JP2005264284A - Composite fine particle, manufacturing method therefor, and film using the particle - Google Patents

Composite fine particle, manufacturing method therefor, and film using the particle Download PDF

Info

Publication number
JP2005264284A
JP2005264284A JP2004082161A JP2004082161A JP2005264284A JP 2005264284 A JP2005264284 A JP 2005264284A JP 2004082161 A JP2004082161 A JP 2004082161A JP 2004082161 A JP2004082161 A JP 2004082161A JP 2005264284 A JP2005264284 A JP 2005264284A
Authority
JP
Japan
Prior art keywords
fine particles
metal
particles
coupling agent
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004082161A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hirai
博幸 平井
Sanae Uchida
早苗 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004082161A priority Critical patent/JP2005264284A/en
Publication of JP2005264284A publication Critical patent/JP2005264284A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite fine particle having high transparency with the use of a semiconductor or an insulator, and to provide a manufacturing method therefor. <P>SOLUTION: The composite fine particle comprises a fine particle of the semiconductor or the insulator with an average diameter of 2 to 100 nm, on the surface of which metallic superfine particles with an average diameter of 1 to 20 nm are combined through at least one coupling agent or a hydrolyzate. The method for manufacturing the composite fine particle comprises the steps of: adding at least one coupling agent to a dispersion containing the fine particles of the semiconductor or the insulator with an average diameter of 2 to 100 nm to react it with the fine particles of the semiconductor or the insulator; directly adding the metallic ultrafine particles, or adding a metal salt and a reducing agent to reduce the salt; and thereby combining the metallic superfine particles with the average diameter of 1 to 20 nm on the surface of the fine particles of the semiconductor or the insulator through the coupling agent or the hydrolyzate thereof. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、複合微粒子およびその製造方法に関し、詳しくは基板上に塗布したときに高い透明性を有する導電性微粒子およびその製造方法に関するものである。   The present invention relates to composite fine particles and a method for producing the same, and more particularly to conductive fine particles having high transparency when applied on a substrate and a method for producing the same.

半導体微粒子は、その紫外線、可視光、赤外線の吸収、発光特性や高屈折率性などの物性と共にその透明性を生かして、反射防止膜、光学ミラー、サンスクリーン化粧品、蛍光材料など多くの用途が検討されている。半導体微粒子を薄膜にする場合には高分子マトリクス(例えば、エポキシ系やアクリル系などの光あるいは熱硬化性樹脂)中にこれを分散することが一般的である。この場合の問題として、酸化亜鉛や酸化チタンなどの半導体結晶の光触媒機能により半導体表面の有機物を酸化還元的に分解するため薄膜の安定性が損なわれることが起こる。これを抑制するために、アルコキシシランを原料としたシリカによる被覆が提案されている(例えば、非特許文献1参照)。この方法では光触媒機能の抑制は可能であるが、導電性を付与することはできない。   Semiconductor fine particles have many uses such as antireflection films, optical mirrors, sunscreen cosmetics, fluorescent materials by taking advantage of their transparency, as well as their physical properties such as absorption of ultraviolet rays, visible light, infrared rays, emission characteristics and high refractive index. It is being considered. When the semiconductor fine particles are made into a thin film, it is common to disperse them in a polymer matrix (for example, epoxy or acrylic light or thermosetting resin). As a problem in this case, the organic catalyst on the semiconductor surface is decomposed in an oxidation-reduction manner by the photocatalytic function of a semiconductor crystal such as zinc oxide or titanium oxide, so that the stability of the thin film is impaired. In order to suppress this, coating with silica using alkoxysilane as a raw material has been proposed (see Non-Patent Document 1, for example). Although this method can suppress the photocatalytic function, it cannot impart conductivity.

半導体微粒子の表面を金属で被覆する技術として、半導体微粒子分散液に金属塩および還元剤を添加し、還元により金属微粒子を形成すること(化学めっき法)が開示されている(例えば、特許文献1、特許文献2、及び非特許文献2参照)。この方法は簡便であるが被覆する金属とコアとなる化合物の組合せが限定され、多くの場合金属微粒子と半導体微粒子の混合物が生成するなどの問題点がある。
また、酸化チタン微粒子分散液に銀塩を添加し、紫外線を照射することにより酸化チタン微粒子内部に発生した電子により銀イオンを還元して酸化チタン微粒子表面に銀超微粒子を形成する技術が公開されている(例えば、非特許文献3参照)。しかしながらこの方法もコアになる微粒子が光半導体にしか適用できない、また、銀超微粒子の形成に時間がかかるという問題がある。さらにこの技術をコアが蛍光体である微粒子に適用すると消光する場合があるので改善が要望される。
As a technique for coating the surface of semiconductor fine particles with metal, a method of adding metal salt and a reducing agent to a semiconductor fine particle dispersion and forming metal fine particles by reduction (chemical plating method) is disclosed (for example, Patent Document 1). , Patent Document 2 and Non-Patent Document 2). This method is simple, but the combination of the metal to be coated and the compound serving as the core is limited. In many cases, there is a problem that a mixture of metal fine particles and semiconductor fine particles is formed.
In addition, a technology for forming silver ultrafine particles on the surface of titanium oxide fine particles by reducing silver ions with electrons generated inside the titanium oxide fine particles by adding silver salt to the titanium oxide fine particle dispersion and irradiating ultraviolet rays is disclosed. (For example, refer nonpatent literature 3). However, this method also has a problem that the core fine particles can be applied only to an optical semiconductor, and it takes time to form silver ultrafine particles. Furthermore, if this technique is applied to fine particles whose core is a phosphor, quenching may occur, and improvements are desired.

一方、絶縁体微粒子は、ポリメチルメタクリレート、ポリスチレン、ポリカーボネート、ポリエチレンテレフタレート、ポリオレフィンなどの有機物、シリカ、アルミナなどの無機物があり、比較的屈折率や比重が小さいという物性面での特徴を有する。これに導電性が付与できれば薄膜にした場合、透明性を保持したまま帯電による汚染などが防止されるので望ましい。また、分散液で用いる場合には比重が小さいので貴金属を表面に被覆しても沈降しにくいという長所がある。しかし、従来、透明性を確保しつつ絶縁体微粒子に十分な導電性を付与することはできなかった。
特開昭62−37301号公報 特開2003−64278号公報 Fragrance Journal,2001−1,74−80(2001) J.Alloys & Comp.,365(2004)281−285 Langmuir 2003, Vol.19,8230−8234
On the other hand, the insulator fine particles include organic substances such as polymethyl methacrylate, polystyrene, polycarbonate, polyethylene terephthalate, and polyolefin, and inorganic substances such as silica and alumina, and have characteristics in terms of physical properties such as relatively low refractive index and specific gravity. If it is possible to impart conductivity to this, a thin film is desirable because contamination due to charging is prevented while maintaining transparency. Further, when used in a dispersion liquid, since the specific gravity is small, there is an advantage that it is difficult to settle even if the surface is coated with a noble metal. However, conventionally, sufficient electrical conductivity could not be imparted to the insulating fine particles while ensuring transparency.
JP 62-37301 A JP 2003-64278 A Fragrance Journal, 2001-1, 74-80 (2001) J. et al. Alloys & Comp. 365 (2004) 281-285 Langmuir 2003, Vol. 19, 8230-8234

従って、本発明の目的は、多くの半導体又は絶縁体の表面に金属超微粒子を結合した複合微粒子、特に透明性の高い導電性微粒子およびその製造方法を提供することである。
また、簡易且つ迅速な上記複合微粒子の製造方法を提供することである。
本発明は、さらに、コアの化合物の物性を保持し、且つ導電性をも併せ持つ複合機能微粒子、それを用いた機能性膜を提供することを目的とする。
Accordingly, an object of the present invention is to provide composite fine particles in which metal ultrafine particles are bonded to the surface of many semiconductors or insulators, particularly highly transparent conductive fine particles, and a method for producing the same.
Another object of the present invention is to provide a simple and rapid method for producing the composite fine particles.
Another object of the present invention is to provide composite functional fine particles that retain the physical properties of the core compound and also have conductivity, and functional films using the same.

