様である。自成絞りに代えて、図4で説明した表面絞りを用いることもできる。したがって、この場合、構成が簡単になるが、案内部14に対する出力用の可動子12の微小移動量は、中間可動子200のそれぞれの移動量を加算したものとなり、やはり微小移動範囲を拡大又は縮小することができる。   A modification of FIG. 18 is shown in FIGS. In FIG. 19, the intermediate mover 200 adjacent to the output mover 12 uses the same intermediate mover 200 as in FIG. 18, and other than that, the gas pressure from the gas supply path 18 of the bottom surface member 16 is directly used as the next mover. An intermediate mover 210 having a gas passage 208 therethrough is used to communicate. The intermediate mover 210 receives a gas pressure from one end side thereof, blows out at the other end side, and forms a gas bearing mechanism with a surface on one end side of the next mover. That is, the intermediate mover 210 has the self-formed aperture described with reference to FIG. That is, it is the same as in FIG. 18 that has gas receiving surfaces at both ends in the axial direction of the minute movement and forms a gas bearing mechanism at each interface. The surface diaphragm described with reference to FIG. 4 can be used instead of the self-formed diaphragm. Therefore, in this case, although the configuration is simplified, the minute movement amount of the output movable element 12 with respect to the guide unit 14 is the sum of the respective movement amounts of the intermediate movable element 200, which also enlarges the minute movement range or Can be reduced.

図20は、全部の中間可動子を図19で説明した中間可動子210とする例を示す図である。この場合は、さらに構成を簡単にして、案内部14に対する出力用の可動子12の微小移動量の範囲を拡大することができる。   FIG. 20 is a diagram illustrating an example in which all the intermediate movers are the intermediate movers 210 described in FIG. In this case, the configuration can be further simplified and the range of the minute movement amount of the output movable element 12 relative to the guide portion 14 can be expanded.

微小移動機構は、位置決めアクチュエータ等のように、微小距離移動させるために用いられるほかに、除振装置において振動をキャンセルするための微小移動機構に用いることができる。図21は、除振装置に用いられる微小移動機構の構成を示す図である。案内部14は、微小移動機構が設置される設置台220に載置される。可動子12が除振台に対応する。可動子12に外部の振動Dが加わるような環境では、可動子12に、その振動を検出するための振動センサ222が取り付けられる。これに対し、設置台220に外部の振動Dが加わるような環境では、設置台220に振動センサ222を取り付けるのがよい。振動センサ222としては、例えば圧電素子等の加速度センサを用いることができる。また、可動子12の変位を検出するための変位センサ224が設けられる。変位センサとしては、例えば非接触の光学的変位センサや、接触式の機械式センサ等、市販の変位センサを用いることができる。   In addition to being used for moving a minute distance, such as a positioning actuator, the minute moving mechanism can be used for a minute moving mechanism for canceling vibration in a vibration isolation device. FIG. 21 is a diagram illustrating a configuration of a minute movement mechanism used in the vibration isolation device. The guide unit 14 is placed on an installation table 220 on which a minute movement mechanism is installed. The mover 12 corresponds to a vibration isolation table. In an environment where external vibration D is applied to the mover 12, a vibration sensor 222 for detecting the vibration is attached to the mover 12. On the other hand, in an environment where external vibration D is applied to the installation table 220, it is preferable to attach the vibration sensor 222 to the installation table 220. As the vibration sensor 222, for example, an acceleration sensor such as a piezoelectric element can be used. In addition, a displacement sensor 224 for detecting the displacement of the mover 12 is provided. As the displacement sensor, for example, a commercially available displacement sensor such as a non-contact optical displacement sensor or a contact mechanical sensor can be used.

