JP2005265329A - Heat collecting method from air-conditioning exhaust air and system therefor - Google Patents

Heat collecting method from air-conditioning exhaust air and system therefor Download PDF

Info

Publication number
JP2005265329A
JP2005265329A JP2004079821A JP2004079821A JP2005265329A JP 2005265329 A JP2005265329 A JP 2005265329A JP 2004079821 A JP2004079821 A JP 2004079821A JP 2004079821 A JP2004079821 A JP 2004079821A JP 2005265329 A JP2005265329 A JP 2005265329A
Authority
JP
Japan
Prior art keywords
air
temperature
heat
heat medium
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004079821A
Other languages
Japanese (ja)
Inventor
Kikuo Yamazaki
喜久夫 山崎
Tatsuro Suematsu
辰朗 末松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2004079821A priority Critical patent/JP2005265329A/en
Publication of JP2005265329A publication Critical patent/JP2005265329A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Abstract

<P>PROBLEM TO BE SOLVED: To preclude cross-contamination, assure a high collecting efficiency from the air-conditioning exhaust air, and perform heat collection from the air-conditioning exhaust air even if the temperature difference between the air-conditioning exhaust air and the outside air lessens. <P>SOLUTION: Heat exchange between the air-conditioning exhaust air EA and water by gas-liquid contacting inside a filler 14 is conducted in an air-conditioner 10. A temperature sensor 25 is installed on a forward pipe 23 leading from a receptacle part 13 to a pre-coil 22 in a duct 21, and a control device 27 controls an inverter 26 so that the temperature signal from the sensor 25 generates the set temperature predetermined, and a flow control is conducted using a pump 24 to control the temperature of the water as a heating medium circulating. The set temperature is corrected according to the temperature of the outside air. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は,空調排気からの熱を回収する方法およびそのシステムに関するものである。   The present invention relates to a method and system for recovering heat from air conditioning exhaust.

従来から空気調和における排気の熱を回収して,これを給気の際の熱源に再利用することが行われている。かかる場合,例えば回転式の蓄熱ロータを使用して,排気と給気とをロータを介して熱交換する方式が知られている。この方法は,顕熱と潜熱とを併せて回収できるので,回収効率が高いという長所があるものの,ロータを介して給気と排気とが直接接触するため,排気に含まれる有害ないし不快成分が給気に混じる現象(クロスコンタミネーション)が発生するという問題があった。   Conventionally, exhaust heat in air conditioning has been recovered and reused as a heat source for air supply. In such a case, for example, a rotary heat storage rotor is used to exchange heat between the exhaust and the supply air via the rotor. Although this method can recover both sensible heat and latent heat, it has the advantage of high recovery efficiency. However, since the supply air and the exhaust are in direct contact with each other through the rotor, harmful or uncomfortable components contained in the exhaust are eliminated. There was a problem that a phenomenon (cross-contamination) mixed with air supply occurred.

一方,排気ダクト,給気ダクトに各々コイルを設置し,両コイル間で熱媒を循環させることで,排気側の熱を回収してこれを前記熱媒によって給気側でコイルを介して再び熱交換して給気の熱源として再利用する方式もあるが,かかる方法はクロスコンタミネーションは防止できるものの,潜熱の回収が出来ず,回収効率が低いという問題があった。   On the other hand, by installing a coil in each of the exhaust duct and the air supply duct and circulating a heat medium between the two coils, the heat on the exhaust side is recovered, and this is recovered again by the heat medium via the coil on the air supply side. There is also a method of exchanging heat and reusing it as a heat source for supply air. However, although this method can prevent cross-contamination, there is a problem that latent heat cannot be recovered and recovery efficiency is low.

さらに空調排気と,水などの液体熱媒体とを,当該液体熱媒体を散水した充填物を介して熱交換し,熱交換後の液体熱媒体を回収して,これを蓄熱槽に貯留して,ヒートポンプなどの空調用熱源として用いることが提案されている(特許文献1)。   Furthermore, heat exchange is performed between the air-conditioning exhaust and a liquid heat medium such as water through a filling sprinkled with the liquid heat medium, and the liquid heat medium after heat exchange is recovered and stored in a heat storage tank. It has been proposed to use it as a heat source for air conditioning such as a heat pump (Patent Document 1).