本発明は、
(1)平均粒子径が2〜100nmである半導体微粒子又は絶縁体微粒子の表面に、少なくとも1種のカップリング剤もしくはその加水分解物を介して、平均粒子径1〜20nmの金属超微粒子を結合させたことを特徴とする複合微粒子、
(2)前記カップリング剤が下記一般式〔I〕で表される化合物であることを特徴とする(1)項に記載の複合微粒子、
The present invention
(1) Ultrafine metal particles having an average particle diameter of 1 to 20 nm are bonded to the surface of semiconductor fine particles or insulator fine particles having an average particle diameter of 2 to 100 nm via at least one coupling agent or a hydrolyzate thereof. Composite fine particles characterized by
(2) The composite microparticle according to (1), wherein the coupling agent is a compound represented by the following general formula [I]:

(一般式〔I〕において、Mは2価ないし5価の原子価を有する金属を表わし、nは金属の原子価に相当する整数を表わす。Rは有機性基を表し、n個のRは同じでも異なっていてもよく、n個のRのうちの少なくとも2つは半導体微粒子、絶縁体微粒子又は金属超微粒子と反応性を有する基である。)、
(3)前記金属超微粒子が20℃における比抵抗が20μΩ・cm以下である金属からなることを特徴とする(1)又は(2)項に記載の複合微粒子、
(4)平均粒子径が2〜100nmである半導体微粒子又は絶縁体微粒子を含有する分散液に、少なくとも1種のカップリング剤を添加し該半導体微粒子又は該絶縁体微粒子と反応させた後、金属超微粒子を直接添加することにより、又は金属塩及び還元剤を添加し還元することにより、平均粒子径1〜20nmの金属超微粒子を該カップリング剤もしくはその加水分解物を介して、該半導体微粒子又は該絶縁体微粒子の表面に結合させることを特徴とする複合微粒子の製造方法、
(5)少なくとも1種のカップリング剤を含有する溶液中に、金属超微粒子を直接添加することにより、又は金属塩及び還元剤を添加し還元することにより、平均粒子径1〜20nmの金属超微粒子を該カップリング剤と結合させた後、平均粒子径2〜100nmである半導体微粒子又は絶縁体微粒子を含有する分散液を添加して該カップリング剤と反応させることにより、該金属超微粒子を、該カップリング剤もしくはその加水分解物を介して、該半導体微粒子又は該絶縁体微粒子の表面に結合することを特徴とする複合微粒子の製造方法、
(6)前記カップリング剤が下記一般式〔I〕で表される化合物であることを特徴とする上記(4)又は(5)項に記載の複合微粒子の製造方法、
(In the general formula [I], M represents a metal having a valence of 2 to 5, n represents an integer corresponding to the valence of the metal, R represents an organic group, and n R's represent They may be the same or different, and at least two of the n Rs are groups reactive with semiconductor fine particles, insulator fine particles or metal ultrafine particles).
(3) The composite ultrafine particles according to (1) or (2), wherein the ultrafine metal particles are made of a metal having a specific resistance at 20 ° C. of 20 μΩ · cm or less,
(4) After adding at least one coupling agent to a dispersion containing semiconductor fine particles or insulator fine particles having an average particle diameter of 2 to 100 nm and reacting with the semiconductor fine particles or the insulator fine particles, the metal By adding ultrafine particles directly, or by adding and reducing a metal salt and a reducing agent, ultrafine metal particles having an average particle diameter of 1 to 20 nm are converted into the semiconductor fine particles via the coupling agent or a hydrolyzate thereof. Or a method of producing composite fine particles, characterized by being bonded to the surface of the insulator fine particles,
(5) By adding metal ultrafine particles directly to a solution containing at least one coupling agent, or by adding and reducing a metal salt and a reducing agent, the metal ultrafine particles having an average particle diameter of 1 to 20 nm After the fine particles are combined with the coupling agent, a dispersion liquid containing semiconductor fine particles or insulator fine particles having an average particle diameter of 2 to 100 nm is added and reacted with the coupling agent, whereby the ultrafine metal particles are obtained. A method for producing composite fine particles characterized by binding to the surface of the semiconductor fine particles or the insulating fine particles via the coupling agent or a hydrolyzate thereof,
(6) The method for producing composite fine particles according to (4) or (5) above, wherein the coupling agent is a compound represented by the following general formula [I]:

(一般式〔I〕において、Mは2価ないし5価の原子価を有する金属を表わし、nは金属の原子価に相当する整数を表わす。Rは有機性基を表し、n個のRは同じでも異なっていてもよく、n個のRのうちの少なくとも2つは半導体微粒子、絶縁体微粒子又は金属超微粒子と反応性を有する基である。)、および、
(7)前記金属超微粒子が20℃における比抵抗が20μΩ・cm以下である金属からなることを特徴とする上記(4)〜(6)のいずれか1項に記載の複合微粒子の製造方法を提供するものである。
(8)上記(1)〜(3)のいずれか1項に記載の複合微粒子を含有する膜。
(9)上記(4)〜(7)のいずれか1項に記載の方法で製造された複合微粒子を含有する膜。
(In the general formula [I], M represents a metal having a valence of 2 to 5, n represents an integer corresponding to the valence of the metal, R represents an organic group, and n R's represent They may be the same or different, and at least two of the n R are groups reactive with semiconductor fine particles, insulator fine particles or metal ultrafine particles), and
(7) The method for producing composite fine particles according to any one of (4) to (6) above, wherein the ultrafine metal particles are made of a metal having a specific resistance of 20 μΩ · cm or less at 20 ° C. It is to provide.
(8) A film containing the composite fine particles according to any one of (1) to (3) above.
(9) A film containing composite fine particles produced by the method according to any one of (4) to (7) above.

少なくとも1種のカップリング剤もしくはその加水分解物を介して、半導体又は絶縁体微粒子の表面に金属超微粒子を結合させるため、無機物、有機物を問わず、各種半導体又は絶縁体を容易にコアの化合物の物性を保持した状態で導電性にすることができる。これにより、大面積の透明導電層を簡単、迅速に形成、提供することができる。   Since the metal ultrafine particles are bonded to the surface of the semiconductor or insulator fine particles via at least one coupling agent or a hydrolyzate thereof, various semiconductors or insulators can be easily incorporated into the core compound regardless of whether they are inorganic or organic. It is possible to make it conductive while maintaining its physical properties. Thereby, a transparent conductive layer having a large area can be formed and provided easily and quickly.

[カップリング剤]
本発明で用いるカップリング剤は、分子中に反応基を2つ以上有し、その中の少なくとも一つが半導体又は絶縁体微粒子と結合し、残りの少なくとも一つが金属超微粒子と結合することにより、半導体又は絶縁体微粒子と金属超微粒子との橋かけを行なうものである。カップリング剤はその加水分解物が半導体又は絶縁体微粒子と金属超微粒子との橋かけを行なうものであってもよい。
[Coupling agent]
The coupling agent used in the present invention has two or more reactive groups in the molecule, and at least one of them is bonded to the semiconductor or insulating fine particles, and at least one of the remaining is bonded to the metal ultrafine particles, Crosslinking between semiconductor or insulator fine particles and metal ultrafine particles is performed. The coupling agent may be one in which the hydrolyzate crosslinks the semiconductor or insulating fine particles and the metal ultrafine particles.

好ましい本発明のカップリング剤は、下記一般式〔I〕で表わされるものである。   A preferred coupling agent of the present invention is represented by the following general formula [I].

一般式〔I〕において、Mは2価ないし5価の原子価を有する金属を表わし、nは金属の原子価に相当する整数を表わす。Rは有機性基を表し、n個のRは同じでも異なっていてもよく、n個のRのうちの少なくとも2つは半導体微粒子、絶縁体微粒子又は金属超微粒子と反応性を有する基である。   In the general formula [I], M represents a metal having a divalent to pentavalent valence, and n represents an integer corresponding to the valence of the metal. R represents an organic group, and the n Rs may be the same or different, and at least two of the n Rs are groups having reactivity with semiconductor fine particles, insulator fine particles or metal ultrafine particles. .

