JP2005265681A - Closed loop system optical fiber gyro - Google Patents

Closed loop system optical fiber gyro Download PDF

Info

Publication number
JP2005265681A
JP2005265681A JP2004080158A JP2004080158A JP2005265681A JP 2005265681 A JP2005265681 A JP 2005265681A JP 2004080158 A JP2004080158 A JP 2004080158A JP 2004080158 A JP2004080158 A JP 2004080158A JP 2005265681 A JP2005265681 A JP 2005265681A
Authority
JP
Japan
Prior art keywords
optical fiber
signal
light
amplifier
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004080158A
Other languages
Japanese (ja)
Other versions
JP3894925B2 (en
Inventor
Mitsuteru Kadota
光輝 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2004080158A priority Critical patent/JP3894925B2/en
Publication of JP2005265681A publication Critical patent/JP2005265681A/en
Application granted granted Critical
Publication of JP3894925B2 publication Critical patent/JP3894925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a closed loop system optical fiber gyro in which the scale factor linearity is stabilized. <P>SOLUTION: A closed loop system optical fiber gyro comprising a light source 2, an optical fiber coil 5, a coupler 3 which branches and binds light from the light source 2 in the clockwise and counterclockwise directions around the optical fiber coil 5, a phase modular 4 which is arranged between the optical fiber coil 5 and the coupler 3 and modulates the phase of light passing therethrough, a light receiver 6 which converts the interference light intensity from the coupler 3 into an electric signal, an amplifier which amplifies the signal from the light receiver, and an A/D converter 8 which A/D converts the signal amplified by the amplifier 15, the optical fiber gyro executing signal processing of the output from the A/D converter in a digital manner, wherein the electric signal outputted from the light receiver 6 is branched into two, a feedback signal and a signal for automatic control of maximum phase shift, and signals amplified at mutually different amplification degrees are used. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、クローズドループ方式光ファイバジャイロに関し、特に、フィードバック信号としてランプ状波形を利用するクローズドループ方式光ファイバジャイロにおけるスケールファクタ直線性を安定化したクローズドループ方式光ファイバジャイロに関する。   The present invention relates to a closed loop optical fiber gyro, and more particularly, to a closed loop optical fiber gyro in which scale factor linearity is stabilized in a closed loop optical fiber gyro that uses a ramp-like waveform as a feedback signal.

従来例を図6を参照して説明する。
図6に図示説明されるクローズドループ方式光ファイバジャイロ(以降、FOG、と略記する)は、フィードバック方式としてスケールファクタ安定性およびリニア性能に関して最も高い性能を期待することができるディジタルフェーズランプ方式を用いている(特許文献1 参照)。このFOGは、光源2と、光ファイバコイル5と、その光ファイバコイル5の両回りに光源2からの光を分岐し結合するカプラ3と、光ファイバコイル5とカプラ3の間に配置されそこを通る光の位相を変調する光集積回路4と、カプラ3からの干渉光強度を電気信号に変換する受光器6と、受光器6からの信号を増幅する増幅器15と、増幅器15により増幅された電気信号をA/D変換するA/D変換器8とを有し、更に、同期検波器9、積分器10、最大位相偏移自動制御回路13、ランプジェネレータ11、タイミングパルス発生回路16、位相変調回路17を有してディジタル的に信号処理を行う。位相変調回路17から発生出力される位相変調信号は光集積回路4に含まれる一方の位相変調器40に印加され、両回り光に位相変調を付与している。そして、ランプジェネレータ11の出力はD/A変換、増幅後に光集積回路4に含まれる他方の位相変調器40に階段状のフィードバック信号として印加され、両回り光に位相変調を付与している。
A conventional example will be described with reference to FIG.
The closed-loop optical fiber gyro (hereinafter abbreviated as FOG) illustrated in FIG. 6 uses a digital phase ramp method that can expect the highest performance in terms of scale factor stability and linear performance as a feedback method. (See Patent Document 1). This FOG is disposed between the optical fiber coil 5 and the coupler 3, and the optical fiber coil 5, the coupler 3 for branching and coupling the light from the light source 2 around the optical fiber coil 5, and the optical fiber coil 5. An optical integrated circuit 4 that modulates the phase of light passing through the optical receiver, a light receiver 6 that converts the intensity of interference light from the coupler 3 into an electric signal, an amplifier 15 that amplifies the signal from the light receiver 6, and an amplifier 15 that amplifies the signal. An A / D converter 8 for A / D converting the electrical signal, and a synchronous detector 9, an integrator 10, a maximum phase shift automatic control circuit 13, a ramp generator 11, a timing pulse generating circuit 16, A phase modulation circuit 17 is provided for digital signal processing. The phase modulation signal generated and output from the phase modulation circuit 17 is applied to one phase modulator 40 included in the optical integrated circuit 4 to apply phase modulation to the bi-directional light. The output of the lamp generator 11 is applied as a step-like feedback signal to the other phase modulator 40 included in the optical integrated circuit 4 after D / A conversion and amplification, and phase modulation is applied to the bi-directional light.

