JP2005265700A - Work piece temperature correction method in three-dimensional measuring machine - Google Patents

Work piece temperature correction method in three-dimensional measuring machine Download PDF

Info

Publication number
JP2005265700A
JP2005265700A JP2004080687A JP2004080687A JP2005265700A JP 2005265700 A JP2005265700 A JP 2005265700A JP 2004080687 A JP2004080687 A JP 2004080687A JP 2004080687 A JP2004080687 A JP 2004080687A JP 2005265700 A JP2005265700 A JP 2005265700A
Authority
JP
Japan
Prior art keywords
workpiece
temperature
measurement
tolerance
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004080687A
Other languages
Japanese (ja)
Other versions
JP4438467B2 (en
Inventor
Masataka Toda
昌孝 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2004080687A priority Critical patent/JP4438467B2/en
Publication of JP2005265700A publication Critical patent/JP2005265700A/en
Application granted granted Critical
Publication of JP4438467B2 publication Critical patent/JP4438467B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately measure a work temperature while following a temperature change, and to temperature-correct precisely a measured length of a measuring portion in a work in response to the work temperature. <P>SOLUTION: The work is fixed in one portion onto a jig of a three-dimensional measuring instrument to allow linear expansion. Coordinate values of X-, Y-, Z-axes in at least two reference portions of the work are measured based on detection signals of a probe from the three-dimensional measuring instrument, and a work coordinate system is set based on the coordinate values. Coordinate values of X-, Y-, Z-axes are read based on a detection signal of the probe as to the measuring portion of the work, and a surface temperature of the work is measured by a radiation thermometer. The measuring length in the work coordinate system in the measuring portion is computed based on the coordinate values. The measuring length in the measuring portion is temperature-corrected into a measured length in the reference portion in the work at the reference temperature, based on a difference between the work temperature and the reference temperature. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、3次元測定機により測定したワークの測定箇所の測定長さを基準温度のワークにおける測定長さに補正するワーク温度補正方法に関するものである。   The present invention relates to a workpiece temperature correction method for correcting a measurement length of a workpiece measurement point measured by a three-dimensional measuring machine to a measurement length of a workpiece at a reference temperature.

通常、製品図面寸法は温度20℃での寸法値である。このため精密な3次元測定は、20℃に制御された恒温室にワークを搬入し、ワークが周囲の雰囲気温度と同じ20℃になるまで所定時間放置する温度ならしを行う必要があり、測定に時間がかかっていた。3次元測定機は、近年の生産効率の向上と共に加工製造現場に近い測定場所で測定することの要求が強く、現場周辺に設置される場合が増えている。このため、例えば特許文献1に記載されているように、プローブを保持する保持具をワークに対して互いに直角なX,Y,Z軸方向に相対的に移動可能とし、プローブがワークと接触したときのX,Y,Z軸の座標値をプローブとワークとの相対位置を検出するX,Y,Z軸スケールにより読み取ってワークの測定箇所の測定長さを測定する3次元測定機において、X,Y,Z軸の温度を夫々測定するセンサにより測定された各軸の温度に基づいてX,Y,Z軸スケールで測定された座標値を温度補正することによって、現場の温度変化に対応すべくワークの測定箇所の測定長さを21±5℃の環境温度変化に対して高精度に測定できるものが発売されている。しかしながら、ワークの温度変化への対応については、特許文献1にみられるように、接触式温度計で測定したワークの表面温度に対して線形補正し、基準温度20℃のワークにおける測定箇所の測定長さに換算する程度にとどまっている。
特開平11−190617(第3頁、図2)
Usually, the product drawing dimension is a dimension value at a temperature of 20 ° C. For this reason, precise three-dimensional measurement requires that the workpiece be brought into a temperature-controlled room controlled at 20 ° C and left for a predetermined time until the workpiece reaches 20 ° C, the same as the ambient temperature. It took a long time. With the recent improvement in production efficiency, the three-dimensional measuring machine is strongly demanded to perform measurement at a measurement place close to the processing manufacturing site, and the number of three-dimensional measuring machines is increasing around the site. For this reason, for example, as described in Patent Document 1, the holder for holding the probe can be moved relatively in the X, Y, and Z axis directions perpendicular to the workpiece, and the probe is in contact with the workpiece. In a three-dimensional measuring machine that reads the coordinate values of the X, Y, and Z axes when the relative position between the probe and the workpiece is read by an X, Y, and Z axis scale to measure the measurement length of the workpiece measurement point, It responds to temperature changes in the field by correcting the temperature of the coordinate values measured on the X, Y, and Z axis scales based on the temperature of each axis measured by the sensors that measure the temperatures of the Y, Z, and Z axes, respectively. Therefore, products that can measure the measurement length of workpieces with high accuracy against environmental temperature changes of 21 ± 5 ° C have been put on the market. However, regarding the response to the temperature change of the workpiece, as shown in Patent Document 1, linear correction is performed on the surface temperature of the workpiece measured with a contact-type thermometer, and measurement of the measurement location on the workpiece at the reference temperature of 20 ° C. It is only converted to length.
JP 11-190617 (3rd page, FIG. 2)

しかしながら、接触式温度計は、熱がワークからセンサ部に熱伝導されることによりワークの表面温度を測定するため、センサ部のワークへの接触具合により測定温度が変化しワークの表面温度を正確に測定できないことがあり、ワークの温度補正精度が低下する。また、3次元測定機の標準の接触式温度計は応答速度が240秒と応答性が悪いので、ワークを数度〜40℃程度の現場環境から測定室に搬入して直ちに測定した場合、ワークの温度変化に追従できず、線形補正の精度が低下する。従って、このような従来方法でワーク温度補正を行った測定穴の中心位置の測定長さと真値との測定誤差は、図7に示すように、測定穴の中心位置を測定したときのワークの表面温度が40℃程度に高いときは、公差である位置度の5分の1以内に入るが、ワーク表面温度が低くなるにつれて補正精度が悪くなり、測定穴の中心位置の測定長さと真値との測定誤差が公差の5分の1以上になる不具合があった。    However, since the contact-type thermometer measures the surface temperature of the workpiece by conducting heat from the workpiece to the sensor unit, the measured temperature changes depending on how the sensor unit contacts the workpiece, and the surface temperature of the workpiece is accurately measured. In some cases, the temperature correction accuracy of the workpiece decreases. In addition, the standard contact thermometer of the three-dimensional measuring machine has a response speed of 240 seconds and is poor in response. Therefore, when a workpiece is brought into the measurement room from a field environment of several degrees to 40 ° C. and immediately measured, It is impossible to follow the temperature change of the linear correction, and the accuracy of the linear correction is lowered. Therefore, as shown in FIG. 7, the measurement error between the measurement length and the true value of the center position of the measurement hole subjected to the workpiece temperature correction by such a conventional method is as follows. When the surface temperature is as high as about 40 ° C, it falls within one fifth of the tolerance position degree. However, as the workpiece surface temperature decreases, the correction accuracy deteriorates, and the measured length and true value of the center position of the measurement hole. There was a problem that the measurement error was 1/5 or more of the tolerance.

本発明は、係る従来の不具合を解消するためになされたもので、ワーク温度を温度変化に応答性よく追従して正確に測定し、ワークの測定箇所の測定長さをワーク温度に応じて高精度に温度補正することができる3次元測定機のワーク温度補正方法を提供することである。    The present invention has been made in order to eliminate the above-described conventional problems. The workpiece temperature is accurately measured by responsively responding to a temperature change, and the measurement length of the workpiece measurement point is increased according to the workpiece temperature. It is to provide a workpiece temperature correction method for a three-dimensional measuring machine capable of accurately correcting a temperature.