Mは2価ないし5価の原子価を有する金属を表わすが、該金属としては、IIB族、IIIA族、IIIB族、IVA族、IVB族、VA族、VB族から選ばれる。好ましい金属としては、Zn、Si、Ge、Sn、Pb、Ti、V、Al、Ga、In、Sb、Biであり、特に好ましくはSi、Ti、Alである。   M represents a metal having a valence of 2 to 5. The metal is selected from Group IIB, Group IIIA, Group IIIB, Group IVA, Group IVB, Group VA and Group VB. Preferred metals are Zn, Si, Ge, Sn, Pb, Ti, V, Al, Ga, In, Sb, and Bi, and particularly preferred are Si, Ti, and Al.

Rで表わされる有機性基のうち、半導体微粒子、絶縁体微粒子又は金属超微粒子と反応性を有する基としては、例えば、(1)ビニル基、アリルオキシ基、アクリロキシ基、メタクリロキシ基、イソシアナト基、ホルミル基、エポキシ基、スチリル基、ウレイド基、ハロゲンなどの反応性基、又はこれらを末端に有するアルキル基、(2)末端に−SH、−CN、−NH、−SOOH、−SOOH、−OPO(OH)、−COOHなどの吸着性の基を有するアルキル基、(3)メトキシ基、エトキシ基、イソプロポキシ基、n−プロポキシ基、t−ブトキシ基、n−ブトキシ基などアルコキシ基、及び(4)フェノキシ基が挙げられる。これらのアルキル基、アルコキシ基及びフェノキシ基としては、炭素数が8以下のものが望ましい。また、これらのアルキル基、アルコキシ基及びフェノキシ基はさらに置換基を有していてもよい。
Rで表わされる残りの有機性基としては任意のものでよいが、好ましくは末端に炭素数が8以下のものである。
Among the organic groups represented by R, examples of the group having reactivity with semiconductor fine particles, insulator fine particles or metal ultrafine particles include (1) vinyl group, allyloxy group, acryloxy group, methacryloxy group, isocyanato group, formyl. group, an epoxy group, a styryl group, a ureido group, a reactive group such as a halogen, or an alkyl group having them end, (2) -SH terminated, -CN, -NH 2, -SO 2 OH, -SOOH, An alkyl group having an adsorptive group such as —OPO (OH) 2 or —COOH; (3) an alkoxy group such as a methoxy group, an ethoxy group, an isopropoxy group, an n-propoxy group, a t-butoxy group, or an n-butoxy group. And (4) a phenoxy group. As these alkyl group, alkoxy group and phenoxy group, those having 8 or less carbon atoms are desirable. Further, these alkyl group, alkoxy group and phenoxy group may further have a substituent.
The remaining organic group represented by R may be any group, but preferably has 8 or less carbon atoms at the terminal.

本発明に用いられるカップリング剤の具体例を列挙するが、これらの化合物に限定されるものではない。
N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノフェノキシジメチルビニルシラン、アミノフェニルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、ビス(トリメトキシシリルプロピル)アミン、(p−クロロメチル)フェニルトリメトキシシラン、(3−グリシドキシプロピル)トリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、(3−グリシドキシプロピル)−3−メルカプトプロピルジメトキシシラン、ビニルトリクロロシラン、テトラエトキシシラン、チタニウムイソプロポキシド、チタニウムジクロライドジエトキシド、3−メルカプトプロピルチタニウムトリメトキシド、3−メルカプトプロピルトリエトキシゲルマン、3−メタクリルオキシプロピルトリエトキシゲルマン、アミノフェニルアルミニウムジメトキシド、アルミニウムイソプロポキシド、3−アミノプロピルゲルマニウムトリエトキシド、アミノプロピルインジウムジメトキシエトキシド、3−グリシドキシプロピルトリエトキシスズ、3−メタクリルオキシプロピルトリt−ブトキシスズ、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシスズ、ビニル−トリス(2−エトキシメトキシ)鉛(IV)、3−メタクリルオキシプロピルテトラメトキシアンチモン(V)、3−メルカプトプロピルビスマス(III)ジt−ペントキシド、3−アミノプロピルバナジウムジブトキシドオキシドなどが挙げられる。
Although the specific example of the coupling agent used for this invention is enumerated, it is not limited to these compounds.
N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminophenoxydimethylvinylsilane, aminophenyltrimethoxysilane, 3-amino Propyltriethoxysilane, bis (trimethoxysilylpropyl) amine, (p-chloromethyl) phenyltrimethoxysilane, (3-glycidoxypropyl) trimethoxysilane, 3-mercaptopropyltrimethoxysilane, (3-glycid Xylpropyl) -3-mercaptopropyldimethoxysilane, vinyltrichlorosilane, tetraethoxysilane, titanium isopropoxide, titanium dichloride diethoxide, 3-mercaptopropyltitanium trimethoxide, 3-mercap Propyltriethoxygermane, 3-methacryloxypropyltriethoxygermane, aminophenylaluminum dimethoxide, aluminum isopropoxide, 3-aminopropylgermanium triethoxide, aminopropylindium dimethoxyethoxide, 3-glycidoxypropyltriethoxytin 3-methacryloxypropyltri-t-butoxytin, N- (2-aminoethyl) -3-aminopropylmethyldimethoxytin, vinyl-tris (2-ethoxymethoxy) lead (IV), 3-methacryloxypropyltetramethoxyantimony (V), 3-mercaptopropyl bismuth (III) di-t-pentoxide, 3-aminopropyl vanadium dibutoxide oxide, etc. are mentioned.

[半導体微粒子]
本発明における半導体微粒子は平均粒子径が2〜100nm、好ましくは3〜50nmである。平均粒子径が小さすぎると半導体の結晶性が低下し、光吸収や発光特性、高屈折率性などの目的とする物性が得られなくなる可能性がある。一方大きすぎると分散物組成物や薄膜にした場合の透明性が低下する場合がある。
本発明の半導体微粒子の組成は特に制限はない。具体例としては、C、Si、Ge、Snなどの周期表第14族元素の単体、Se、Teなどの周期表第16族元素の単体、SiCなどの複数の周期表第14族元素からなる化合物、AlSb、GaP、GaAs、GaSb、InP、InAs,InSb、GaN、InGaN、InAlN、InN、BNなどの周期表第13族元素と周期表第15族元素との化合物(III−V族化合物半導体)、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、HgSe、HgTeなどの周期表第12族元素と周期表第16族元素との化合物(II−VI族化合物半導体)、SnO、SnS、SnSe、PbS、PbSe、PbTeなどの周期表第14族元素と周期表第16族元素との化合物(IV−VI族化合物半導体)、Sb、BiTe、AsSeなどの周期表第15族元素と周期表第16族元素との化合物(V−VI族化合物半導体)、CuO、CuSなどの周期表第11族元素と周期表第16族元素との化合物(I−VI族化合物半導体)、CuCl、CuBr、CuI、AgCl、AgBrなどの周期表第11族元素と周期表第17族元素との化合物、Fe、Fe、FeSなどの周期表第8族元素と周期表第16族元素との化合物、TiO、Ti、ZrOなどの周期表第4族元素と周期表第16族元素との化合物、Y、Laなどの周期表第3族元素(ランタノイド元素を含む)と周期表第16族元素との化合物などが挙げられる。
[Semiconductor fine particles]
The semiconductor fine particles in the present invention have an average particle diameter of 2 to 100 nm, preferably 3 to 50 nm. If the average particle size is too small, the crystallinity of the semiconductor is lowered, and there is a possibility that desired physical properties such as light absorption, light emission characteristics, and high refractive index properties cannot be obtained. On the other hand, if it is too large, the transparency in the case of a dispersion composition or a thin film may be lowered.
The composition of the semiconductor fine particles of the present invention is not particularly limited. Specific examples include a group 14 element of the periodic table such as C, Si, Ge, and Sn, a group 16 element of the periodic table such as Se and Te, and a plurality of group 14 elements of the periodic table such as SiC. Compound, compound of group 13 element of periodic table and group 15 element of periodic table (III-V group compound semiconductor, such as AlSb, GaP, GaAs, GaSb, InP, InAs, InSb, GaN, InGaN, InAlN, InN, BN) ), ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgSe, HgTe, etc., a compound of a periodic table group 12 element and a periodic table group 16 element (II-VI group compound semiconductor), SnO 2 , SnS , SnSe, PbS, PbSe, compounds of the periodic table group 14 element and periodic table group 16 element such as PbTe (IV-VI group compound semiconductor), Sb 2 S 3, Bi Te 3, As 2 Se 3 of the periodic table Group 15 element and the periodic table compounds of Group 16 elements such as (V-VI group compound semiconductor), the periodic table Group 11 element such as Cu 2 O, Cu 2 S Compound (group I-VI compound semiconductor) with group 16 element of the periodic table, compound of group 11 element of periodic table and group 17 element of the periodic table such as CuCl, CuBr, CuI, AgCl, AgBr, Fe 2 O 3 , Fe 3 O 4 , FeS and other periodic table group 8 elements and periodic table group 16 elements, TiO 2 , Ti 2 O 5 and ZrO 2 periodic table group 4 elements and periodic table group 16 Examples thereof include compounds with elements, compounds of periodic table group 3 elements (including lanthanoid elements) such as Y 2 O 3 and La 2 O 3 and periodic table group 16 elements.