このFOGは、ディジタルフェーズランプ方式におけるランプ電圧印加時の最大位相偏移を理想値2nπ[rad]に保持する最大位相偏移自動制御回路13を有し、また、矩形状波の位相変調信号を印加して角速度によって生じる位相差を制御エラー信号として精度良く検知している。ディジタルフェーズランプのフライバック時の最大位相偏移の理想値2nπからのズレは、FOGのスケールファクタリニアリティの劣化につながり、同期検波器9の出力の時間積分が0となる様に働く。従来は、フライバックの発生した瞬間を検知して、その時の同期検波器9の出力が制御エラー信号に相当するので、これによりVnπレベルを自動的に制御する。最大位相偏移が真の値から大きくズレた場合、最大位相偏移自動制御回路13は飽和して正常に機能しない。なお、ここで、同期検波器9の出力とは、FOGの光学部分で生じたサニャック位相差に相当する干渉光の強度変化を受光器6において光電変換し、増幅器15で増幅した信号をA/D変換器8においてA/D変換した後、位相変調信号と同期した基準信号にて検波した出力のことである。
ここで、フライバック時に最大位相偏移が2nπよりズレていた場合、その位相差は干渉光の強度変化として検出することができる。しかし、受光器において光電変換した後、これを所定の倍率で増幅するが、最大位相偏移のズレが大きい場合には増幅器の出力が飽和して、AD変換後の検波出力は正確ではなくなる。
This FOG has a maximum phase shift automatic control circuit 13 that holds the maximum phase shift at the time of applying a ramp voltage in the digital phase ramp system at an ideal value 2nπ [rad], and also outputs a rectangular wave phase modulation signal. The phase difference caused by the applied angular velocity is accurately detected as a control error signal. Deviation from the ideal value 2nπ of the maximum phase shift at the time of flyback of the digital phase ramp leads to degradation of the FOG scale factor linearity, and acts so that the time integration of the output of the synchronous detector 9 becomes zero. Conventionally, the moment when flyback occurs is detected, and the output of the synchronous detector 9 at that time corresponds to a control error signal, so that the Vnπ level is controlled automatically. When the maximum phase deviation deviates greatly from the true value, the maximum phase deviation automatic control circuit 13 is saturated and does not function normally. Here, the output of the synchronous detector 9 refers to the signal obtained by photoelectrically converting the intensity change of the interference light corresponding to the Sagnac phase difference generated in the optical part of the FOG in the light receiver 6 and amplified by the amplifier 15. This is the output detected by the reference signal synchronized with the phase modulation signal after A / D conversion in the D converter 8.
Here, when the maximum phase shift is deviated from 2nπ during flyback, the phase difference can be detected as a change in the intensity of the interference light. However, after photoelectric conversion in the light receiver, this is amplified at a predetermined magnification. If the maximum phase deviation is large, the output of the amplifier is saturated, and the detection output after AD conversion is not accurate.