振動センサ222の検出信号と、変位センサ224の検出信号とは、制御部226に入力される。制御部226は、図1で説明した機能のほかに、振動センサ222から検出された振動状態を示す信号に応じて、この振動を打ち消すように、気体供給路18への気体圧の制御を行う除振制御機能を有する。また、変位センサ224から検出された変位状態を示す信号に応じて、予め入力される可動子の目標位置との差を打ち消すように、気体供給路18への気体圧の制御を行う位置制御機能を有する。除振制御機能及び位置制御機能は、一般的な目標値制御の手法を用いて行うことができる。除振装置の要求仕様によっては、変位センサ224を省略してもよい。   The detection signal from the vibration sensor 222 and the detection signal from the displacement sensor 224 are input to the control unit 226. In addition to the functions described with reference to FIG. 1, the control unit 226 controls the gas pressure to the gas supply path 18 so as to cancel this vibration in response to a signal indicating the vibration state detected from the vibration sensor 222. Has anti-vibration control function. Further, a position control function for controlling the gas pressure to the gas supply path 18 so as to cancel the difference from the target position of the mover input in advance in accordance with a signal indicating the displacement state detected from the displacement sensor 224. Have The vibration isolation control function and the position control function can be performed using a general target value control technique. Depending on the required specifications of the vibration isolator, the displacement sensor 224 may be omitted.

このように図1に説明した1軸方向の微小移動機構を基本として、図10で説明したXY移動機構、XYZ移動機構、6自由度移動機構、図16で説明した6自由度パラレルリンク機構、図18−20の移動量拡大機構、図21で説明した除振機構等に発展できる。これらの発展系の機構は、説明の便宜上、それぞれ単独で説明したが、これらの発展系をそれぞれ単独で構成することもでき、これらの中で適当な組み合わせでもって構成してもよい。例えば、移動量拡大機構は、XY移動機構、XYZ移動機構、6自由度移動機構、6自由度パラレルリンク機構、除振機構と組み合わせてもよい。また、除振機構は、XY移動機構、XYZ移動機構、6自由度移動機構、6自由度パラレルリンク機構憎み合わせることができる。さらに、移動量拡大機構と除振機構の組み合わせに、他の発展系の機構を組み合わせてもよい。   Thus, based on the uniaxial micro movement mechanism described in FIG. 1, the XY movement mechanism, XYZ movement mechanism, 6-degree-of-freedom movement mechanism described in FIG. 10, the 6-degree-of-freedom parallel link mechanism described in FIG. It can be developed to the movement amount enlargement mechanism of FIG. 18-20, the vibration isolation mechanism described in FIG. Although the mechanisms of these development systems have been described individually for convenience of explanation, these development systems can also be configured independently, and may be configured by an appropriate combination among them. For example, the movement amount expansion mechanism may be combined with an XY movement mechanism, an XYZ movement mechanism, a 6-degree-of-freedom movement mechanism, a 6-degree-of-freedom parallel link mechanism, and a vibration isolation mechanism. Further, the vibration isolation mechanism can hate the XY movement mechanism, the XYZ movement mechanism, the 6-degree-of-freedom movement mechanism, and the 6-degree-of-freedom parallel link mechanism. Further, another development system mechanism may be combined with the combination of the movement amount expansion mechanism and the vibration isolation mechanism.

