JP2005265823A - Linear wave exciting inspection/evaluation apparatus and method - Google Patents
Linear wave exciting inspection/evaluation apparatus and method Download PDFInfo
- Publication number
- JP2005265823A JP2005265823A JP2004120913A JP2004120913A JP2005265823A JP 2005265823 A JP2005265823 A JP 2005265823A JP 2004120913 A JP2004120913 A JP 2004120913A JP 2004120913 A JP2004120913 A JP 2004120913A JP 2005265823 A JP2005265823 A JP 2005265823A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- point
- solid
- generated
- linear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本発明は、固体試料表面や内部に存在する欠陥や不均一部分の非破壊的検査や評価を行う装置及び方法に関するものである。 The present invention relates to an apparatus and a method for performing nondestructive inspection and evaluation of defects and non-uniform portions existing on or inside a solid sample.
従来、固体試料表面や内部の欠陥の非破壊検査および評価においては、サーモグラフィーやポテンシャル法、アコーストエミッション法、光ファイバーによる目視などがあった。また超音波顕微鏡においても線状に収束したビームを用いる方法が知られており、光音響映像法の分野でもCTの技術を組み合わせた光音響トモグラフィーが実現されていた。 Conventionally, in nondestructive inspection and evaluation of defects on a solid sample surface and inside, there have been thermography, potential method, acoustic emission method, visual observation with an optical fiber, and the like. In addition, a method using a linearly converged beam is also known in an ultrasonic microscope, and photoacoustic tomography combined with CT technology has been realized in the field of photoacoustic imaging.
超音波顕微鏡や光音響顕微鏡による非破壊検査では点状に収束される光源や超音波ビームにより1点1点励起して計測するのでは、工業的検査として測定時間がかかりすぎるなどの重大な技術上の隘路があり、この問題を解決する必要があった。 In non-destructive inspection using an ultrasonic microscope or photoacoustic microscope, measuring by exciting each point with a light source or an ultrasonic beam that converges in a point-like manner takes too much measurement time as an industrial inspection. There was a bottleneck above and it was necessary to solve this problem.
本発明は、超音波顕微鏡や光音響顕微鏡による非破壊検査における測定時間の短縮を行うために、線状に収束される光源や超音波ビームにより波動を発生させて線状に並ぶ励起源の1点1点から発生する波動を線にそって加えた和を求める事を特徴として、従来の課題を解決するものである。 According to the present invention, in order to shorten the measurement time in the nondestructive inspection using an ultrasonic microscope or a photoacoustic microscope, a light source that is converged in a linear shape or an excitation source that is arranged linearly by generating a wave with an ultrasonic beam. The present invention solves the conventional problems by obtaining a sum obtained by adding a wave generated from one point along a line.
従来、X線CT(コンピューター断層画像法)に代表されるCTにおいては、例えば人体などの被測定対象を仮想的に走査面上でさいの目状に分割し、X線ビームの通る経路にそってその吸収係数の和を透過率から求める。 Conventionally, in CT typified by X-ray CT (Computerized Tomography), for example, a measurement target such as a human body is virtually divided into a dice on a scanning plane, and along the path along which the X-ray beam passes, The sum of the absorption coefficients is obtained from the transmittance.
本装置及び手法の原理を光音響顕微鏡の場合を例として以下に数式で示す。試料の吸収係数が未知の領域の数をNxN個に分割する。配列の中i行目j列目の要素における光の吸収係数をαi,jと表現する。試料全面を照射できる程大きな線状ビームで走査を行うと仮定する。光音響信号強度は入射する光ビーム強度と試料の吸収係数に比例するので、線状ビームを列方向に合せて行方向に水平走査する場合には、走査ビームがj列を照射する時に発生する光音響信号はAを定数として下記の式のように書ける。 The principle of this apparatus and method will be shown in the following mathematical formula by taking a photoacoustic microscope as an example. The number of regions with unknown sample absorption coefficients is divided into N × N. The light absorption coefficient in the element in the i-th row and j-th column in the array is expressed as αi, j. Assume that scanning is performed with a linear beam large enough to irradiate the entire surface of the sample. Since the photoacoustic signal intensity is proportional to the intensity of the incident light beam and the absorption coefficient of the sample, it occurs when the scanning beam irradiates j columns when the linear beam is horizontally scanned in the column direction. The photoacoustic signal can be written as follows using A as a constant.