上記の課題を解決するため、請求項1に記載の発明の構成上の特徴は、冶具に取付けられたワークに対してX,Y,Z軸方向に相対移動可能なプローブがワーク表面位置を検出して検出信号を送出したときのX,Y,Z軸の各座標値を読取ることによりワークの測定箇所の測定長さを測定する3次元測定装置において、前記ワークを前記冶具に線形膨張を許容して1点部分で固定し、前記プローブの検出信号に基づいて測定されたワークの少なくとも2個の基準箇所のX,Y,Z軸の座標値に基づいてワーク座標系を設定し、前記測定箇所について前記プローブの検出信号に基づいてX,Y,Z軸の座標値を読取り、前記放射温度計によりワークの表面温度を測定し、前記座標値に基づいて測定箇所のワーク座標系における測定長さを演算するとともに、前記ワーク表面温度と基準温度との差に基づいて測定箇所のワーク座標系における測定長さをワーク温度補正することである。   In order to solve the above problems, the structural feature of the invention described in claim 1 is that a probe that can move relative to the workpiece attached to the jig in the X, Y, and Z axis directions detects the workpiece surface position. In the three-dimensional measuring apparatus that measures the measurement length of the measurement position of the workpiece by reading the coordinate values of the X, Y, and Z axes when the detection signal is transmitted, the workpiece is allowed to linearly expand in the jig. The workpiece coordinate system is set based on the coordinate values of the X, Y, and Z axes of at least two reference points of the workpiece measured based on the detection signal of the probe. The coordinate values of the X, Y, and Z axes are read for the location based on the detection signal of the probe, the surface temperature of the workpiece is measured by the radiation thermometer, and the measurement length in the workpiece coordinate system of the measurement location is measured based on the coordinate value. Calculate With the measured length in the workpiece coordinate system of the measuring point based on a difference between the workpiece surface temperature and the reference temperature is to work temperature compensation.

請求項2に記載の発明の構成上の特徴は、冶具に取付けられたワークに対してX,Y,Z軸方向に相対移動可能なプローブがワーク表面位置を検出して検出信号を送出したときのX,Y,Z軸の各座標値を読取ることによりワークの測定箇所の測定長さを測定する3次元測定装置において、前記ワークを前記冶具に線形膨張を許容して1点部分で固定し、前記プローブの検出信号に基づいて測定されたワークの少なくとも2個の基準箇所のX,Y,Z軸の座標値に基づいて初期ワーク座標系を設定し、公差が所定値以上の粗公差箇所について、前記プローブの検出信号に基づいて粗公差箇所のX,Y,Z軸の座標値を読取り、放射温度計によりワーク表面温度を測定し、該座標値に基づいて粗公差箇所の初期ワーク座標系における測定長さを演算するとともに、前記ワーク表面温度と基準温度との差に基づいて粗公差箇所の初期ワーク座標系における測定長さをワーク温度補正し、公差が所定値未満の精公差箇所については、ワーク表面温度が基準温度から所定範囲以内に入った後に、前記少なくとも2個の基準箇所のX,Y,Z軸の座標値を測定し直して該座標値に基づいて精公差用ワーク座標系を設定し、前記プローブの検出信号に基づいて精公差箇所のX,Y,Z軸の座標値を読取り、前記放射温度計によりワーク表面温度を測定し、該座標値に基づいて精公差箇所の精公差用ワーク座標系における測定長さを演算するとともに、前記ワーク表面温度と基準温度との差に基づいて精公差箇所の精公差用ワーク座標系における測定長さをワーク温度補正することである。   The structural feature of the invention of claim 2 is that when a probe capable of relative movement in the X, Y, and Z-axis directions with respect to the workpiece attached to the jig detects the workpiece surface position and sends a detection signal. In a three-dimensional measuring apparatus that measures the measurement length of a workpiece measurement point by reading the coordinate values of the X, Y, and Z axes, the workpiece is fixed at one point while allowing the jig to undergo linear expansion. The initial workpiece coordinate system is set based on the coordinate values of the X, Y, and Z axes of at least two reference locations of the workpiece measured based on the detection signal of the probe, and the rough tolerance location where the tolerance is equal to or greater than a predetermined value The X, Y and Z axis coordinate values of the rough tolerance location are read based on the detection signal of the probe, the workpiece surface temperature is measured by a radiation thermometer, and the initial workpiece coordinates of the rough tolerance location are measured based on the coordinate values. Measuring length in the system The workpiece length is compensated for the measurement length in the initial workpiece coordinate system of the rough tolerance location based on the difference between the workpiece surface temperature and the reference temperature, and for the precision tolerance location where the tolerance is less than a predetermined value, the workpiece surface temperature Is within a predetermined range from the reference temperature, the coordinate values of the X, Y, and Z axes of the at least two reference points are measured again, and a work coordinate system for fine tolerance is set based on the coordinate values. Based on the detection signal of the probe, the coordinate values of the X, Y and Z axes of the precise tolerance points are read, the workpiece surface temperature is measured by the radiation thermometer, and the fine tolerance workpieces of the fine tolerance points are measured based on the coordinate values. In addition to calculating the measurement length in the coordinate system, the measurement length in the work coordinate system for fine tolerance at the precise tolerance point is corrected based on the difference between the workpiece surface temperature and the reference temperature.

請求項3に記載の発明の構成上の特徴は、請求項1又は2において、前記放射温度計により温度測定されるワークの表面温度測定部分に放射率が既知の黒体物質を付着することである。   The structural feature of the invention described in claim 3 is that, in claim 1 or 2, a black body substance having a known emissivity is attached to a surface temperature measuring portion of a workpiece whose temperature is measured by the radiation thermometer. is there.

上記のように構成した請求項1に係る発明においては、ワークを3次元測定機の冶具に線形膨張が可能なように1点部分で固定する。ワークの少なくとも2個の基準箇所のX,Y,Z軸の座標値を3次元測定機のプローブの検出信号に基づいて測定し、該座標値に基づいてワーク座標系を設定する。ワークの測定箇所についてプローブの検出信号に基づいてX,Y,Z軸の座標値を読取り、放射温度計によりワークの表面温度を測定する。該座標値に基づいて測定箇所のワーク座標系における測定長さを演算する。ワーク温度と基準温度との差に基づいて測定箇所の測定長さを基準温度のワークにおける測定箇所の測定長さに温度補正する。
これにより、放射温度計は、接触式温度計のようにワークへの接触具合によって測定温度が変わることがなく、且つ応答速度が短いのでワーク温度を温度変化に応答性よく追従して正確に測定することができ、ワークの測定箇所の測定長さをワーク温度に応じて高精度に温度補正することができる。
In the invention according to claim 1 configured as described above, the work is fixed to the jig of the three-dimensional measuring machine at one point so that linear expansion is possible. The coordinate values of the X, Y, and Z axes of at least two reference points of the workpiece are measured based on the detection signal of the probe of the three-dimensional measuring machine, and the workpiece coordinate system is set based on the coordinate values. The coordinate values of the X, Y, and Z axes are read based on the detection signal of the probe at the workpiece measurement location, and the surface temperature of the workpiece is measured with a radiation thermometer. Based on the coordinate value, the measurement length in the workpiece coordinate system of the measurement location is calculated. Based on the difference between the workpiece temperature and the reference temperature, the measurement length of the measurement location is corrected to the measurement length of the measurement location of the workpiece at the reference temperature.
As a result, the radiation thermometer does not change the measurement temperature depending on the contact condition with the workpiece like the contact thermometer, and the response speed is short, so the workpiece temperature is accurately measured by following the temperature change with good responsiveness. Thus, the measurement length of the measurement location of the workpiece can be temperature-corrected with high accuracy according to the workpiece temperature.

