JP2005265138A - Pressure vessel - Google Patents

Pressure vessel Download PDF

Info

Publication number
JP2005265138A
JP2005265138A JP2004082287A JP2004082287A JP2005265138A JP 2005265138 A JP2005265138 A JP 2005265138A JP 2004082287 A JP2004082287 A JP 2004082287A JP 2004082287 A JP2004082287 A JP 2004082287A JP 2005265138 A JP2005265138 A JP 2005265138A
Authority
JP
Japan
Prior art keywords
pressure vessel
liner
peripheral surface
synthetic resin
metal fitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004082287A
Other languages
Japanese (ja)
Inventor
Kazuki Nagayama
和樹 長山
Yasuhiro Nishi
泰博 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004082287A priority Critical patent/JP2005265138A/en
Publication of JP2005265138A publication Critical patent/JP2005265138A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0305Bosses, e.g. boss collars
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure vessel preventing generation of clearance between a liner made of synthetic resin and a mouthpiece, with optimum mouthpiece structure for high pressure gas sealing. <P>SOLUTION: The pressure vessel has a mouthpiece part, in which metal fittings exist on an inside containing gas in the liner 2 made of the synthetic resin and on an outside opposed thereto, in the form of interposing the liner made of the synthetic resin with a screw fastening mechanism, with inside and outside metal fitting members respectively comprising integrated components, and having a seal mechanism using a lip packing 10 in at least one part between an outer peripheral surface of the inside metal fitting member 7 and an inner peripheral surface of the liner made of the synthetic resin or between the inner peripheral surface of the outside metal fitting member 6 and the outer peripheral surface of the liner. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、CNG(圧縮天然ガス)、水素、酸素、空気などの気体を高圧下で貯蔵する圧力容器に関し、とくにその気体取出口部に設置される口金部の構造に関する。   The present invention relates to a pressure vessel that stores a gas such as CNG (compressed natural gas), hydrogen, oxygen, and air under high pressure, and more particularly, to a structure of a base portion installed in the gas outlet portion.

従来より、圧力容器は、種々の気体の貯蔵に使用されており、気体を内包する機能を有するライナー材料には、金属を適用したものや合成樹脂を適用したものが存在する。ライナー材料に金属を用いた場合、その口金部も一体成形された金属製からなることが通例であり、一体成形であるが故に口金部からの内包気体の漏洩は問題とはならない。これに対して、ライナー材料に合成樹脂を用いた場合には、口金部は合成樹脂と金属とが種々の手法で接合されているが、現在使用されている圧力容器の貯蔵圧力のほとんどが20MPa以下という低圧力下での使用を前提としているために、前記接合部からの内包気体の漏洩は問題にはなっていない。例えば、特許文献1には、ライナーの気体取出口部において、ライナーの内周面のコーナ部と、ライナーの内周側にライナーを貫通させて設けられる口金部材との間にシール部材を介在させて気密シール性を高めるようにした構造が記載されている。   Conventionally, pressure vessels have been used for storage of various gases, and there are liner materials having a function of enclosing gas and those using metals and those using synthetic resins. When a metal is used for the liner material, the base part is also usually made of a metal that is integrally formed, and leakage of the contained gas from the base part is not a problem because it is integrally formed. On the other hand, when a synthetic resin is used as the liner material, the synthetic resin and the metal are joined to the base portion by various methods, but most of the storage pressure of the pressure vessel currently used is 20 MPa. Since it is assumed to be used under a low pressure as described below, leakage of the encapsulated gas from the joint is not a problem. For example, in Patent Document 1, a seal member is interposed between a corner portion on the inner peripheral surface of a liner and a base member provided by penetrating the liner on the inner peripheral side of the liner at the gas outlet portion of the liner. A structure that improves the airtight sealability is described.

しかしながら、近年脚光を浴びている燃料電池用高圧水素貯蔵容器等においては、気体水素充填圧力が50〜70MPa程度の超高圧に耐えられる高圧容器が要求されるようになってきた。さらに、安全面や環境面から容器の気密度(内包気体の密閉度)の規則がさらに厳しくなり、内包気体の漏洩防止・漏洩量低減が求められており、その基準については現在国際規格の検討が進んでおり、容器からの水素漏洩量が1.0cm3/hr・L以下となるように設定される見込みである。 However, in high-pressure hydrogen storage containers for fuel cells that have been in the spotlight in recent years, a high-pressure container that can withstand ultra-high pressure with a gaseous hydrogen filling pressure of about 50 to 70 MPa has been required. Furthermore, regulations on the air density (enclosed gas sealing degree) of containers are becoming more stringent from the safety and environmental aspects, and it is required to prevent leakage of the included gas and reduce the amount of leakage. The hydrogen leakage from the container is expected to be set to 1.0 cm 3 / hr · L or less.

このように、昨今の圧力容器に対する高耐圧要求特性、漏洩規則が厳しくなる状況に対して、特許文献1に記載されているような従来機構では、口金の外側から設置した金具が2つ以上の部材から構成されていたり、金具が一体の部材で構成されていてもカシメによる締結機構を採用しているために、合成樹脂製ライナーに対する金具の半径方向位置を正確に固定できない。そのため、合成樹脂製ライナーと金具との間に設置されたシール部材のシール能力が十分発揮できないし、かつ、シール部材にOリングや平板状パッキンなどを適用しているため、内圧が高くなる場合にパッキンの変形代が小さいので高圧気体をシールする能力が不十分であった。
特開2000−291887号公報
As described above, in the conventional mechanism as described in Patent Document 1, there are two or more metal fittings installed from the outside of the base for the high pressure resistance requirement characteristics and the leakage regulations for recent pressure vessels. Even if it is made of a member or the metal fitting is formed of an integral member, the caulking fastening mechanism is employed, so that the radial position of the metal fitting relative to the synthetic resin liner cannot be fixed accurately. Therefore, when the sealing member installed between the synthetic resin liner and the metal fitting cannot fully demonstrate the sealing ability, and because the O-ring or flat packing is applied to the sealing member, the internal pressure increases. Further, since the deformation allowance of the packing is small, the ability to seal high-pressure gas was insufficient.
JP 2000-291887 A

本発明の課題は、合成樹脂製のライナーと口金金具との間の隙間の発生を防止することができ、かつ、とくに高圧の気体シールに最適な口金部構造を有する圧力容器を提供することにある。   An object of the present invention is to provide a pressure vessel that can prevent the generation of a gap between a synthetic resin liner and a base metal fitting and has a base part structure particularly suitable for high-pressure gas sealing. is there.