上記の例示した組成の半導体微粒子には、必要に応じて微量の他元素、例えばMn、Al、Cu、Ag、Zn、Cl、Ce、Eu、Tb、Erなどをドープしてもよい。また、ZnS(シェル)で被覆したCdSe(コア)のようにいわゆるコア/シェル構造であってもよい。さらに透明導電材料として公知のATO(SbドープSnO)、PTO(PドープSnO)、ITO(SnドープIn)、IZO(ZnドープIn)、GZO(GaドープZnO)、AZO(AlドープZnO)などの微粒子であってもよい。 The semiconductor fine particles having the above exemplified composition may be doped with a trace amount of other elements such as Mn, Al, Cu, Ag, Zn, Cl, Ce, Eu, Tb, Er and the like as necessary. Also, a so-called core / shell structure such as CdSe (core) coated with ZnS (shell) may be used. Furthermore, known ATO (Sb-doped SnO 2 ), PTO (P-doped SnO 2 ), ITO (Sn-doped In 2 O 3 ), IZO (Zn-doped In 2 O 3 ), GZO (Ga-doped ZnO) as transparent conductive materials, Fine particles such as AZO (Al-doped ZnO) may be used.

[絶縁体微粒子]
本発明における絶縁体微粒子は、前記半導体微粒子と同様に平均粒子径が2〜100nm、好ましくは3〜50nmである。絶縁体としては、例えば、ポリメチルメタクリレート、ポリスチレン、ポリカーボネート、ポリエチレンテレフタレート、ポリオレフィンなどの多くの有機高分子、シリカ、アルミナなどの無機酸化物が挙げられる。
[Insulator fine particles]
The insulator fine particles in the present invention have an average particle diameter of 2 to 100 nm, preferably 3 to 50 nm, like the semiconductor fine particles. Examples of the insulator include many organic polymers such as polymethyl methacrylate, polystyrene, polycarbonate, polyethylene terephthalate, and polyolefin, and inorganic oxides such as silica and alumina.

[金属超微粒子]
本発明における金属超微粒子は、20℃における比抵抗が20μΩ・cm以下(好ましくは10μΩ・cm以下、より好ましくは6μΩ・cm以下)である金属または複合金属からなるものであることが好ましい。一般的に、金属または複合金属の物性値は、バルクと粒子とでは異なることが知られているが、前記比抵抗の範囲は、金属または複合金属のバルクの値をいう。したがって、かかる物性値は「化学便覧(日本化学会編)」、「分析化学便覧(日本分析化学会編)」などの文献に記載されている。
[Ultrafine metal particles]
The ultrafine metal particles in the present invention are preferably made of a metal or a composite metal having a specific resistance at 20 ° C. of 20 μΩ · cm or less (preferably 10 μΩ · cm or less, more preferably 6 μΩ · cm or less). Generally, it is known that the physical property value of a metal or a composite metal is different between a bulk and a particle, but the specific resistance range refers to a bulk value of the metal or the composite metal. Therefore, such physical property values are described in documents such as “Chemical Handbook (Edited by the Chemical Society of Japan)”, “Analytical Chemical Handbook (Edited by the Chemical Society of Japan)”, and the like.

上記条件を満足する金属としては、Au、Ag、Cu、Zn、Cd、Al、In、Tl、Sn、Co、Ni、Fe、Pd、Ir、Mo、Pt、Ru、Wなどが挙げられる。これらの中でもAu、Ag、Cu、Pt、Pd、Ni、RuおよびSnが比抵抗が小さくかつ酸化されにくいので好ましい。複合金属からなる場合には、Au、Ag、Cu、Pt、Pd、Ni、RuおよびSnの少なくとも1種含有する複合金属を用いるのが好ましい。かかる複合金属としては、Cu−Zn、Cu−Sn、Al−Cu、Cu−Sn−P、Cu−Ni、Au−Ag−Cu、Au−Zn、Au−Ni、Ag−Cu−Zn、Ag−Cu−Zn−Sn、Sn−Pb、Ag−In、Cu−Ag−Ni、Ag−Pdなどが挙げられるが、これらに限定されるものではない。複合金属中の各金属の組成比については特に制限はなく、種々選択できる。また、金属および複合金属は不純物元素を含んでいてもよいが、その量は1%未満であるのが好ましい。不純物元素としては、Cr、Sb、Bi、Rhなどの金属、また金属以外にも、P、B、C、N、Sなどの非金属、Na、Kなどのアルカリ金属、およびMg、Caなどのアルカリ土類金属が挙げられる。これらの不純物元素は、1種もしくは2種以上含有されていてもよい。   Examples of the metal that satisfies the above conditions include Au, Ag, Cu, Zn, Cd, Al, In, Tl, Sn, Co, Ni, Fe, Pd, Ir, Mo, Pt, Ru, and W. Among these, Au, Ag, Cu, Pt, Pd, Ni, Ru, and Sn are preferable because of their low specific resistance and resistance to oxidation. In the case of a composite metal, it is preferable to use a composite metal containing at least one of Au, Ag, Cu, Pt, Pd, Ni, Ru, and Sn. Such composite metals include Cu—Zn, Cu—Sn, Al—Cu, Cu—Sn—P, Cu—Ni, Au—Ag—Cu, Au—Zn, Au—Ni, Ag—Cu—Zn, and Ag—. Examples thereof include, but are not limited to, Cu—Zn—Sn, Sn—Pb, Ag—In, Cu—Ag—Ni, and Ag—Pd. There is no restriction | limiting in particular about the composition ratio of each metal in a composite metal, It can select variously. Further, the metal and the composite metal may contain an impurity element, but the amount is preferably less than 1%. Examples of the impurity element include metals such as Cr, Sb, Bi, and Rh, and non-metals such as P, B, C, N, and S, alkali metals such as Na and K, and Mg and Ca. Examples include alkaline earth metals. One or more of these impurity elements may be contained.

本発明に用いられる金属超微粒子の平均粒子径は1〜20nm、好ましくは2〜10nmである。平均粒子径は、製造条件を適宜設定変更することで調整できる。   The average particle diameter of the ultrafine metal particles used in the present invention is 1 to 20 nm, preferably 2 to 10 nm. The average particle diameter can be adjusted by appropriately changing the production conditions.