図7を参照して、更に、具体的に説明するに、このクローズドループ方式のFOGでは、フィードバック信号として階段状の位相偏移を付与するディジタルフェーズドランプ方式であり、階段の幅は光ファイバコイルの光の伝播時間τに設定されている。また、位相変調も半周期をτとする矩形波(±π/2)が付与されている。
矩形波の位相変調は、パルス幅をτとする矩形波を光ファイバコイルの片側に配置した位相変調器に印加し、光ファイバコイルを伝播する干渉光は図7のようになる。両光間に位相差が生じていない場合(図7のIの領域)では、τ毎の干渉光に強度差は生じない。しかし、角速度が印加され位相差が生じると(IIの領域)では、τ毎の干渉光に強度差を生じる。
最大位相偏移の2nπ[rad]からのズレは、スケールファクタリニアリティの劣化につながる。図8は、フィードバック位相差と干渉光強度との関係を示したものである。aで示した区間では、最大位相偏移がちょうど2πのときリセットされた場合で、リセットの前後での干渉光強度にレベル差は見られずフィードバック位相差が継続的に保証される。最大位相偏移が2πより小さく与えられた場合、bの区間で示すようにリセットされる前後で干渉光強度に差異が現われる。同様に、最大位相偏移が2πより大きく与えられた場合をcの区間で示す。このように、干渉光強度に差異が現われると誤差信号として復調される。
More specifically, with reference to FIG. 7, this closed-loop FOG is a digital phased ramp system that gives a step-like phase shift as a feedback signal, and the width of the step is an optical fiber coil. Is set to the light propagation time τ. In addition, a rectangular wave (± π / 2) having a half period τ is also applied to the phase modulation.
In the phase modulation of the rectangular wave, a rectangular wave having a pulse width τ is applied to a phase modulator disposed on one side of the optical fiber coil, and the interference light propagating through the optical fiber coil is as shown in FIG. When there is no phase difference between the two lights (region I in FIG. 7), there is no intensity difference in the interference light for each τ. However, when an angular velocity is applied and a phase difference occurs (region II), an intensity difference occurs in the interference light for each τ.
Deviation from the maximum phase shift from 2nπ [rad] leads to degradation of scale factor linearity. FIG. 8 shows the relationship between the feedback phase difference and the interference light intensity. In the section indicated by a, when the maximum phase deviation is exactly 2π, the level is not reset and the feedback phase difference is continuously guaranteed without any level difference in the interference light intensity before and after the reset. When the maximum phase shift is smaller than 2π, a difference appears in the interference light intensity before and after the reset as shown in the section b. Similarly, a case where the maximum phase shift is given larger than 2π is indicated by an interval c. Thus, if a difference appears in the interference light intensity, it is demodulated as an error signal.

図9を参照するに、フライバック時の最大位相偏移が2nπ[rad]からズレている場合、その位相差は干渉光の強度として現われる。
図10を参照するに、最大位相偏移自動制御回路13では、フライバック時の干渉光強度変化を検出し(ディジタル信号処理回路部内にてフライバックの瞬間をトリガにする)、2nπの制御を行っている。なお、この制御を行わない場合には最大位相偏移2πからのズレが2.5%となると約100ppmのスケールファクタリニアリティエラーが生じる。
Referring to FIG. 9, when the maximum phase shift at the time of flyback deviates from 2nπ [rad], the phase difference appears as the intensity of the interference light.
Referring to FIG. 10, the maximum phase shift automatic control circuit 13 detects a change in interference light intensity at the time of flyback (triggering the moment of flyback in the digital signal processing circuit section) and controls 2nπ. Is going. When this control is not performed, a scale factor linearity error of about 100 ppm occurs when the deviation from the maximum phase shift 2π is 2.5%.

図11を参照するに、カプラ3から受光器6に入力される干渉波形は、ここにおいて光電変換され、増幅器15においてN倍の増幅を施された後、A/D変換器8によりディジタル処理される。ここで、増幅器15のゲイン(N倍)はAD変換器8の1LSB(Least Significant Bit )に相当する位相差により決定する。干渉光の強度差がAD変換器8の入力範囲−FS〜+FSを超えた場合は、最大位相偏移の2nπからのズレ(フライバック時の強度差)を正確に検出することはできない。
特開平11−295077号 公報
Referring to FIG. 11, the interference waveform inputted from the coupler 3 to the light receiver 6 is photoelectrically converted here, amplified N times in the amplifier 15 and then digitally processed by the A / D converter 8. The Here, the gain (N times) of the amplifier 15 is determined by the phase difference corresponding to 1 LSB (Least Significant Bit) of the AD converter 8. When the intensity difference of the interference light exceeds the input range −FS to + FS of the AD converter 8, the deviation from the maximum phase shift from 2nπ (the intensity difference at the time of flyback) cannot be accurately detected.
Japanese Patent Laid-Open No. 11-295077