ところで,そのように空調排気と,水などの液体熱媒体とを気液接触によって熱交換する場合,通常,空調排気の温度が一定であるため,例えば外気の温度が低下すると,空調排気と外気との温度差が小さくなり,熱回収量より,熱回収運転に要するエネルギーの方が大きくなるおそれがある。   By the way, when heat exchange between the air-conditioning exhaust and the liquid heat medium such as water is performed by gas-liquid contact, the temperature of the air-conditioning exhaust is usually constant. For example, if the temperature of the outside air decreases, the air-conditioning exhaust and the outside air The energy difference required for heat recovery operation may be larger than the amount of heat recovered.

特開昭56−113965号公報JP-A-56-113965

本発明は,かかる点に鑑みてなされたものであり,クロスコンタミネーションを防止できると共に,空調排気からの回収効率が高く,しかも空調排気と外気との温度差が小さくなっても,熱回収が継続できる方法,及びそのシステムを提供することを目的としている。   The present invention has been made in view of the above points, and can prevent cross-contamination, has high recovery efficiency from air-conditioning exhaust, and can recover heat even if the temperature difference between the air-conditioning exhaust and outside air becomes small. The aim is to provide a method and system that can be continued.

前記目的を達成するため,本発明の熱回収方法は,容器内で気液接触可能な熱交換器内で液体熱媒と空調排気とを直接接触させて熱交換し,前記液体熱媒はコイルと前記熱交換器との間を循環させ,前記コイルを介して前記液体熱媒と取入外気との間で熱交換し,液体熱媒の温度が設定温度となるように,その循環量を制御することを特徴としている。   In order to achieve the above object, the heat recovery method of the present invention performs heat exchange by directly contacting a liquid heat medium and air-conditioning exhaust in a heat exchanger capable of gas-liquid contact in a container, and the liquid heat medium is a coil. Is circulated between the heat exchanger and the heat exchanger, heat is exchanged between the liquid heat medium and the intake outside air via the coil, and the amount of circulation is adjusted so that the temperature of the liquid heat medium becomes a set temperature. It is characterized by control.

空調排気の温度が一定の場合,コイルと前記熱交換器との間に循環させる液体熱媒の循環量を減少させることにより,十分に熱回収を行うことができる。例えば夏期においては,循環量を減少させて空調排気と気液接触させる際の液体熱媒の量を減らすことにより,液体熱媒の温度を低下させて,熱回収を継続させることができる。すなわち,本発明のように,液体熱媒の温度が設定温度となるように,その循環量を制御することによって,空調排気からの熱回収を継続させることが可能になる。   When the temperature of the air-conditioning exhaust is constant, heat recovery can be sufficiently performed by reducing the circulation amount of the liquid heat medium circulated between the coil and the heat exchanger. For example, in the summer, the temperature of the liquid heat medium can be lowered and the heat recovery can be continued by reducing the amount of the liquid heat medium when reducing the amount of circulation and bringing it into gas-liquid contact with the air conditioning exhaust. That is, as in the present invention, heat recovery from the air-conditioning exhaust can be continued by controlling the circulation amount so that the temperature of the liquid heat medium becomes the set temperature.

前記設定温度は,外気の温度に基づいて定める。例えば冷房運転において外気温度が25℃の場合には,設定温度は17.5℃,外気温度が35℃の場合には,設定温度は20℃,というように,外気の温度−5℃〜15℃の間で,また暖房運転においては排気の湿球温度を設定温度として定めることが提案できる。   The set temperature is determined based on the temperature of the outside air. For example, in the cooling operation, when the outside air temperature is 25 ° C., the set temperature is 17.5 ° C., and when the outside air temperature is 35 ° C., the set temperature is 20 ° C. It can be proposed that the wet bulb temperature of the exhaust be set as the set temperature between 0 ° C and in heating operation.