上記課題を解決するために、本発明に係る圧力容器は、気体を貯蔵する圧力容器の気体取出口部に設置される口金部が、次の(A)、(B)、(C)の要件をすべて備えていることを特徴とするものからなる。
(A)口金部に設けられる金具が合成樹脂製のライナーに対し気体を内包する内側とそれに対して相対的な外側とに存在し、該内側と外側の金具部材がネジ機構により互いに締結される形態をとること。
(B)内側と外側の金具部材がそれぞれ一体の部品から構成されていること。
(C)内側金具部材の外周面と前記ライナーの内周面との間、もしくは外側金具部材の内周面と前記ライナーの外周面との間の少なくとも1カ所にリップパッキンを用いたシール機構を有すること。
In order to solve the above-described problems, the pressure vessel according to the present invention has the following requirements (A), (B), and (C) for a base portion installed in a gas outlet portion of a pressure vessel that stores gas. It consists of what is characterized by having all.
(A) Metal fittings provided in the base part are present on the inner side containing gas with respect to the synthetic resin liner and on the outer side relative to the inner side, and the inner and outer metal fitting members are fastened to each other by a screw mechanism. Take the form.
(B) The inner and outer metal members are each composed of an integral part.
(C) A seal mechanism using a lip packing between at least one portion between the outer peripheral surface of the inner metal member and the inner peripheral surface of the liner or between the inner peripheral surface of the outer metal member and the outer peripheral surface of the liner. Having.

この本発明に係る圧力容器においては、上記内側と外側の金具部材により合成樹脂製のライナーが挟み込まれている形態をとることができる。   In the pressure vessel according to the present invention, a synthetic resin liner is sandwiched between the inner and outer metal fittings.

また、本発明に係る圧力容器においては、内側と外側の金具部材を締結するネジ機構について、そのネジの有効径をD(mm)、ネジ締結長さをL(mm)とした場合、DとLが以下の関係式を満足することが好ましい。
L≧0.05×D
Further, in the pressure vessel according to the present invention, when the effective diameter of the screw is D (mm) and the screw fastening length is L (mm), the screw mechanism for fastening the inner and outer metal members is D and It is preferable that L satisfies the following relational expression.
L ≧ 0.05 × D

さらに、圧力容器を軸方向に投影した状態において、内側の金具部材のフランジ部外径をP(mm)、外側の金具部材の外径をQ(mm)としたとき、PとQが以下の関係式を満足することが好ましい。
5.0×Q≧P≧1.05×Q
Further, in the state where the pressure vessel is projected in the axial direction, when the outer diameter of the flange portion of the inner metal member is P (mm) and the outer diameter of the outer metal member is Q (mm), P and Q are as follows: It is preferable to satisfy the relational expression.
5.0 × Q ≧ P ≧ 1.05 × Q

本発明に係る圧力容器によれば、金具が合成樹脂製のライナーに対して気体を内包する内側と相対する外側に存在し、ネジ締結機構により合成樹脂製のライナーを挟み込む形態をとり、内側と外側の金具部材がそれぞれ一体の部品として構成され、内側金具部材の外周面と合成樹脂製ライナーの内周面との間もしくは外側金具部材の内周面とライナー外周面との間の少なくとも1カ所にリップパッキンを用いたシール機構を有する圧力容器としたので、個々の金具部材の変形を抑制して金具全体としての合成樹脂製ライナーとの密着度を高めて耐圧性を高めることができるとともに、シール機構とライナーとの密着度を高めて気密性、ひいては耐圧性を高めることができる。したがって、昨今厳しくなりつつある圧力容器に対する高耐圧要求特性、漏洩規則に対応することができる。   According to the pressure vessel of the present invention, the metal fitting is present on the outer side opposite to the inner side containing the gas with respect to the synthetic resin liner, and takes the form in which the synthetic resin liner is sandwiched by the screw fastening mechanism. Each of the outer metal members is formed as an integral part, and is at least one place between the outer peripheral surface of the inner metal member and the inner peripheral surface of the synthetic resin liner or between the inner peripheral surface of the outer metal member and the outer peripheral surface of the liner. Since it is a pressure vessel having a sealing mechanism using lip packing, it is possible to suppress the deformation of individual metal fitting members and increase the adhesion with the synthetic resin liner as the whole metal fitting, thereby improving the pressure resistance. The degree of adhesion between the seal mechanism and the liner can be increased to improve the airtightness and, consequently, the pressure resistance. Therefore, it is possible to cope with high pressure resistance characteristics and leakage rules for pressure vessels that are becoming stricter in recent years.

以下に、本発明の好ましい実施の形態を、図面を参照しながら説明する。
図1は、本発明の一実施態様に係る、気体取出口部を有する圧力容器Tの一部破断斜視図、図2は、図1の圧力容器Tの口金部の拡大縦断面図、図3、図4はそれぞれ図1とは別の実施態様に係る圧力容器の口金部の断面図である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
1 is a partially cutaway perspective view of a pressure vessel T having a gas outlet according to an embodiment of the present invention, FIG. 2 is an enlarged longitudinal sectional view of a cap portion of the pressure vessel T of FIG. 4 is a cross-sectional view of a cap portion of a pressure vessel according to an embodiment different from FIG.

図1において、圧力容器Tは、円筒形に形成されたライナー1と、その外周に補強のために繊維強化樹脂(FRP)層が積層されたFRP製外殻2と、鏡板部分に貫通して設けられた気体取出口部3とで構成されている。   In FIG. 1, a pressure vessel T penetrates through a liner 1 formed in a cylindrical shape, an FRP outer shell 2 in which a fiber reinforced resin (FRP) layer is laminated on the outer periphery thereof, and an end plate portion. It is comprised with the gas outlet part 3 provided.