この発明は、以上のこの不正確さを解消するに、受光器の出力を2分岐し、それぞれ別の増幅器とAD変換器と同期検波回路を用意した。第1のA/D変換器に入力された信号はFOG制御用として使用され、一方、第2のA/D変換器に入力された信号は最大位相偏移制御用として使用する。従来の手段では、最大位相偏移のズレが大きい場合には増幅器の出力が飽和するので、第2のA/D変換器の前段の増幅器のゲインは第1のA/D変換器の前段の増幅器のゲインより小さくし、フライバック時に飽和しない様にすることで、位相偏移を正確に検出することが可能となる。   According to the present invention, in order to eliminate the above inaccuracy, the output of the light receiver is divided into two, and separate amplifiers, AD converters, and synchronous detection circuits are prepared. The signal input to the first A / D converter is used for FOG control, while the signal input to the second A / D converter is used for maximum phase shift control. In the conventional means, when the deviation of the maximum phase deviation is large, the output of the amplifier is saturated. Therefore, the gain of the amplifier in the previous stage of the second A / D converter is the same as that in the previous stage of the first A / D converter. By making it smaller than the gain of the amplifier so as not to be saturated at the time of flyback, it becomes possible to accurately detect the phase shift.

請求項1:光源2と、光ファイバコイル5と、その光ファイバコイル5の両回りに光源2からの光を分岐し結合するカプラ3と、光ファイバコイル5とカプラ3の間に配置されそこを通る光の位相を変調する位相変調器4と、カプラ3からの干渉光強度を電気信号に変換する受光器6と、受光器6からの信号を増幅する増幅器15と、増幅器15により増幅された信号をA/D変換するA/D変換器8と、A/D変換器8の出力をディジタル的に信号処理を行うクローズドループ方式光ファイバジャイロにおいて、受光器6から出力される電気信号をフィードバック信号用と最大位相偏移自動制御用に2分岐し、相異なる増幅度で増幅した信号を用いたクローズドループ方式光ファイバジャイロを構成した。
そして、請求項2:請求項1に記載されるクローズドループ方式光ファイバジャイロにおいて、増幅度はフィードバック信号用ゲインと比較して最大位相偏移自動制御用ゲインを小としたクローズドループ方式光ファイバジャイロを構成した。
Claim 1: A light source 2, an optical fiber coil 5, a coupler 3 for branching and coupling light from the light source 2 around both ends of the optical fiber coil 5, and disposed between the optical fiber coil 5 and the coupler 3. The phase modulator 4 that modulates the phase of the light passing through the optical receiver, the light receiver 6 that converts the interference light intensity from the coupler 3 into an electrical signal, the amplifier 15 that amplifies the signal from the light receiver 6, and the amplifier 15 In an A / D converter 8 that performs A / D conversion on the received signal and a closed loop optical fiber gyro that digitally processes the output of the A / D converter 8, the electrical signal output from the light receiver 6 is A closed-loop optical fiber gyroscope that uses two signals for feedback signals and maximum phase shift automatic control and that has been amplified with different amplification degrees was constructed.
According to a second aspect of the present invention, in the closed-loop optical fiber gyro described in the first aspect, the amplification factor is a closed-loop optical fiber gyro with a smaller maximum phase shift automatic control gain than the feedback signal gain. Configured.