上記のように構成した請求項2に係る発明によれば、ワークを3次元測定機の冶具に線形膨張が可能なように1点部分で固定する。ワークの少なくとも2個の基準箇所のX,Y,Z軸の座標値を3次元測定機のプローブの検出信号に基づいて測定し、該座標値に基づいて初期ワーク座標系を設定する。公差が所定値以上の粗公差箇所について、プローブの検出信号に基づいてX,Y,Z軸の座標値を読取り、放射温度計によりワークの表面温度を測定する。該座標値に基づいて粗公差箇所の初期ワーク座標系における測定長さを演算する。ワーク温度と基準温度との差に基づいて粗公差箇所の測定長さを基準温度のワークにおける該粗公差箇所の測定長さに温度補正する。公差が所定値未満の精公差箇所については、ワーク温度が基準温度から所定範囲以内に入った後に、少なくとも2個の基準箇所のX,Y,Z軸の座標値を測定し直して該座標値に基づいて精公差用ワーク座標系を設定する。プローブの検出信号に基づいてX,Y,Z軸の座標値を読取り、放射温度計によりワーク温度を測定する。該座標値に基づいて精公差箇所の精公差用ワーク座標系における測定長さを演算する。ワーク温度と基準温度との差に基づいて精公差箇所の測定長さを基準温度のワークにおける該粗公差箇所の測定長さに温度補正する。
これにより、粗公差箇所については、温度ならしを行うことなく測定しても、粗公差に対して必要な測定精度で粗公差箇所の測定長さを測定することができて測定時間を短縮することができる。精公差箇所については、ワーク温度が基準温度から所定範囲以内に入った後に、精公差用ワーク座標系を設定し直し、該精公差用ワーク座標系において演算した精公差箇所の測定長さを温度補正するので、精公差に対して必要な高測定精度で精公差箇所の測定長さを測定することができる。具体的に粗公差箇所は位置度公差が0.1〜0.5を満たす箇所とすることができる。精公差箇所は位置度公差が0.06〜0.1を満たすことができる。
According to the invention according to claim 2 configured as described above, the work is fixed to the jig of the three-dimensional measuring machine at one point so that linear expansion is possible. The coordinate values of the X, Y, and Z axes of at least two reference points of the workpiece are measured based on the detection signal of the probe of the three-dimensional measuring machine, and the initial workpiece coordinate system is set based on the coordinate values. For the coarse tolerance point where the tolerance is greater than or equal to a predetermined value, the coordinate values of the X, Y, and Z axes are read based on the probe detection signal, and the surface temperature of the workpiece is measured by a radiation thermometer. Based on the coordinate value, the measurement length in the initial workpiece coordinate system of the rough tolerance portion is calculated. Based on the difference between the workpiece temperature and the reference temperature, the measured length of the rough tolerance portion is temperature-corrected to the measured length of the rough tolerance portion of the workpiece at the reference temperature. For precise tolerance points where the tolerance is less than the specified value, measure the X, Y, and Z axis coordinate values of at least two reference points after the workpiece temperature falls within the specified range from the reference temperature. Set the work coordinate system for fine tolerance based on Based on the detection signal of the probe, the coordinate values of the X, Y, and Z axes are read, and the workpiece temperature is measured by a radiation thermometer. Based on the coordinate values, the measurement length in the work coordinate system for fine tolerances is calculated. Based on the difference between the workpiece temperature and the reference temperature, the measurement length of the fine tolerance point is corrected to the measurement length of the rough tolerance point in the reference temperature workpiece.
As a result, the measurement length of the rough tolerance point can be measured with the required measurement accuracy with respect to the rough tolerance even if the measurement is performed without performing the temperature leveling on the rough tolerance point, thereby shortening the measurement time. be able to. For precision tolerance points, after the workpiece temperature falls within the specified range from the reference temperature, reset the workpiece coordinate system for precision tolerance, and set the measurement length of the precision tolerance point calculated in the workpiece tolerance coordinate system to the temperature. Since the correction is made, it is possible to measure the measurement length of the precise tolerance portion with the high measurement accuracy required for the fine tolerance. Specifically, the coarse tolerance location can be a location where the positional tolerance satisfies 0.1 to 0.5. The position tolerance of the fine tolerance point can satisfy 0.06 to 0.1.

上記のように構成した請求項3に係る発明によれば、ワークの表面温度測定部分に放射率が既知の黒体物質を付着したので、黒体物質は直ぐにワーク表面温度になり、放射率は既知の高い値であり、且つ他の熱源からの熱線を放射温度計に向けて反射しないので、ワーク温度を正確に測定することができる。    According to the invention according to claim 3 configured as described above, since the black body material having a known emissivity is attached to the surface temperature measurement portion of the workpiece, the black body material immediately becomes the workpiece surface temperature, and the emissivity is Since it is a known high value and does not reflect heat rays from other heat sources toward the radiation thermometer, the workpiece temperature can be accurately measured.

以下、本発明に係る3次元測定機のワーク温度補正方法及び該方法を実施するための3次元測定機の実施の形態について説明する。3次元測定機11は、温度変化、例えば21±5℃に対する測定精度を保証するために、エアコン12で設定温度20℃に室内温度をコントロールされた測定室13内に配置されている。3次元測定機1は、ベース14上にコラム15が図1において紙面に対して垂直なY軸方向に移動可能に装架され、コラム15にヘッド16が左右のX軸方向に移動可能に装架され、ヘッド16にラム17が上下のZ軸方向に移動可能に装架されている。ラム17の先端にはプローブ18が装着され、プローブ18がベース14上に冶具19を介して固定されたワークWの表面に当接すると検出信号を送出して制御装置20に入力するようになっている。ベース14、コラム15、ヘッド16には、Y,X,Z軸スケールが夫々取付けら、コラム15、ヘッド16、ラム17に夫々固定された読取りヘッドがY,X,Z軸スケールからX,Y,Z軸の各座標値を読取る。冶具19に取付けられたワークWに対してX,Y,Z軸方向に相対移動可能なプローブ18がワークWの測定箇所の表面位置を検出して検出信号を送出したとき、各読取りヘッドがX,Y,Z軸の各座標値を読取って制御装置20に入力する。    Hereinafter, a method for correcting a workpiece temperature of a coordinate measuring machine according to the present invention and an embodiment of a coordinate measuring machine for carrying out the method will be described. The three-dimensional measuring machine 11 is arranged in a measurement chamber 13 in which the room temperature is controlled to a set temperature of 20 ° C. by the air conditioner 12 in order to guarantee a measurement accuracy with respect to a temperature change, for example, 21 ± 5 ° C. In the coordinate measuring machine 1, a column 15 is mounted on a base 14 so as to be movable in the Y-axis direction perpendicular to the paper surface in FIG. 1, and a head 16 is mounted on the column 15 so as to be movable in the left and right X-axis directions. A ram 17 is mounted on the head 16 so as to be movable in the vertical Z-axis direction. A probe 18 is attached to the tip of the ram 17, and when the probe 18 comes into contact with the surface of the workpiece W fixed on the base 14 via a jig 19, a detection signal is sent and input to the control device 20. ing. The Y-, X-, and Z-axis scales are attached to the base 14, the column 15, and the head 16, respectively, and the reading heads fixed to the column 15, the head 16, and the ram 17 are respectively connected to the Y-, X-, and Z-axis scales. , Read each coordinate value of the Z axis. When the probe 18 capable of relative movement in the X, Y, and Z axis directions with respect to the workpiece W attached to the jig 19 detects the surface position of the measurement location of the workpiece W and sends a detection signal, each read head moves to X , Y, and Z-axis coordinate values are read and input to the control device 20.