同様に線状ビームを行方向に合せて列方向に垂直走査する場合には、走査ビームがi行を照射する時に発生する光音響信号は下記の式のように書ける。 Similarly, when the linear beam is vertically scanned in the column direction in accordance with the row direction, the photoacoustic signal generated when the scanning beam irradiates the i row can be expressed by the following equation.
1方向の走査でビームに沿った直線上で吸収係数をN個加えた和のデーターをN個得る事が出来る。線状ビームで走査をする方向を0度〜180度の間でNに分割した様々な角度に傾けて測定を行えば、データーが合計でNxN個得られ、未知数の数と一致して数値的に解けることになる。これがCTの原理である。 N sum data obtained by adding N absorption coefficients on a straight line along the beam can be obtained by scanning in one direction. If the direction of scanning with a linear beam is tilted at various angles divided into N between 0 and 180 degrees, a total of NxN data is obtained, which is numerically consistent with the number of unknowns. It will be solved. This is the principle of CT.
なお、超音波顕微鏡では光の吸収ではなく、反射して戻る超音波の強度の違いにより映像化を行うため、上記の理論式における光の吸収係数αi,jを超音波の反射率Ri,jで置き換えたものとなる。 In the ultrasonic microscope, since imaging is performed not by light absorption but by the difference in intensity of reflected ultrasonic waves, the light absorption coefficient αi, j in the above theoretical formula is used as the ultrasonic reflectance Ri, j. Will be replaced with
本発明では、このCTの原理を踏まえ、NxN個の吸収係数の未知な領域に対して、水平・垂直の2回の走査のみを行う。試料が均一で内部欠陥などがないならば、走査のどこの位置でも試料のビーム吸収が一様だから、信号は一定となる。しかし、内部に欠陥などがある領域に線上ビームがまたがっている場合には、信号が周辺の一様な領域よりも増大する。 In the present invention, based on the principle of CT, only horizontal and vertical scanning is performed on an unknown region of N × N absorption coefficients. If the sample is uniform and there are no internal defects, the signal is constant because the beam absorption of the sample is uniform at any position in the scan. However, when the linear beam is straddling a region having a defect or the like inside, the signal is increased as compared with the surrounding uniform region.
従来の1点1点走査する手法の場合には、欠陥の有無がわからないのだから、全領域を走査する事になり、測定時間が多くかかる。しかし、この線状ビームによる水平・垂直走査で欠陥の存在する領域を予め知っていれば、たとえ1点1点走査する装置でも測定を行う必要のない領域を省いて走査する事が出来るのて、かなり測定時間が短縮できる。 In the case of the conventional one-point one-point scanning method, since it is not known whether there is a defect or not, the entire region is scanned, and a long measurement time is required. However, if the area where the defect exists is known in advance by horizontal / vertical scanning using this linear beam, even if the apparatus that scans point by point can scan the area that does not need to be measured. Measurement time can be shortened considerably.
特に、ラインに組み込んで、欠陥の有無のみを測定したい場合には、大幅な測定時間の短縮が期待できる。 In particular, when it is desired to measure only the presence / absence of defects in a line, a significant reduction in measurement time can be expected.
このように本発明は光や超音波ビームの入射によって、表面や表面下欠陥の存在する場所や、試料の性質が不均一な部分を速やかに検出する事のできる非破壊検査・評価装置及び方法である。また、点状ビームの照射結像系と組み合わせたり、線状ビームを用いたままでCTの技法で画像を再構成する事ができる非破壊検査・評価装置及び方法でもある。 As described above, the present invention provides a nondestructive inspection / evaluation apparatus and method capable of promptly detecting a location where a surface or subsurface defect exists or a portion where the properties of a sample are non-uniform by the incidence of light or an ultrasonic beam. It is. Further, the present invention is also a nondestructive inspection / evaluation apparatus and method that can be combined with a point beam irradiation imaging system or can reconstruct an image by a CT technique while using a linear beam.
この発明は以上説明したように固体試料表面または表面下における欠陥の有無、ならびに欠陥そのものを非破壊的に検出する上で従来の技術では困難であった隘路を解決する効果がある。 As described above, the present invention has an effect of solving a bottleneck that has been difficult in the prior art in detecting the presence or absence of defects on the surface of a solid sample or under the surface and nondestructively the defects themselves.