図2において、4は繊維強化樹脂層が積層された口金部におけるFRP製外殻、5は合成樹脂製ライナー、6、7はそれぞれ合成樹脂製ライナー5を挟み込む形態をとる、各々一体の部品から構成される外側金具部材、内側金具部材を示しており、外側金具部材6、内側金具部材7はネジ13により締結され一体的に構成されている。   In FIG. 2, 4 is an FRP outer shell in a base portion where fiber reinforced resin layers are laminated, 5 is a synthetic resin liner, and 6 and 7 are sandwiched between synthetic resin liners 5. The outer metal fitting member and the inner metal fitting member are shown, and the outer metal fitting member 6 and the inner metal fitting member 7 are integrally formed by fastening with screws 13.

ここで、金具部材6、7により、合成樹脂製ライナー5を挟み込む形態をとる理由は、口金部分が容器内貯蔵ガスによる50〜70MPaという高圧に耐えるために、強度が不足するライナー部材とは別に金属製の口金金具部材を製作する必要があり、合成樹脂製ライナー部材と口金金具部材という異種の材料、部材に構成されるにも関わらず圧力容器内に圧入された気体の漏洩を最小限に抑えるために、シール機構とライナーの密着度を向上させる必要があるためである。   Here, the reason why the synthetic resin liner 5 is sandwiched between the metal fittings 6 and 7 is that, apart from the liner member lacking in strength, because the base portion withstands the high pressure of 50 to 70 MPa due to the gas stored in the container. It is necessary to manufacture a metal base metal fitting member, and the leakage of the gas injected into the pressure vessel is minimized despite the fact that it is composed of different materials and parts, such as a synthetic resin liner member and a base metal fitting member. This is because it is necessary to improve the adhesion between the seal mechanism and the liner in order to suppress it.

またここで、外側と内側の金具部材6、7がそれぞれ一体の部品から構成されていない場合(例えば特許文献1の図6のような場合)、口金金具部材の左右のずれを厳密に制御することができないため、結果として、気体の漏洩を最小限にするためのシール機構と合成樹脂製ライナーの密着度が低下し、気体の漏洩を小さく抑えることができない。従って、外側と内側の金具部材6、7は、それぞれ一体の部品から構成される必要があるわけである。   Further, here, when the outer and inner metal fittings 6 and 7 are not composed of integral parts (for example, as shown in FIG. 6 of Patent Document 1), the right and left shift of the base metal fitting member is strictly controlled. As a result, the degree of adhesion between the sealing mechanism for minimizing gas leakage and the synthetic resin liner decreases, and gas leakage cannot be kept small. Therefore, the outer and inner metal members 6 and 7 need to be formed of integral parts.

さらにまた、特許文献1に記載のように、シール部材にOリングや平板状パッキンなどを適用すると、50〜70MPaという高圧気体を内包する圧力容器に対しては、内圧が高くなる場合にパッキンの変形代が小さいため高圧気体をシールする能力が不十分であり、よりシール性能の高いリップパッキンを適用しなければ、圧力容器からの気体漏洩量、例えば水素漏洩量を1.0cm3/hr・L以下に抑えることは困難である。図2において、8、9、10はそれぞれサポートリング、バックアップリング、リップパッキンを示しており、サポートリング8、バックアップリング9、リップパッキン10でシール機構部を構成しており、内側金具部材7の外周面と合成樹脂製ライナー5の内周面との間に配置されている。 Furthermore, as described in Patent Document 1, when an O-ring or a flat packing is applied to the seal member, the pressure vessel containing a high-pressure gas of 50 to 70 MPa is used when the internal pressure becomes high. Since the deformation allowance is small, the ability to seal high-pressure gas is insufficient, and unless a lip packing with higher sealing performance is applied, the amount of gas leakage from the pressure vessel, for example, the amount of hydrogen leakage is 1.0 cm 3 / hr · It is difficult to keep it below L. 2, reference numerals 8, 9, and 10 respectively denote a support ring, a backup ring, and a lip packing, and the support ring 8, the backup ring 9, and the lip packing 10 constitute a seal mechanism portion. It arrange | positions between an outer peripheral surface and the inner peripheral surface of the synthetic resin liners 5.

この場合、図2のシール機構部は便宜的にリップパッキン10を1つしか図示していないが、一カ所のシール機構部に複数個連続して(重ねて)設置することが可能であり、気体の漏洩量をさらに小さくすることができる。通常、リップパッキンを有するシール機構のみで気体を十分シールすることは可能であるが、フェールセーフの観点から、Oリング11などのスクイージパッキンによるシール機構を補助的に用いることも可能である。なお、12はバルブ取付ネジであり、内包気体を取り出すためのバルブ(図示略)を取り付けるための機構である。   In this case, only one lip packing 10 is shown in the seal mechanism portion of FIG. 2 for the sake of convenience, but a plurality of seal mechanism portions can be continuously (stacked) on one seal mechanism portion, The amount of gas leakage can be further reduced. Normally, it is possible to sufficiently seal the gas only with a sealing mechanism having a lip packing, but from the viewpoint of fail-safe, a sealing mechanism using a squeegee packing such as an O-ring 11 can be used supplementarily. Reference numeral 12 denotes a valve mounting screw, which is a mechanism for mounting a valve (not shown) for taking out the contained gas.