[複合微粒子の製造方法]
表面修飾剤の説明
本発明においては、公知の表面修飾剤又は分散剤が複合微粒子合成時、あるいは合成後共存していてもよい。表面修飾剤又は分散剤としては、−SH、−CN、−NH2、−SOOH、−SOOH、−OPO(OH)2、−COOH等の官能基を有する吸着性化合物や、アニオン、ノニオン、フッ素系界面活性剤が有効である。また、低分子化合物であっても高分子化合物であってもよい。具体的には、ポリエチレングリコール、ポリオキシエチレン(1)ラウリルエーテルリン酸、ラウリルエーテルリン酸、トリオクチルホスフィン、トリオクチルホスフィンオキシド、ポリリン酸ナトリウム、ビス(2−エチルヘキシル)スルホこはく酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、ポリアクリル酸及びその塩、ポリメタクリル酸及びその塩、ポリビニルアルコール、ポリビニルピロリドン、ヒドロキシエチルセルロースなどが挙げられる。
[Production method of composite fine particles]
Description of Surface Modifier In the present invention, a known surface modifier or dispersant may be present at the time of composite fine particle synthesis or after synthesis. Examples of the surface modifier or dispersant include adsorptive compounds having functional groups such as —SH, —CN, —NH 2 , —SO 2 OH, —SOOH, —OPO (OH) 2 , —COOH, anions, and nonions. Fluorine surfactants are effective. Further, it may be a low molecular compound or a high molecular compound. Specifically, polyethylene glycol, polyoxyethylene (1) lauryl ether phosphate, lauryl ether phosphate, trioctyl phosphine, trioctyl phosphine oxide, sodium polyphosphate, bis (2-ethylhexyl) sulfosuccinate sodium, dodecylbenzene Examples thereof include sodium sulfonate, polyacrylic acid and a salt thereof, polymethacrylic acid and a salt thereof, polyvinyl alcohol, polyvinyl pyrrolidone, and hydroxyethyl cellulose.

還元剤の説明
本発明で用いる還元剤としては、無機還元剤でも有機還元剤でも良い。無機還元剤としては、NaBH、ヒドラジン、ヒドロキシルアミン又は水素ガス等が挙げられる。また有機還元剤としては、(1)ヒドラジン基を含有するヒドラジン系化合物類(例えばフェニルヒドラジン等)、(2)p−フェニレンジアミン、エチレンジアミン、p−アミノフェノール等のアミン類、(3)窒素原子にアシル基やアルコキシカルボニル基などが置換したヒドロキシルアミン系化合物類、(4)2−ジメチルアミノエタノール、2−ジエチルアミノエタノール、2−アミノエタノール、ジエタノールアミン、2−アミノ−2−メチル−1−プロパノール等のアミノアルコール類、(5)ヒドロキノン、カテコール、1,4−ブタンジオール、エチレングリコール等のジオール類、又は(6)一般式:
X−(A=B)−Y(ただし、A及びBはそれぞれ炭素原子又は窒素原子を表し、X及びYはそれぞれ非共有電子対を有する原子がA及びBに結合する原子団を表し、nは0〜3を表す。)により表される有機還元剤又はその互変異性体、又は熱的にこれらを生成する化合物類(例えば、ヒドロキシアセトン等の特願2004−18895号明細書に記載の化合物)等が挙げられる。これらの還元剤は、単独または併用で用いることができる。
Description of Reducing Agent The reducing agent used in the present invention may be an inorganic reducing agent or an organic reducing agent. Examples of the inorganic reducing agent include NaBH 4 , hydrazine, hydroxylamine or hydrogen gas. Examples of the organic reducing agent include (1) hydrazine-based compounds containing a hydrazine group (for example, phenylhydrazine), (2) amines such as p-phenylenediamine, ethylenediamine, and p-aminophenol, and (3) nitrogen atom. Hydroxylamine compounds substituted with acyl group or alkoxycarbonyl group, (4) 2-dimethylaminoethanol, 2-diethylaminoethanol, 2-aminoethanol, diethanolamine, 2-amino-2-methyl-1-propanol, etc. (5) hydroquinone, catechol, 1,4-butanediol, diols such as ethylene glycol, or (6) general formula:
X- (A = B) n -Y (where A and B each represent a carbon atom or a nitrogen atom, X and Y each represent an atomic group in which an atom having an unshared electron pair is bonded to A and B, n represents an organic reducing agent represented by 0 to 3, or a tautomer thereof, or a compound that thermally generates them (for example, described in Japanese Patent Application No. 2004-18895 such as hydroxyacetone). Compound) and the like. These reducing agents can be used alone or in combination.

本発明の好ましい態様では、平均粒子径が2〜100nmである上記半導体微粒子又は上記絶縁体微粒子を含有する分散液に、少なくとも1種の上記カップリング剤を添加し半導体又は絶縁体微粒子と反応させた後、金属超微粒子を直接添加することにより、又は金属塩及び還元剤を添加し還元することにより、平均粒子径1〜20nmの金属超微粒子を、カップリング剤もしくはその加水分解物を介して、半導体又は絶縁体微粒子の表面に結合させて複合微粒子を製造する。また、別の好ましい態様では、少なくとも1種の上記カップリング剤を含有する溶液中に、金属超微粒子を直接添加することにより、又は金属塩及び還元剤を添加し還元することにより、平均粒子径1〜20nmの金属超微粒子をカップリング剤と結合させた後、平均粒子径2〜100nmである上記半導体微粒子又は上記絶縁体微粒子を含有する分散液を添加してカップリング剤と反応させることにより、金属超微粒子を、カップリング剤もしくはその加水分解物を介して、半導体又は絶縁体微粒子の表面に結合させて複合微粒子を製造する。なお、半導体又は絶縁体微粒子の表面にカップリング剤を結合させる反応と、金属超微粒子を添加又は生成させてその表面にカップリング剤を結合させる反応とを同時に行なうこともできる。
本発明において、好ましく用いることができる金属塩としては、上記金属のハロゲン化物、酢酸塩などのカルボン酸塩、硝酸塩、硫酸塩、アセチルアセトナート化合物等が挙げられる。
また、上記分散液に好ましく用いられる溶媒としては、特に制限はなく、水、アルコール類(メタノール、エタノール、2−プロパノール等)、カルボン酸エステル類(酢酸エチル、酢酸ブチル等)、ケトン類(メチルエチルケトン、シクロヘキサノン等)、アミド(N、N−ジメチルホルムアミド、N−メチルホルムアミド等)類が挙げられる。
In a preferred embodiment of the present invention, at least one coupling agent is added to the dispersion containing the semiconductor fine particles or the insulating fine particles having an average particle diameter of 2 to 100 nm to react with the semiconductor or insulating fine particles. Then, by adding metal ultrafine particles directly, or by adding and reducing metal salts and reducing agents, ultrafine metal particles with an average particle diameter of 1 to 20 nm are converted via a coupling agent or a hydrolyzate thereof. The composite fine particles are produced by bonding to the surface of the semiconductor or insulator fine particles. In another preferred embodiment, the average particle size is obtained by directly adding ultrafine metal particles or by adding a metal salt and a reducing agent to a solution containing at least one coupling agent. After binding ultrafine metal particles of 1 to 20 nm with a coupling agent, a dispersion containing the semiconductor fine particles or the insulating fine particles having an average particle diameter of 2 to 100 nm is added and reacted with the coupling agent. The ultrafine metal particles are bonded to the surface of the semiconductor or insulating fine particles via a coupling agent or a hydrolyzate thereof to produce composite fine particles. In addition, the reaction for binding the coupling agent to the surface of the semiconductor or insulator fine particles and the reaction for adding or generating metal ultrafine particles to bond the coupling agent to the surface can be performed simultaneously.
Examples of metal salts that can be preferably used in the present invention include halides of the above metals, carboxylates such as acetates, nitrates, sulfates, acetylacetonate compounds, and the like.
Moreover, there is no restriction | limiting in particular as a solvent preferably used for the said dispersion liquid, Water, alcohols (methanol, ethanol, 2-propanol, etc.), carboxylic acid esters (ethyl acetate, butyl acetate, etc.), ketones (methyl ethyl ketone) And cyclohexanone) and amides (N, N-dimethylformamide, N-methylformamide, etc.).