以下に、本発明に関わる装置及び方法の原理を、固体試料にある欠陥を測定する場合を例にとって図面に基づいて説明する。 The principle of the apparatus and method according to the present invention will be described below with reference to the drawings, taking as an example the case of measuring a defect in a solid sample.
まず、図1の様に試料(1)の表面または内部に欠陥(2)がある場合、線状波動源(3)が図の様に水辺方向に移動する事を考える。すると、欠陥(2)に線状波動源(3)が接する箇所を、試料の外部に描いた投影図における2本の破線(A,B)で表わす。この2本の破線の間では試料から発生する信号が周辺の一様な領域より大きくなる。垂直走査の場合にも、線状波動源(3‘)が接する2本の破線(A′,B′)の間で信号が増大する。この様にして2回の水平と垂直走査のみで試料の全面を走査する代わりに測定対象となる領域(破線A,Bおよび破線A′,B′で囲まれる部分)の付近のみを走査すれば良いことになる。 First, when there is a defect (2) on the surface or inside of the sample (1) as shown in FIG. 1, it is considered that the linear wave source (3) moves in the waterside direction as shown in the figure. Then, the location where the linear wave source (3) is in contact with the defect (2) is represented by two broken lines (A, B) in the projection drawing drawn outside the sample. Between these two broken lines, the signal generated from the sample is larger than the surrounding uniform region. Even in the case of vertical scanning, the signal increases between two broken lines (A ′, B ′) with which the linear wave source (3 ′) is in contact. In this way, instead of scanning the entire surface of the sample by only two horizontal and vertical scans, only the vicinity of the region to be measured (the portion surrounded by the broken lines A and B and the broken lines A ′ and B ′) is scanned. It will be good.
さらに、CTの手法と結合する場合には、固体試料を励起する線状波動源を回転ステージなどに取り付けて試料面上のさまざまな角度方向に傾いた線状波動源の線に沿った和としての信号を取得し、後からそれぞれの部分での吸収係数をコンピューターを用いて数値計算により求めれば良いことになる。 In addition, when combined with the CT method, a linear wave source that excites a solid sample is attached to a rotary stage or the like, and is summed along the line of the linear wave source that is inclined in various angular directions on the sample surface. After that, the absorption coefficient at each portion can be obtained by numerical calculation using a computer.
さらに、CTの手法と結合する場合には、水平と垂直との中間の角度方向に傾いた線状波動源で試料を励起して信号を取得し、後からコンピューターを用いてそれぞれの部分での吸収係数を求めれば良いことになる。 Furthermore, when combining with the CT method, the signal is acquired by exciting the sample with a linear wave source inclined in the middle of the horizontal and vertical angular directions, and later using a computer, What is necessary is just to obtain an absorption coefficient.
次に発明の第1の実施形態を図2に示す。図2は、超音波ビームの使用法を示したもので、駆動装置(7)に載せた固体試料(2)に、圧電素子(4)およびシリンドリカル超音波レンズ(5)を通して線状超音波ビーム(8)を収束させる。この場合の走査方向は両矢印で示した水平方向である。 Next, a first embodiment of the invention is shown in FIG. FIG. 2 shows the usage of an ultrasonic beam. A linear ultrasonic beam passes through a piezoelectric element (4) and a cylindrical ultrasonic lens (5) on a solid sample (2) mounted on a driving device (7). (8) is converged. The scanning direction in this case is the horizontal direction indicated by a double arrow.
超音波の結像系は回転ステージ(6)に取り付けられているため、線状超音波ビームの試料表面における方向は自由に変える事が出来、これによりCT手法を応用する事が出来る。 Since the ultrasonic imaging system is attached to the rotary stage (6), the direction of the linear ultrasonic beam on the sample surface can be freely changed, and thus the CT method can be applied.
超音波顕微鏡、光音響顕微鏡ならびに光熱効果を利用する顕微鏡や映像装置の測定時間の短縮化、経費の節減、生産ライン上での応用可能性の増大が期待できる点で、本装置及び方法は産業での応用、特に工業上応用される可能性が高い。 This device and method is industrial because it can be expected to shorten the measurement time, reduce costs, and increase the applicability on production lines of microscopes and imaging devices that use the acoustic microscope, photoacoustic microscope, and photothermal effect. There is a high possibility of application in the field, especially industrial application.