このような方法を実施するシステムとしては,容器内で気液接触させて,気体−液体間で熱交換可能な熱交換器と,前記容器内に向けて液体熱媒を散水する散水部と,散水された液体熱媒を受容する受容部と,取入外気の流路に設置されたコイルと,前記受容部と前記コイルとの間に形成された液体熱媒の往路と,前記コイルと前記散水部との間に形成された液体熱媒の還路と,前記往路又は還路に設けられたポンプと,前記往路又は還路に設けられた流量調節器と,前記往路又は還路に設けられて,液体熱媒の温度を測定する温度センサと,前記温度センサによって測定した液体熱媒の温度が,予め設定した設定温度となるように,前記流量調節器を制御する制御装置とを有するシステムが提案できる。   As a system for carrying out such a method, a heat exchanger capable of gas-liquid contact in a container and exchanging heat between gas and liquid, a water spraying unit for spraying a liquid heat medium toward the container, A receiving part for receiving the sprinkled liquid heat medium, a coil installed in the flow path of the intake outside air, a forward path of the liquid heat medium formed between the receiving part and the coil, the coil and the A liquid heat medium return path formed between the water sprinkling unit, a pump provided in the forward path or return path, a flow controller provided in the forward path or return path, and provided in the forward path or return path A temperature sensor that measures the temperature of the liquid heat medium, and a control device that controls the flow rate regulator so that the temperature of the liquid heat medium measured by the temperature sensor becomes a preset temperature. A system can be proposed.

熱交換器は,例えば冷却塔のように開放型の容器内の上方に散水部を設置し,容器内の下方に,散水された液体熱媒を受容する受容部を有するものが例示できる。散水は,直接空調排気に対して行ってもよいが,充填物に散水して,この充填物を介して空調排気と気液接触させて熱交換するようにすれば,気液接触効率が向上し,熱交換率が向上する。液体熱媒としては,例えば水を使用することができる。   As the heat exchanger, for example, a cooling tower such as a cooling tower having a sprinkler installed above an open container and a receiving part for receiving the sprinkled liquid heat medium below the container can be exemplified. Sprinkling may be performed directly on the air-conditioning exhaust, but if the water is sprinkled on the filling and heat exchange is performed by contacting the air-conditioning exhaust via this filling, the gas-liquid contact efficiency is improved. In addition, the heat exchange rate is improved. As the liquid heat medium, for example, water can be used.

本発明によれば,液体熱媒の循環量を,液体熱媒の温度に基づいて制御するようにしているので,外気の温度に応じて循環量を調節し,空調排気からの熱の回収を継続させることができる。   According to the present invention, since the circulation amount of the liquid heat medium is controlled based on the temperature of the liquid heat medium, the circulation amount is adjusted according to the temperature of the outside air, and the heat from the air conditioning exhaust is recovered. Can continue.

以下,本発明の好ましい実施の形態についてい説明する。図1に示したように,熱交換器10は,冷却塔のように,上部が開口した容器11の中に,散水部12を有し,容器11内の下部が受容部13を構成している。散水部12の下方には,充填物14が配置されている。   Hereinafter, preferred embodiments of the present invention will be described. As shown in FIG. 1, the heat exchanger 10 has a watering part 12 in a container 11 whose upper part is open like a cooling tower, and a lower part in the container 11 constitutes a receiving part 13. Yes. A filler 14 is disposed below the sprinkler 12.

負荷側からの空調排気EAは,容器11の側面に接続された排気ダクト15を介して,容器11内の充填物14の下方へと導入される。   The air-conditioning exhaust EA from the load side is introduced below the filling 14 in the container 11 through an exhaust duct 15 connected to the side surface of the container 11.

一方給気SAは,取入外気OAを導入するダクト21から,空調機(図示せず)に供給される構成である。本実施の形態では,このダクト21内にプレコイル22が配置されている。プレコイル22は,夏期は,プレクーラとして機能し,冬期はプレヒータとして機能する。   On the other hand, the supply air SA is configured to be supplied to an air conditioner (not shown) from the duct 21 for introducing the intake outside air OA. In the present embodiment, a precoil 22 is disposed in the duct 21. The precoil 22 functions as a precooler in summer and functions as a preheater in winter.