本発明の複合微粒子は、半導体又は絶縁体微粒子の質量当たり、金属超微粒子が少なくとも1/10倍質量結合していることが好ましく、1/5倍質量結合していることがさらに好ましい。   In the composite fine particles of the present invention, it is preferable that the ultrafine metal particles are bonded at least 1/10 times, more preferably 1/5 times the mass bonding per mass of the semiconductor or insulator particles.

本発明の複合微粒子は、例えば、その分散物をスピンコート、バーコートなど常法により塗布して薄膜を簡単、迅速かつ大面積で形成することができる。得られる薄膜は、表面抵抗が小さく、透明性が高いので、透明導電層として好適である。この薄膜は、焼成によりさらに導電性が高まる。   The composite fine particles of the present invention can be formed, for example, by applying the dispersion by a conventional method such as spin coating or bar coating to form a thin film easily, rapidly and in a large area. The resulting thin film is suitable as a transparent conductive layer because it has low surface resistance and high transparency. This thin film further increases conductivity by firing.

本発明の金属超微粒子(金属ナノ粒子)の粒径評価には透過型電子顕微鏡(TEM)やX線回折(XRD)を用いた常法により行うことができる。   The particle size of the ultrafine metal particles (metal nanoparticles) of the present invention can be evaluated by a conventional method using a transmission electron microscope (TEM) or X-ray diffraction (XRD).

以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to this.

実施例1 [SiO微粒子へAu超微粒子を結合した複合微粒子の合成]
触媒化成工業(株)製中空シリカ微粒子のIPA(イソプロピルアルコール)分散物(CS−60;平均粒子径50nm)3.6ml、3−メルカプトプロピルトリメトキシシラン0.7ml、およびアルミニウムイソプロポキシド4mgをMEK(エチルメチルケトン)150mlに添加し混合した。さらに水0.22mlを加えて60℃に昇温し4時間撹拌し反応させた。その後、塩化金(III)酸四水和物0.84gをMEK20mlに溶解して添加し、さらにヒドロキシアセトン1.5mlを添加して30分撹拌した。液温を室温まで下げて得られた分散物をTEMおよびXRDで解析したところ、中空シリカ微粒子上一面に粒子径3〜5nmのAuの超微粒子が結合しているのが観察された。図1にTEMの写真を示す。なお、図2は塩化金(III)酸を添加しない場合のTEM写真である。
Example 1 [Synthesis of composite fine particles in which Au ultrafine particles are bonded to SiO 2 fine particles]
3.6 ml of IPA (isopropyl alcohol) dispersion (CS-60; average particle size 50 nm) of hollow silica fine particles manufactured by Catalyst Kasei Kogyo Co., Ltd., 0.7 ml of 3-mercaptopropyltrimethoxysilane, and 4 mg of aluminum isopropoxide The mixture was added to 150 ml of MEK (ethyl methyl ketone) and mixed. Further, 0.22 ml of water was added, the temperature was raised to 60 ° C., and the mixture was stirred for 4 hours to be reacted. Thereafter, 0.84 g of gold chloride (III) acid tetrahydrate was dissolved in 20 ml of MEK and added, and 1.5 ml of hydroxyacetone was further added and stirred for 30 minutes. When the dispersion obtained by lowering the liquid temperature to room temperature was analyzed by TEM and XRD, it was observed that Au ultrafine particles having a particle diameter of 3 to 5 nm were bonded to the entire surface of the hollow silica fine particles. FIG. 1 shows a TEM photograph. FIG. 2 is a TEM photograph in the case where chloroauric (III) acid is not added.

実施例2 [塗布膜の評価]
この分散液90mlにITOインクX−101H(東北化工製)10gを添加しビーズミルで分散してガラス基板上に乾燥膜厚が約150nmになるようにスピンコートして80℃で乾燥した。得られた薄膜の表面抵抗は5.2×10Ω/□、550nmの波長における透過率は90%であった。比較として、塩化金(III)酸を添加しない以外は実施例1と同様に調製した分散液90mlにITOインク10gを添加してガラス基板上に乾燥膜厚約150nmで塗布した薄膜の表面抵抗は6.9×10Ω/□、550nmの波長における透過率は94%であった。また、ITOインク10gをMEK90mlで希釈してガラス基板上に乾燥膜厚約150nmで塗布した薄膜の表面抵抗は2.1×10Ω/□、550nmの波長における透過率は92%であった。本発明の複合微粒子を添加することにより塗布膜の透過率はほとんど損なうことなく伝導度が大幅に改善されることがわかった。
Example 2 [Evaluation of Coating Film]
10 g of ITO ink X-101H (manufactured by Tohoku Kako) was added to 90 ml of this dispersion, dispersed with a bead mill, spin-coated on a glass substrate to a dry film thickness of about 150 nm, and dried at 80 ° C. The surface resistance of the obtained thin film was 5.2 × 10 5 Ω / □, and the transmittance at a wavelength of 550 nm was 90%. For comparison, the surface resistance of a thin film prepared by adding 10 g of ITO ink to 90 ml of a dispersion prepared in the same manner as in Example 1 except that no gold chloride (III) acid was applied and coating the glass substrate with a dry film thickness of about 150 nm is The transmittance at a wavelength of 6.9 × 10 6 Ω / □, 550 nm was 94%. Further, the surface resistance of a thin film obtained by diluting 10 g of ITO ink with 90 ml of MEK and coating it on a glass substrate with a dry film thickness of about 150 nm was 2.1 × 10 6 Ω / □, and the transmittance at a wavelength of 550 nm was 92%. . It has been found that by adding the composite fine particles of the present invention, the conductivity is greatly improved without substantially impairing the transmittance of the coating film.

実施例3 [SiO微粒子へAg超微粒子を結合した複合微粒子の合成]
実施例1において、塩化金(III)酸四水和物に代えて酢酸銀0.69gを、またヒドロキシアセトンに代えてヒドラジン一水和物1mlを用いた以外は同様にして、中空シリカ微粒子にAg超微粒子が結合した複合微粒子を合成した。実施例1と同様にして得られたこの複合微粒子の薄膜(膜厚約150nm)の表面抵抗は4.6×10Ω/□、550nmの波長における透過率は94%であった。
Example 3 [Synthesis of Composite Fine Particles Combining Ag 2 Fine Particles with SiO 2 Fine Particles]
In Example 1, the hollow silica fine particles were obtained in the same manner except that 0.69 g of silver acetate was used instead of gold chloride (III) acid tetrahydrate and 1 ml of hydrazine monohydrate was used instead of hydroxyacetone. Composite fine particles to which Ag ultrafine particles were bonded were synthesized. The composite fine particles obtained in the same manner as in Example 1 had a surface resistance of 4.6 × 10 5 Ω / □ and a transmittance of 94% at a wavelength of 550 nm.