図1,2に示すように、測定室13の正面には扉23が開閉可能に取付けられ、冶具19は扉23を開いて手前に引出され、ワークWを着脱されて測定室13内に押し戻され、扉23を閉じて測定が行われる。ベース14上に載置された冶具19の基台24には下面に開口する多数の小穴が穿設され、冶具19は開閉弁25の開により小穴から圧縮エアが噴出するとベース14上面から浮上し、基台24の両側面を一対のガイド26に案内されて、測定室13内で基台24がストッパ27と当接する測定位置とワークWを着脱するために手前に引出された着脱位置との間でY軸方向に摺動可能となる。開閉弁25の閉により圧縮エアの供給を遮断されると冶具19は、自重によりベース14上に着座して固定される。基台24の側面には円錐穴28が穿設され、一方のガイド26には、先端にテーパが形成された係合ピン29がX軸方向に摺動可能に装架され圧縮スプリング30のバネ力により基台24の側面に向かって付勢されている。冶具19が測定位置近傍に押し戻されると、係合ピン29が円錐穴28に係入し、係合ピン29のテーパが円錐穴28の傾斜面に当接して基台24をストッパ27に押圧し、冶具19を測定位置に位置決めする。    As shown in FIGS. 1 and 2, a door 23 is attached to the front of the measurement chamber 13 so that it can be opened and closed. The jig 19 is pulled out by opening the door 23, and the workpiece W is detached and pushed back into the measurement chamber 13. Then, the door 23 is closed and measurement is performed. The base 24 of the jig 19 placed on the base 14 is provided with a large number of small holes opened on the lower surface, and the jig 19 floats from the upper surface of the base 14 when compressed air is ejected from the small holes by opening the on-off valve 25. The measurement position at which both sides of the base 24 are guided by the pair of guides 26 and the base 24 abuts the stopper 27 in the measurement chamber 13 and the attachment / detachment position pulled out to attach / detach the workpiece W to the front are provided. It becomes possible to slide in the Y-axis direction. When the supply of compressed air is shut off by closing the on-off valve 25, the jig 19 is seated and fixed on the base 14 by its own weight. A conical hole 28 is formed in the side surface of the base 24, and an engagement pin 29 having a taper formed at the tip is mounted on one guide 26 so as to be slidable in the X-axis direction. The force is biased toward the side surface of the base 24. When the jig 19 is pushed back to the vicinity of the measurement position, the engagement pin 29 engages with the conical hole 28, and the taper of the engagement pin 29 contacts the inclined surface of the conical hole 28 to press the base 24 against the stopper 27. The jig 19 is positioned at the measurement position.

図3に示すように、冶具19の基台24上には複数のワーク受け31〜33が立設され、ワーク受け31の上端部にはY−Z面と平行な凹溝が形成され、ワークWは該凹溝に入れられ線形膨張を許容して1点部分で固定される。凹溝の一方の側壁に貫通して螺合された固定ネジ34の先端にはワーク押えが回転可能に設けられ、他端にはハンドル35が固定されている。ハンドル35の回転により固定ネジ34がX軸方向に移動され、ワークWが凹溝の他方の側壁にワーク押えを介して押圧されることにより、ワークWは1点部分で冶具19に固定される。ワークWはワーク受け32,33のX−Y面と平行な上端面に線形膨張を許容して支持されている。    As shown in FIG. 3, a plurality of workpiece receivers 31 to 33 are erected on the base 24 of the jig 19, and a concave groove parallel to the YZ plane is formed on the upper end portion of the workpiece receiver 31. W is inserted into the groove and allowed to expand linearly and fixed at one point. A work presser is rotatably provided at the tip of a fixing screw 34 that is threaded into one side wall of the concave groove and a handle 35 is fixed to the other end. The fixing screw 34 is moved in the X-axis direction by the rotation of the handle 35 and the work W is pressed against the other side wall of the concave groove through the work presser, whereby the work W is fixed to the jig 19 at one point. . The workpiece W is supported on the upper end surfaces parallel to the XY plane of the workpiece receivers 32 and 33 while allowing linear expansion.

ワークWには、放射率を0.95に保証された黒体テープ21が放射率の既知な黒体物質としてワークWの表面温度測定部分に付着され、ベース14上には、放射温度計22が黒体テープ21に対向して固定され、ワークWの表面温度を非接触で測定する。接触式温度計は温度変化に対する応答時間が240秒で測定精度が±0.1℃程度であるが、本実施形態では、応答時間が0.7秒と早く、測定精度が±1℃程度の放射温度計22を使用する。放射率を0.9以上の既知の値に保持された黒色スプレー、マーカー等を放射率が既知の黒体物質としてワークの表面温度測定部分に付着するようにしてもよい。    A black body tape 21 whose emissivity is guaranteed to 0.95 is attached to the work W as a black body material having a known emissivity to the surface temperature measurement portion of the work W. On the base 14, the radiation thermometer 22 is attached. Is fixed to face the black body tape 21, and the surface temperature of the workpiece W is measured in a non-contact manner. The contact-type thermometer has a response time of 240 seconds for temperature change and a measurement accuracy of about ± 0.1 ° C. In this embodiment, the response time is as fast as 0.7 seconds and the measurement accuracy is about ± 1 ° C. A radiation thermometer 22 is used. A black spray, a marker, or the like whose emissivity is maintained at a known value of 0.9 or more may be attached to the surface temperature measurement portion of the workpiece as a black body material with an emissivity known.

次に、上記実施形態の作動について図4に示すワークWの測定箇所の測定長さの測定の手順を示すフロー図に基づいて説明する。測定室13の扉23が開かれ、開閉弁25が開かれて冶具19の基台24がエア圧によりベース14から浮上された状態で、冶具19が着脱位置に引出され、開閉弁25が閉じられて冶具19がベース上に着座される。加工製造現場から持込まれたワークWは、表面温度測定位置に黒体テープ21を貼付され、冶具19のワーク受け31〜33上に載置される。ハンドル35により固定ネジ34が回転されて軸動し、ワーク押えを介してワークWをワーク受け31の凹溝側壁に押圧し、ワークWを線膨張を許容して1点部分で冶具19に固定する(手順1)。説明を簡単にするために、ワークWは、ワークWの測定箇所が存在する面がY−Z面と平行となるように、冶具19に固定されたとする。冶具19にワークWが固定されると、開閉弁25が開かれて基台24がエア圧によりベース14から浮上された状態で、冶具19は測定位置近傍に戻され、係合ピン29が円錐穴28に係入して基台24をストッパ27に押圧することにより測定位置に位置決めされる。開閉弁25が閉じられて基台24下面の小穴からのエア噴出が遮断され、冶具19がベース14上に着座して固定される。その後に、測定室13の扉23が閉じられる。    Next, the operation of the above embodiment will be described with reference to a flowchart showing a procedure for measuring the measurement length of the measurement location of the workpiece W shown in FIG. With the door 23 of the measurement chamber 13 opened, the open / close valve 25 opened, and the base 24 of the jig 19 lifted from the base 14 by the air pressure, the jig 19 is pulled out to the attaching / detaching position, and the open / close valve 25 is closed. The jig 19 is seated on the base. The workpiece W brought in from the processing / manufacturing site is affixed with the black body tape 21 at the surface temperature measurement position and placed on the workpiece receivers 31 to 33 of the jig 19. The fixing screw 34 is rotated by the handle 35 to pivot, and the workpiece W is pressed against the side wall of the concave groove of the workpiece receiver 31 through the workpiece holder, and the workpiece W is allowed to linearly expand and fixed to the jig 19 at one point. (Procedure 1). In order to simplify the explanation, it is assumed that the workpiece W is fixed to the jig 19 so that the surface on which the measurement location of the workpiece W exists is parallel to the YZ plane. When the workpiece W is fixed to the jig 19, the open / close valve 25 is opened and the base 24 is lifted from the base 14 by the air pressure, the jig 19 is returned to the vicinity of the measurement position, and the engagement pin 29 is conical. It is positioned at the measurement position by engaging with the hole 28 and pressing the base 24 against the stopper 27. The on-off valve 25 is closed to block air ejection from a small hole on the lower surface of the base 24, and the jig 19 is seated and fixed on the base 14. Thereafter, the door 23 of the measurement chamber 13 is closed.