本発明に係る実施の形態における微小移動機構の構成図である。It is a block diagram of the micro movement mechanism in embodiment which concerns on this invention. 本発明に係る実施の形態における微小移動機構の絞り部の例として平行隙間絞りを示す図である。It is a figure which shows a parallel gap aperture stop as an example of the aperture | diaphragm | squeeze part of the micro movement mechanism in embodiment which concerns on this invention. 本発明に係る実施の形態における微小移動機構の絞り部の例として多孔質材料を示す図である。It is a figure which shows a porous material as an example of the aperture | diaphragm | squeeze part of the micro movement mechanism in embodiment which concerns on this invention. 本発明に係る実施の形態における微小移動機構の他の絞り部の例を示す図である。It is a figure which shows the example of the other aperture part of the micro movement mechanism in embodiment which concerns on this invention. 本発明に係る実施の形態において、微小移動機構の案内部の内壁に気体軸受を設ける様子を示す図である。In embodiment which concerns on this invention, it is a figure which shows a mode that a gas bearing is provided in the inner wall of the guide part of a micro movement mechanism. 本発明に係る実施の形態において、微小移動機構の可動子に押付力を発生する加圧口を設ける様子を示す図である。In embodiment which concerns on this invention, it is a figure which shows a mode that the pressurization port which generate | occur | produces pressing force is provided in the needle | mover of a micro movement mechanism. 本発明に係る実施の形態において、微小移動機構の底面部材側から排気を行う様子を示す図である。In embodiment which concerns on this invention, it is a figure which shows a mode that exhaust_gas | exhaustion is performed from the bottom face member side of a micro movement mechanism. 本発明に係る実施の形態において、可動子と案内部を2セット用いる微小移動機構の構成を示す図である。In embodiment which concerns on this invention, it is a figure which shows the structure of the micro moving mechanism which uses 2 sets of needle | movers and a guide part. 図8の変形例を示す図である。It is a figure which shows the modification of FIG. 本発明に係る実施の形態におけるXYZ微小移動機構の平面図である。It is a top view of the XYZ minute movement mechanism in an embodiment concerning the present invention. 図10のAA線における断面図である。It is sectional drawing in the AA line of FIG. 本発明に係る実施の形態におけるXYZ微小移動機構のステージを筐体の底面に向かって押し付け力を発生させる機構を付加する様子を示す図である。It is a figure which shows a mode that the mechanism which generate | occur | produces the pressing force of the stage of the XYZ micro movement mechanism in embodiment which concerns on this invention toward the bottom face of a housing | casing is added. 本発明に係る実施の形態におけるXYZ微小移動機構のステージを筐体の底面に向かって引き付ける力を発生させる例を示す図である。It is a figure which shows the example which produces | generates the force which attracts the stage of the XYZ micro movement mechanism in embodiment which concerns on this invention toward the bottom face of a housing | casing. 本発明に係る実施の形態におけるXYZ微小移動機構の排気と真空引きの様子を示す断面図である。It is sectional drawing which shows the mode of exhaust_gas | exhaustion of the XYZ micro movement mechanism in embodiment which concerns on this invention, and evacuation. 図14のBB線に沿って見るときの筐体の内壁を示す図である。It is a figure which shows the inner wall of a housing | casing when it sees along BB line of FIG. 本発明に係る実施の形態において、微小移動機構を6つ用いて6自由度パラレルリンク機構を構成する例を示す図である。