実施例4 [TiO微粒子へAu超微粒子を結合した複合微粒子の合成]
塩化白金(IV)酸六水和物1.06gをMEK100mlに溶解し、3−メルカプトプロピルトリメトキシシラン0.7mlを混合した。この溶液を強く撹拌しながらヒドラジン一水和物1mlを添加し、Pt超微粒子を形成した。この中に、石原産業(株)製TiO微粒子(MPT−129B;平均粒子径40nm)1gにシクロヘキサノール20mlを添加してアイガーミルで1時間分散した液およびアルミニウムイソプロポキシド4mgをシクロヘキサノン20mlに溶解した液を添加して撹拌した。さらに水0.22mlを加えて60℃に昇温し4時間撹拌し反応させた。得られた分散物をTEMおよびXRDで解析したところ、TiO微粒子上一面に粒子径3〜5nmのPt超微粒子が結合しているのが観察された。この分散物を実施例2と同様にガラス基板上に乾燥膜厚が約150nmになるように塗布して得られた薄膜の表面抵抗は6.5×10Ω/□、550nmの波長における透過率は90%であった。
Example 4 [Synthesis of composite fine particles in which Au ultrafine particles are bonded to TiO 2 fine particles]
1.06 g of chloroplatinic (IV) acid hexahydrate was dissolved in 100 ml of MEK, and 0.7 ml of 3-mercaptopropyltrimethoxysilane was mixed. While strongly stirring this solution, 1 ml of hydrazine monohydrate was added to form Pt ultrafine particles. In this, 20 ml of cyclohexanol was added to 1 g of TiO 2 fine particles (MPT-129B; average particle size 40 nm) manufactured by Ishihara Sangyo Co., Ltd. and dispersed for 1 hour in an Eiger mill and 4 mg of aluminum isopropoxide were dissolved in 20 ml of cyclohexanone The solution was added and stirred. Further, 0.22 ml of water was added, the temperature was raised to 60 ° C., and the mixture was stirred for 4 hours to be reacted. When the obtained dispersion was analyzed by TEM and XRD, it was observed that Pt ultrafine particles having a particle diameter of 3 to 5 nm were bonded to the entire surface of the TiO 2 fine particles. The surface resistance of a thin film obtained by applying this dispersion on a glass substrate in the same manner as in Example 2 so as to have a dry film thickness of about 150 nm is 6.5 × 10 5 Ω / □ and transmission at a wavelength of 550 nm. The rate was 90%.

実施例5
カップリング剤を3−メルカプトプロピルチタニウムトリメトキシドに代えた以外は実施例1と同様にTiO微粒子へPt超微粒子を結合した複合微粒子を合成した。
Example 5
Composite fine particles in which Pt ultrafine particles were bonded to TiO 2 fine particles were synthesized in the same manner as in Example 1 except that the coupling agent was changed to 3-mercaptopropyltitanium trimethoxide.

実施例6 [焼成による表面抵抗の変化]
実施例2、3および4において作成したガラス基板に塗布した本発明のサンプルを250℃で30分焼成した後、再度表面抵抗を測定したところ、いずれも10Ω/□のオーダー(比較サンプルは10Ω/□のオーダー)に低下していた。本発明の複合微粒子を塗布することにより形成した薄膜は焼成によりさらに導電性が高まることがわかった。
Example 6 [Change in surface resistance by firing]
The samples of the present invention applied to the glass substrates prepared in Examples 2, 3 and 4 were baked at 250 ° C. for 30 minutes, and then the surface resistance was measured again. As a result, both were on the order of 10 4 Ω / □ (comparative samples were 10 5 Ω / □). It was found that the conductivity of the thin film formed by applying the composite fine particles of the present invention is further increased by firing.

実施例7
塩化金(III)酸四水和物0.84gをMEK80mlに溶解し、3−メルカプトプロピルトリメトキシシラン0.7mlを混合した。この液にシクロヘキサノン20ml及びソルスパースGR24000(ICI製)を600mg添加した。この中に前記中空シリカ微粒子のIPA分散物CS−60を3.6ml添加し、強く撹拌しながらヒドラジン一水和物1mlを添加しAu超微粒子を形成した。ガラス基板上に乾燥膜厚約150nmで塗布し、120℃で乾燥した。同様のプロセスでサンプルを作製してTEM観察を行なったところ、中空シリカの表面にAuの微粒子が付着していた。ガラス基板上で直接複合微粒子の薄膜が形成できることがわかった。
Example 7
0.84 g of gold (III) chloride tetrahydrate was dissolved in 80 ml of MEK, and 0.7 ml of 3-mercaptopropyltrimethoxysilane was mixed. To this solution, 20 ml of cyclohexanone and 600 mg of Solsperse GR 24000 (manufactured by ICI) were added. Into this, 3.6 ml of the IPA dispersion CS-60 of hollow silica fine particles was added, and 1 ml of hydrazine monohydrate was added with vigorous stirring to form Au ultrafine particles. It apply | coated with the dry film thickness of about 150 nm on the glass substrate, and it dried at 120 degreeC. When a sample was prepared by the same process and observed by TEM, Au fine particles were adhered to the surface of the hollow silica. It was found that a thin film of composite fine particles can be formed directly on a glass substrate.

実施例1で合成された複合微粒子のTEM写真である。2 is a TEM photograph of composite fine particles synthesized in Example 1. FIG. 実施例1で塩化金(III)酸を添加しない場合の微粒子のTEM写真である。3 is a TEM photograph of fine particles when no gold chloride (III) acid is added in Example 1. FIG.

Claims (9)

平均粒子径が2〜100nmである半導体微粒子又は絶縁体微粒子の表面に、少なくとも1種のカップリング剤もしくはその加水分解物を介して、平均粒子径1〜20nmの金属超微粒子を結合させたことを特徴とする複合微粒子。   Ultrafine metal particles having an average particle diameter of 1 to 20 nm are bonded to the surface of semiconductor fine particles or insulator fine particles having an average particle diameter of 2 to 100 nm via at least one coupling agent or a hydrolyzate thereof. Composite fine particles characterized by 前記カップリング剤が下記一般式〔I〕で表される化合物であることを特徴とする請求項1に記載の複合微粒子。
(一般式〔I〕において、Mは2価ないし5価の原子価を有する金属を表わし、nは金属の原子価に相当する整数を表わす。Rは有機性基を表し、n個のRは同じでも異なっていてもよく、n個のRのうちの少なくとも2つは半導体微粒子、絶縁体微粒子又は金属超微粒子と反応性を有する基である。)
The composite fine particle according to claim 1, wherein the coupling agent is a compound represented by the following general formula [I].
(In the general formula [I], M represents a metal having a valence of 2 to 5, n represents an integer corresponding to the valence of the metal, R represents an organic group, and n R's represent And may be the same or different, and at least two of the n Rs are groups having reactivity with semiconductor fine particles, insulator fine particles or metal ultrafine particles.)
前記金属超微粒子が20℃における比抵抗が20μΩ・cm以下である金属からなることを特徴とする請求項1又は2に記載の複合微粒子。   3. The composite fine particle according to claim 1, wherein the ultrafine metal particle is made of a metal having a specific resistance of 20 μΩ · cm or less at 20 ° C. 3. 平均粒子径が2〜100nmである半導体微粒子又は絶縁体微粒子を含有する分散液に、少なくとも1種のカップリング剤を添加し該半導体微粒子又は該絶縁体微粒子と反応させた後、金属超微粒子を直接添加することにより、又は金属塩及び還元剤を添加し還元することにより、平均粒子径1〜20nmの金属超微粒子を、該カップリング剤もしくはその加水分解物を介して、該半導体微粒子又は該絶縁体微粒子の表面に結合させることを特徴とする複合微粒子の製造方法。   After adding at least one coupling agent to a dispersion containing semiconductor fine particles or insulator fine particles having an average particle diameter of 2 to 100 nm and reacting with the semiconductor fine particles or the insulator fine particles, metal ultrafine particles are obtained. By adding directly or by adding a metal salt and a reducing agent and reducing the metal ultrafine particles having an average particle diameter of 1 to 20 nm, the semiconductor fine particles or the fine particles via the coupling agent or a hydrolyzate thereof. A method for producing composite fine particles, comprising bonding to the surface of insulating fine particles. 少なくとも1種のカップリング剤を含有する溶液中に、金属超微粒子を直接添加することにより、又は金属塩及び還元剤を添加し還元することにより、平均粒子径1〜20nmの金属超微粒子を該カップリング剤と結合させた後、平均粒子径が2〜100nmである半導体微粒子又は絶縁体微粒子を含有する分散液を添加して該カップリング剤と反応させることにより、該金属超微粒子を、該カップリング剤もしくはその加水分解物を介して、該半導体微粒子又は該絶縁体微粒子の表面に結合させることを特徴とする複合微粒子の製造方法。   By adding metal ultrafine particles directly to a solution containing at least one coupling agent, or by adding a metal salt and a reducing agent and reducing the metal ultrafine particles with an average particle diameter of 1 to 20 nm, After binding with a coupling agent, a dispersion containing semiconductor fine particles or insulator fine particles having an average particle diameter of 2 to 100 nm is added and reacted with the coupling agent, whereby the ultrafine metal particles are obtained. A method for producing composite fine particles, wherein the fine particles are bonded to the surface of the semiconductor fine particles or the insulator fine particles through a coupling agent or a hydrolyzate thereof. 前記カップリング剤が下記一般式〔I〕で表される化合物であることを特徴とする請求項4又は5に記載の複合微粒子の製造方法。
(一般式〔I〕において、Mは2価ないし5価の原子価を有する金属を表わし、nは金属の原子価に相当する整数を表わす。Rは有機性基を表し、n個のRは同じでも異なっていてもよく、n個のRのうちの少なくとも2つは半導体微粒子、絶縁体微粒子又は金属超微粒子と反応性を有する基である。)
The method for producing composite fine particles according to claim 4 or 5, wherein the coupling agent is a compound represented by the following general formula [I].
(In the general formula [I], M represents a metal having a valence of 2 to 5, n represents an integer corresponding to the valence of the metal, R represents an organic group, and n R's represent And may be the same or different, and at least two of the n Rs are groups having reactivity with semiconductor fine particles, insulator fine particles or metal ultrafine particles.)
前記金属超微粒子が20℃における比抵抗が20μΩ・cm以下である金属からなることを特徴とする請求項4〜6のいずれか1項に記載の複合微粒子の製造方法。   The method for producing composite fine particles according to any one of claims 4 to 6, wherein the ultrafine metal particles are made of a metal having a specific resistance of 20 µΩ · cm or less at 20 ° C. 請求項1〜3のいずれか1項に記載の複合微粒子を含有する膜。   The film | membrane containing the composite fine particle of any one of Claims 1-3. 請求項4〜7のいずれか1項に記載の方法で製造された複合微粒子を含有する膜。   The film | membrane containing the composite fine particle manufactured by the method of any one of Claims 4-7.
JP2004082161A 2004-03-22 2004-03-22 Composite fine particle, manufacturing method therefor, and film using the particle Pending JP2005264284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004082161A JP2005264284A (en) 2004-03-22 2004-03-22 Composite fine particle, manufacturing method therefor, and film using the particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004082161A JP2005264284A (en) 2004-03-22 2004-03-22 Composite fine particle, manufacturing method therefor, and film using the particle