プローブ18がX,Y,Z軸方向に移動されて2個の基準穴37,38のY軸及びZ軸方向直径部分の各内周両壁面に夫々当接し検出信号を送出すると、そのときのプローブ18の位置を示すX,Y,Z軸の座標値が夫々読取られ、制御装置に入力されメモリに記憶される。制御装置20は、プローブ18が基準穴37,38のY軸及びZ軸方向の各内周両壁面に夫々当接したときのプローブ18の位置を示すX,Y,Z軸の座標値の中から、基準穴37,38のY軸方向の内周面両壁面位置を示す2個ずつのY軸座標値、及びZ軸方向の内周面両壁面位置を示す2個ずつのZ軸座標値を夫々算術平均して基準穴37,38の各中心位置の座標値を測定する。そして、ワークWの測定箇所が存在する面と一致するY−Z面において、基準穴37の中心位置の座標値を初期ワーク座標系の原点とし、基準穴37,38の中心位置の座標値を結んでY'軸とし、原点を通ってY'軸と直角な軸をZ'軸として初期ワーク座標系を設定する(手順2)   When the probe 18 is moved in the X, Y, and Z axis directions and abuts against both inner peripheral wall surfaces of the Y axis and Z axis direction diameter portions of the two reference holes 37 and 38, and sends a detection signal, The X, Y, and Z axis coordinate values indicating the position of the probe 18 are read, input to the control device, and stored in the memory. The control device 20 includes coordinate values of the X, Y, and Z axes that indicate the position of the probe 18 when the probe 18 abuts against both inner circumferential wall surfaces of the reference holes 37 and 38 in the Y-axis and Z-axis directions. From each of the two Y-axis coordinate values indicating the positions of both inner wall surfaces in the Y-axis direction of the reference holes 37 and 38, and two Z-axis coordinate values indicating the positions of both wall surfaces in the Z-axis direction. Are respectively arithmetically averaged to measure the coordinate values of the center positions of the reference holes 37 and 38. Then, on the YZ plane that coincides with the surface where the measurement location of the workpiece W exists, the coordinate value of the center position of the reference hole 37 is the origin of the initial workpiece coordinate system, and the coordinate values of the center positions of the reference holes 37 and 38 are The initial workpiece coordinate system is set with the Y ′ axis tied and the axis perpendicular to the Y ′ axis passing through the origin as the Z ′ axis (Procedure 2).

多数の測定穴39(測定箇所)の中、位置度(公差)が所定値以上の粗公差穴39r(粗公差箇所)について、基準穴37,38の場合と同様にプローブ18の検出信号に基づいて夫々4組のX,Y,Z軸の座標値が読取られるとともに、ワークWの表面温度が放射温度計22により測定され制御装置20に入力されてメモリに記憶される(手順3)。制御装置20は、4組のX,Y,Z軸の座標値に基づいて各粗公差穴39rの中心位置のY,Z軸の座標値を演算し、座標変換して各粗公差穴39rの中心位置Orの初期ワーク座標系におけるY'軸及びZ'軸からの測定長さを演算する。制御装置20は、プローブの検出信号に基づいて各粗公差穴39rについて4回測定した表面温度の平均値を各粗公差穴39rの中心位置を測定したときのワークの表面温度として求め、基準温度20℃との温度差ΔTを演算する。制御装置20は、粗公差穴39rの中心位置Orの初期ワーク座標系におけるY'軸及びZ'軸からの測定長さLY',LZ'を温度差ΔTに基づいてワーク温度補正し、中心位置OrのY'軸及びZ'軸からの測定長さ(LY'/(1+α×ΔT))及び (LZ' /(1+α×ΔT))を演算する(手順4)。   Of the large number of measurement holes 39 (measurement locations), the coarse tolerance holes 39r (rough tolerance locations) having a positional degree (tolerance) of a predetermined value or more are based on the detection signal of the probe 18 as in the case of the reference holes 37 and 38. Then, four sets of X, Y, and Z axis coordinate values are read, and the surface temperature of the workpiece W is measured by the radiation thermometer 22 and input to the control device 20 and stored in the memory (procedure 3). The control device 20 calculates the Y and Z axis coordinate values of the center position of each rough tolerance hole 39r based on the four sets of X, Y, and Z axis coordinate values, converts the coordinates, and converts each coarse tolerance hole 39r. The measurement length from the Y ′ axis and the Z ′ axis in the initial workpiece coordinate system of the center position Or is calculated. The control device 20 obtains the average value of the surface temperatures measured four times for each rough tolerance hole 39r based on the detection signal of the probe as the surface temperature of the workpiece when the center position of each rough tolerance hole 39r is measured, and the reference temperature A temperature difference ΔT from 20 ° C. is calculated. The control device 20 corrects the workpiece temperature based on the temperature difference ΔT on the measured lengths LY ′ and LZ ′ from the Y ′ axis and the Z ′ axis in the initial workpiece coordinate system of the center position Or of the rough tolerance hole 39r to obtain the center position. The measurement length (LY ′ / (1 + α × ΔT)) and (LZ ′ / (1 + α × ΔT)) from the Y ′ axis and the Z ′ axis of Or is calculated (procedure 4).

このようにワーク温度補正して求めた粗公差穴39rの中心位置Orの初期ワーク座標系におけるY'軸及びZ'軸からの測定長さLY',LZ'と真値との測定誤差は、図5に示すように、粗公差穴39rの中心位置Orを測定したときのワークの表面温度が40℃から20℃の間のいずれの温度であっても、粗公差穴39rの公差である位置度の5分の1以内に入っている。   The measurement errors between the measurement lengths LY ′ and LZ ′ from the Y ′ axis and the Z ′ axis in the initial workpiece coordinate system of the center position Or of the rough tolerance hole 39r obtained by correcting the workpiece temperature in this way and the true value are as follows: As shown in FIG. 5, the position that is the tolerance of the rough tolerance hole 39r regardless of whether the surface temperature of the workpiece when the center position Or of the coarse tolerance hole 39r is measured is between 40 ° C. and 20 ° C. It is within one fifth of the degree.

位置度が所定値未満の精公差穴39f(精公差箇所)を測定する前に、制御装置22は、放射温度計22で測定された現在のワーク表面温度が、設定温度1、例えば10℃以上で設定温度2、例えば30℃以下であるか否か、換言すれば基準温度20℃から所定範囲以内に入ったか否か判定し、現在のワーク表面温度が基準温度から所定範囲以内に入るまで待機する(手順5)。   Before measuring the precision tolerance hole 39f (precision tolerance location) where the degree of position is less than a predetermined value, the control device 22 determines that the current workpiece surface temperature measured by the radiation thermometer 22 is a set temperature 1, for example, 10 ° C. or more. To determine whether the temperature is below a set temperature, for example, 30 ° C., in other words, whether it is within a predetermined range from the reference temperature 20 ° C., and wait until the current workpiece surface temperature is within the predetermined range from the reference temperature. (Procedure 5).