この発明は、第1のA/D変換器80および第2のA/D変換器80’の前段の増幅器のゲインを、第2の増幅器150’のゲインを第1の増幅器150のゲインより小さく設定することにより、フライバック時の増幅器の出力の飽和を回避することで、フライバック時の位相相殺エラーを正確に検出することができて、最大位相偏移制御は安定化する。これにより、フィードバック信号としてランプ状波形を利用するクローズドループ方式光ファイバジャイロにおけるスケールファクタ直線性を安定化したクローズドループ方式光ファイバジャイロを提供することができる。   In the present invention, the gain of the amplifier in the first stage of the first A / D converter 80 and the second A / D converter 80 ′ is smaller than the gain of the first amplifier 150. By setting, by avoiding saturation of the output of the amplifier at the time of flyback, a phase cancellation error at the time of flyback can be accurately detected, and the maximum phase shift control is stabilized. Accordingly, it is possible to provide a closed-loop optical fiber gyro in which the scale factor linearity in the closed-loop optical fiber gyro that uses a ramp-like waveform as a feedback signal is stabilized.

発明を実施するための最良の形態を図1を参照して説明する。図1において、図6における部材と共通する部材には共通する参照符合を付与している。
このFOGは、光源2と、光ファイバコイル5と、その光ファイバコイル5の両回りに光源2からの光を分岐し結合するカプラ3と、光ファイバコイル5とカプラ3の間に配置されそこを通る光の位相を変調する光集積回路4と、カプラ3からの干渉光強度を電気信号に変換する受光器6とを有する。そして、受光器6の出力を2分岐し、各別に、第1の増幅器150と第1のA/D変換器80と第1の同期検波回路90を用意すると共に、第2の増幅器150’と第2のA/D変換器80’と第2の同期検波回路90’を用意した。そして、第1の同期検波回路90は積分器10を介してランプジェネレータ11の第1の入力端に接続すると共に、第2の同期検波回路90’は最大位相偏移自動制御回路13を介してランプジェネレータ11の第2の入力端に接続し、ディジタル的に信号処理を行う。第1のA/D変換器80に入力された信号はFOG制御用として使用される一方、第2のA/D変換器80’に入力された信号は最大位相偏移制御用として使用する。なお、第1の増幅器150と第1のA/D変換器80と第1の同期検波回路90と積分器10とより成るFOG制御用として使用される信号を得る回路と、第2の増幅器150’と第2のA/D変換器80’と第2の同期検波回路90’と最大位相偏移自動制御回路13とより成る最大位相偏移制御用として使用される信号を得る回路とは、図示されないスイッチを介して時分割で交互に受光器6に切り替え接続する構成とすることができる。
The best mode for carrying out the invention will be described with reference to FIG. In FIG. 1, the same reference numerals are given to the members common to the members in FIG.
This FOG is disposed between the optical fiber coil 5 and the coupler 3, and the optical fiber coil 5, the coupler 3 for branching and coupling the light from the light source 2 around the optical fiber coil 5, and the optical fiber coil 5. And an optical integrated circuit 4 that modulates the phase of the light passing through the optical receiver 4 and a light receiver 6 that converts the intensity of interference light from the coupler 3 into an electrical signal. Then, the output of the light receiver 6 is branched into two, and a first amplifier 150, a first A / D converter 80, and a first synchronous detection circuit 90 are prepared separately, and a second amplifier 150 ' A second A / D converter 80 ′ and a second synchronous detection circuit 90 ′ were prepared. The first synchronous detection circuit 90 is connected to the first input terminal of the ramp generator 11 via the integrator 10, and the second synchronous detection circuit 90 ′ is connected via the maximum phase shift automatic control circuit 13. The signal is connected to the second input terminal of the lamp generator 11 and digitally processed. The signal input to the first A / D converter 80 is used for FOG control, while the signal input to the second A / D converter 80 ′ is used for maximum phase shift control. The first amplifier 150, the first A / D converter 80, the first synchronous detection circuit 90, and the integrator 10, a circuit for obtaining a signal used for FOG control, and the second amplifier 150 A circuit for obtaining a signal used for the maximum phase shift control comprising the ', the second A / D converter 80', the second synchronous detection circuit 90 'and the maximum phase shift automatic control circuit 13, A configuration in which the light-receiving device 6 is alternately switched and connected in a time-division manner via a switch (not shown) can be employed.