Publications (1)

Publication Number Publication Date
JP2005264284A true JP2005264284A (en) 2005-09-29

Family

ID=35089135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004082161A Pending JP2005264284A (en) 2004-03-22 2004-03-22 Composite fine particle, manufacturing method therefor, and film using the particle

Country Status (1)

Country Link
JP (1) JP2005264284A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179785A (en) * 2005-12-27 2007-07-12 Sanyo Chem Ind Ltd Method of manufacturing conductive fine particles
JP2007179781A (en) * 2005-12-27 2007-07-12 Sanyo Chem Ind Ltd Method of manufacturing conductive fine particles
JP2008147625A (en) * 2006-10-13 2008-06-26 Toyota Motor Engineering & Manufacturing North America Inc Homogeneous thermoelectric nanocomposite material using core-shell nanoparticles
JP2009170320A (en) * 2008-01-17 2009-07-30 Toda Kogyo Corp Conductive particle powder
JP2010033911A (en) * 2008-07-29 2010-02-12 Hiroshima Industrial Promotion Organization Conductive particle and conductive material
JP2013065576A (en) * 2012-12-27 2013-04-11 Toda Kogyo Corp Conductive particle powder
JP2014096371A (en) * 2013-12-05 2014-05-22 Hiroshima Industrial Promotion Organization Conductive particle
JP2017128809A (en) * 2017-02-15 2017-07-27 東洋製罐グループホールディングス株式会社 Silver ultrafine particle-containing dispersion liquid and method for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179785A (en) * 2005-12-27 2007-07-12 Sanyo Chem Ind Ltd Method of manufacturing conductive fine particles
JP2007179781A (en) * 2005-12-27 2007-07-12 Sanyo Chem Ind Ltd Method of manufacturing conductive fine particles
JP2008147625A (en) * 2006-10-13 2008-06-26 Toyota Motor Engineering & Manufacturing North America Inc Homogeneous thermoelectric nanocomposite material using core-shell nanoparticles
JP2009170320A (en) * 2008-01-17 2009-07-30 Toda Kogyo Corp Conductive particle powder
JP2010033911A (en) * 2008-07-29 2010-02-12 Hiroshima Industrial Promotion Organization Conductive particle and conductive material
JP2013065576A (en) * 2012-12-27 2013-04-11 Toda Kogyo Corp Conductive particle powder
JP2014096371A (en) * 2013-12-05 2014-05-22 Hiroshima Industrial Promotion Organization Conductive particle
JP2017128809A (en) * 2017-02-15 2017-07-27 東洋製罐グループホールディングス株式会社 Silver ultrafine particle-containing dispersion liquid and method for producing the same

Similar Documents

Publication Publication Date Title
Zhu et al. Sonochemical method for the preparation of monodisperse spherical and rectangular lead selenide nanoparticles
US10481301B2 (en) Nanometric tin-containing metal oxide particle and dispersion, and preparation method and application thereof
Saravanan et al. Synthesis, structural and optical properties of PVP encapsulated CdS nanoparticles
TWI732752B (en) Visible light response type photocatalyst titanium oxide microparticle dispersion liquid, its production method, and member having a photocatalyst film on the surface
US20050126338A1 (en) Zinc comprising nanoparticles and related nanotechnology
JP2016172829A (en) Coated semiconductor nanoparticle and method for producing the same
Han et al. Control of electrical conductivity of highly stacked zinc oxide nanocrystals by ultraviolet treatment
Liu et al. A simple two-step method to fabricate highly transparent ITO/polymer nanocomposite films
JP2005226008A (en) Dispersion for forming solar radiation-shielding body, and solar radiation-shielding body and method for producing the same
JPWO2018047694A1 (en) Visible light responsive photocatalyst titanium oxide fine particle mixture, dispersion liquid thereof, method of producing dispersion liquid, photocatalyst thin film, and member having photocatalyst thin film on the surface
JPWO2015190257A1 (en) Semiconductor nanoparticle assembly and manufacturing method thereof
Ma et al. Luminescence enhancement and quenching in ZnS: Mn by Au nanoparticles
JP2005264284A (en) Composite fine particle, manufacturing method therefor, and film using the particle
JP2006299087A (en) Coating liquid for forming sunlight-shielding film and sunlight-shielding film and substrate having sunlight-shielding function
Kalpana et al. Enhancement of photocatalytic dye degradation efficiency of ZnO/Ag film deposited on flexible stainless steel meshes through g-C3N4 addition
Belec et al. Inherent surface properties of adsorbent-free ultrathin Bi2Se3 topological insulator platelets
JP7088082B2 (en) A method for producing a titanium oxide fine particle mixture, a dispersion thereof, a photocatalyst thin film, a member having a photocatalyst thin film on the surface, and a titanium oxide fine particle dispersion.
JP4634670B2 (en) Composite modified metal chalcogenide ultrafine particles
WO2020179517A1 (en) Titanium oxide fine particles, dispersion thereof, and method for producing dispersion
WO2008033227A2 (en) Optically clear nanoparticle colloidal suspensions and method of making thereof
JP6171733B2 (en) Heat ray shielding dispersion forming coating solution and heat ray shielding body
EP3362511B1 (en) Solution-processable hri inorganic/organic hybrid optical films
JP7020223B2 (en) Metal oxide fine particles and their manufacturing method, dispersion liquid for forming an infrared shielding film and its manufacturing method, a method for forming an infrared shielding film, and a base material with an infrared shielding film.
JP2009046609A (en) Coating liquid for forming heat ray and uv ray shielding film, heat ray and uv ray shielding film, and heat ray and uv ray shielding substrate
JP2012082109A (en) Method for producing tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material, tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material and dispersion for forming highly heat-resistant heat ray-shielding material, and highly heat-resistant heat ray-shielding material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061206