図3は、図2とは別の形態に係る圧力容器の口金部の断面図であり、内側金具部材7の外周面と合成樹脂製ライナー5の内周面との間ならびに外側金具部材6の内周面と合成樹脂製ライナー5の外周面との間にシール機構を有する形態をとったものである。このようなシール機構の配置は、特に限定されるものではないが、例えば合成樹脂製ライナー5をブロー成形にて製作する場合に有効で、さらに多層ブロー成形にて合成樹脂製ライナー5を製作する場合特に好適な形状である。ここで、14は多層ブロー成形によって得られた合成樹脂製ライナー5の断面中央に配置された内包気体バリア層を示しており、実質的に本バリア層で内包気体をシールしている。   FIG. 3 is a cross-sectional view of a cap portion of a pressure vessel according to a form different from that of FIG. 2, and shows the space between the outer peripheral surface of the inner metal member 7 and the inner peripheral surface of the synthetic resin liner 5 and This is a configuration having a sealing mechanism between the inner peripheral surface and the outer peripheral surface of the synthetic resin liner 5. The arrangement of such a seal mechanism is not particularly limited. For example, it is effective when the synthetic resin liner 5 is manufactured by blow molding, and the synthetic resin liner 5 is manufactured by multilayer blow molding. In this case, the shape is particularly suitable. Here, reference numeral 14 denotes an inclusion gas barrier layer disposed at the center of the cross section of the synthetic resin liner 5 obtained by multilayer blow molding, and the inclusion gas is substantially sealed by this barrier layer.

図4は、図2とはさらに別の形態に係る圧力容器の口金部の断面図を示しており、内側金具部材7の外周面と合成樹脂製ライナー5の内周面との間にシール機構を有する形態をとり、外側の金具部材6によってシール機構部分の圧力容器の軸方向における位置決めを行う。繊維強化樹脂層が積層されたFRP製外殻4を気体取出口部を覆うように配置した形態をとっており、気体取出口部における円周方向の変形を抑制することが可能となるために、シール機構と合成樹脂製ライナー5との密着度を向上させ、内包気体の漏洩を大幅に低減することができる。   FIG. 4 shows a cross-sectional view of a cap portion of a pressure vessel according to another embodiment different from FIG. 2, and a sealing mechanism is provided between the outer peripheral surface of the inner metal member 7 and the inner peripheral surface of the synthetic resin liner 5. The seal member is positioned in the axial direction of the pressure vessel by the outer metal fitting 6. The FRP outer shell 4 in which the fiber reinforced resin layer is laminated is arranged so as to cover the gas outlet, and it is possible to suppress the circumferential deformation in the gas outlet. The degree of adhesion between the seal mechanism and the synthetic resin liner 5 can be improved, and leakage of the encapsulated gas can be greatly reduced.

ここで、本発明に係る圧力容器を構成する材料について詳細に説明する。
繊維強化樹脂層が積層されたFRP製外殻4は、ガラス繊維、炭素繊維、アラミド繊維の少なくとも1種類以上の強化繊維と、その主材が、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、ポリウレタン樹脂、シリコーン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ABS樹脂、ポリスチレン樹脂、AS樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、熱可塑性ポリエステル樹脂、PPS(ポリフェニレンサルファイド)樹脂、フッ素樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリイミド樹脂の少なくとも1種類以上の樹脂から構成されるFRPからなる。
Here, the material which comprises the pressure vessel which concerns on this invention is demonstrated in detail.
The outer shell 4 made of FRP in which the fiber reinforced resin layer is laminated is composed of at least one type of reinforcing fiber of glass fiber, carbon fiber, and aramid fiber, and its main material is epoxy resin, unsaturated polyester resin, vinyl ester resin, Phenol resin, polyurethane resin, silicone resin, polyethylene resin, polypropylene resin, polyvinyl chloride resin, ABS resin, polystyrene resin, AS resin, polyamide resin, polyacetal resin, polycarbonate resin, thermoplastic polyester resin, PPS (polyphenylene sulfide) resin, It consists of FRP comprised from at least 1 or more types of resin of a fluororesin, polyetherimide resin, polyetherketone resin, and polyimide resin.

合成樹脂製ライナー5は、その主材が、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ABS樹脂、ポリスチレン樹脂、AS樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、熱可塑性ポリエステル樹脂(PET、PBT、PCTなど)、PPS樹脂、フッ素樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリイミド樹脂などを例示でき、1種類だけであっても、或いは2種類以上を混合して使用してもよい。これら熱可塑性樹脂は単独でも、混合物でも、また共重合体であってもよい。混合物の場合には相溶化剤を併用してもよい。さらにまた、難燃剤として臭素系難燃剤、シリコン系難燃剤、赤燐などを加えてもよい。また、気体封止材であるエチレンビニルアルコール(EVOH)などを一部に用いてもよい。このエチレンビニルアルコールを適用する場合、図3の内包気体バリア層14のように配置されるわけであるが、そのときのEVOHの厚み「t−EVOH(mm)」は圧力容器外表面積「Suf(mm2)」、容器内容積「Vol(litter)」を用いてt−EVOH÷(Suf×Vol)が5×10-8(mm/mm2・litter)以上となるように設計することが必要である。 The main material of the synthetic resin liner 5 is polyethylene resin, polypropylene resin, polyvinyl chloride resin, ABS resin, polystyrene resin, AS resin, polyamide resin, polyacetal resin, polycarbonate resin, thermoplastic polyester resin (PET, PBT, PCT etc.), PPS resin, fluororesin, polyetherimide resin, polyetherketone resin, polyimide resin, etc., and may be used alone or in combination of two or more. These thermoplastic resins may be used alone, as a mixture, or as a copolymer. In the case of a mixture, a compatibilizer may be used in combination. Furthermore, brominated flame retardants, silicon-based flame retardants, red phosphorus, and the like may be added as flame retardants. Moreover, you may use ethylene vinyl alcohol (EVOH) etc. which are gas sealing materials in part. When this ethylene vinyl alcohol is applied, it is arranged like the inclusion gas barrier layer 14 in FIG. 3, and the thickness “t-EVOH (mm)” of the EVOH at that time is the pressure vessel outer surface area “Suf ( mm 2 ) ”, and the volume inside the container“ Vol (litter) ”should be used so that t-EVOH ÷ (Suf × Vol) is 5 × 10 −8 (mm / mm 2 · liter) or more. It is.