In embodiment which concerns on this invention, it is a figure which shows the example which comprises a 6 degree-of-freedom parallel link mechanism using six micro movement mechanisms. 図16に用いられる各微小移動機構回りの構成を示す図である。It is a figure which shows the structure of each micro movement mechanism used for FIG. 本発明に係る実施の形態において、中間可動子を用いる例を示す図である。In embodiment which concerns on this invention, it is a figure which shows the example using an intermediate needle | mover. 本発明に係る実施の形態において、中間可動子を用いる他の例を示す図である。In embodiment which concerns on this invention, it is a figure which shows the other example using an intermediate needle | mover. 本発明に係る実施の形態において、中間可動子を用いる他の例を示す図である。In embodiment which concerns on this invention, it is a figure which shows the other example using an intermediate needle | mover. 本発明に係る実施の形態において、除振装置に適用される微小移動機構の構成を示す図である。In embodiment which concerns on this invention, it is a figure which shows the structure of the micro movement mechanism applied to a vibration isolator.

符号の説明Explanation of symbols

10,100,120,160 微小移動機構、12 可動子、14 案内部、16 底面部材、18 気体供給路、20,226 制御部、22 気体受面、24 気体受壁、26 絞り部、28,72,78,84,142 排気口、30 指令値、32 減算器、34 プリアンプ、36 電流増幅器、38 気体圧弁、40 圧力センサ、48 ポケット開口、52 円環板、54 円板、56 多孔質材料、58 オリフィス絞り、60 複合絞り、62 自成絞り、64 スロット絞り、66 表面絞り、70 軸受給気口、74,80,88,146 真空口、76 加圧口、82,140排気用溝、86,144 真空引き用溝、102,152 ベース、104 スライダ、106 支持部材、108 受面、122 ステージ、124 筐体、126,128,130 気体軸受隙間調整機構、132 押付力発生機構、134,136 ヨーク、138 磁石、150 6自由度パラレルリンク機構、154 可動ステージ、162 ベース側可撓継手、164 可動ステージ側可撓継手、166 制御弁、168 供給ポート、170 排気ポート、172 回路ブロック、200,210 中間可動子、208 気体通路、220 設置台、222 振動センサ、224 変位センサ、CP 隙間制御用気体圧の供給、EX 排気、SB 可動子を支持するための軸受用気体の供給、CP2 押付力発生用気体の供給、VP 真空引き。   10, 100, 120, 160 Minute moving mechanism, 12 Movable element, 14 Guide part, 16 Bottom member, 18 Gas supply path, 20, 226 Control part, 22 Gas receiving surface, 24 Gas receiving wall, 26 Restricted part, 28, 72, 78, 84, 142 Exhaust port, 30 command value, 32 subtractor, 34 preamplifier, 36 current amplifier, 38 gas pressure valve, 40 pressure sensor, 48 pocket opening, 52 annular plate, 54 disc, 56 porous material , 58 Orifice restriction, 60 Combined restriction, 62 Self-contained restriction, 64 Slot restriction, 66 Surface restriction, 70 Bearing air inlet, 74, 80, 88, 146 Vacuum opening, 76 Pressure opening, 82,140 Exhaust groove, 86, 144 Vacuum evacuation groove, 102, 152 base, 104 slider, 106 support member, 108 receiving surface, 122 stage, 124 housing, 1 26, 128, 130 Gas bearing clearance adjustment mechanism, 132 pressing force generation mechanism, 134, 136 yoke, 138 magnet, 150 6-degree-of-freedom parallel link mechanism, 154 movable stage, 162 base side flexible joint, 164 movable stage side flexibility Joint, 166 Control valve, 168 Supply port, 170 Exhaust port, 172 Circuit block, 200, 210 Intermediate mover, 208 Gas passage, 220 Installation base, 222 Vibration sensor, 224 Displacement sensor, CP Supply of gas pressure for clearance control, EX Exhaust, SB Supply of bearing gas to support the mover, CP2 Supply of pressing force generation gas, VP vacuuming.