プレコイル22の入口側と,熱交換器10の受容部13との間には,液体熱媒として,例えば水を流通させるための往管23が配管されている。この往管23には,ポンプ24が設けられている。また往管23には,往管23内を流れる液体熱媒の温度を測定する温度センサ25が設けられている。ポンプ24は,インバータ26によって制御され,これによって往管23内を流れる液体熱媒の流量が調節される。このインバータ26の制御により,例えば図2に示したように,液体熱媒(水)の熱交換器10の出口温度,すなわち往管23を流れる液体熱媒(水)の温度を制御することができる。   Between the inlet side of the precoil 22 and the receiving part 13 of the heat exchanger 10, for example, an outgoing pipe 23 for circulating water as a liquid heat medium is provided. The outgoing pipe 23 is provided with a pump 24. The outgoing pipe 23 is provided with a temperature sensor 25 for measuring the temperature of the liquid heat medium flowing in the outgoing pipe 23. The pump 24 is controlled by an inverter 26, whereby the flow rate of the liquid heat medium flowing in the outgoing pipe 23 is adjusted. By controlling the inverter 26, for example, as shown in FIG. 2, the outlet temperature of the heat exchanger 10 for the liquid heat medium (water), that is, the temperature of the liquid heat medium (water) flowing through the outgoing pipe 23 can be controlled. it can.

そして温度センサ25からの温度信号は,制御装置27へと入力される。制御装置27は,予め設定された設定温度と,温度センサ25からの測定温度と比較し,往管23を流れる液体熱媒の温度が当該設定温度となるように,インバータ26の周波数を制御して,往管23を流れる液体熱媒の流量を制御するようになっている。   The temperature signal from the temperature sensor 25 is input to the control device 27. The control device 27 compares the set temperature set in advance with the measured temperature from the temperature sensor 25 and controls the frequency of the inverter 26 so that the temperature of the liquid heat medium flowing through the outgoing pipe 23 becomes the set temperature. Thus, the flow rate of the liquid heat medium flowing through the outgoing pipe 23 is controlled.

制御装置27における前記設定温度は,外気の温度に基づいて定められる。外気は,温度センサ28によって制御装置27へと出力され,制御装置27では,予め指定されたプログラムに基づき,例えば図3に示したように,外気−15℃〜7.5℃の温度を設定温度として,自動的に設定するようになっている。   The set temperature in the control device 27 is determined based on the temperature of the outside air. The outside air is output to the control device 27 by the temperature sensor 28. The control device 27 sets the temperature of the outside air at −15 ° C. to 7.5 ° C., for example, as shown in FIG. 3 based on a program designated in advance. The temperature is automatically set.

プレコイル22の出口側と熱交換器10の散水部12との間には,還管29が配管されている。そして還管29からの液体熱媒は,散水部12から充填物14へと散水される。このようにして,プレコイル22と熱交換器10との間に,往管23,還管29を介して液体熱媒が循環するようになっている。   A return pipe 29 is piped between the outlet side of the pre-coil 22 and the water sprinkling part 12 of the heat exchanger 10. Then, the liquid heat medium from the return pipe 29 is sprinkled from the sprinkler 12 to the filler 14. In this way, the liquid heat medium circulates between the pre-coil 22 and the heat exchanger 10 via the forward pipe 23 and the return pipe 29.