金具部材6、7は特に限定されるものではないが、炭素鋼として、圧力配管用炭素鋼鋼管、高圧配管用炭素鋼鋼管、低温配管用鋼管、機械構造用炭素鋼鋼材を例示でき、マンガン鋼では、高圧ガス容器用継目無鋼管、機械構造用マンガン鋼鋼材、マンガンクロム鋼鋼材を例示でき、クロムモリブデン鋼や低合金鋼では、高圧ガス容器用継目無鋼管、機械構造用合金鋼鋼管、ニッケルクロムモリブデン鋼鋼材、クロムモリブデン鋼材を例示でき、ステンレス鋼では、圧力用ステンレス鋼鍛鋼品、配管用ステンレス鋼管、ステンレス鋼棒、熱間圧延ステンレス鋼板および鋼帯、冷間圧延ステンレス鋼板および鋼帯を例示できる。アルミニウム合金では、アルミニウムおよびアルミニウム合金の板、条、棒、線、継目無管、鍛造品を例示できる。ライナーは、本金属材料そのものを適用してもよいし、炭素鋼に対しては、焼きなまし、焼きならし、マンガン鋼に対しては、焼きならし、焼き入れ焼きもどし、クロムモリブデン鋼や低合金鋼に対しては、焼き入れ焼きもどし、ステンレス鋼に対しては固溶化処理、アルミニウム合金に対しては、焼き入れ焼きもどしを施した材料を適用してもよい。さらに、アルミニウム合金に対しては、溶体化処理及びT6時効処理を施したものを適用してもよい。特に、内包気体に水素ガスを選定する場合などは、耐水素脆性に優れるSUS304,SUS316,SUS347を適用することが好ましい。   The metal fittings 6 and 7 are not particularly limited, but examples of carbon steel include carbon steel pipe for pressure piping, carbon steel pipe for high pressure piping, steel pipe for low temperature piping, carbon steel for machine structure, and manganese steel. Can be exemplified by seamless steel pipes for high-pressure gas containers, manganese steel materials for machine structures, and manganese chrome steel materials. Examples of chromium-molybdenum steel and chrome-molybdenum steel include stainless steel forgings for pressure, stainless steel pipes for piping, stainless steel bars, hot-rolled stainless steel plates and steel strips, cold-rolled stainless steel plates and steel strips. It can be illustrated. Examples of the aluminum alloy include aluminum and aluminum alloy plates, strips, bars, wires, seamless pipes, and forged products. For the liner, the metal material itself may be applied. For carbon steel, annealing and normalizing, for manganese steel, normalizing, quenching and tempering, chromium molybdenum steel and low alloy Quenching and tempering may be applied to steel, solid solution treatment may be applied to stainless steel, and quenching and tempering may be applied to aluminum alloys. Furthermore, for the aluminum alloy, a solution subjected to solution treatment and T6 aging treatment may be applied. In particular, when hydrogen gas is selected as the inclusion gas, it is preferable to apply SUS304, SUS316, and SUS347, which are excellent in resistance to hydrogen embrittlement.

さらに、有限要素法によるコンピューターシュミレーションにより、外側金具部材6、内側金具部材7において、内側金具部材7のフランジ部外径をP、外側金具部材6の部材外径をQとしたとき、PとQが以下の関係式を満足することが好適であることが分かった。
5.0×Q≧P≧1.05×Q
Further, by computer simulation by the finite element method, when the outer diameter of the flange portion of the inner metal fitting member 7 is P and the outer diameter of the outer metal fitting member 6 is Q in the outer metal fitting member 6 and the inner metal fitting member 7, P and Q It is found that it is preferable to satisfy the following relational expression.
5.0 × Q ≧ P ≧ 1.05 × Q

これは、内圧を受ける圧力容器の場合、金具部分にもその内圧によって圧力容器軸方向に飛び出そうとする力が加わるが、その力を繊維強化樹脂層が積層されたFRP製外殻によって支えているわけである。従って、P≧1.05×Qとなるように設計しなければ、50〜70MPaという高圧の内圧によって金具部分が圧力容器の軸方向に飛び出してしまうおそれがあるわけである。逆にPを大きくしすぎることは、内側金具部材の重量を無意味に増加させることになり、結果として軽量化を要求される圧力容器の重量を増加させてしまう結果となり不経済である。したがって、高圧の内圧によって金具部分が圧力容器軸方向に飛び出さない程度に上限が必要で、5.0×Q≧Pとなるように設計することが効果的である。   This is because, in the case of a pressure vessel that receives internal pressure, a force is exerted on the metal fitting part by the internal pressure so as to jump out in the axial direction of the pressure vessel, but this force is supported by the FRP outer shell on which the fiber reinforced resin layer is laminated. That is why. Therefore, if it is not designed to satisfy P ≧ 1.05 × Q, the metal fitting part may jump out in the axial direction of the pressure vessel due to a high internal pressure of 50 to 70 MPa. On the other hand, if P is made too large, the weight of the inner metal fitting member is meaninglessly increased. As a result, the weight of the pressure vessel required to be reduced in weight is increased, which is uneconomical. Therefore, an upper limit is necessary to the extent that the metal fitting part does not protrude in the pressure vessel axial direction due to the high internal pressure, and it is effective to design so that 5.0 × Q ≧ P.

リップパッキン10の材質は、スチレンゴム、クロロプレンゴム、IIR、ニトリルゴム、天然ゴム、シリコーンゴム、クロロスルホン化ポリエチレン、フッ素ゴム、エチレンプロピレンゴム、ウレタンゴム、アクリルゴム、フロロシリコーンゴム、ポリテトラフルオロエチレン、水素化ニトリルゴム、ポリテトラフルオロエチレン(PTFE)などのフッ素樹脂などが好適に用いられ、使用される圧力が高い場合、これらを主成分に補強繊維を複合したものを使用してもよい。ここで用途は特に限定されるものではないが、例えば燃料電池自動車の発電に使用される高圧水素を貯蔵する圧力容器に適用する場合、耐水素特性の観点から、クロロプレンゴム、ニトリルゴム、IIR、クロロスルホン化ポリエチレン、フッ素ゴム、エチレンプロピレンゴム、ウレタンゴム、アクリルゴム、フロロシリコーンゴム、ポリテトラフルオロエチレン、水素化ニトリルゴム、ポリテトラフルオロエチレン(PTFE)などのフッ素樹脂が好ましく適用できる。またここでリップパッキンとしては、Uパッキン、Vパッキン、Lパッキン、Jパッキンなどを例示することができる。   The material of the lip packing 10 is styrene rubber, chloroprene rubber, IIR, nitrile rubber, natural rubber, silicone rubber, chlorosulfonated polyethylene, fluorine rubber, ethylene propylene rubber, urethane rubber, acrylic rubber, fluorosilicone rubber, polytetrafluoroethylene. Fluorine resins such as hydrogenated nitrile rubber and polytetrafluoroethylene (PTFE) are preferably used, and when the pressure used is high, a composite of reinforcing fibers composed mainly of these may be used. Here, the application is not particularly limited, but for example, when applied to a pressure vessel for storing high-pressure hydrogen used for power generation of a fuel cell vehicle, from the viewpoint of hydrogen resistance, chloroprene rubber, nitrile rubber, IIR, Fluorocarbon resins such as chlorosulfonated polyethylene, fluorine rubber, ethylene propylene rubber, urethane rubber, acrylic rubber, fluorosilicone rubber, polytetrafluoroethylene, hydrogenated nitrile rubber, and polytetrafluoroethylene (PTFE) are preferably applicable. Examples of the lip packing include U packing, V packing, L packing, and J packing.

バックアップリング9やサポートリング8は、四フッ化エチレン樹脂やベークライト、ポリアミド樹脂、ポリアセタール樹脂の単体もしくは、補強繊維が複合されたもの、あるいは、軟鋼、SUS304,SUS316,SUS347,アルミ合金、銅などが好適に用いられる。   The backup ring 9 and the support ring 8 are made of tetrafluoroethylene resin, bakelite, polyamide resin, polyacetal resin or a composite of reinforcing fibers, or mild steel, SUS304, SUS316, SUS347, aluminum alloy, copper, or the like. Preferably used.

ここで、シール機構と接触する合成樹脂製ライナーの表面は、内包気体を確実にシールするために、JIS B 0601に規定される最大高さ(記号Ry)で0.01μm〜25μmが好ましく、例えば水素のように内包気体の分子量が小さいものである場合は、0.01μm〜6.3μmがさらに好ましい。   Here, the surface of the synthetic resin liner in contact with the sealing mechanism is preferably 0.01 μm to 25 μm at the maximum height (symbol Ry) defined in JIS B 0601 in order to securely seal the encapsulated gas. When the molecular weight of the encapsulated gas is small, such as hydrogen, it is more preferably 0.01 μm to 6.3 μm.

外側金具部材と内側金具部材を締結しているネジ13は、内包気体の圧力が50〜70MPaと高圧になることを想定して設計する必要がある。内圧を受けるネジの静的強度は、一般的にその有効径が大きくなると大幅に低下する傾向が知られており、経験則に基づく強度計算による設計を行っていた。しかしながら、圧力容器に見られるような充填、放圧という繰り返し荷重が負荷されるような状況では、明確な指針が認められない状況であった。そこで、本発明では、有限要素法を用いたコンピューターシュミレーションや実際のネジを用いた繰り返し荷重による耐久試験を行い、好ましい締結ネジの設計指針を導き出した。すなわち、本発明の外側金具と内側金具を締結しているネジ13は、そのネジの有効径をD、ネジ締結長さをLとしたときに、L≧0.05×Dを満足するように設計する必要があることが分かった。このとき、ネジの態様としては、三角ネジ、角ネジ、台形ネジ、管用ネジが好ましく用いられる。   The screw 13 that fastens the outer metal member and the inner metal member needs to be designed on the assumption that the pressure of the inclusion gas is as high as 50 to 70 MPa. In general, the static strength of a screw subjected to internal pressure is known to tend to drop significantly as its effective diameter increases, and the design was based on strength calculation based on empirical rules. However, in a situation where a repeated load such as filling and releasing pressure as seen in a pressure vessel is applied, a clear guideline is not recognized. Therefore, in the present invention, a computer simulation using the finite element method and an endurance test by repeated load using an actual screw were performed, and a design guideline for a preferable fastening screw was derived. That is, the screw 13 that fastens the outer metal fitting and the inner metal fitting according to the present invention satisfies L ≧ 0.05 × D when the effective diameter of the screw is D and the screw fastening length is L. I found it necessary to design. At this time, a triangular screw, a square screw, a trapezoidal screw, or a tube screw is preferably used as the screw mode.

本発明に係る圧力容器における口金部の構造は、CNG(圧縮天然ガス)、水素、酸素、空気などの気体を高圧下で貯蔵する圧力容器に好適なものであり、特に、燃料電池自動車の発電に使用される高圧水素を貯蔵する圧力容器等に好適なものである。   The structure of the cap portion in the pressure vessel according to the present invention is suitable for a pressure vessel that stores a gas such as CNG (compressed natural gas), hydrogen, oxygen, air, etc. under high pressure. It is suitable for a pressure vessel or the like for storing high-pressure hydrogen used in the above.

本発明の一実施態様に係る圧力容器の一部破断斜視図である。It is a partially broken perspective view of the pressure vessel concerning one embodiment of the present invention. 図1の圧力容器の口金部の拡大縦断面図である。FIG. 2 is an enlarged longitudinal sectional view of a base part of the pressure vessel of FIG. 1. 本発明の別の実施態様に係る圧力容器の口金部の断面図である。It is sectional drawing of the nozzle | cap | die part of the pressure vessel which concerns on another embodiment of this invention. 本発明のさらに別の実施態様に係る圧力容器の口金部の断面図である。It is sectional drawing of the nozzle | cap | die part of the pressure vessel which concerns on another embodiment of this invention.

符号の説明Explanation of symbols

1 圧力容器のライナー
2 FRP製外殻
3 容器の中心部貫通穴
4 繊維強化樹脂層が積層されたFRP製外殻
5 合成樹脂製ライナー
6 外側金具部材
7 内側金具部材
8 サポートリング
9 バックアップリング
10 リップパッキン
11 Oリング
12 バルブ取付ネジ
13 外側金具部材と内側金具部材を締結しているネジ
14 多層ブロー成形によって得られた合成樹脂製ライナーの断面中央に配置された内包気体バリア層
D 内側と外側の金具部材を締結するネジ機構のネジ有効径
L 内側と外側の金具部材を締結するネジ機構のネジ締結長さ
P 内側金具部材のフランジ部外径
Q 外側金具部材の外径
T 圧力容器
DESCRIPTION OF SYMBOLS 1 Pressure vessel liner 2 FRP outer shell 3 Container center through-hole 4 FRP outer shell laminated with fiber reinforced resin layer 5 Synthetic resin liner 6 Outer metal fitting member 7 Inner metal fitting member 8 Support ring 9 Backup ring 10 Lip packing 11 O-ring 12 Valve mounting screw 13 Screw fastening outer metal member and inner metal member 14 Inner gas barrier layer arranged at the center of the cross section of the synthetic resin liner obtained by multilayer blow molding D Inner and outer Screw effective diameter of the screw mechanism for fastening the metal fitting member L Screw fastening length of the screw mechanism for fastening the inner and outer metal fitting members P Outer diameter of the flange portion of the inner metal fitting member Q Outer diameter of the outer metal fitting member T Pressure vessel

Claims (5)

気体を貯蔵する圧力容器の気体取出口部に設置される口金部が、次の(A)、(B)、(C)の要件をすべて備えていることを特徴とする圧力容器。
(A)口金部に設けられる金具が合成樹脂製のライナーに対し気体を内包する内側とそれに対して相対的な外側とに存在し、該内側と外側の金具部材がネジ機構により互いに締結される形態をとること。
(B)内側と外側の金具部材がそれぞれ一体の部品から構成されていること。
(C)内側金具部材の外周面と前記ライナーの内周面との間、もしくは外側金具部材の内周面と前記ライナーの外周面との間の少なくとも1カ所にリップパッキンを用いたシール機構を有すること。
A pressure vessel in which a base portion installed in a gas outlet portion of a pressure vessel for storing gas has all the following requirements (A), (B), and (C).
(A) Metal fittings provided in the base part are present on the inner side containing gas with respect to the synthetic resin liner and on the outer side relative to the inner side, and the inner and outer metal fitting members are fastened to each other by a screw mechanism. Take the form.
(B) The inner and outer metal members are each composed of an integral part.
(C) A seal mechanism using a lip packing between at least one portion between the outer peripheral surface of the inner metal member and the inner peripheral surface of the liner or between the inner peripheral surface of the outer metal member and the outer peripheral surface of the liner. Having.
内側と外側の金具部材により合成樹脂製のライナーが挟み込まれていることを特徴とする,請求項1に記載の圧力容器。   The pressure vessel according to claim 1, wherein a liner made of synthetic resin is sandwiched between inner and outer metal fittings. 内側と外側の金具部材を締結するネジ機構について、そのネジの有効径をD(mm)、ネジ締結長さをL(mm)とした場合、DとLが以下の関係式を満足することを特徴とする,請求項1または2に記載の圧力容器。
L≧0.05×D
Regarding the screw mechanism for fastening the inner and outer metal fittings, if the effective diameter of the screw is D (mm) and the screw fastening length is L (mm), D and L satisfy the following relational expression. The pressure vessel according to claim 1 or 2, characterized by the above.
L ≧ 0.05 × D
圧力容器を軸方向に投影した状態において、内側の金具部材のフランジ部外径をP(mm)、外側の金具部材の外径をQ(mm)としたとき、PとQが以下の関係式を満足することを特徴とする、請求項1〜3のいずれかに記載の圧力容器。
5.0×Q≧P≧1.05×Q
In the state where the pressure vessel is projected in the axial direction, when the outer diameter of the flange portion of the inner metal fitting member is P (mm) and the outer diameter of the outer metal fitting member is Q (mm), P and Q are the following relational expressions: The pressure vessel according to any one of claims 1 to 3, wherein the pressure vessel is satisfied.
5.0 × Q ≧ P ≧ 1.05 × Q
水素を充填する、請求項1〜4のいずれかに記載の圧力容器。   The pressure vessel according to any one of claims 1 to 4, which is filled with hydrogen.
JP2004082287A 2004-03-22 2004-03-22 Pressure vessel Pending JP2005265138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004082287A JP2005265138A (en) 2004-03-22 2004-03-22 Pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004082287A JP2005265138A (en) 2004-03-22 2004-03-22 Pressure vessel

Publications (1)

Publication Number Publication Date
JP2005265138A true JP2005265138A (en) 2005-09-29

Family

ID=35089906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004082287A Pending JP2005265138A (en) 2004-03-22 2004-03-22 Pressure vessel

Country Status (1)

Country Link
JP (1) JP2005265138A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100774612B1 (en) 2007-01-12 2007-11-12 한국항공우주연구원 A tank composed with complex material
JP2008057726A (en) * 2006-09-01 2008-03-13 Tosoh Corp Tank and its manufacturing method
WO2008099941A1 (en) * 2007-02-08 2008-08-21 Toyota Jidosha Kabushiki Kaisha Sealing material for high-pressure hydrogen container, and high-pressure hydrogen container
JP2011505523A (en) * 2007-11-13 2011-02-24 ソシエテ ド テクノロジー ミシュラン Pressurized fuel tank, method and apparatus for manufacturing such a tank
KR101221004B1 (en) 2011-01-19 2013-01-10 주식회사 일진유니스코 Nozzle-boss for high pressure vessel
JP2014084900A (en) * 2012-10-19 2014-05-12 Toyota Motor Corp Gas tank
JP2014238110A (en) * 2013-06-06 2014-12-18 八千代工業株式会社 Pressure vessel
CN104712758A (en) * 2013-12-13 2015-06-17 丰田自动车株式会社 Mouthpiece structure for pressure vessel
JP2015132307A (en) * 2014-01-10 2015-07-23 株式会社Fts Mouthpiece structure of pressure container
WO2015114953A1 (en) 2014-01-28 2015-08-06 八千代工業株式会社 Pressure container
JP2017129156A (en) * 2016-01-18 2017-07-27 株式会社Fts Pressure container
DE102011012705B4 (en) * 2010-03-10 2017-10-19 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Pressure vessel for storing a fluid and manufacturing process
JP2018519480A (en) * 2015-06-15 2018-07-19 アザー ラブ リミテッド ライアビリティ カンパニー System and method for a conformable pressure vessel
DE102010049838B4 (en) * 2009-11-04 2018-11-08 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Neck tube for a vessel and pressure vessel with such a neck tube
WO2020049751A1 (en) * 2018-09-05 2020-03-12 シャインスター株式会社 Gas container cap, and gas container with cap
US10821657B2 (en) 2015-12-02 2020-11-03 Other Lab, Llc Systems and methods for liner braiding and resin application
US10851925B2 (en) 2016-10-24 2020-12-01 Other Lab, Llc Fittings for compressed gas storage vessels
KR20230023401A (en) * 2021-08-10 2023-02-17 주식회사 신영 High pressure gas container