Claims (11)

外形の一部に気体受面を有し、出力に用いられる可動子と、
可動子を案内し、気体受面に向かい合う気体受壁を有する案内部と、
気体受面又は気体受壁に開口し、気体受面と気体受壁との間の隙間に気体を供給する気体供給路と、
気体受壁に向かって気体を圧縮しつつ可動子を押し付ける押付力発生部と、
気体供給路に供給する気体圧を制御し、押付力と釣り合わせつつ気体受面と気体受壁との間の隙間量を調整して可動子を微小移動させる制御部と、
を備えることを特徴とする微小移動機構。
A mover having a gas receiving surface in a part of the outer shape and used for output;
A guide unit that guides the mover and has a gas receiving wall facing the gas receiving surface;
A gas supply path that opens to a gas receiving surface or a gas receiving wall and supplies gas to a gap between the gas receiving surface and the gas receiving wall;
A pressing force generator that presses the mover while compressing the gas toward the gas receiving wall;
A control unit that controls the gas pressure supplied to the gas supply path, adjusts the gap amount between the gas receiving surface and the gas receiving wall while balancing with the pressing force, and moves the mover minutely;
A micro-movement mechanism comprising:
請求項1に記載の微小移動機構において、
可動子は、微小移動の軸方向の両端部にそれぞれ気体受面を有し、
案内部は、可動子の各気体受面にそれぞれ対応する気体受壁を有し、
気体供給路は、可動子と案内部との間に形成される各隙間にそれぞれ気体を供給し、一方の隙間において発生する力を他方の隙間に向かう押付力とする複数の気体供給路であり、
制御部は、各気体供給路に供給する気体圧をそれぞれ制御して可動子を微小移動させることを特徴とする微小移動機構。
The micro movement mechanism according to claim 1,
The mover has gas receiving surfaces at both ends in the axial direction of micro movement,
The guide unit has gas receiving walls corresponding to the respective gas receiving surfaces of the mover,
The gas supply path is a plurality of gas supply paths that supply gas to each gap formed between the mover and the guide portion, and use the force generated in one gap as a pressing force toward the other gap. ,
The control unit controls the gas pressure supplied to each gas supply path to move the mover minutely.
請求項2に記載の微小移動機構において、
微小移動の軸方向は、互いに直交するX軸方向とY軸方向とを有し、
可動子は、X軸方向の両端部と、Y軸方向の両端部にそれぞれ気体受面を有することを特徴とする微小移動機構。
The micro movement mechanism according to claim 2,
The axial direction of the minute movement has an X-axis direction and a Y-axis direction orthogonal to each other,
The mover has a gas receiving surface at both ends in the X-axis direction and both ends in the Y-axis direction.
請求項3に記載の微小移動機構において、さらに、
微小移動の軸方向は、X軸方向及びY軸方向に直行するZ軸方向を有し、
可動子は、Z軸方向の一端部に気体受面を有することを特徴とする微小移動機構。
The micro movement mechanism according to claim 3, further comprising:
The axial direction of the minute movement has a Z-axis direction orthogonal to the X-axis direction and the Y-axis direction,
The mover has a gas receiving surface at one end in the Z-axis direction.
ベースと可動ステージとの間に6つの微小移動アクチュエアータを所定の位置関係で接続し、各微小移動アクチュエータをそれぞれ制御して駆動することで可動ステージをベースに対し6自由度の運動を行わせる微小移動機構であって、
各微小移動アクチュエータは、
外形の一部に気体受面を有し、出力に用いられる可動子と、
可動子を案内し、気体受面に向かい合う気体受壁を有する案内部と、
気体受面又は気体受壁に開口し、気体受面と気体受壁との間の隙間に気体を供給する気体供給路と、
気体受壁に向かって気体を圧縮しつつ可動子を押し付ける押付力発生部と、
気体供給路に供給する気体圧を制御し、押付力と釣り合わせつつ気体受面と気体受壁との間の隙間量を調整して可動子を微小移動させる制御部と、
を備えることを特徴とする微小移動機構。
Six micro-movement actuators are connected between the base and the movable stage in a predetermined positional relationship, and each micro-movement actuator is controlled and driven to cause the movable stage to move with respect to the base with six degrees of freedom. A micro-movement mechanism,
Each micro-movement actuator
A mover having a gas receiving surface in a part of the outer shape and used for output;
A guide unit that guides the mover and has a gas receiving wall facing the gas receiving surface;
A gas supply path that opens to a gas receiving surface or a gas receiving wall and supplies gas to a gap between the gas receiving surface and the gas receiving wall;
A pressing force generator that presses the mover while compressing the gas toward the gas receiving wall;
A control unit that controls the gas pressure supplied to the gas supply path, adjusts the gap amount between the gas receiving surface and the gas receiving wall while balancing with the pressing force, and moves the mover minutely;
A micro-movement mechanism comprising:
複数の可動子を微小移動の軸方向に直列に配列する微小移動機構であって、
外形の一部に気体受面を有し、出力に用いられる可動子と、
微小移動の軸方向の両端部にそれぞれ気体受面を有する中間可動子と、
中間可動子の一方の気体受面に向かい合う気体受壁を有し、中間可動子の他方の気体受面に出力用の可動子の気体受面が向かい合うように、中間可動子及び出力用の可動子を直列に配置して案内する案内部と、
気体受面又は気体受壁に開口し、案内部と中間可動子との間の隙間及び中間可動子と出力用の可動子との間の隙間に、それぞれ気体を供給する複数の気体供給路と、