本実施の形態にかかる熱回収システムは,以上のように構成されており,次のその運転例について説明する。
(夏期冷房運転時の例)
例えば空調排気EAの風量が34500m/h,乾球温度が23℃,相対湿度50%,単位熱量が10.83Kcal/kgで,
取入外気OAの風量が42000m/h,乾球温度が35℃,相対湿度60%,単位熱量が21.53Kcal/kgの場合,
液体熱媒として水を使用すると,
水量が882l/minのとき,
往管23内を流れる水の温度は20.1℃,
還管29内を流れる水の温度は22.9℃となり,
給気SAの乾球温度は26.0℃,相対湿度95%,単位熱量が18.56Kcal/kgとなった。
The heat recovery system according to the present embodiment is configured as described above, and the following operation example will be described.
(Example during summer cooling operation)
For example, the air volume of the air conditioning exhaust EA is 34500 m 3 / h, the dry bulb temperature is 23 ° C., the relative humidity is 50%, and the unit heat amount is 10.83 Kcal / kg.
When the air volume of the incoming outside air OA is 42000 m 3 / h, the dry bulb temperature is 35 ° C., the relative humidity is 60%, and the unit heat quantity is 21.53 Kcal / kg,
When water is used as the liquid heat medium,
When the amount of water is 882 l / min,
The temperature of the water flowing in the outgoing pipe 23 is 20.1 ° C.
The temperature of the water flowing in the return pipe 29 is 22.9 ° C.
The supply bulb SA had a dry bulb temperature of 26.0 ° C., a relative humidity of 95%, and a unit calorie of 18.56 Kcal / kg.

したがってこの場合の回収熱量は,1.2×42000×(21.53−18.56)=149688kcal/h,
また回収効率は,(21.53−18.56)/(21.53−10.83)=27.8%である。
回収熱を回収せず製造した場合の消費電力は,成績係数を0.5とすると,149688kcal/h÷860kcal/kW÷5.0=34.8kWとなる。熱回収に消費した電力は2.9kWで,その差31.9kWの消費電力を削減できる。
Therefore, the recovered heat amount in this case is 1.2 × 42000 × (21.53-18.56) = 149688 kcal / h,
The recovery efficiency is (21.53-18.56) / (21.53-10.83) = 27.8%.
The power consumption when the recovered heat is not recovered is 149688 kcal / h ÷ 860 kcal / kW ÷ 5.0 = 34.8 kW, assuming that the coefficient of performance is 0.5. The power consumed for heat recovery is 2.9 kW, and the difference of 31.9 kW can be reduced.

(冬期暖房運転時の例)
例えば空調排気EAの風量が34500m/h,乾球温度が23℃,相対湿度50%,単位熱量が10.83Kcal/kgで,
取入外気OAの風量が42000m/h,乾球温度が5℃,相対湿度60%,単位熱量が3.13Kcal/kgの場合,
液体熱媒として水を使用すると,
水量が780l/minのとき,
往管23内を流れる水の温度は16.2℃,
還管29内を流れる水の温度は14.4℃となり,
給気SAの乾球温度は11.9℃,相対湿度38.0%,単位熱量が4.82Kcal/kgとなった。
したがってこの場合の回収熱量は,85176kcal/h,また回収効率は,21.9%である。
(Example during winter heating operation)
For example, the air volume of the air conditioning exhaust EA is 34500 m 3 / h, the dry bulb temperature is 23 ° C., the relative humidity is 50%, and the unit heat amount is 10.83 Kcal / kg.
When the air volume of the incoming outside air OA is 42000 m 3 / h, the dry bulb temperature is 5 ° C., the relative humidity is 60%, and the unit heat quantity is 3.13 Kcal / kg,
When water is used as the liquid heat medium,
When the amount of water is 780 l / min,
The temperature of the water flowing in the outgoing pipe 23 is 16.2 ° C.
The temperature of the water flowing in the return pipe 29 is 14.4 ° C.
The supply bulb SA had a dry bulb temperature of 11.9 ° C., a relative humidity of 38.0%, and a unit calorie of 4.82 Kcal / kg.
Therefore, in this case, the recovered heat amount is 85176 kcal / h, and the recovery efficiency is 21.9%.