現在のワーク表面温度が基準温度から所定範囲以内に入ると、初期ワーク座標系の設定と同様に、プローブ18がX,Y,Z軸方向に移動され、2個の基準穴37,38の中心位置の座標値を測定し直し、ワークWの測定箇所が存在する面と一致するY−Z面において、基準穴37の中心位置の座標値を精公差用ワーク座標系の原点とし、基準穴37,38の中心位置の座標値を結んでY'軸とし、原点を通ってY'軸と直角な軸をZ'軸として精公差用ワーク座標系を設定する(手順6)。   When the current workpiece surface temperature falls within a predetermined range from the reference temperature, the probe 18 is moved in the X, Y, and Z axis directions as in the setting of the initial workpiece coordinate system, and the centers of the two reference holes 37 and 38 are moved. The coordinate value of the position is measured again, and the coordinate value of the center position of the reference hole 37 is set as the origin of the work coordinate system for precision tolerance on the YZ plane that coincides with the surface where the measurement location of the workpiece W exists. , 38 to connect the coordinate values of the center positions to be the Y ′ axis, and the axis that is perpendicular to the Y ′ axis through the origin is set as the Z ′ axis (step 6).

多数の測定穴39の中、位置度が所定値以下の精公差穴39f(精公差箇所)について、粗公差穴39rの場合と同様にプローブ18の検出信号に基づいて夫々4組のX,Y,Z軸の座標値が読取られるとともに、ワークWの表面温度が放射温度計22により測定され制御装置20に入力されてメモリに記憶される。制御装置20は、制御装置20は、4組のX,Y,Z軸の座標値に基づいて各精公差穴39fの中心位置のY,Z軸の座標値を演算し、座標変換して各精公差穴39fの中心位置Ofの精公差用ワーク座標系におけるY'軸及びZ'軸からの測定長さを演算する。そして、制御装置20は、各精公差穴39fの中心位置Ofを測定したときのワークの表面温度と基準温度との温度差ΔTを演算し、精公差穴39fの中心位置Ofの精公差用ワーク座標系におけるY'軸及びZ'軸からの測定長さLY',LZ'を温度差ΔTに基づいてワーク温度補正する(手順7)。   Among a large number of measurement holes 39, for the fine tolerance holes 39f (fine tolerance points) whose degree of position is equal to or less than a predetermined value, four sets of X and Y are set based on the detection signal of the probe 18 as in the case of the coarse tolerance holes 39r. , The Z-axis coordinate value is read, and the surface temperature of the workpiece W is measured by the radiation thermometer 22 and input to the control device 20 and stored in the memory. The control device 20 calculates the coordinate values of the Y and Z axes at the center position of each precision tolerance hole 39f based on the four sets of coordinate values of the X, Y, and Z axes, and performs coordinate conversion to calculate each coordinate value. The measurement length from the Y ′ axis and the Z ′ axis in the work coordinate system for the fine tolerance of the center position Of of the fine tolerance hole 39f is calculated. Then, the control device 20 calculates the temperature difference ΔT between the surface temperature of the workpiece and the reference temperature when the center position Of of each precision tolerance hole 39f is measured, and the precision tolerance workpiece of the center position Of of the precision tolerance hole 39f. The measured lengths LY ′ and LZ ′ from the Y ′ axis and the Z ′ axis in the coordinate system are corrected for the workpiece temperature based on the temperature difference ΔT (procedure 7).

このように現在のワーク表面温度が基準温度から所定範囲以内に入った後に、基準穴37,38の中心位置の座標値を測定し直して精公差用ワーク座標系を設定し、精公差穴39fの中心位置Ofの精公差用ワーク座標系における測定長さをワーク温度補正しているので、ワーク温度補正された精公差穴39fの中心位置Ofの精公差用ワーク座標系におけるY'軸及びZ'軸からの測定長さと真値との測定誤差は、図6に示すように、精公差穴39fの中心位置Ofを測定したときのワークの表面温度が30℃から20℃の間のいずれの温度であっても、精公差穴39fの公差の5分の1以内に入っている。   Thus, after the current workpiece surface temperature falls within a predetermined range from the reference temperature, the coordinate values of the center positions of the reference holes 37 and 38 are measured again to set the work coordinate system for fine tolerance, and the fine tolerance hole 39f. Since the measurement length of the center position Of in the precision tolerance work coordinate system is corrected for the work temperature, the Y ′ axis and Z in the precision tolerance work coordinate system of the center position Of of the precision tolerance hole 39f whose work temperature has been corrected are corrected. 'As shown in FIG. 6, the measurement error between the measurement length from the axis and the true value is any of the surface temperature of the workpiece between 30 ° C and 20 ° C when the center position Of of the precision tolerance hole 39f is measured. Even the temperature is within one fifth of the tolerance of the fine tolerance hole 39f.

本発明の実施形態に係る3次元測定機のワーク温度補正方法を実施するための3次元測定機を示す図。The figure which shows the three-dimensional measuring machine for implementing the workpiece | work temperature correction method of the three-dimensional measuring machine which concerns on embodiment of this invention. 冶具を測定位置と着脱位置との間で移動させる態様を示す図。The figure which shows the aspect which moves a jig between a measurement position and an attachment / detachment position. ワークを冶具に固定した状態を示す図。The figure which shows the state which fixed the workpiece | work to the jig. ワークWの測定箇所の長さ測定の手順を示すフロー図。The flowchart which shows the procedure of the length measurement of the measurement location of the workpiece | work W. FIG. 本実施形態の方法により各ワーク温度時に測定した粗公差穴の中心位置の測定長さの測定誤差を示す図。The figure which shows the measurement error of the measurement length of the center position of the rough tolerance hole measured at the time of each workpiece | work temperature by the method of this embodiment. 本実施形態の方法により各ワーク温度時に測定した粗公差穴の中心位置の測定長さの測定誤差を示す図。The figure which shows the measurement error of the measurement length of the center position of the rough tolerance hole measured at the time of each workpiece | work temperature by the method of this embodiment. 従来方法により各ワーク温度時に測定した測定箇所の測定長さの測定誤差を示す図。The figure which shows the measurement error of the measurement length of the measurement location measured at the time of each workpiece | work temperature by the conventional method.

符号の説明Explanation of symbols

11…3次元測定機 、12…エアコン、13…測定室、14…ベース、15…コラム、16…ヘッド、17…ラム、18…プローブ、19…冶具、20…制御装置、21…黒体テープ、22…放射温度計、23…扉、24…基台、25…開閉弁、26…ガイド、27…ストッパ、28…円錐穴、29…係合ピン、30…圧縮スプリング、31〜33…ワーク受け、34…固定ネジ、35…ハンドル、37,38…基準穴、39…測定穴、39r…粗公差穴、39f…精公差穴。   DESCRIPTION OF SYMBOLS 11 ... Three-dimensional measuring machine, 12 ... Air conditioner, 13 ... Measurement room, 14 ... Base, 15 ... Column, 16 ... Head, 17 ... Ram, 18 ... Probe, 19 ... Jig, 20 ... Control device, 21 ... Black body tape 22 ... Radiation thermometer, 23 ... Door, 24 ... Base, 25 ... Open / close valve, 26 ... Guide, 27 ... Stopper, 28 ... Conical hole, 29 ... Engagement pin, 30 ... Compression spring, 31-33 ... Workpiece 34, fixing screw, 35, handle, 37, 38, reference hole, 39, measurement hole, 39r, rough tolerance hole, 39f, fine tolerance hole.