各隙間の気体を圧縮しつつ、案内部の気体受壁に向かって出力用の可動子及び中間可動子を押し付ける押付力発生部と、
各気体供給路に供給する気体圧をそれぞれ制御し、押付力と釣り合わせつつ各隙間の隙間量を調整して出力用の可動子を微小移動させる制御部と、
を備えることを特徴とする微小移動機構。
A micro movement mechanism in which a plurality of movers are arranged in series in the axial direction of micro movement,
A mover having a gas receiving surface in a part of the outer shape and used for output;
An intermediate mover having gas receiving surfaces at both ends in the axial direction of micro movement;
The intermediate mover and the output mover have a gas receiving wall facing one gas receiving surface of the intermediate mover, and the gas receiving surface of the output mover faces the other gas receiving surface of the intermediate mover. A guide unit for arranging and guiding the children in series;
A plurality of gas supply passages that open to the gas receiving surface or the gas receiving wall and supply gas to the gap between the guide portion and the intermediate mover and the gap between the intermediate mover and the output mover, respectively. ,
While compressing the gas in each gap, a pressing force generator that presses the output mover and the intermediate mover toward the gas receiving wall of the guide,
A control unit that controls the gas pressure supplied to each gas supply path, adjusts the gap amount of each gap while balancing with the pressing force, and moves the mover for output minutely,
A micro-movement mechanism comprising:
請求項1又は請求項5又は請求項6のいずれか1に記載の微小移動機構において、
微小移動機構が設置される設置部又は出力に用いられる可動子に設けられ、設置部と出力に用いられる可動子との間の相対的な振動を検出する振動センサと、
可動子の変位を検出する変位センサと、
を備え、
制御部は、さらに、
振動センサから検出された振動状態を示す信号を受け取り、この振動を打ち消す除振制御手段と、
変位センサから検出された変位状態を示す信号を受け取り、予め入力される可動子の目標位置との差を打ち消す位置制御手段と、
を含むことを特徴とする微小移動機構。
In the micro movement mechanism of any one of Claim 1 or Claim 5 or Claim 6,
A vibration sensor that is provided on an installation part where a micro-movement mechanism is installed or a mover used for output, and detects relative vibration between the installation part and the mover used for output;
A displacement sensor for detecting the displacement of the mover;
With
The control unit
A vibration isolation control means for receiving a signal indicating a vibration state detected from the vibration sensor and canceling the vibration;
Position control means for receiving a signal indicating the displacement state detected from the displacement sensor and canceling the difference from the target position of the mover inputted in advance;
A micro-movement mechanism characterized by comprising:
請求項1又は請求項5に記載の微小移動機構において、
気体供給路は、くぼみ状のポケット開口と、ポケット開口の上流側に設けられる絞り部を有することを特徴とする微小移動機構。
In the micro movement mechanism according to claim 1 or 5,
The gas supply path has a hollow pocket opening and a throttle provided on the upstream side of the pocket opening.
請求項8に記載の微小移動機構において、
絞り部は、気体の流れ方向に沿い所定の間隔を有する平行隙間を含み、平行隙間の整流作用により絞り部に流れる気体を乱れなく形成する平行隙間絞りであることを特徴とする微小移動機構。
The micro movement mechanism according to claim 8, wherein
A micro-movement mechanism characterized in that the throttle part is a parallel gap throttle that includes a parallel gap having a predetermined interval along the gas flow direction and forms the gas flowing through the throttle part without any disturbance by the rectifying action of the parallel gap.
請求項8に記載の微小移動機構において、
絞り部は、多孔質材料を含み、多孔質の微小孔の整流作用により絞り部に流れる気体を乱れなく形成する多孔質材絞りであることを特徴とする微小移動機構。
The micro movement mechanism according to claim 8, wherein
The throttle unit includes a porous material, and is a porous material throttle that forms a gas flowing in the throttle unit without disturbance by a rectifying action of porous micropores.
請求項1又は請求項5に記載の微小移動機構において、
絞り部は、自成絞り又は表面絞り又はスリット絞り又は複合絞りの中のいずれか1つの絞りであることを特徴とする微小移動機構。
In the micro movement mechanism according to claim 1 or 5,
The micro-movement mechanism characterized in that the aperture section is any one of a self-made aperture, a surface aperture, a slit aperture, or a composite aperture.
JP2004074522A 2004-03-16 2004-03-16 Micromoving mechanism Pending JP2005268293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004074522A JP2005268293A (en) 2004-03-16 2004-03-16 Micromoving mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004074522A JP2005268293A (en) 2004-03-16 2004-03-16 Micromoving mechanism