図2を参照して以上のFOGの動作を簡単に説明するに、フライバック時(最大位相偏移が2nπからズレた場合)の飽和を回避するに、上述した通り、受光器6の出力を2分岐する。ここで、非フライバック時は第1のA/D変換器80によりA/D変換を行い、また、フライバック時は第2のA/D変換器80’によりA/D変換を行う。また、増幅器のゲインについて、第1の増幅器150はN倍、第2の増幅器150’はM倍のゲインとした。ここで、増幅器のゲインは、ゲインN≧ゲインMとし、飽和が起こらないレベルに設定する。増幅器のゲインをN≧Mとしたことにより、フライバック時の飽和を回避することができ、2nπからのズレを正確に検出することができ、スケールファクタの安定化を図ることができる。第2のA/D変換器80’によりAD変換された信号は、後段の信号処理回路において最大位相偏移自動制御用として使用する。   The operation of the FOG described above will be briefly described with reference to FIG. 2. To avoid saturation at the time of flyback (when the maximum phase deviation deviates from 2nπ), the output of the light receiver 6 is changed as described above. Branch into two. Here, A / D conversion is performed by the first A / D converter 80 during non-flyback, and A / D conversion is performed by the second A / D converter 80 'during flyback. The gain of the amplifier is set to N times for the first amplifier 150 and M times for the second amplifier 150 '. Here, the gain of the amplifier is set to a level at which saturation does not occur, with gain N ≧ gain M. By setting the gain of the amplifier to N ≧ M, saturation at the time of flyback can be avoided, a deviation from 2nπ can be accurately detected, and the scale factor can be stabilized. The signal AD-converted by the second A / D converter 80 'is used for maximum phase shift automatic control in the subsequent signal processing circuit.

図3を参照するに、これは、フライバック時の最大位相偏移が2nπ[rad]からズレている場合の、A/D変換器に入力される波形、即ち、干渉光を光電変換した後に増幅器により増幅された信号を示す。フライバックの瞬間、下端が飽和している。
図4を参照するに、これは図3の信号の同期検波後の出力を示す。飽和により、位相相殺エラーは真の値よりも小さくなる(検出限界)。
図5を参照するに、位相相殺エラーの飽和回避の仕方として、この発明は以下の構成を採用している。
Referring to FIG. 3, this is a waveform inputted to the A / D converter when the maximum phase shift at the time of flyback deviates from 2nπ [rad], that is, after photoelectrically converting the interference light. The signal amplified by the amplifier is shown. At the moment of flyback, the lower end is saturated.
Referring to FIG. 4, this shows the output after synchronous detection of the signal of FIG. Due to saturation, the phase cancellation error is smaller than the true value (detection limit).
Referring to FIG. 5, the present invention adopts the following configuration as a method of avoiding saturation of a phase cancellation error.

(1) 非フライバック時の信号は第1のA/D変換器80より入力し、フライバック時の信号は第2のA/D変換器80’より入力する。
(2) フライバック時の飽和を回避するに、第1のA/D変換器80および第2のA/D変換器80’の前段の増幅器のゲインは、第2の増幅器150’のゲインを第1の増幅器150のゲインより小さく設定する。
(3) 最大位相偏移のズレが大きい場合は増幅器の出力が飽和するので、(2)により第2の増幅器150’のゲインを第1の増幅器150のゲインより小さく設定し、フライバック時の増幅器の出力の飽和を回避することで、フライバック時の位相相殺エラーを正確に検出することができて、最大位相偏移制御は安定化する。
(1) The non-flyback signal is input from the first A / D converter 80, and the flyback signal is input from the second A / D converter 80 ′.
(2) In order to avoid saturation at the time of flyback, the gain of the amplifier in the first stage of the first A / D converter 80 and the second A / D converter 80 ′ is set to the gain of the second amplifier 150 ′. The gain is set smaller than the gain of the first amplifier 150.
(3) When the deviation of the maximum phase shift is large, the output of the amplifier is saturated. Therefore, the gain of the second amplifier 150 ′ is set smaller than the gain of the first amplifier 150 according to (2), By avoiding the saturation of the output of the amplifier, the phase cancellation error at the time of flyback can be accurately detected, and the maximum phase shift control is stabilized.