これを従来の空調排気ダクトと給気ダクトに各々コイルを設置して,両コイル間に水を循環させることで空調排気EAの熱を回収する方式と比較すると,従来の方式では,夏期で7.4%,冬期で8.2%であった。したがって,本発明の方が夏期,冬期のいずれも従来よりはるかに回収効率が向上していることがわかる。   Compared with the conventional method of recovering the heat of the air conditioning exhaust EA by installing coils in the air conditioning exhaust duct and the air supply duct and circulating water between the two coils, the conventional method has 7 .4% and 8.2% in winter. Therefore, it can be seen that the recovery efficiency of the present invention is much improved in both summer and winter compared to the conventional method.

さらに本実施の形態においては,往管23内を流れる液体熱媒の温度を温度センサ23が逐次監視し,予め定めた設定温度になるように,制御装置27がインバータ26を制御し,しかも制御装置27におけるその設定温度は,温度センサ28が測定する外気の温度に基づいて定められているから,例えば,外気の温度が上がった場合には,設定温度もそれに伴って上げて,当該設定温度となるようにインバータ26が制御され,往管23内を流れる液体熱媒の温度を制御し,空調排気EAからの熱回収を一定の範囲で回収できる。したがって,外気の温度が上昇,下降しても,常に一定の範囲で熱回収を行うことが可能になっている。   Further, in the present embodiment, the temperature sensor 23 sequentially monitors the temperature of the liquid heat medium flowing in the outgoing pipe 23, and the control device 27 controls the inverter 26 so that the temperature becomes a preset temperature. Since the set temperature in the device 27 is determined based on the temperature of the outside air measured by the temperature sensor 28, for example, when the temperature of the outside air rises, the set temperature is raised accordingly, and the set temperature The inverter 26 is controlled so that the temperature of the liquid heat medium flowing in the outgoing pipe 23 is controlled, and the heat recovery from the air-conditioning exhaust EA can be recovered within a certain range. Therefore, even if the temperature of the outside air rises or falls, it is possible to always recover heat within a certain range.

もちろん空調排気EAと給気SAとが直接接触することはないので,クロスコンタミネーションも防止されている。   Of course, since the air-conditioning exhaust EA and the supply air SA are not in direct contact with each other, cross contamination is also prevented.

なお上記実施の形態では,ポンプ24,インバータ26,温度センサ25は各々往管23側に設けたが,還管29側に設けてもよい。
また前記実施の形態では,流量調節器はポンプに設けられたインバータ26であったが,これに代えて図4に示したように,流量調節バルブ31を,例えば往管か23に設けてもよい。この場合には,制御装置27は,予め設定された設定温度と,温度センサ25からの測定温度と比較し,往管23を流れる液体熱媒の温度が当該設定温度となるように,流量調節バルブ31の開度を制御して,往管23を流れる液体熱媒の流量を制御するようにすればよい。
In the above embodiment, the pump 24, the inverter 26, and the temperature sensor 25 are provided on the outgoing pipe 23 side, but may be provided on the return pipe 29 side.
In the above embodiment, the flow regulator is the inverter 26 provided in the pump. However, instead of this, as shown in FIG. Good. In this case, the control device 27 compares the set temperature set in advance with the measured temperature from the temperature sensor 25 and adjusts the flow rate so that the temperature of the liquid heat medium flowing in the outgoing pipe 23 becomes the set temperature. What is necessary is just to control the flow volume of the liquid heat medium which flows through the outgoing pipe 23 by controlling the opening degree of the valve 31.

本実施の形態にかかる熱回収システムの構成例を示す説明図である。It is explanatory drawing which shows the structural example of the heat recovery system concerning this Embodiment. 液体熱媒の循環量と液体熱媒の熱交換器出口側温度との関係を示すグラフである。It is a graph which shows the relationship between the circulation amount of a liquid heat medium, and the heat exchanger exit side temperature of a liquid heat medium. 外気温度に基づく設定温度の制御例を示すグラフである。It is a graph which shows the example of control of preset temperature based on outside temperature. 他の実施の形態にかかる熱回収システムの構成例を示す説明図である。It is explanatory drawing which shows the structural example of the heat recovery system concerning other embodiment.