1 固体試料
2 表面または内部欠陥
3 線状波動源(水平走査時)
3‘ 線状波動源(垂直走査時)
4 圧電素子
5 シリンドリカル超音波レンズ
6 回転ステージ
7 駆動装置
8 線状超音波ビーム1
3 'linear wave source (during vertical scanning)
4
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004120913A JP2005265823A (en) | 2004-03-20 | 2004-03-20 | Linear wave exciting inspection/evaluation apparatus and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004120913A JP2005265823A (en) | 2004-03-20 | 2004-03-20 | Linear wave exciting inspection/evaluation apparatus and method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005265823A true JP2005265823A (en) | 2005-09-29 |
Family
ID=35090505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004120913A Pending JP2005265823A (en) | 2004-03-20 | 2004-03-20 | Linear wave exciting inspection/evaluation apparatus and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005265823A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009004706A (en) * | 2007-06-25 | 2009-01-08 | Mitsubishi Electric Corp | Evaluating method and evaluating device of nitride semiconductor |
JP2015132475A (en) * | 2014-01-09 | 2015-07-23 | 学校法人東北学院 | Electronic scanning-type light source scanning apparatus and method |
CN105571549A (en) * | 2015-12-10 | 2016-05-11 | 南京诺威尔光电系统有限公司 | Nondestructive test method of heat wave imaging of cylindrical surface coating |
-
2004
- 2004-03-20 JP JP2004120913A patent/JP2005265823A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009004706A (en) * | 2007-06-25 | 2009-01-08 | Mitsubishi Electric Corp | Evaluating method and evaluating device of nitride semiconductor |
JP2015132475A (en) * | 2014-01-09 | 2015-07-23 | 学校法人東北学院 | Electronic scanning-type light source scanning apparatus and method |
CN105571549A (en) * | 2015-12-10 | 2016-05-11 | 南京诺威尔光电系统有限公司 | Nondestructive test method of heat wave imaging of cylindrical surface coating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4839333B2 (en) | Ultrasonic inspection method and ultrasonic inspection apparatus | |
US7605924B2 (en) | Laser-ultrasound inspection using infrared thermography | |
JP5412647B2 (en) | Nondestructive inspection probe movement detection method, nondestructive inspection method, and probe system | |
US7369250B2 (en) | System and method to inspect components having non-parallel surfaces | |
JP2005315892A (en) | Method for ultrasonically inspecting aerofoil | |
WO2012008144A1 (en) | Ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method | |
JP5868198B2 (en) | Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for welds | |
CN103713048A (en) | Ultrasonic field non-contact visualization method for nondestructive inspection and device thereof | |
CN109799191B (en) | Optical non-contact detection device and method for sound disturbance of rough surface of solid material | |
Ingram et al. | Determination of bubble size distribution using ultrasound array imaging | |
JP5721985B2 (en) | Laser ultrasonic inspection apparatus and laser ultrasonic inspection method | |
JP4196643B2 (en) | Method and apparatus for imaging internal defect by ultrasonic wave | |
JP4827670B2 (en) | Ultrasonic inspection equipment | |
JP2007278854A (en) | Ultrasonic inspection method and device | |
JP2005265823A (en) | Linear wave exciting inspection/evaluation apparatus and method | |
JP4866791B2 (en) | Ultrasonic flaw detection apparatus and method | |
JP2008261889A (en) | Imaging method of internal defect by ultrasonic wave, and its device | |
JP2002214204A (en) | Ultrasonic flaw detector and method using the same | |
JP2010019618A (en) | Laser ultrasonic flaw detector | |
JP5959677B2 (en) | Ultrasonic flaw detection apparatus and ultrasonic flaw detection method | |
JP2007183227A (en) | Electromagnetic wave imaging system, structure fluoroscopy system, and structure fluoroscopy method | |
Nomura et al. | Fundamental study of the quality measurement for wire arc additive manufacturing process by laser ultrasonic technique | |
JP5464849B2 (en) | Ultrasonic automatic flaw detection apparatus and ultrasonic automatic flaw detection method | |
JP2020159884A (en) | Ultrasonic flaw detector and ultrasonic flaw detection method | |
JP2001324484A (en) | Ultrasonic flaw detection method and apparatus |