実施例を説明する図。The figure explaining an Example. 実施例の動作を説明する図。The figure explaining operation | movement of an Example. フライバック時の最大位相偏移が2nπからズレている場合の、A/D変換器に入力される信号を示す図。The figure which shows the signal input into an A / D converter in case the largest phase shift at the time of flyback has shifted | deviated from 2n (pi). 図3の信号の同期検波後の出力を示す図。The figure which shows the output after the synchronous detection of the signal of FIG. 位相相殺エラーの飽和回避の仕方を説明する図。The figure explaining the method of the saturation avoidance of a phase cancellation error. 従来例を説明する図。The figure explaining a prior art example. 従来例の動作を説明する図。The figure explaining operation | movement of a prior art example. フィードバック位相差と干渉光強度との関係を説明する図。The figure explaining the relationship between feedback phase difference and interference light intensity. フライバック時の最大位相偏移が2nπからズレている場合の位相差の干渉光の強度を示す図。The figure which shows the intensity | strength of the interference light of a phase difference in case the largest phase shift at the time of flyback has shifted | deviated from 2n (pi). 最大位相偏移自動制御回路を説明する図。The figure explaining the maximum phase shift automatic control circuit. 受光器において光電変換され、増幅を施されてA/D変換器により処理される波形を示す図。The figure which shows the waveform photoelectrically converted in an optical receiver, amplified, and processed by an A / D converter.

符号の説明Explanation of symbols

2 光源 3 カプラ
4 光集積回路 40 位相変調器
5 光ファイバコイル 6 受光器
8 A/D変換器 80 第1のA/D変換器
80’第2のA/D変換器 9 同期検波器
90 第1の同期検波回路 90’第2の同期検波回路
10 積分器 11 ランプジェネレータ
13 最大位相偏移自動制御回路 15 増幅器
150 第1の増幅器 150’第2の増幅器
16 タイミングパルス発生回路 17 位相変調回路
2 light source 3 coupler 4 optical integrated circuit 40 phase modulator 5 optical fiber coil 6 light receiver 8 A / D converter 80 first A / D converter 80 ′ second A / D converter 9 synchronous detector 90 first 1 synchronous detection circuit 90 'second synchronous detection circuit 10 integrator 11 ramp generator 13 maximum phase shift automatic control circuit 15 amplifier 150 first amplifier 150' second amplifier 16 timing pulse generation circuit 17 phase modulation circuit

Claims (2)

光源と、光ファイバコイルと、その光ファイバコイルの両回りに光源からの光を分岐し結合するカプラと、光ファイバコイルとカプラの間に配置されそこを通る光の位相を変調する位相変調器と、カプラからの干渉光強度を電気信号に変換する受光器と、受光器からの信号を増幅する増幅器と、増幅器により増幅された信号をA/D変換するA/D変換器と、A/D変換器の出力をディジタル的に信号処理を行うクローズドループ方式光ファイバジャイロにおいて、
受光器から出力される電気信号をフィードバック信号用と最大位相偏移自動制御用に2分岐し、相異なる増幅度で増幅した信号を用いたことを特徴とするクローズドループ方式光ファイバジャイロ。
A light source, an optical fiber coil, a coupler that branches and couples light from the light source around both ends of the optical fiber coil, and a phase modulator that is arranged between the optical fiber coil and the coupler and modulates the phase of the light passing therethrough A receiver that converts interference light intensity from the coupler into an electrical signal, an amplifier that amplifies the signal from the receiver, an A / D converter that A / D converts the signal amplified by the amplifier, and A / In a closed loop optical fiber gyro that digitally processes the output of the D converter,
A closed-loop optical fiber gyro using a signal obtained by branching an electrical signal output from a light receiver into a feedback signal and a maximum phase shift automatic control and amplifying with different amplification degrees.
請求項1に記載されるクローズドループ方式光ファイバジャイロにおいて、
増幅度はフィードバック信号用ゲインと比較して最大位相偏移自動制御用ゲインを小としたことを特徴とするクローズドループ方式光ファイバジャイロ。









In the closed loop optical fiber gyro described in claim 1,
A closed-loop optical fiber gyro with a gain that is smaller than the gain for feedback control and the maximum phase shift automatic control gain.