符号の説明Explanation of symbols

10 熱交換器
12 散水部
13 受容部
22 プレコイル
23 往管
25 温度センサ
26 インバータ
27 制御装置
29 還管
EA 空調排気
OA 取入外気
SA 給気
DESCRIPTION OF SYMBOLS 10 Heat exchanger 12 Sprinkling part 13 Receiving part 22 Precoil 23 Outgoing pipe 25 Temperature sensor 26 Inverter 27 Control apparatus 29 Return pipe EA Air-conditioning exhaust OA Intake external air SA Supply air

Claims (3)

空調排気からの熱を回収して再利用するための方法であって,容器内で気液接触可能な熱交換器内で液体熱媒と空調排気とを直接接触させて熱交換し,前記液体熱媒はコイルと前記熱交換器との間を循環させ,前記コイルを介して前記液体熱媒と取入外気との間で熱交換し,
液体熱媒の温度が設定温度以下となるように,その循環量を制御することを特徴とする,空調排気からの熱回収方法。
A method for recovering and reusing heat from air-conditioning exhaust, wherein the liquid heat medium and air-conditioning exhaust are brought into direct contact with each other in a heat exchanger capable of gas-liquid contact in the container to exchange heat, and the liquid The heat medium is circulated between the coil and the heat exchanger, and heat exchange is performed between the liquid heat medium and the intake outside air via the coil.
A method for recovering heat from air-conditioning exhaust, characterized in that the amount of circulation is controlled so that the temperature of the liquid heat medium is below a set temperature.
前記設定温度は,外気の温度に基づいて定めることを特徴とする,請求項1に記載の空調排気からの熱回収方法。 The method for recovering heat from air-conditioning exhaust according to claim 1, wherein the set temperature is determined based on a temperature of outside air. 空調排気からの熱を回収して再利用するためのシステムであって,
容器内で気液接触させて,気体−液体間で熱交換可能な熱交換器と,
前記容器内に向けて液体熱媒を散水する散水部と,散水された液体熱媒を受容する受容部と,
取入外気の流路に設置されたコイルと,
前記受容部と前記コイルとの間に形成された液体熱媒の往路と
前記コイルと前記散水部との間に形成された液体熱媒の還路と,
前記往路又は還路に設けられたポンプと,
前記往路又は還路に設けられた流量調節器と,
前記往路又は還路に設けられて,液体熱媒の温度を測定する温度センサと,
前記温度センサによって測定した液体熱媒の温度が,予め設定した温度となるように,前記流量調節器を制御する制御装置とを有することを特徴とする,
空調排気の熱回収システム。
A system for recovering and reusing heat from air-conditioning exhaust,
A heat exchanger capable of gas-liquid contact in a container and exchanging heat between gas and liquid;
A watering part for spraying the liquid heat medium toward the inside of the container, and a receiving part for receiving the sprayed liquid heat medium;
A coil installed in the flow path of the intake air;
A forward path of the liquid heat medium formed between the receiving part and the coil, and a return path of the liquid heat medium formed between the coil and the watering part,
A pump provided in the forward or return path;
A flow controller provided in the forward or return path;
A temperature sensor that is provided in the forward path or return path and measures the temperature of the liquid heat medium;
A control device for controlling the flow rate regulator so that the temperature of the liquid heat medium measured by the temperature sensor becomes a preset temperature,
Air recovery exhaust heat recovery system.
JP2004079821A 2004-03-19 2004-03-19 Heat collecting method from air-conditioning exhaust air and system therefor Pending JP2005265329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004079821A JP2005265329A (en) 2004-03-19 2004-03-19 Heat collecting method from air-conditioning exhaust air and system therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004079821A JP2005265329A (en) 2004-03-19 2004-03-19 Heat collecting method from air-conditioning exhaust air and system therefor

Publications (1)

Publication Number Publication Date
JP2005265329A true JP2005265329A (en) 2005-09-29

Family

ID=35090073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004079821A Pending JP2005265329A (en) 2004-03-19 2004-03-19 Heat collecting method from air-conditioning exhaust air and system therefor

Country Status (1)