Publications (1)

Publication Number Publication Date
JP2005268293A true JP2005268293A (en) 2005-09-29

Family

ID=35092567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004074522A Pending JP2005268293A (en) 2004-03-16 2004-03-16 Micromoving mechanism

Country Status (1)

Country Link
JP (1) JP2005268293A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351312A (en) * 2004-06-08 2005-12-22 Psc Kk Moving mechanism
WO2007077878A1 (en) 2005-12-27 2007-07-12 Pneumatic Servo Controls Ltd. Gas pressure control actuator, gas bearing mechanism for the gas pressure control actuator, and minute displacement output device using the gas pressure control actuator
JP2009250390A (en) * 2008-04-09 2009-10-29 Psc Kk Pneumatic control type minute vibration controller

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388440A (en) * 1977-01-14 1978-08-03 Hitachi Ltd Static pressure bearing guide
JPS6022239U (en) * 1983-07-25 1985-02-15 オムロン株式会社 XY stage
JPH06280823A (en) * 1992-12-22 1994-10-07 Duerkopp Adler Ag Actuator capable of being operated by pressure medium
JPH07224807A (en) * 1994-02-10 1995-08-22 Nippondenso Co Ltd Cylinder device
JP2000081003A (en) * 1998-09-03 2000-03-21 Hitachi Zosen Corp Control device for single rod type hydraulic cylinder
JP2000334687A (en) * 1999-05-26 2000-12-05 Gifu Univ Parallel ling type inner force sense input and output device
JP2000337375A (en) * 1999-05-24 2000-12-05 Ntn Corp Static pressure gas bearing
JP2001110699A (en) * 1999-10-05 2001-04-20 Canon Inc Stage device and aligner using the same
JP2001168008A (en) * 1999-12-09 2001-06-22 Canon Inc Substrate stage device and semiconductor exposure device using the same
JP2001214906A (en) * 1999-11-26 2001-08-10 Smc Corp Cylinder device
JP2002107479A (en) * 2000-09-29 2002-04-10 Sumitomo Heavy Ind Ltd Stage device
JP2002304862A (en) * 2001-04-10 2002-10-18 Fujitsu Ltd Servo track writer and its drive method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388440A (en) * 1977-01-14 1978-08-03 Hitachi Ltd Static pressure bearing guide
JPS6022239U (en) * 1983-07-25 1985-02-15 オムロン株式会社 XY stage
JPH06280823A (en) * 1992-12-22 1994-10-07 Duerkopp Adler Ag Actuator capable of being operated by pressure medium
JPH07224807A (en) * 1994-02-10 1995-08-22 Nippondenso Co Ltd Cylinder device
JP2000081003A (en) * 1998-09-03 2000-03-21 Hitachi Zosen Corp Control device for single rod type hydraulic cylinder
JP2000337375A (en) * 1999-05-24 2000-12-05 Ntn Corp Static pressure gas bearing
JP2000334687A (en) * 1999-05-26 2000-12-05 Gifu Univ Parallel ling type inner force sense input and output device
JP2001110699A (en) * 1999-10-05 2001-04-20 Canon Inc Stage device and aligner using the same
JP2001214906A (en) * 1999-11-26 2001-08-10 Smc Corp Cylinder device
JP2001168008A (en) * 1999-12-09 2001-06-22 Canon Inc Substrate stage device and semiconductor exposure device using the same
JP2002107479A (en) * 2000-09-29 2002-04-10 Sumitomo Heavy Ind Ltd Stage device
JP2002304862A (en) * 2001-04-10 2002-10-18 Fujitsu Ltd Servo track writer and its drive method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351312A (en) * 2004-06-08 2005-12-22 Psc Kk Moving mechanism
WO2007077878A1 (en) 2005-12-27 2007-07-12 Pneumatic Servo Controls Ltd. Gas pressure control actuator, gas bearing mechanism for the gas pressure control actuator, and minute displacement output device using the gas pressure control actuator
JP2009250390A (en) * 2008-04-09 2009-10-29 Psc Kk Pneumatic control type minute vibration controller

Similar Documents

Publication Publication Date Title
US11335491B2 (en) Fluid servo valve and fluid servo apparatus
JPH07111238A (en) Self-weight support device
JP2005032818A (en) Hydrostatic bearing, pointing device and aligner
JP4106392B2 (en) Gas pressure control actuator, gas bearing mechanism for gas pressure control actuator, and minute displacement output device using gas pressure control actuator
US11002313B2 (en) Active aerostatic bearing
WO2019225110A1 (en) Stage device, charged particle beam device, and vacuum device
US20050211515A1 (en) Anti-vibration mount apparatus, exposure apparatus, and device manufacturing method
JP2005268293A (en) Micromoving mechanism
JP5084580B2 (en) Mobile device
JP2005351312A (en) Moving mechanism
JP4890196B2 (en) Vibration removal device
JP2865369B2 (en) Magnetic suction gas floating type pad
JP6732329B2 (en) Fluid servo valve and fluid servo device
JP2005003163A (en) Precision air pressure control valve
JP4636830B2 (en) Nozzle flapper valve
JP2009071930A (en) Current drive type actuator drive control unit
JP4607658B2 (en) Gas control actuator
JP2020046075A (en) Fluid servo valve and fluid servo device
JP5122350B2 (en) Gas pressure support mechanism for plate material
JP5476197B2 (en) Micro displacement output device
JP4091610B2 (en) Fluid actuator and hybrid actuator using the same
JP4697424B2 (en) Precision positioning device
JP2009218389A (en) Gas pressure control type slightly-inclining device
JPH0642585A (en) Active vibration isolation device
JP5102089B2 (en) Gas pressure control type micro vibration control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026