JP2004080158A 2004-03-19 2004-03-19 Closed loop optical fiber gyro Expired - Fee Related JP3894925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004080158A JP3894925B2 (en) 2004-03-19 2004-03-19 Closed loop optical fiber gyro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004080158A JP3894925B2 (en) 2004-03-19 2004-03-19 Closed loop optical fiber gyro

Publications (2)

Publication Number Publication Date
JP2005265681A true JP2005265681A (en) 2005-09-29
JP3894925B2 JP3894925B2 (en) 2007-03-22

Family

ID=35090390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004080158A Expired - Fee Related JP3894925B2 (en) 2004-03-19 2004-03-19 Closed loop optical fiber gyro

Country Status (1)

Country Link
JP (1) JP3894925B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127794A (en) * 2008-11-28 2010-06-10 Hitachi Automotive Systems Ltd Angular velocity detecting device
CN102538776A (en) * 2011-12-20 2012-07-04 中国科学院国家授时中心 Interferometric optical fiber gyroscope based on quantum effect
JP2012191616A (en) * 2011-03-08 2012-10-04 Honeywell Internatl Inc High linearity signal processing amplifier
CN112698384A (en) * 2021-01-26 2021-04-23 哈尔滨工程大学 Low-frequency large dynamic optical fiber seismometer device based on double closed-loop feedback

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127794A (en) * 2008-11-28 2010-06-10 Hitachi Automotive Systems Ltd Angular velocity detecting device
JP2012191616A (en) * 2011-03-08 2012-10-04 Honeywell Internatl Inc High linearity signal processing amplifier
CN102538776A (en) * 2011-12-20 2012-07-04 中国科学院国家授时中心 Interferometric optical fiber gyroscope based on quantum effect
CN102538776B (en) * 2011-12-20 2014-09-17 中国科学院国家授时中心 Interferometric optical fiber gyroscope based on quantum effect
CN112698384A (en) * 2021-01-26 2021-04-23 哈尔滨工程大学 Low-frequency large dynamic optical fiber seismometer device based on double closed-loop feedback
CN112698384B (en) * 2021-01-26 2023-08-01 哈尔滨工程大学 Low-frequency large-dynamic fiber seismometer device based on double closed-loop feedback

Also Published As

Publication number Publication date
JP3894925B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP3591346B2 (en) Light modulator
JP5812110B2 (en) Optical receiver and control method of optical receiver
EP2226611A2 (en) Residual intensity modulation control loop in a resonator fiber-optic gyroscope
US20180076896A9 (en) Optically balanced opto-electrical oscillator
WO2001071283A2 (en) Interferometric fiber optic gyro
JP3894925B2 (en) Closed loop optical fiber gyro
KR101069244B1 (en) Phase modulation stabilization method of fiber optic gyroscope using correcting error and fiber optic gyroscope
JP2008219069A (en) Optical receiver and optical transmitter
JPH0654236B2 (en) Digital phase lamp type optical interference gyro
JP2010080665A (en) Device and method for receiving light
JP2008271028A (en) Light receiver and method for stabilizing operating point of optical interferometer for use therein
US7324206B2 (en) Method for determination/compensation of bias errors/random walk errors induced by the light source in fiber-optic Sagnac interferometers
EP0501461B1 (en) Fiber optic gyro
CA2100902C (en) Digital ramp phase type optical interference gyro
JP2006258763A (en) Reflection measuring circuit, and transmission protecting device using reflection measuring circuit
JP2508978B2 (en) Optical transmitter circuit
JP6080516B2 (en) Acquisition and tracking device
JP3239237B2 (en) Closed-loop optical interference gyro
JPH08237228A (en) Optical pulse time multiplex control method and optical pulse time multiplex controller
JP2003004453A (en) Light interference angular velocity meter
JPH0749963B2 (en) Optical interference gyro
JP2936150B2 (en) Open loop optical fiber gyro
JP3390943B2 (en) Optical interference angular velocity meter
JPH09280871A (en) Optical fiber giro
JP2006101446A (en) Optical modulating device and optical modulation method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3894925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees