JP2005264907A - Control valve for variable displacement swash plate type compressor - Google Patents

Control valve for variable displacement swash plate type compressor Download PDF

Info

Publication number
JP2005264907A
JP2005264907A JP2004082853A JP2004082853A JP2005264907A JP 2005264907 A JP2005264907 A JP 2005264907A JP 2004082853 A JP2004082853 A JP 2004082853A JP 2004082853 A JP2004082853 A JP 2004082853A JP 2005264907 A JP2005264907 A JP 2005264907A
Authority
JP
Japan
Prior art keywords
pressure receiving
receiving piece
rod
fluid force
swash plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004082853A
Other languages
Japanese (ja)
Inventor
Akira Shimizu
彰 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2004082853A priority Critical patent/JP2005264907A/en
Publication of JP2005264907A publication Critical patent/JP2005264907A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control valve for a variable displacement swash plate type compressor capable of performing feedback control of discharge displacement of the compressor with simple constitution. <P>SOLUTION: The control valve for the variable displacement swash plate type compressor used for an air conditioner for cooling and heating is provided with a pressure receiving piece disposed in refrigerant gas flowing in a refrigerant circuit; a solenoid valve; a fluid force transmission mechanism for transmitting fluid force of refrigerant gas applied to the pressure receiving piece, to a rod of the solenoid valve; an external information detecting means for detecting air-conditioning load, the traveling state of a vehicle, and the like; and a control means for controlling an electric power value supplied to the solenoid valve based on external information. The solenoid valve turns on/off introduction of compressor discharge gas into a crank chamber according to the magnitude relation between the fluid force of refrigerant gas flowing in the refrigerant circuit and transmitted to the rod from the pressure receiving piece, and electromagnetic force applied to the rod. The fluid force of refrigerant gas applied to the pressure receiving piece is bent at a right angle through the fluid force transmission mechanism and transmitted to the rod of the solenoid valve. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は冷暖房用空調装置に使用される可変容量斜板式圧縮機の制御弁に関するものである。   The present invention relates to a control valve for a variable capacity swash plate compressor used in an air conditioner for air conditioning.

可変容量斜板式圧縮機においては、クランク室圧力を調節することにより、吐出容量を制御している。冷暖房用空調装置に使用される可変容量斜板式圧縮機においては、例えば冷媒回路上の所定の2点間の差圧が、外部情報検知手段から提供される外部情報に基づいて決定された目標差圧に近づくように、クランク室圧力が自律的に調節されて、前記2点間の差圧がフィードバック制御され、ひいては吐出容量がフィードバック制御される。   In the variable capacity swash plate compressor, the discharge capacity is controlled by adjusting the crank chamber pressure. In a variable capacity swash plate compressor used in an air conditioner for air conditioning, for example, a target difference in which a differential pressure between two predetermined points on a refrigerant circuit is determined based on external information provided from external information detection means The crank chamber pressure is autonomously adjusted so as to approach the pressure, the differential pressure between the two points is feedback-controlled, and consequently the discharge capacity is feedback-controlled.

特許文献1は、クランク室圧力を自律的に調節する可変容量斜板式圧縮機の制御弁であって、外部情報検知手段から提供される外部情報に基づいて決定された冷媒回路上の所定の2点間の目標差圧に対応する電磁力により一の方向へ押圧されると共に、冷媒回路上の前記所定の2点間の差圧を受けて前記一の方向とは逆方向へ押圧される弁体を有する開度量可変の弁を介して、吐出ガスをクランク室へ導入することにより、クランク室圧力を自律的に調節して、前記2点間の差圧が前記目標差圧に近づくように、前記2点間の差圧をフィードバック制御し、ひいては吐出容量をフィードバック制御するように構成した制御弁を開示している。
特許文献1の制御弁においては、冷媒回路上の所定の2点間の差圧を安定してフィードバック制御するために、前記2点間に絞りを設けて前記2点間の差圧を大きくしている。
特開2001−107854
Patent Document 1 is a control valve of a variable displacement swash plate compressor that autonomously adjusts the crank chamber pressure, and is a predetermined 2 on the refrigerant circuit determined based on external information provided from external information detection means. A valve that is pressed in one direction by an electromagnetic force corresponding to a target differential pressure between points, and that is pressed in a direction opposite to the one direction by receiving the differential pressure between the two predetermined points on the refrigerant circuit. By introducing the discharge gas into the crank chamber through a variable opening amount valve having a body, the crank chamber pressure is autonomously adjusted so that the differential pressure between the two points approaches the target differential pressure. A control valve configured to feedback control the differential pressure between the two points, and thus to control the discharge capacity, is disclosed.
In the control valve of Patent Document 1, in order to stably feedback control the differential pressure between two predetermined points on the refrigerant circuit, a throttle is provided between the two points to increase the differential pressure between the two points. ing.
JP 2001-107854 A

特許文献1の制御弁には、絞りと、吐出ガスのクランク室への導入を切り入りする弁とが別個の機構なので、絞り前後の差圧を前記弁まで導く通路を設ける必要があり、構造が複雑になるという問題がある。
本発明は上記問題に鑑みてなされたものであり、簡単な構成で圧縮機の吐出容量をフィードバック制御できる、可変容量斜板式圧縮機の制御弁を提供することを目的とする。
In the control valve of Patent Document 1, since the throttle and the valve that cuts in and out of the discharge gas into the crank chamber are separate mechanisms, it is necessary to provide a passage for guiding the differential pressure before and after the throttle to the valve. There is a problem that becomes complicated.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a control valve for a variable displacement swash plate compressor that can feedback control the discharge capacity of the compressor with a simple configuration.

上記課題を解決するために、本発明においては、冷暖房用空調装置に使用される可変容量斜板式圧縮機の制御弁であって、冷媒回路を流れる冷媒ガス中に配設された受圧片と、電磁弁と、受圧片に印加される冷媒ガスの流体力を電磁弁のロッドに伝達する流体力伝達機構と、冷房負荷や車両走行状態等を検知する外部情報検知手段と、外部情報に基づいて電磁弁に供給する電力値を制御する制御手段とを備え、電磁弁は、受圧片からロッドに伝達される冷媒回路を流れる冷媒ガスの流体力とロッドに印加される電磁力との大小関係に応じて、圧縮機吐出ガスのクランク室への導入を切り入りし、受圧片に印加される冷媒ガスの流体力は流体力伝達機構を介して直角に曲げられて電磁弁のロッドに伝達されることを特徴とする可変容量斜板式圧縮機の制御弁を提供する。
本発明に係る制御弁においては、冷媒回路を流れる冷媒ガス中に配設された受圧片が絞りを形成すると共に、吐出ガスのクランク室への導入を切り入りする弁の一部をも形成するので、絞り前後の差圧を前記弁まで導く通路を設ける必要が無い。従って、本発明に係る制御弁は、簡単な構成で圧縮機の吐出容量をフィードバック制御できる。
本発明に係る制御弁においては、受圧片に印加される冷媒ガスの流体力は流体力伝達機構を介して直角に曲げられて電磁弁のロッドに伝達されるので、冷媒ガスの流体力が直線状に電磁弁のロッドに伝達される場合に比べて、制御弁の全長が短縮され、制御弁が小型化される。
In order to solve the above-mentioned problem, in the present invention, a control valve of a variable capacity swash plate compressor used in an air conditioner for heating and cooling, a pressure receiving piece disposed in the refrigerant gas flowing through the refrigerant circuit, Based on external information, an electromagnetic valve, a fluid force transmission mechanism that transmits a fluid force of refrigerant gas applied to the pressure receiving piece to the rod of the electromagnetic valve, an external information detection means that detects a cooling load, a vehicle running state, and the like Control means for controlling the power value supplied to the solenoid valve, and the solenoid valve has a magnitude relationship between the fluid force of the refrigerant gas flowing through the refrigerant circuit transmitted from the pressure receiving piece to the rod and the electromagnetic force applied to the rod. Accordingly, the introduction of the compressor discharge gas into the crank chamber is turned on and the fluid force of the refrigerant gas applied to the pressure receiving piece is bent at a right angle via the fluid force transmission mechanism and transmitted to the rod of the solenoid valve. Variable capacity swash plate pressure To provide a control valve of the machine.
In the control valve according to the present invention, the pressure receiving piece disposed in the refrigerant gas flowing through the refrigerant circuit forms a throttle and also forms a part of the valve that cuts the introduction of the discharge gas into the crank chamber. Therefore, there is no need to provide a passage for guiding the differential pressure before and after the throttle to the valve. Therefore, the control valve according to the present invention can feedback control the discharge capacity of the compressor with a simple configuration.
In the control valve according to the present invention, the fluid force of the refrigerant gas applied to the pressure receiving piece is bent at a right angle via the fluid force transmission mechanism and transmitted to the rod of the solenoid valve, so that the fluid force of the refrigerant gas is linear. As compared with the case where the control valve is transmitted to the rod of the electromagnetic valve, the overall length of the control valve is shortened and the control valve is downsized.

本発明の好ましい態様においては、流体力伝達機構は、一方の腕が受圧片に当接可能であり他方の腕が電磁弁のロッドに当接可能なL字形の梃子部材である。
本発明の好ましい態様においては、流体力伝達機構は、受圧片に取り付けられた第1ラックと、電磁弁のロッドに取り付けられた第2ラックと、第1ラックと第2ラックとに噛合する歯車とを有するラックピニオン機構である。
梃子部材やラックピニオン機構を介して、受圧片に印加される冷媒ガスの流体力を直角に曲げて電磁弁のロッドに伝達することができる。
In a preferred aspect of the present invention, the fluid force transmission mechanism is an L-shaped lever member in which one arm can abut against the pressure receiving piece and the other arm can abut against the rod of the electromagnetic valve.
In a preferred aspect of the present invention, the fluid force transmission mechanism includes a first rack attached to the pressure receiving piece, a second rack attached to the rod of the solenoid valve, and a gear meshing with the first rack and the second rack. And a rack and pinion mechanism.
The fluid force of the refrigerant gas applied to the pressure receiving piece can be bent at a right angle and transmitted to the rod of the electromagnetic valve via the lever member or the rack and pinion mechanism.

本発明の好ましい態様においては、受圧片は冷媒回路の漏斗状拡径部に配設されている。
受圧片を冷媒回路の漏斗状拡径部に配設することにより、冷媒回路を流れる冷媒ガスの流量変化に制御弁が過敏に反応し、制御性が悪化する事態の発生が防止される。
In the preferable aspect of this invention, the pressure receiving piece is arrange | positioned at the funnel-shaped enlarged diameter part of the refrigerant circuit.
By arranging the pressure receiving piece in the funnel-shaped enlarged portion of the refrigerant circuit, it is possible to prevent the control valve from reacting sensitively to the change in the flow rate of the refrigerant gas flowing through the refrigerant circuit, and the situation where the controllability deteriorates.

本発明の好ましい態様においては、可変容量斜板式圧縮機の制御弁は、ロッド長さ調整部材を備える。
ロッド長さ調整部材を配設することにより、制御弁の性能を高めることができる。また、組付時の組付精度向上のための作業性を高めることができる。
In a preferred aspect of the present invention, the control valve of the variable capacity swash plate compressor includes a rod length adjusting member.
By disposing the rod length adjusting member, the performance of the control valve can be enhanced. Moreover, the workability | operativity for the assembly | attachment precision improvement at the time of an assembly | attachment can be improved.

本発明に係る制御弁においては、冷媒回路を流れる冷媒ガス中に配設された受圧片が絞りを形成すると共に、吐出ガスのクランク室への導入を切り入りする弁の一部をも形成するので、絞り前後の差圧を前記弁まで導く通路を設ける必要が無い。従って、本発明に係る制御弁は、簡単な構成で圧縮機の吐出容量をフィードバック制御できる。
本発明に係る制御弁においては、受圧片に印加される冷媒ガスの流体力は流体力伝達機構を介して直角に曲げられて電磁弁のロッドに伝達されるので、前記冷媒ガス力が直線状に電磁弁のロッドに伝達される場合に比べて、制御弁の全長が短縮され、制御弁が小型化される。
In the control valve according to the present invention, the pressure receiving piece disposed in the refrigerant gas flowing through the refrigerant circuit forms a throttle and also forms a part of the valve that cuts the introduction of the discharge gas into the crank chamber. Therefore, there is no need to provide a passage for guiding the differential pressure before and after the throttle to the valve. Therefore, the control valve according to the present invention can feedback control the discharge capacity of the compressor with a simple configuration.
In the control valve according to the present invention, the fluid force of the refrigerant gas applied to the pressure receiving piece is bent at a right angle through the fluid force transmission mechanism and transmitted to the rod of the solenoid valve, so that the refrigerant gas force is linear. Compared with the case of being transmitted to the rod of the solenoid valve, the total length of the control valve is shortened, and the control valve is miniaturized.

本発明の実施例に係る可変容量斜板式圧縮機の制御弁を説明する。 A control valve of a variable capacity swash plate compressor according to an embodiment of the present invention will be described.

図1に示すように、可変容量斜板式圧縮機1と、凝縮器2と膨張弁3と蒸発器4とにより、車載の空調装置Aが構成されている。空調装置Aは、外気導入時と内気循環時とで空気通路を切り替えるダンパー5と、送風機6と、空調操作パネル7とを有している。
空調操作パネル7には、車両乗員により操作される空調装置AのON/OFFスイッチ、温度設定器等が搭載されている。蒸発器4の近傍には車室内空気温度を検出する温度センサーが配設されている。図示しない車両には、車速センサー、エンジン回転数センサー、スロットル開度センサー、等の車両走行状態を検知する各種センサーが搭載されている。ON/OFFスイッチ、温度設定器、温度センサー、車両走行状態を検知する各種センサーは、外部情報検知装置8を構成している。
As shown in FIG. 1, a variable capacity swash plate compressor 1, a condenser 2, an expansion valve 3, and an evaporator 4 constitute an in-vehicle air conditioner A. The air conditioner A includes a damper 5, a blower 6, and an air conditioning operation panel 7 that switch an air passage between the introduction of outside air and the circulation of inside air.
The air conditioning operation panel 7 is equipped with an ON / OFF switch for the air conditioner A operated by a vehicle occupant, a temperature setting device, and the like. In the vicinity of the evaporator 4, a temperature sensor for detecting the air temperature in the passenger compartment is disposed. A vehicle (not shown) is equipped with various sensors for detecting the vehicle running state, such as a vehicle speed sensor, an engine speed sensor, and a throttle opening sensor. The ON / OFF switch, temperature setter, temperature sensor, and various sensors that detect the vehicle running state constitute an external information detection device 8.

可変容量斜板式圧縮機1は、クラッチを介することなく図示しない車両エンジンに接続された図示しない主軸と、相対回転不能に且つ傾角可変に主軸に取り付けられた図示しない斜板と、シューを介して斜板に係合し斜板の回転に同期して直線往復運動する図示しないピストンと、ピストンが摺動可能に挿入されるシリンダボア1aと、吐出弁を介してシリンダボア1aに連通する吐出室1bと、主軸と斜板とを収容するクランク室1cと、吸入弁を介してシリンダボア1aに連通する吸入室1dとを備えている。クランク室1cと吸入室1dとは、オリフィス穴1eを介して連通している。 The variable capacity swash plate compressor 1 includes a main shaft (not shown) connected to a vehicle engine (not shown) without a clutch, a swash plate (not shown) attached to the main shaft so as not to rotate relative to the main shaft, and a shoe. A piston (not shown) that engages with the swash plate and linearly reciprocates in synchronization with the rotation of the swash plate, a cylinder bore 1a into which the piston is slidably inserted, and a discharge chamber 1b that communicates with the cylinder bore 1a through a discharge valve. A crank chamber 1c that accommodates the main shaft and the swash plate, and a suction chamber 1d that communicates with the cylinder bore 1a via a suction valve are provided. The crank chamber 1c and the suction chamber 1d communicate with each other through an orifice hole 1e.

可変容量斜板式圧縮機1の吐出室1bと、凝縮器2と、膨張弁3と、蒸発器4と、可変容量斜板式圧縮機1の吸入室1dとは、冷媒回路9により順次接続されている。   The discharge chamber 1b of the variable capacity swash plate compressor 1, the condenser 2, the expansion valve 3, the evaporator 4, and the suction chamber 1d of the variable capacity swash plate compressor 1 are sequentially connected by a refrigerant circuit 9. Yes.

可変容量斜板式圧縮機1の吐出容量を制御する制御弁10が配設されている。制御弁10は、弁本体11と、前述の外部情報検知装置8と、外部情報検知装置8から入力された外部情報に基づいて弁本体11の一部を形成する電磁弁の作動を制御する制御装置12と、電磁弁の駆動回路13とを備えている。制御弁の本体11は冷媒回路9の途上に配設されている。 A control valve 10 for controlling the discharge capacity of the variable capacity swash plate compressor 1 is provided. The control valve 10 controls the operation of the valve body 11, the aforementioned external information detection device 8, and the solenoid valve that forms a part of the valve body 11 based on the external information input from the external information detection device 8. The apparatus 12 and the drive circuit 13 of a solenoid valve are provided. The main body 11 of the control valve is disposed in the middle of the refrigerant circuit 9.

弁本体11の構成を詳述する。
図2に示すように、制御弁の弁本体11は、コイル11aと、固定鉄心11bと、可動鉄心11cと、可動鉄心11cに固定されたロッド11dと、可動鉄心11cを固定鉄心11bから遠ざかる方向へ付勢するバネ11eと、ロッド11dの長さ方向略中央部に形成された弁体11fと、弁体11fが当接可能な弁座11gとにより構成される電磁弁11hを備えている。コイル11aは図示しない導線を介して駆動回路13に接続されている。弁体11fが弁座11gに当接することにより、可変容量斜板式圧縮機1の吐出室1bとクランク室1cとの間の連通路11iが閉鎖され、弁体11fが弁座11gから離れることにより、可変容量斜板式圧縮機1の吐出室1bとクランク室1cとの間の連通路11iが開放される。
The configuration of the valve body 11 will be described in detail.
As shown in FIG. 2, the valve body 11 of the control valve includes a coil 11a, a fixed iron core 11b, a movable iron core 11c, a rod 11d fixed to the movable iron core 11c, and a direction in which the movable iron core 11c is moved away from the fixed iron core 11b. There is provided an electromagnetic valve 11h composed of a spring 11e urging the valve 11b, a valve body 11f formed at a substantially central portion in the length direction of the rod 11d, and a valve seat 11g with which the valve body 11f can come into contact. The coil 11a is connected to the drive circuit 13 through a conducting wire (not shown). When the valve body 11f abuts on the valve seat 11g, the communication passage 11i between the discharge chamber 1b and the crank chamber 1c of the variable capacity swash plate compressor 1 is closed, and the valve body 11f is separated from the valve seat 11g. The communication path 11i between the discharge chamber 1b and the crank chamber 1c of the variable capacity swash plate compressor 1 is opened.

制御弁の弁本体11は、冷媒回路9を流れる冷媒ガス中に配設された円板状の受圧片11jを備えている。受圧片11jは冷媒ガスの流れに直交して配設されている。受圧片11jは、冷媒回路9の、上流から下流へ向けて漏斗状に拡径する拡径部9aに配設されている。拡径部9aは電磁弁11hのロッド11dに直交している。受圧片11jの下流側端面から延びる柱状突起11j′が、冷媒回路9の囲壁から延びる支持腕11kに形成された貫通穴に摺動可能に挿通されている。受圧片11jは拡径部9a中の2点間に差圧を発生させる絞りを形成している。 The valve body 11 of the control valve includes a disk-shaped pressure receiving piece 11j disposed in the refrigerant gas flowing through the refrigerant circuit 9. The pressure receiving piece 11j is disposed orthogonal to the flow of the refrigerant gas. The pressure receiving piece 11j is disposed in a diameter expanding portion 9a of the refrigerant circuit 9 that expands in a funnel shape from upstream to downstream. The enlarged diameter portion 9a is orthogonal to the rod 11d of the electromagnetic valve 11h. A columnar protrusion 11j ′ extending from the downstream end face of the pressure receiving piece 11j is slidably inserted into a through hole formed in a support arm 11k extending from the surrounding wall of the refrigerant circuit 9. The pressure receiving piece 11j forms a throttle that generates a differential pressure between two points in the enlarged diameter portion 9a.

受圧片11jの下流に、L字形の梃子部材11mが揺動可能に配設されている。梃子部材11mの一方の腕は柱状突起11j′の先端に当接可能である。ロッド11dの先端に、ロッド長さ調整用のナット11nが螺着している。梃子部材11mの他方の腕は、ナット11nを介してロッド11dの先端に当接可能である。 An L-shaped lever member 11m is swingably disposed downstream of the pressure receiving piece 11j. One arm of the lever member 11m can come into contact with the tip of the columnar protrusion 11j '. A nut 11n for adjusting the rod length is screwed to the tip of the rod 11d. The other arm of the lever member 11m can come into contact with the tip of the rod 11d through the nut 11n.

上記構成を有する本実施例に係る制御弁10の作動を説明する。
可変容量斜板式圧縮機1の図示しない主軸は、図示しない車両エンジンに駆動されて常時回転している。
空調装置Aの作動時には、制御装置12は、外部情報検知装置8から入力される外部情報に基づいて、可変容量斜板式圧縮機1の目標吐出容量Q、ひいては冷媒回路9を流れる冷媒ガスである可変容量斜板式圧縮機1の吐出ガスの目標流量Qを決定し、当該目標流量Qに見合う電磁弁供給電力値を決定する。制御装置12は、駆動回路13を介して電磁弁11hのコイル11aへの供給電力をデューティー制御する。磁化した可動鉄心11cが磁化した固定鉄心11bから電磁力を受け、バネ11eの付勢力に抗して、固定鉄心11bに接近する方向へ移動する。弁体11fが弁座11gに当接し、吐出室1bとクランク室1cとの間の連通路11iが閉鎖される。
圧縮機吐出ガスのクランク室1cへの流入が阻止される。クランク室1c内のガスはオリフィス穴1eを介して吸入室1dへ流出するので、クランク室1cの内圧が低下し、図示しない斜板の傾角が増加し、可変容量斜板式圧縮機1の吐出容量が増加し、冷媒回路9を流れる冷媒ガスの流量が増加して、受圧片11jの一次側圧力P1と二次側圧力P2との差圧が増加し、ひいては受圧片11jに印加される冷媒ガスの流体力が増加する。
The operation of the control valve 10 according to this embodiment having the above configuration will be described.
A main shaft (not shown) of the variable capacity swash plate compressor 1 is driven by a vehicle engine (not shown) and is always rotating.
During the operation of the air conditioner A, the control device 12 is the target discharge capacity Q of the variable capacity swash plate compressor 1 and thus the refrigerant gas flowing through the refrigerant circuit 9 based on the external information input from the external information detection device 8. A target flow rate Q of the discharge gas of the variable capacity swash plate compressor 1 is determined, and an electromagnetic valve supply power value corresponding to the target flow rate Q is determined. The control device 12 duty-controls the power supplied to the coil 11a of the electromagnetic valve 11h via the drive circuit 13. The magnetized movable iron core 11c receives an electromagnetic force from the magnetized fixed iron core 11b and moves in a direction approaching the fixed iron core 11b against the biasing force of the spring 11e. The valve body 11f comes into contact with the valve seat 11g, and the communication path 11i between the discharge chamber 1b and the crank chamber 1c is closed.
The compressor discharge gas is prevented from flowing into the crank chamber 1c. Since the gas in the crank chamber 1c flows out to the suction chamber 1d through the orifice hole 1e, the internal pressure of the crank chamber 1c decreases, the inclination angle of a swash plate (not shown) increases, and the discharge capacity of the variable displacement swash plate compressor 1 Increases, the flow rate of the refrigerant gas flowing through the refrigerant circuit 9 increases, the differential pressure between the primary pressure P1 and the secondary pressure P2 of the pressure receiving piece 11j increases, and consequently the refrigerant gas applied to the pressure receiving piece 11j. The fluid force increases.

冷媒回路9を冷媒ガスが流れると、冷媒ガス流から流体力を受けた受圧片11jは冷媒ガス流に関して下流側へ移動し、柱状突起11j′が梃子部材11mの一方の腕に当接し、梃子部材11mが揺動し、梃子部材11mの他方の腕がナット11nに当接する。この結果、受圧片11jは梃子部材11mとナット11nとを介して、ロッド11dの先端に当接する。受圧片11jに印加される冷媒ガスの流体力は梃子部材11mを介して直角に曲げられて電磁弁のロッド11dに伝達される。弁体11fが弁座11gに当接した状態で、受圧片11jが冷媒ガス流に関して下流側へ移動して梃子部材11mに当接し、梃子部材が揺動してロッド11dの先端に当接した時点での受圧片11jの位置を、以下の説明において受圧片11jの初期位置と呼ぶ。 When the refrigerant gas flows through the refrigerant circuit 9, the pressure receiving piece 11j that receives the fluid force from the refrigerant gas flow moves to the downstream side with respect to the refrigerant gas flow, and the columnar protrusion 11j 'comes into contact with one arm of the lever member 11m. The member 11m swings, and the other arm of the lever member 11m comes into contact with the nut 11n. As a result, the pressure receiving piece 11j contacts the tip of the rod 11d via the lever member 11m and the nut 11n. The fluid force of the refrigerant gas applied to the pressure receiving piece 11j is bent at a right angle through the lever member 11m and transmitted to the rod 11d of the electromagnetic valve. With the valve body 11f in contact with the valve seat 11g, the pressure receiving piece 11j moves downstream with respect to the refrigerant gas flow and contacts the lever member 11m, and the lever member swings and contacts the tip of the rod 11d. The position of the pressure receiving piece 11j at the time is referred to as an initial position of the pressure receiving piece 11j in the following description.

受圧片11jから梃子部材11mとナット11nとを介してロッド11dに伝達される冷媒ガスの流体力が、前記目標流量Qに見合う供給電力値の下で、固定鉄心11bから可動鉄心11cを介してロッド11dに印加される電磁力よりも小さい間は、弁体11fが弁座11gに当接した状態が維持され、電磁弁11hが連通路11iを閉鎖した状態が維持される。この結果、斜板の傾角は増加し、可変容量斜板式圧縮機1の吐出容量は増加し、冷媒回路9を流れる冷媒ガスの流量は増加する。受圧片11jは初期位置に停止している。 The fluid force of the refrigerant gas that is transmitted from the pressure receiving piece 11j to the rod 11d through the lever member 11m and the nut 11n is supplied from the fixed core 11b through the movable core 11c under the supply power value that corresponds to the target flow rate Q. As long as it is smaller than the electromagnetic force applied to the rod 11d, the state in which the valve body 11f is in contact with the valve seat 11g is maintained, and the state in which the electromagnetic valve 11h closes the communication path 11i is maintained. As a result, the inclination angle of the swash plate increases, the discharge capacity of the variable capacity swash plate compressor 1 increases, and the flow rate of the refrigerant gas flowing through the refrigerant circuit 9 increases. The pressure receiving piece 11j is stopped at the initial position.

冷媒回路9を流れる冷媒ガスの流量が増加し、受圧片11jから梃子部材11mとナット11nとを介してロッド11dに伝達される冷媒ガスの流体力が、前記目標流量Qに見合う供給電力値の下で、固定鉄心11bから可動鉄心11cを介してロッド11dに印加される電磁力を超えると、前記流体力を受けた受圧片11jが初期位置から冷媒ガス流に関して下流側へ移動する。柱状突起11j′が梃子部材11mを揺動させ、梃子部材11mがロッド11dを押し、ロッド11dが移動して弁体11fが弁座11gから離れる。吐出室1bとクランク室1cとの間の連通路11iが開放される。
圧縮機吐出ガスがクランク室1cへ流入し、クランク室1cの内圧が上昇し、図示しない斜板の傾角が減少し、可変容量斜板式圧縮機1の吐出容量が減少し、冷媒回路9を流れる冷媒ガスの流量が減少して、受圧片11jの一次側圧力P1と二次側圧力P2との差圧が減少し、ひいては受圧片11jに印加される冷媒ガスの流体力が減少する。
The flow rate of the refrigerant gas flowing through the refrigerant circuit 9 increases, and the fluid force of the refrigerant gas transmitted from the pressure receiving piece 11j to the rod 11d through the lever member 11m and the nut 11n has a supply power value corresponding to the target flow rate Q. When the electromagnetic force applied to the rod 11d from the fixed iron core 11b through the movable iron core 11c is exceeded, the pressure receiving piece 11j that receives the fluid force moves downstream from the initial position with respect to the refrigerant gas flow. The columnar protrusion 11j ′ swings the lever member 11m, the lever member 11m pushes the rod 11d, the rod 11d moves, and the valve body 11f moves away from the valve seat 11g. The communication path 11i between the discharge chamber 1b and the crank chamber 1c is opened.
The compressor discharge gas flows into the crank chamber 1c, the internal pressure of the crank chamber 1c increases, the inclination angle of a swash plate (not shown) decreases, the discharge capacity of the variable capacity swash plate compressor 1 decreases, and flows through the refrigerant circuit 9. As the flow rate of the refrigerant gas decreases, the differential pressure between the primary side pressure P1 and the secondary side pressure P2 of the pressure receiving piece 11j decreases, and as a result, the fluid force of the refrigerant gas applied to the pressure receiving piece 11j decreases.

受圧片11jから梃子部材11mとナット11nとを介してロッド11dに印さされる冷媒ガスの流体力が、前記目標流量Qに見合う供給電力値の下で、固定鉄心11bから可動鉄心11cを介してロッド11dに印加される電磁力よりも小さくなると、ロッド11dが移動して弁体11fが弁座11gに当接し、吐出室1bとクランク室1cとの間の連通路11iが閉鎖される。
圧縮機吐出ガスのクランク室1cへの流入が阻止され、クランク室1c内のガスがオリフィス穴1eを介して吸入室1dへ流出するのに伴って、クランク室1cの内圧が低下し、図示しない斜板の傾角が増加し、可変容量斜板式圧縮機1の吐出容量が増加し、冷媒回路9を流れる冷媒ガスの流量が増加して、受圧片11jの一次側圧力P1と二次側圧力P2との差圧が増加し、ひいては受圧片11jに印加される冷媒ガスの流体力が増加する。
The fluid force of the refrigerant gas marked on the rod 11d through the lever member 11m and the nut 11n from the pressure receiving piece 11j under the supply power value corresponding to the target flow rate Q from the fixed iron core 11b through the movable iron core 11c. When it becomes smaller than the electromagnetic force applied to the rod 11d, the rod 11d moves, the valve body 11f contacts the valve seat 11g, and the communication path 11i between the discharge chamber 1b and the crank chamber 1c is closed.
As the compressor discharge gas is prevented from flowing into the crank chamber 1c and the gas in the crank chamber 1c flows out into the suction chamber 1d through the orifice hole 1e, the internal pressure of the crank chamber 1c decreases, not shown. The inclination angle of the swash plate increases, the discharge capacity of the variable capacity swash plate compressor 1 increases, the flow rate of the refrigerant gas flowing through the refrigerant circuit 9 increases, and the primary pressure P1 and the secondary pressure P2 of the pressure receiving piece 11j. And the fluid force of the refrigerant gas applied to the pressure receiving piece 11j increases.

弁本体11による連通路11iの開閉が自律的に繰り返され、クランク室1cへの圧縮機吐出ガスの導入と導入停止とが自律的に繰り返されてクランク室1cの内圧が自律的に調節され、受圧片11jを通過する圧縮機吐出ガスの流量が目標流量Qに近づくようにフィードバック制御され、ひいては可変容量斜板式圧縮機1の吐出容量が目標値Qに近づくようにフィードバック制御される。 Opening and closing of the communication passage 11i by the valve body 11 is autonomously repeated, and introduction and stoppage of the compressor discharge gas into the crank chamber 1c are autonomously repeated to adjust the internal pressure of the crank chamber 1c autonomously, Feedback control is performed so that the flow rate of the compressor discharge gas that passes through the pressure receiving piece 11j approaches the target flow rate Q, and consequently feedback control is performed so that the discharge capacity of the variable displacement swash plate compressor 1 approaches the target value Q.

空調装置AのON/OFFスイッチがOFFされて、空調装置Aが停止すると、制御装置12は、駆動回路13を介してコイル11aへの電力供給を停止する。
固定鉄心11bから可動鉄心11cへの電磁力の印加が停止し、バネ11eの付勢力を受けて可動鉄心11cは固定鉄管11bから離れる方向へ移動し、弁体11fは弁座11gから離れる。この結果、連通路11iが開放され、圧縮機吐出ガスが連通路11iを介してクランク室1cへ流入し、クランク室1cの内圧が上昇して斜板の傾角が減少し、可変容量斜板式圧縮機1の吐出容量は減少して最小値になる。この結果、車両エンジンが生み出すエネルギーの浪費が抑制される。
制御弁10を通ってクランク室1cへ流入した吐出ガスは、オリフィス穴1eを介して吸入室1dへ流入し、図1に太線二重矢印で示すように、吸入室1dから稼動を続ける可変容量斜板式圧縮機1のシリンダボア1aへ吸い込まれ、シリンダボア1aから吐出室1bへ吐出し、制御弁10へ還流する。
When the ON / OFF switch of the air conditioner A is turned OFF and the air conditioner A is stopped, the control device 12 stops the power supply to the coil 11 a via the drive circuit 13.
The application of electromagnetic force from the fixed iron core 11b to the movable iron core 11c stops, the movable iron core 11c moves in a direction away from the fixed iron pipe 11b under the urging force of the spring 11e, and the valve body 11f moves away from the valve seat 11g. As a result, the communication passage 11i is opened, and the compressor discharge gas flows into the crank chamber 1c via the communication passage 11i, the internal pressure of the crank chamber 1c increases, the inclination angle of the swash plate decreases, and the variable displacement swash plate compression The discharge capacity of the machine 1 decreases to a minimum value. As a result, waste of energy generated by the vehicle engine is suppressed.
The discharge gas that has flowed into the crank chamber 1c through the control valve 10 flows into the suction chamber 1d through the orifice hole 1e and continues to operate from the suction chamber 1d as indicated by a thick double arrow in FIG. The air is sucked into the cylinder bore 1 a of the swash plate compressor 1, discharged from the cylinder bore 1 a to the discharge chamber 1 b, and returned to the control valve 10.

制御弁10においては、冷媒回路9を流れる冷媒ガス中に配設された受圧片11jが絞りを形成すると共に、圧縮機吐出ガスのクランク室1cへの導入を切り入りする弁本体11の一部をも形成するので、絞り前後の差圧を弁本体11まで導く通路を設ける必要が無い。従って、制御弁10は、簡単な構成で圧縮機1の吐出容量をフィードバック制御できる。
制御弁10においては、受圧片11jに印加される冷媒ガスの流体力は梃子部材11mを介して直角に曲げられて電磁弁のロッド11dに伝達されるので、前記流体力が直線状に電磁弁のロッド11dに伝達される場合に比べて、制御弁10の全長が短縮され、制御弁10が小型化される。
In the control valve 10, the pressure receiving piece 11 j disposed in the refrigerant gas flowing through the refrigerant circuit 9 forms a throttle, and a part of the valve body 11 that cuts in the introduction of the compressor discharge gas into the crank chamber 1 c. Therefore, there is no need to provide a passage for guiding the differential pressure before and after the throttle to the valve body 11. Therefore, the control valve 10 can feedback control the discharge capacity of the compressor 1 with a simple configuration.
In the control valve 10, the fluid force of the refrigerant gas applied to the pressure receiving piece 11j is bent at a right angle through the lever member 11m and transmitted to the rod 11d of the solenoid valve, so that the fluid force is linearly changed to the solenoid valve. The total length of the control valve 10 is shortened and the control valve 10 is downsized as compared with the case where the control valve 10 is transmitted to the rod 11d.

制御弁10においては、受圧片11jを冷媒回路の漏斗状拡径部9aに配設することにより、冷媒回路9を流れる冷媒ガスの流量変化に弁本体11が過敏に反応するのを抑制している。
受圧片11jは、初期位置から下流側へ移動を開始した後は、印加される流体力と前記電磁力との大小関係に応じて、下流側へ或いは上流側へ移動する。冷媒ガス流量が増加して受圧片11jが下流側へ移動すると、冷媒回路の漏斗状拡径部9a囲壁と受圧片11jとの間の隙間Sが広がり、受圧片11jが形成する絞りの圧力損失が減少する。この結果、受圧片11jに印加される流体力の増加が抑制される。冷媒ガス流量が減少して受圧片11jが上流側へ移動すると、冷媒回路の漏斗状拡径部9a囲壁と受圧片11jとの間の隙間Sが狭まり、受圧片11jが形成する絞りの圧力損失が増加する。この結果、受圧片11jに印加される流体力の減少が抑制される。冷媒回路9内の冷媒流量の増減により惹起される受圧片11jに印加される流体力の増減が抑制されることにより、弁体11fが前記冷媒流量の増減に過敏に反応して弁座11gとの当接離隔を繰り返えし、弁本体11ひいては制御弁10の制御性が悪化する事態の発生が防止される。
In the control valve 10, by disposing the pressure receiving piece 11j in the funnel-shaped enlarged portion 9a of the refrigerant circuit, it is possible to suppress the valve body 11 from reacting sensitively to changes in the flow rate of the refrigerant gas flowing through the refrigerant circuit 9. Yes.
After the pressure receiving piece 11j starts moving from the initial position to the downstream side, the pressure receiving piece 11j moves to the downstream side or the upstream side according to the magnitude relationship between the applied fluid force and the electromagnetic force. When the flow rate of the refrigerant gas increases and the pressure receiving piece 11j moves to the downstream side, the clearance S between the surrounding wall of the funnel-shaped enlarged diameter portion 9a of the refrigerant circuit and the pressure receiving piece 11j widens, and the pressure loss of the throttle formed by the pressure receiving piece 11j. Decrease. As a result, an increase in the fluid force applied to the pressure receiving piece 11j is suppressed. When the refrigerant gas flow rate decreases and the pressure receiving piece 11j moves to the upstream side, the gap S between the surrounding wall of the funnel-shaped enlarged diameter portion 9a of the refrigerant circuit and the pressure receiving piece 11j is narrowed, and the pressure loss of the throttle formed by the pressure receiving piece 11j is reduced. Will increase. As a result, a decrease in fluid force applied to the pressure receiving piece 11j is suppressed. By suppressing the increase or decrease of the fluid force applied to the pressure receiving piece 11j caused by the increase or decrease of the refrigerant flow rate in the refrigerant circuit 9, the valve body 11f reacts to the increase or decrease of the refrigerant flow rate and the valve seat 11g. Is repeated, and the occurrence of a situation in which the controllability of the valve body 11 and thus the control valve 10 deteriorates is prevented.

冷媒ガス流量が目標流量Qに達した時に、受圧片11jに印加される流体力が、電磁弁のロッド11dに印加される目標流量Qに見合う電磁力と等しくなる必要がある。受圧片11jに印加される流体力は、冷媒ガスが受圧片11jと冷媒回路の漏斗状拡径部9a囲壁との間の隙間Sを流れる際の圧力損失により惹起されるので、初期位置に在る受圧片11jと冷媒回路の漏斗状拡径部9a囲壁との間の隙間Sを正確に管理する必要がある。制御弁10においては、ナット11nの螺合量を調節してナット11nを含むロッド11dの長さを調整することにより、初期位置にある受圧片11jと冷媒回路の漏斗状拡径部9a囲壁との間の隙間Sを正確に管理し、ひいては制御弁10の性能を高めている。受圧片11jと冷媒回路の漏斗状拡径部9a囲壁との間の隙間Sを正確に管理しつつ、制御弁10の諸部材を組み付けるために、組付精度の向上を図る必要があるが、組付精度向上のための作業の作業性が、ナット11nの配設により、高められている。 When the refrigerant gas flow rate reaches the target flow rate Q, the fluid force applied to the pressure receiving piece 11j needs to be equal to the electromagnetic force commensurate with the target flow rate Q applied to the rod 11d of the solenoid valve. The fluid force applied to the pressure receiving piece 11j is caused by a pressure loss when the refrigerant gas flows through the gap S between the pressure receiving piece 11j and the funnel-shaped enlarged diameter portion 9a of the refrigerant circuit, so It is necessary to accurately manage the clearance S between the pressure receiving piece 11j and the surrounding wall of the funnel-shaped enlarged portion 9a of the refrigerant circuit. In the control valve 10, by adjusting the screwing amount of the nut 11n to adjust the length of the rod 11d including the nut 11n, the pressure receiving piece 11j in the initial position and the funnel-shaped enlarged portion 9a surrounding wall of the refrigerant circuit The gap S between the two is accurately managed, and as a result, the performance of the control valve 10 is enhanced. In order to assemble the members of the control valve 10 while accurately managing the gap S between the pressure receiving piece 11j and the funnel-shaped enlarged portion 9a of the refrigerant circuit, it is necessary to improve the assembling accuracy. The workability for improving the assembly accuracy is enhanced by the arrangement of the nut 11n.

梃子部材11mを介して受圧片11jをロッド11dに作動係合させるのに代えて、図3に示すように、受圧片11jの柱状突起11j′に固定されたラック11pと、ラック11pに噛合する歯車11qと、ラック11pに直交して配設されてロッド11dの先端に圧入され、歯車11qに噛合するラック11rとで構成されるラックピニオン機構11sを介して、受圧片11jをロッド11dに作動係合させると共に、ラック11rを含むロッド11dの長さを調整するシム11tを前記圧入部に介挿しても良い。
受圧片11jに印加される流体力が、ラックピニオン機構11sを介して直角に曲げられて電磁弁のロッド11dに伝達されるので、前記流体力が直線状に電磁弁のロッド11dに伝達される場合に比べて、制御弁10の全長が短縮され、制御弁10が小型化される。
Instead of operatively engaging the pressure receiving piece 11j with the rod 11d via the lever member 11m, as shown in FIG. 3, a rack 11p fixed to the columnar protrusion 11j 'of the pressure receiving piece 11j meshes with the rack 11p. The pressure receiving piece 11j is actuated on the rod 11d via a rack and pinion mechanism 11s composed of a gear 11q and a rack 11r which is disposed perpendicular to the rack 11p and press-fitted into the tip of the rod 11d and meshes with the gear 11q. A shim 11t that engages and adjusts the length of the rod 11d including the rack 11r may be inserted into the press-fit portion.
The fluid force applied to the pressure receiving piece 11j is bent at a right angle via the rack and pinion mechanism 11s and transmitted to the rod 11d of the solenoid valve, so that the fluid force is transmitted linearly to the rod 11d of the solenoid valve. Compared to the case, the overall length of the control valve 10 is shortened, and the control valve 10 is downsized.

シム11tの厚みを調整して、ラック11rを含むロッド11dの長さを微調整し、ラック11rと歯車11qとの噛合状態を微調整することにより、弁体11fが弁座11gに当接して弁本体11が連通路11iを閉じた状態での、受圧片11jと冷媒回路の漏斗状拡径部9a囲壁との間の隙間Sが正確に管理される。 By adjusting the thickness of the shim 11t, finely adjusting the length of the rod 11d including the rack 11r, and finely adjusting the meshing state of the rack 11r and the gear 11q, the valve body 11f comes into contact with the valve seat 11g. The clearance S between the pressure receiving piece 11j and the surrounding wall of the funnel-shaped enlarged portion 9a of the refrigerant circuit in a state where the valve body 11 closes the communication passage 11i is accurately managed.

本発明は、冷暖房用空調装置に使用される可変容量斜板式圧縮機の制御弁に広く利用可能である。 The present invention can be widely used as a control valve for a variable capacity swash plate compressor used in an air conditioner for air conditioning.

本発明の実施例に係る制御弁を備える可変容量斜板式圧縮機のブロック図と、当該圧縮機を備える車載空調装置のブロック図である。It is a block diagram of a variable capacity swash plate type compressor provided with a control valve concerning an example of the present invention, and a block diagram of a vehicle-mounted air conditioner provided with the compressor concerned. 本発明の第1実施例に係る制御弁の断面図である。It is sectional drawing of the control valve which concerns on 1st Example of this invention. 本発明の第2実施例に係る制御弁の断面図である。It is sectional drawing of the control valve which concerns on 2nd Example of this invention.

符号の説明Explanation of symbols

A 車載空調装置
1 可変容量斜板式圧縮機
2 凝縮器
3 膨張弁
4 蒸発機
8 外部情報検知装置
9 冷媒回路
9a 漏斗状拡径部
10 制御弁
11 弁本体
11h 電磁弁
11j 受圧片
11m 梃子部材
11n ナット
11s ラックピニオン機構
12 制御装置
13 駆動回路
A In-vehicle air conditioner 1 Variable capacity swash plate compressor 2 Condenser 3 Expansion valve 4 Evaporator 8 External information detection device 9 Refrigerant circuit 9a Funnel-shaped enlarged portion 10 Control valve 11 Valve body 11h Electromagnetic valve 11j Pressure receiving piece 11m Insulator member 11n Nut 11s Rack and pinion mechanism 12 Controller 13 Drive circuit

Claims (5)

冷暖房用空調装置に使用される可変容量斜板式圧縮機の制御弁であって、冷媒回路を流れる冷媒ガス中に配設された受圧片と、電磁弁と、受圧片に印加される冷媒ガスの流体力を電磁弁のロッドに伝達する流体力伝達機構と、冷房負荷や車両走行状態等を検知する外部情報検知手段と、外部情報に基づいて電磁弁に供給する電力値を制御する制御手段とを備え、電磁弁は、受圧片からロッドに伝達される冷媒回路を流れる冷媒ガスの流体力とロッドに印加される電磁力との大小関係に応じて、圧縮機吐出ガスのクランク室への導入を切り入りし、受圧片に印加される冷媒ガスの流体力は流体力伝達機構を介して直角に曲げられて電磁弁のロッドに伝達されることを特徴とする可変容量斜板式圧縮機の制御弁。 A control valve for a variable capacity swash plate compressor used in an air conditioner for heating and cooling, comprising a pressure receiving piece disposed in the refrigerant gas flowing through the refrigerant circuit, an electromagnetic valve, and a refrigerant gas applied to the pressure receiving piece. A fluid force transmission mechanism for transmitting a fluid force to the rod of the solenoid valve; an external information detection means for detecting a cooling load, a vehicle running state, etc .; and a control means for controlling a power value supplied to the solenoid valve based on the external information; The solenoid valve is configured to introduce the compressor discharge gas into the crank chamber according to the magnitude relationship between the fluid force of the refrigerant gas flowing through the refrigerant circuit transmitted from the pressure receiving piece to the rod and the electromagnetic force applied to the rod. And the fluid force of the refrigerant gas applied to the pressure receiving piece is bent at a right angle through the fluid force transmission mechanism and transmitted to the rod of the solenoid valve. valve. 流体力伝達機構は、一方の腕が受圧片に当接可能であり他方の腕が電磁弁のロッドに当接可能なL字形の梃子部材であることを特徴とする請求項1に記載の可変容量斜板式圧縮機の制御弁。 2. The variable force transmission mechanism according to claim 1, wherein the fluid force transmission mechanism is an L-shaped lever member in which one arm can abut against the pressure receiving piece and the other arm can abut against the rod of the electromagnetic valve. Control valve for capacity swash plate compressor. 流体力伝達機構は、受圧片に取り付けられた第1ラックと、電磁弁のロッドに取り付けられた第2ラックと、第1ラックと第2ラックとに噛合する歯車とを有するラックピニオン機構であることを特徴とする請求項1に記載の可変容量斜板式圧縮機の制御弁。 The fluid force transmission mechanism is a rack and pinion mechanism having a first rack attached to the pressure receiving piece, a second rack attached to the rod of the solenoid valve, and a gear meshing with the first rack and the second rack. The control valve for a variable capacity swash plate compressor according to claim 1. 受圧片は冷媒回路の漏斗状拡径部に配設されていることを特徴とする請求項1乃至3の何れか1項に記載の可変容量斜板式圧縮機の制御弁。 The control valve for a variable capacity swash plate compressor according to any one of claims 1 to 3, wherein the pressure receiving piece is disposed in a funnel-shaped enlarged portion of the refrigerant circuit. ロッド長さ調整部材を備えることを特徴とする請求項1乃至4の何れか1項に記載の可変容量斜板式圧縮機の制御弁。 The control valve for a variable capacity swash plate compressor according to any one of claims 1 to 4, further comprising a rod length adjusting member.
JP2004082853A 2004-03-22 2004-03-22 Control valve for variable displacement swash plate type compressor Pending JP2005264907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004082853A JP2005264907A (en) 2004-03-22 2004-03-22 Control valve for variable displacement swash plate type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004082853A JP2005264907A (en) 2004-03-22 2004-03-22 Control valve for variable displacement swash plate type compressor

Publications (1)

Publication Number Publication Date
JP2005264907A true JP2005264907A (en) 2005-09-29

Family

ID=35089718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004082853A Pending JP2005264907A (en) 2004-03-22 2004-03-22 Control valve for variable displacement swash plate type compressor

Country Status (1)

Country Link
JP (1) JP2005264907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100993771B1 (en) * 2008-10-09 2010-11-12 주식회사 두원전자 Valve assembly of variable displacement compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100993771B1 (en) * 2008-10-09 2010-11-12 주식회사 두원전자 Valve assembly of variable displacement compressor

Similar Documents

Publication Publication Date Title
US8251673B2 (en) Displacement control valve of a variable displacement compressor
EP1936192A2 (en) Electromagnetic displacement control valve in clutchless type variable displacement compressor
JP2012047213A (en) Motor-operated valve
EP1643124A2 (en) Displacement control mechanism for variable displacement compressor
JP2005249380A (en) Expansion valve and its control method
JP2012122609A (en) Oil pressure regulation valve
JP2005273548A (en) Control valve for variable displacement compressor
JP2017089832A (en) solenoid valve
JP2009063179A (en) Drive torque arithmetic unit for compressor and capacity control system of variable displacement compressor
JP2006242413A (en) Constant flow rate expansion valve
KR20170093349A (en) Electric control valve of variable displacement compressor
JP2004034943A (en) Control method for refrigeration cycle
KR20010106179A (en) Air conditioner
JP4118181B2 (en) Control valve for variable displacement swash plate compressor
JP2007263097A (en) Flow detection device in variable displacement compressor
JP3581598B2 (en) Capacity control device for variable capacity compressor
JP2004175290A (en) Control method of refrigeration cycle
JP2005264907A (en) Control valve for variable displacement swash plate type compressor
JP4616103B2 (en) Variable displacement compressor and control method of variable displacement compressor
KR101815634B1 (en) Electric control valve of variable displacement compressor
JP2004053180A (en) Air conditioner with usage of variable displacement compressor
CN101809288A (en) Displacement control system for variable displacement compressor
JP5519199B2 (en) Variable capacity swash plate compressor and air conditioning system using the same
JP2006070902A (en) Variable displacement type compressor
JP4778554B2 (en) Refrigerant compressor and control valve for refrigerant compressor