Country Link
JP (1) JP2005265329A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101086A (en) * 2005-10-05 2007-04-19 Takasago Thermal Eng Co Ltd Exhaust heat recovery device, and exhaust heat recovery method
CN116951720A (en) * 2023-09-18 2023-10-27 东南大学建筑设计研究院有限公司 Waste heat recovery device of heating ventilation air conditioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321841A (en) * 1976-08-11 1978-02-28 Taikisha Ltd Control system for air conditioning
JPS56113965A (en) * 1980-02-12 1981-09-08 Hitachi Plant Eng & Constr Co Method of recovering waste heat
JPS572942A (en) * 1980-06-05 1982-01-08 Hitachi Plant Eng & Constr Co Ltd Collecting method for waste heat
JPS61197939A (en) * 1985-02-26 1986-09-02 Mitsubishi Electric Corp Liquid transportation control device of freezing air conditioner
JP2000283527A (en) * 1999-03-30 2000-10-13 Dai-Dan Co Ltd Cooling water variable flow controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321841A (en) * 1976-08-11 1978-02-28 Taikisha Ltd Control system for air conditioning
JPS56113965A (en) * 1980-02-12 1981-09-08 Hitachi Plant Eng & Constr Co Method of recovering waste heat
JPS572942A (en) * 1980-06-05 1982-01-08 Hitachi Plant Eng & Constr Co Ltd Collecting method for waste heat
JPS61197939A (en) * 1985-02-26 1986-09-02 Mitsubishi Electric Corp Liquid transportation control device of freezing air conditioner
JP2000283527A (en) * 1999-03-30 2000-10-13 Dai-Dan Co Ltd Cooling water variable flow controller

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101086A (en) * 2005-10-05 2007-04-19 Takasago Thermal Eng Co Ltd Exhaust heat recovery device, and exhaust heat recovery method
JP4746955B2 (en) * 2005-10-05 2011-08-10 高砂熱学工業株式会社 Waste heat recovery device and waste heat recovery method
CN116951720A (en) * 2023-09-18 2023-10-27 东南大学建筑设计研究院有限公司 Waste heat recovery device of heating ventilation air conditioner
CN116951720B (en) * 2023-09-18 2023-12-26 东南大学建筑设计研究院有限公司 Waste heat recovery device of heating ventilation air conditioner

Similar Documents

Publication Publication Date Title
KR101488472B1 (en) Drain device control system of waste heat using mixing valve and the mehtod thereof
JP2002286324A (en) Air conditioner
KR101942203B1 (en) Combined hot water and air heating and conditioning system including heat pump
KR101389361B1 (en) High efficiency hybrid cooling/heating and hot water supply system with absorption type
CN104781618A (en) Structure for controlling temperature of hot-water supply from waste heat recovery system using three-way valve or mixing valve, and structure for controlling temperature of hot-water supply from waste heat recovery system using heat exchanger in hot-water tank
JP2008057910A (en) Heat pump hot water supply device
JP6117078B2 (en) Heat source system
JP2011075218A (en) Air conditioning heat source unit and air conditioning system
JP2010151380A (en) Air conditioner
JP2005265329A (en) Heat collecting method from air-conditioning exhaust air and system therefor
US20210190328A1 (en) Combined heating and cooling system
JP2018170194A (en) Fuel cell system
CN106839802A (en) Heat recovery system and heat recovery method
CN111059726A (en) Dehumidifier control method and device, storage medium and dehumidifier
CN105805941A (en) Wall-hanging stove
EP1178267A1 (en) Air conditioner
JP2000329412A (en) Solar energy collector
CN102878617B (en) Based on the ceiling air-conditioning system of container-type data center
CN205174740U (en) HVAC system and outdoor heat transfer unit
JP2005344953A (en) Hybrid type geothermal heat utilization system
CN205843041U (en) A kind of swimming pool source pump
JP2007163056A (en) Outside cold heat using method and air conditioning system
KR102382588B1 (en) Heat pump system
KR100526401B1 (en) Water supply system having heat-pump
CN213019875U (en) Energy-saving radiator heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706