Claims (3)

冶具に取付けられたワークに対してX,Y,Z軸方向に相対移動可能なプローブがワーク表面位置を検出して検出信号を送出したときのX,Y,Z軸の各座標値を読取ることによりワークの測定箇所の測定長さを測定する3次元測定装置において、前記ワークを前記冶具に線形膨張を許容して1点部分で固定し、前記プローブの検出信号に基づいて測定されたワークの少なくとも2個の基準箇所のX,Y,Z軸の座標値に基づいてワーク座標系を設定し、前記測定箇所について前記プローブの検出信号に基づいてX,Y,Z軸の座標値を読取り、前記放射温度計によりワークの表面温度を測定し、前記座標値に基づいて測定箇所のワーク座標系における測定長さを演算するとともに、前記ワーク表面温度と基準温度との差に基づいて測定箇所のワーク座標系における測定長さをワーク温度補正することを特徴とする3次元測定機のワーク温度補正方法。 Read X, Y, and Z coordinate values when a probe that can move relative to the workpiece attached to the jig detects the workpiece surface position and sends a detection signal. In the three-dimensional measuring apparatus for measuring the measurement length of the measurement location of the workpiece by the above, the workpiece is fixed at one point while allowing the jig to linearly expand, and the workpiece measured based on the detection signal of the probe is used. A workpiece coordinate system is set based on the coordinate values of the X, Y, and Z axes of at least two reference points, and the coordinate values of the X, Y, and Z axes are read based on the detection signal of the probe for the measurement points; Measure the surface temperature of the workpiece with the radiation thermometer, calculate the measurement length in the workpiece coordinate system of the measurement location based on the coordinate value, and measure the measurement location based on the difference between the workpiece surface temperature and the reference temperature Work temperature correction method for three-dimensional measuring device, characterized in that the workpiece temperature correcting measurement length in the workpiece coordinate system. 冶具に取付けられたワークに対してX,Y,Z軸方向に相対移動可能なプローブがワーク表面位置を検出して検出信号を送出したときのX,Y,Z軸の各座標値を読取ることによりワークの測定箇所の測定長さを測定する3次元測定装置において、前記ワークを前記冶具に線形膨張を許容して1点部分で固定し、前記プローブの検出信号に基づいて測定されたワークの少なくとも2個の基準箇所のX,Y,Z軸の座標値に基づいて初期ワーク座標系を設定し、公差が所定値以上の粗公差箇所について、前記プローブの検出信号に基づいて粗公差箇所のX,Y,Z軸の座標値を読取り、放射温度計によりワーク表面温度を測定し、該座標値に基づいて粗公差箇所の初期ワーク座標系における測定長さを演算するとともに、前記ワーク表面温度と基準温度との差に基づいて粗公差箇所の初期ワーク座標系における測定長さをワーク温度補正し、公差が所定値未満の精公差箇所については、ワーク表面温度が基準温度から所定範囲以内に入った後に、前記少なくとも2個の基準箇所のX,Y,Z軸の座標値を測定し直して該座標値に基づいて精公差用ワーク座標系を設定し、前記プローブの検出信号に基づいて精公差箇所のX,Y,Z軸の座標値を読取り、前記放射温度計によりワーク表面温度を測定し、該座標値に基づいて精公差箇所の精公差用ワーク座標系における測定長さを演算するとともに、前記ワーク表面温度と基準温度との差に基づいて精公差箇所の精公差用ワーク座標系における測定長さをワーク温度補正することを特徴とする3次元測定機のワーク温度補正方法。 Read X, Y, and Z coordinate values when a probe that can move relative to the workpiece attached to the jig detects the workpiece surface position and sends a detection signal. In the three-dimensional measuring apparatus for measuring the measurement length of the measurement location of the workpiece by the above, the workpiece is fixed at one point while allowing the jig to linearly expand, and the workpiece measured based on the detection signal of the probe is used. An initial workpiece coordinate system is set based on the coordinate values of the X, Y, and Z axes of at least two reference points, and a rough tolerance point having a tolerance greater than or equal to a predetermined value is determined based on the detection signal of the probe. The coordinate values of the X, Y, and Z axes are read, the workpiece surface temperature is measured by a radiation thermometer, the measurement length in the initial workpiece coordinate system of the rough tolerance location is calculated based on the coordinate values, and the workpiece surface temperature When Based on the difference from the quasi-temperature, the measurement length in the initial workpiece coordinate system of the rough tolerance location is corrected for the workpiece temperature, and for the precision tolerance location where the tolerance is less than the specified value, the workpiece surface temperature is within the specified range from the reference temperature. After that, the coordinate values of the X, Y, and Z axes of the at least two reference points are measured again, a work coordinate system for fine tolerance is set based on the coordinate values, and the precise coordinate based on the detection signal of the probe is set. The coordinate values of the X, Y, and Z axes of the tolerance location are read, the workpiece surface temperature is measured by the radiation thermometer, and the measurement length in the workpiece coordinate system for the tolerance tolerance is calculated based on the coordinate value. A workpiece temperature correction method for a three-dimensional measuring machine, wherein the workpiece temperature is corrected for the measurement length in the workpiece coordinate system for the tolerances of the tolerances based on the difference between the workpiece surface temperature and the reference temperature. 請求項1又は2において、前記放射温度計により温度測定されるワークの表面温度測定部分に放射率が既知の黒体物質を付着することを特徴とする3次元測定機のワーク温度補正方法。 3. The work temperature correction method for a three-dimensional measuring machine according to claim 1, wherein a black body material having a known emissivity is attached to a surface temperature measurement portion of the work whose temperature is measured by the radiation thermometer.
JP2004080687A 2004-03-19 2004-03-19 Work temperature correction method for CMM Expired - Fee Related JP4438467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004080687A JP4438467B2 (en) 2004-03-19 2004-03-19 Work temperature correction method for CMM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004080687A JP4438467B2 (en) 2004-03-19 2004-03-19 Work temperature correction method for CMM

Publications (2)

Publication Number Publication Date
JP2005265700A true JP2005265700A (en) 2005-09-29
JP4438467B2 JP4438467B2 (en) 2010-03-24

Family

ID=35090405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004080687A Expired - Fee Related JP4438467B2 (en) 2004-03-19 2004-03-19 Work temperature correction method for CMM

Country Status (1)

Country Link
JP (1) JP4438467B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502953A (en) * 2006-08-31 2010-01-28 ファロ テクノロジーズ インコーポレーテッド Intelligent probe
GB2510510A (en) * 2011-03-14 2014-08-06 Faro Tech Inc Automatic measurement of dimensional data with a laser tracker
WO2014181134A1 (en) * 2013-05-10 2014-11-13 Renishaw Plc Method and apparatus for inspecting workpieces
US9007601B2 (en) 2010-04-21 2015-04-14 Faro Technologies, Inc. Automatic measurement of dimensional data with a laser tracker
US9041914B2 (en) 2013-03-15 2015-05-26 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9151830B2 (en) 2011-04-15 2015-10-06 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote structured-light scanner
US9164173B2 (en) 2011-04-15 2015-10-20 Faro Technologies, Inc. Laser tracker that uses a fiber-optic coupler and an achromatic launch to align and collimate two wavelengths of light
US9377885B2 (en) 2010-04-21 2016-06-28 Faro Technologies, Inc. Method and apparatus for locking onto a retroreflector with a laser tracker
US9395174B2 (en) 2014-06-27 2016-07-19 Faro Technologies, Inc. Determining retroreflector orientation by optimizing spatial fit
US9400170B2 (en) 2010-04-21 2016-07-26 Faro Technologies, Inc. Automatic measurement of dimensional data within an acceptance region by a laser tracker
US9453913B2 (en) 2008-11-17 2016-09-27 Faro Technologies, Inc. Target apparatus for three-dimensional measurement system
US9482755B2 (en) 2008-11-17 2016-11-01 Faro Technologies, Inc. Measurement system having air temperature compensation between a target and a laser tracker
US9482529B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
JP2017037068A (en) * 2015-08-10 2017-02-16 地方独立行政法人東京都立産業技術研究センター Temperature correction method, temperature correction program, temperature correction device, and coordinate measuring machine
US9638507B2 (en) 2012-01-27 2017-05-02 Faro Technologies, Inc. Measurement machine utilizing a barcode to identify an inspection plan for an object
US9686532B2 (en) 2011-04-15 2017-06-20 Faro Technologies, Inc. System and method of acquiring three-dimensional coordinates using multiple coordinate measurement devices
US9739606B2 (en) 2011-08-09 2017-08-22 Renishaw Plc Method and apparatus for inspecting workpieces
US9772394B2 (en) 2010-04-21 2017-09-26 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
WO2019207862A1 (en) * 2018-04-23 2019-10-31 Dmg森精機株式会社 Machine tool
WO2020020564A1 (en) * 2018-07-24 2020-01-30 Asml Netherlands B.V. Substrate positioning device with remote temperature sensor
CN113405453A (en) * 2021-05-10 2021-09-17 中航西安飞机工业集团股份有限公司 Digital chemical industry airplane-mounted coordinate system recovery method based on temperature compensation