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057726A (en) * 2006-09-01 2008-03-13 Tosoh Corp Tank and its manufacturing method
KR100774612B1 (en) 2007-01-12 2007-11-12 한국항공우주연구원 A tank composed with complex material
WO2008099941A1 (en) * 2007-02-08 2008-08-21 Toyota Jidosha Kabushiki Kaisha Sealing material for high-pressure hydrogen container, and high-pressure hydrogen container
JP2008196527A (en) * 2007-02-08 2008-08-28 Toyota Motor Corp Sealing material for high-pressure hydrogen vessel, and high-pressure hydrogen vessel
JP4614978B2 (en) * 2007-02-08 2011-01-19 トヨタ自動車株式会社 Sealing material for high-pressure hydrogen container and high-pressure hydrogen container
US8794477B2 (en) 2007-02-08 2014-08-05 Toyota Jidosha Kabushiki Kaisha Sealing material for high-pressure hydrogen container, and high-pressure hydrogen container
JP2011505523A (en) * 2007-11-13 2011-02-24 ソシエテ ド テクノロジー ミシュラン Pressurized fuel tank, method and apparatus for manufacturing such a tank
DE102010049838B4 (en) * 2009-11-04 2018-11-08 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Neck tube for a vessel and pressure vessel with such a neck tube
DE102011012705B4 (en) * 2010-03-10 2017-10-19 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Pressure vessel for storing a fluid and manufacturing process
KR101221004B1 (en) 2011-01-19 2013-01-10 주식회사 일진유니스코 Nozzle-boss for high pressure vessel
JP2014084900A (en) * 2012-10-19 2014-05-12 Toyota Motor Corp Gas tank
JP2014238110A (en) * 2013-06-06 2014-12-18 八千代工業株式会社 Pressure vessel
US9546028B2 (en) 2013-12-13 2017-01-17 Fts Co., Ltd. Mouthpiece structure for pressure vessel
CN104712758A (en) * 2013-12-13 2015-06-17 丰田自动车株式会社 Mouthpiece structure for pressure vessel
JP2015132307A (en) * 2014-01-10 2015-07-23 株式会社Fts Mouthpiece structure of pressure container
US9920881B2 (en) 2014-01-28 2018-03-20 Yachiyo Industry Co., Ltd. Pressure container
WO2015114953A1 (en) 2014-01-28 2015-08-06 八千代工業株式会社 Pressure container
JP2018519480A (en) * 2015-06-15 2018-07-19 アザー ラブ リミテッド ライアビリティ カンパニー System and method for a conformable pressure vessel
US10821657B2 (en) 2015-12-02 2020-11-03 Other Lab, Llc Systems and methods for liner braiding and resin application
US11000988B2 (en) 2015-12-02 2021-05-11 Other Lab, Llc Systems and methods for liner braiding and resin application
JP2017129156A (en) * 2016-01-18 2017-07-27 株式会社Fts Pressure container
US10851925B2 (en) 2016-10-24 2020-12-01 Other Lab, Llc Fittings for compressed gas storage vessels
WO2020049751A1 (en) * 2018-09-05 2020-03-12 シャインスター株式会社 Gas container cap, and gas container with cap
KR20230023401A (en) * 2021-08-10 2023-02-17 주식회사 신영 High pressure gas container
KR102525444B1 (en) * 2021-08-10 2023-04-26 주식회사 신영 High pressure gas container

Similar Documents

Publication Publication Date Title
JP2005265138A (en) Pressure vessel
EP2748512B1 (en) Method of fabricating type 4 cylinders and arranging in transportation housings for transport of gaseous fluids
JP4715841B2 (en) High pressure tank seal structure
JP4392804B2 (en) Pressure vessel
US9683700B2 (en) Metallic liner pressure vessel comprising polar boss
KR102478330B1 (en) pressure vessel dome vent
KR20050039603A (en) High pressure container and method for manufacturing the same
JP2008101677A (en) High pressure gas vessel
CN109027675B (en) High-pressure composite container with sealing structure
US8602249B2 (en) Pressure vessel head with inverted neck
US20120325832A1 (en) Bonding structure of metal member and composite-material member
JPWO2020100800A1 (en) High pressure hydrogen container
CN108119748B (en) High-pressure composite container with sealing structure
CN111963887B (en) Plastic inner container of high-pressure composite container
US20110017743A1 (en) Sealable container linings and sealable containers
JP2005133847A (en) Pressure vessel
JP2005009591A (en) Mouthpiece structure of high-pressure pressure vessel
JP2017219189A (en) Molded body
JP2011017379A (en) Gas tank
JPH08219387A (en) Gas cylinder
JP2006097807A (en) Sealing structure
JP6032139B2 (en) Seal body and gas seal mechanism
JP5375296B2 (en) Hydrogen tank
CN110056761B (en) Manhole device and vacuum insulation low-temperature storage tank with same
JP2014222081A (en) High pressure gas container