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8661700B2 (en) 2006-08-31 2014-03-04 Faro Technologies, Inc. Smart probe
JP2010502953A (en) * 2006-08-31 2010-01-28 ファロ テクノロジーズ インコーポレーテッド Intelligent probe
US9482755B2 (en) 2008-11-17 2016-11-01 Faro Technologies, Inc. Measurement system having air temperature compensation between a target and a laser tracker
US9453913B2 (en) 2008-11-17 2016-09-27 Faro Technologies, Inc. Target apparatus for three-dimensional measurement system
US10480929B2 (en) 2010-04-21 2019-11-19 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US10209059B2 (en) 2010-04-21 2019-02-19 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US9146094B2 (en) 2010-04-21 2015-09-29 Faro Technologies, Inc. Automatic measurement of dimensional data with a laser tracker
US9772394B2 (en) 2010-04-21 2017-09-26 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US9007601B2 (en) 2010-04-21 2015-04-14 Faro Technologies, Inc. Automatic measurement of dimensional data with a laser tracker
US9400170B2 (en) 2010-04-21 2016-07-26 Faro Technologies, Inc. Automatic measurement of dimensional data within an acceptance region by a laser tracker
US9377885B2 (en) 2010-04-21 2016-06-28 Faro Technologies, Inc. Method and apparatus for locking onto a retroreflector with a laser tracker
GB2510510B (en) * 2011-03-14 2015-10-07 Faro Tech Inc Automatic measurement of dimensional data with a laser tracker
GB2510510A (en) * 2011-03-14 2014-08-06 Faro Tech Inc Automatic measurement of dimensional data with a laser tracker
US9164173B2 (en) 2011-04-15 2015-10-20 Faro Technologies, Inc. Laser tracker that uses a fiber-optic coupler and an achromatic launch to align and collimate two wavelengths of light
US9151830B2 (en) 2011-04-15 2015-10-06 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote structured-light scanner
US10578423B2 (en) 2011-04-15 2020-03-03 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners using projection patterns
US9448059B2 (en) 2011-04-15 2016-09-20 Faro Technologies, Inc. Three-dimensional scanner with external tactical probe and illuminated guidance
US9453717B2 (en) 2011-04-15 2016-09-27 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners using projection patterns
US9207309B2 (en) 2011-04-15 2015-12-08 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote line scanner
US10302413B2 (en) 2011-04-15 2019-05-28 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote sensor
US9157987B2 (en) 2011-04-15 2015-10-13 Faro Technologies, Inc. Absolute distance meter based on an undersampling method
US9482746B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote sensor
US9482529B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9494412B2 (en) 2011-04-15 2016-11-15 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners using automated repositioning
US10267619B2 (en) 2011-04-15 2019-04-23 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US10119805B2 (en) 2011-04-15 2018-11-06 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9686532B2 (en) 2011-04-15 2017-06-20 Faro Technologies, Inc. System and method of acquiring three-dimensional coordinates using multiple coordinate measurement devices
US9739606B2 (en) 2011-08-09 2017-08-22 Renishaw Plc Method and apparatus for inspecting workpieces
US9638507B2 (en) 2012-01-27 2017-05-02 Faro Technologies, Inc. Measurement machine utilizing a barcode to identify an inspection plan for an object
US9482514B2 (en) 2013-03-15 2016-11-01 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners by directed probing
US9041914B2 (en) 2013-03-15 2015-05-26 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9989347B2 (en) 2013-05-10 2018-06-05 Renishaw Plc Method and apparatus for inspecting workpieces
WO2014181134A1 (en) * 2013-05-10 2014-11-13 Renishaw Plc Method and apparatus for inspecting workpieces
JP2016524136A (en) * 2013-05-10 2016-08-12 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Method and apparatus for inspecting a workpiece
US9395174B2 (en) 2014-06-27 2016-07-19 Faro Technologies, Inc. Determining retroreflector orientation by optimizing spatial fit
JP2017037068A (en) * 2015-08-10 2017-02-16 地方独立行政法人東京都立産業技術研究センター Temperature correction method, temperature correction program, temperature correction device, and coordinate measuring machine
WO2019207862A1 (en) * 2018-04-23 2019-10-31 Dmg森精機株式会社 Machine tool
JP2019188505A (en) * 2018-04-23 2019-10-31 Dmg森精機株式会社 Machine tool
US11759906B2 (en) 2018-04-23 2023-09-19 Dmg Mori Co., Ltd. Machine tool
WO2020020564A1 (en) * 2018-07-24 2020-01-30 Asml Netherlands B.V. Substrate positioning device with remote temperature sensor
US12051607B2 (en) 2018-07-24 2024-07-30 Asml Netherlands B.V. Substrate positioning device with remote temperature sensor
CN113405453A (en) * 2021-05-10 2021-09-17 中航西安飞机工业集团股份有限公司 Digital chemical industry airplane-mounted coordinate system recovery method based on temperature compensation

Also Published As

Publication number Publication date
JP4438467B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP4438467B2 (en) Work temperature correction method for CMM
CN100529650C (en) Method and device for measuring workpieces with a measuring probe on a machine tool
CN107883867B (en) Measuring system
US5501096A (en) Calibration method for determining and compensating differences of measuring forces in different coordinate directions in a multi-coordinate scanning system
US7891248B2 (en) Apparatus for measuring wall thicknesses of objects
US5111590A (en) Measuring method of machine tool accuracy using a computer aided kinematic transducer link and its apparatus
US11156446B2 (en) Position measurement method and position measurement system for object in machine tool
US8676527B2 (en) Industrial machine
CN1980775A (en) Robot-controlled optical measurement array, and method and auxiliary mechanism for calibrating said measurement array
US10359266B2 (en) Position measurement method of object in machine tool and position measurement system of the same
US5014444A (en) Probing device for a coordinate measuring apparatus
CN103264318B (en) A kind of online test method of three-dimensional profile
JP2017096920A (en) Optical measuring probe calibration
US20180100729A1 (en) Adapter element for assembling a rotational apparatus in the measurement space of a coordinate measuring machine
JP2021074806A (en) Correction value measurement method of position measurement sensor and correction value measurement system in machine tool
CN102814707A (en) Device and method for determining trigger stroke of trigger sensor
JP6559274B2 (en) Tool measuring device and workpiece measuring device calibration method, calibration device and standard device
US11243062B2 (en) Position measurement method and position measurement system of object in machine tool, and computer-readable recording medium
US20170252885A1 (en) Position measuring device for use on a machine tool
JP5297749B2 (en) Automatic dimension measuring device
JP2022161355A (en) Method and device for deriving motion error in machine tool
JP2006145560A (en) Calibration program and method for copying probe
JP2010008277A (en) Variable end measure
TWI633522B (en) Measuring and correcting compensation system and method for machine tool
CN107179040B (en) Diameter measuring device and measuring equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4438467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees