JP2005263716A - Method for producing cyanoalkoxy compound - Google Patents

Method for producing cyanoalkoxy compound Download PDF

Info

Publication number
JP2005263716A
JP2005263716A JP2004080218A JP2004080218A JP2005263716A JP 2005263716 A JP2005263716 A JP 2005263716A JP 2004080218 A JP2004080218 A JP 2004080218A JP 2004080218 A JP2004080218 A JP 2004080218A JP 2005263716 A JP2005263716 A JP 2005263716A
Authority
JP
Japan
Prior art keywords
reaction
cyanoalkoxy
compound
unsaturated nitrile
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004080218A
Other languages
Japanese (ja)
Inventor
Masashi Yamaguchi
正志 山口
Hisahide Takamoto
尚英 高本
Hiroyoshi Endou
浩悦 遠藤
Jun Takahara
潤 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004080218A priority Critical patent/JP2005263716A/en
Publication of JP2005263716A publication Critical patent/JP2005263716A/en
Pending legal-status Critical Current

Links

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a cyanoalkoxy compound in a high yield by an industrially safe method. <P>SOLUTION: In the method for producing a cyanoalkoxy compound by reacting a polyol containing three or more hydroxy groups with an α,β-unsaturated nitrile, the reaction is carried out while maintaining the concentration of the α,β-unsaturated nitrile in a reaction solution ≤30 wt.%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はシアノアルコキシ基を有する化合物の製造方法に関する。詳しくは、水酸基を三個以上有するポリオールとα,β−不飽和ニトリルとを反応させてシアノアルコキシ化合物を製造する反応を、高収率で且つ安全に行う方法に関するものである。   The present invention relates to a method for producing a compound having a cyanoalkoxy group. More specifically, the present invention relates to a method for safely performing a reaction for producing a cyanoalkoxy compound by reacting a polyol having three or more hydroxyl groups with an α, β-unsaturated nitrile in a high yield.

シアノアルコキシ化合物は、ポリアミド、ポリイミド、エポキシ樹脂の原料モノマーであるアミノアルコキシ化合物の原料として利用されている。
シアノアルコキシ化合物の製造方法として一般的なものは、シアノエチレーションと呼ばれるアルコール水酸基のα,β−不飽和ニトリルへのマイケル付加による方法である。
この反応は大きな発熱を伴うことから、一般的に塩基触媒を含むアルコール溶液にα,
β−不飽和ニトリルを少量ずつ添加することにより行われる。また、反応中にα,β−不
飽和ニトリルが重合しやすいことから、比較的低温(室温〜30℃)で反応を行うことが多い。特許文献1には種々のポリオールに対するシアノエチレーションの例が開示されているが、何れのポリオールに対しても20〜30℃において1〜2時間かけてα,β−不飽和ニトリルを滴下して反応を行っている。
米国特許発明第2401607号明細書
Cyanoalkoxy compounds are used as raw materials for aminoalkoxy compounds, which are raw material monomers for polyamide, polyimide, and epoxy resins.
A general method for producing a cyanoalkoxy compound is a method called Michael addition by adding a hydroxyl group of an alcohol to an α, β-unsaturated nitrile.
Since this reaction involves a large exotherm, α,
This is done by adding the β-unsaturated nitrile in small portions. Further, since α, β-unsaturated nitrile is easily polymerized during the reaction, the reaction is often performed at a relatively low temperature (room temperature to 30 ° C.). Patent Document 1 discloses examples of cyanoethylation for various polyols, and α, β-unsaturated nitriles are added dropwise to any polyol at 20 to 30 ° C. over 1 to 2 hours. The reaction is going on.
US Patent No. 2401607

一方、本発明者らが、種々のポリオールを原料として特許文献1記載と同様の反応条件にて反応を行ったところ、水酸基を二個有するジオール(例えばエチレングリコール)を原料とした場合には反応が穏やかに進行し、記載の通り反応液の温度を常に30℃以下に保つことが可能であったが、水酸基を三個以上有するポリオールを原料とした場合には、滴下終了から暫くした(30分〜1時間)ところで大きな発熱が生じ、反応液の温度が急上昇する(20℃以上も上がる)という現象が観測された。さらに、温度上昇と同時にα,β−不飽和ニトリルの重合物生成による反応液の着色が観測された。シアノアルコキシ化合物を工業的に生産する場合、このような短時間における大きな発熱は暴走反応の原因となり危険であるばかりでなく、α,β不飽和ニトリルの重合に伴う製品の品質悪化、さらに反応収率低下にもつながることから、反応を徐々に進行させることにより単位時間当たりの発熱量を低減させる必要がある。   On the other hand, when the present inventors reacted with various polyols as raw materials under the same reaction conditions as described in Patent Document 1, when a diol having two hydroxyl groups (for example, ethylene glycol) was used as a raw material, the reaction was performed. As described, it was possible to keep the temperature of the reaction solution at 30 ° C. or lower. However, when a polyol having three or more hydroxyl groups was used as a raw material, it was a while after the completion of dropping (30 A phenomenon was observed in which a large exotherm occurred and the temperature of the reaction solution rapidly increased (increased by 20 ° C. or more). Furthermore, coloration of the reaction solution due to the formation of a polymer of α, β-unsaturated nitrile was observed simultaneously with the temperature rise. When industrially producing cyanoalkoxy compounds, such a large exothermic heat in a short period of time is not only dangerous and causes a runaway reaction, but also the product quality deteriorates due to polymerization of α, β-unsaturated nitriles. Since this also leads to a decrease in the rate, it is necessary to reduce the calorific value per unit time by advancing the reaction gradually.

本発明の目的は、着色の少ない高品質のシアノアルコキシ化合物を、高収率・高選択率で且つ工業的に安全に製造する方法を提供することにある。   An object of the present invention is to provide a method for producing a high-quality cyanoalkoxy compound with little coloration in an industrially safe manner with high yield and high selectivity.

本発明者らは、かかる上記問題点を解決すべく鋭意検討を重ねた結果、水酸基を三つ以上有するポリオールを原料とした場合、水酸基を二つ有するジオールを原料とした時と比較してα,β−不飽和ニトリルとの反応速度が非常に遅く、その結果として滴下したα,β−不飽和ニトリルがほとんど反応せずに溶液中に残っていることをつきとめた。さらに、反応を続けると突然爆発的に反応が始まり、溶液中に存在するα,β−不飽和ニトリルのほとんど全てが短時間に反応し、これが急激な温度上昇の原因であることをつきとめた。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that when a polyol having three or more hydroxyl groups is used as a raw material, compared to when a diol having two hydroxyl groups is used as a raw material, It was found that the reaction rate with .beta.-unsaturated nitrile was very slow, and as a result, the dropped .alpha.,. Beta.-unsaturated nitrile remained in the solution with little reaction. Furthermore, when the reaction was continued, the reaction suddenly started explosively, and almost all of the α, β-unsaturated nitrile present in the solution reacted in a short time, and it was found that this was a cause of a rapid temperature rise.

これらの結果を基に検討を重ねた結果、シアノアルコキシ化合物を製造する際、反応溶液中のα,β−不飽和ニトリルの濃度を特定の範囲に維持しながら反応させることにより、高品質のシアノアルコキシ化合物を、工業的に安全な方法で製造できることを見出し、
工業的に適用可能な方法を完成するに至った。
即ち、本発明の要旨は、三個以上の水酸基を有するポリオールとα,β−不飽和ニトリルとを反応させてシアノアルコキシ化合物を製造する方法において、反応溶液中のα,β−不飽和ニトリルの濃度を30重量%以下に維持しながら反応させることを特徴とする、シアノアルコキシ化合物の製造方法、に存する。
As a result of repeated studies based on these results, when producing a cyanoalkoxy compound, a high-quality cyano compound is obtained by reacting while maintaining the concentration of α, β-unsaturated nitrile in the reaction solution within a specific range. Discovered that an alkoxy compound can be produced in an industrially safe manner,
An industrially applicable method has been completed.
That is, the gist of the present invention is that in the method for producing a cyanoalkoxy compound by reacting a polyol having three or more hydroxyl groups with an α, β-unsaturated nitrile, the α, β-unsaturated nitrile in the reaction solution is produced. The present invention resides in a method for producing a cyanoalkoxy compound, wherein the reaction is carried out while maintaining the concentration at 30% by weight or less.

本発明の方法は、溶液中のα,β−不飽和ニトリルの濃度をある特定の範囲に保つことによって、急に反応が始まった場合にも溶液中のα,β−不飽和ニトリルが全て消費されたところで反応が停止するため、反応熱に伴う温度上昇を制限することが可能である。そのため、反応温度の制御が容易となり、反応が暴走する恐れが無い安全な製造法である。さらに、反応温度の制御をより厳密に行うことが可能であるため、温度上昇に伴って生成するα,β−不飽和ニトリルの重合物の生成を抑制し、高品質のシアノアルコキシ化合物を製造できる点で従来法より有利である。   By maintaining the concentration of α, β-unsaturated nitrile in the solution within a certain range, the method of the present invention consumes all of the α, β-unsaturated nitrile in the solution even when the reaction suddenly starts. Since the reaction stops when it is done, it is possible to limit the temperature rise accompanying the reaction heat. Therefore, it is a safe manufacturing method that makes it easy to control the reaction temperature and does not cause the reaction to run away. Furthermore, since the reaction temperature can be controlled more strictly, the production of a polymer of α, β-unsaturated nitrile generated as the temperature rises can be suppressed, and a high-quality cyanoalkoxy compound can be produced. This is advantageous over conventional methods.

本発明の方法によれば、シアノアルコキシ化合物を、高収率で且つ工業的に安全な方法で製造することができる。   According to the method of the present invention, a cyanoalkoxy compound can be produced in a high yield and industrially safe manner.

<3個以上の水酸基を有するポリオール>
三個以上の水酸基を有するポリオールとしては、脂肪族、脂環式あるいは芳香族ポリオールのうち、任意のものが使用できる。具体的には、グリセロール、トリメチロールエタン、トリメチロールプロパン、1,2,7−ヘプタントリオール、1,2,8−オクタントリオール等の炭素数3以上10以下の3価脂肪族アルコール;1,2,3−シクロヘキサントリオール、1,3,5−シクロヘキサントリオール等の炭素数6以上20以下の3価脂環式アルコール;ピロガロール等の炭素数6以上20以下の3価芳香族アルコール;ペンタエリスリトール等の炭素数3以上10以下の4価脂肪族アルコール;等が挙げられる。
<Polyol having 3 or more hydroxyl groups>
As the polyol having three or more hydroxyl groups, any aliphatic, alicyclic or aromatic polyol can be used. Specifically, a trivalent aliphatic alcohol having 3 to 10 carbon atoms such as glycerol, trimethylolethane, trimethylolpropane, 1,2,7-heptanetriol, 1,2,8-octanetriol; Trivalent alicyclic alcohols having 6 to 20 carbon atoms such as 1,3-cyclohexanetriol, 1,3,5-cyclohexanetriol; Trivalent aromatic alcohols having 6 to 20 carbon atoms such as pyrogallol; Pentaerythritol, etc. A tetravalent aliphatic alcohol having 3 to 10 carbon atoms; and the like.

中でも、グリセロール、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトールが、原料を比較的安価に入手しやすい点で好ましい。
<α,β−不飽和ニトリル>
α,β−不飽和ニトリルとしては、シアノ基以外の炭素数が通常 2以上、4以下、好
ましくは3以下のものが用いられる。具体的には、アクリロニトリル、メタクリロニトリル、cis−クロトノニトリル、trans−クロトノニトリル、フマロニトリル、マレオニトリル、2−メチル−2−ブテンニトリル、2−ペンテンニトリル等が挙げられ、アクリロニトリル、メタクリルニトリルが好ましい。
Of these, glycerol, trimethylolethane, trimethylolpropane, and pentaerythritol are preferable because they can be easily obtained at a relatively low cost.
<Α, β-unsaturated nitrile>
As the α, β-unsaturated nitrile, those having usually 2 or more and 4 or less, preferably 3 or less carbon atoms other than the cyano group are used. Specific examples include acrylonitrile, methacrylonitrile, cis-crotononitrile, trans-crotononitrile, fumaronitrile, maleonitrile, 2-methyl-2-butenenitrile, 2-pentenenitrile, and acrylonitrile and methacrylonitrile. preferable.

<塩基性触媒>
塩基性触媒としては、特に制限はないが、Na、K等のアルカリ金属、水酸化ナトリウム
、水酸化リチウム等のアルカリ金属の水酸化物、ナトリウムメトキシド、ナトリウムブトキシド等のアルカリ金属のアルコキシド、陰イオン交換樹脂などが例示される。
塩基性触媒の使用量は、アルカリ金属含有触媒を使用する場合、アルカリ金属の、原料アルコールの水酸基のモル数に対する比として、下限が通常、0.0005以上、好ましくは0.001以上であり、上限が通常、0.1以下、好ましくは0.01以下である。
<Basic catalyst>
The basic catalyst is not particularly limited, but includes alkali metals such as Na and K, alkali metal hydroxides such as sodium hydroxide and lithium hydroxide, alkali metal alkoxides such as sodium methoxide and sodium butoxide, and negative ions. An ion exchange resin etc. are illustrated.
When using an alkali metal-containing catalyst, the use amount of the basic catalyst is usually 0.0005 or more, preferably 0.001 or more, as a ratio of alkali metal to the number of moles of hydroxyl groups of the raw material alcohol, The upper limit is usually 0.1 or less, preferably 0.01 or less.

<三個以上の水酸基を有するポリオールとα,β−不飽和ニトリルの仕込み比>
反応終了時における仕込み量の合計は、三個以上の水酸基を有するポリオールの水酸基とα,β−不飽和ニトリルのオレフィン数が同モル数に近いほどよく、どちらが小過剰であってもよい。具体的には三個以上の水酸基を有するポリオールの水酸基に対し、α,β
−不飽和ニトリルのオレフィン数の下限が、通常0.8以上、好ましくは1.0以上であり、上限が通常5.0以下、好ましくは1.5以下である。
<Feed ratio of polyol having three or more hydroxyl groups and α, β-unsaturated nitrile>
The total charged amount at the end of the reaction is better as the number of olefins of the polyol having three or more hydroxyl groups and the α, β-unsaturated nitrile is closer to the same number of moles, which may be a little excessive. Specifically, α, β with respect to the hydroxyl group of a polyol having three or more hydroxyl groups.
-The lower limit of the number of olefins of the unsaturated nitrile is usually 0.8 or more, preferably 1.0 or more, and the upper limit is usually 5.0 or less, preferably 1.5 or less.

<反応>
反応は、通常、上記塩基性触媒を含有するポリオール液相中に、α,β−不飽和ニトリルを少量ずつ添加する方法により行う。
本発明においては、反応溶液中のα,β−不飽和ニトリルの濃度が、通常0.01重量%以上、好ましくは0.05重量%以上、より好ましくは0.1重量%以上であり、上限が30重量%以下、好ましくは20重量%以下、より好ましくは10重量%以下になるよう維持することが必要である。
<Reaction>
The reaction is usually carried out by a method in which α, β-unsaturated nitrile is added little by little to the polyol liquid phase containing the basic catalyst.
In the present invention, the concentration of α, β-unsaturated nitrile in the reaction solution is usually 0.01% by weight or more, preferably 0.05% by weight or more, more preferably 0.1% by weight or more. Is not more than 30% by weight, preferably not more than 20% by weight, more preferably not more than 10% by weight.

この量が少なすぎると反応速度が遅くなり、反応終了までの時間が長くなる傾向があり、また多すぎると短時間に反応が進行し、大きな発熱により反応液の温度制御が困難となる傾向がある。
α,β−不飽和ニトリルの濃度を上記範囲内に維持するためには、ポリオールとα,β−不飽和ニトリルとの反応速度に応じて、α,β−不飽和ニトリルの添加速度をコントロールする方法、あるいは、後述する溶媒を使用する方法などが挙げられる。
If this amount is too small, the reaction rate tends to be slow, and the time until completion of the reaction tends to be long.If the amount is too large, the reaction proceeds in a short time, and the temperature control of the reaction solution tends to be difficult due to large heat generation. is there.
In order to maintain the concentration of the α, β-unsaturated nitrile within the above range, the addition rate of the α, β-unsaturated nitrile is controlled according to the reaction rate of the polyol and the α, β-unsaturated nitrile. Examples thereof include a method and a method using a solvent described later.

反応時の温度は、下限が通常0℃以上、好ましくは 10℃以上、上限が通常80℃以下、好ましくは70℃以下である。温度が低すぎると反応速度が遅くなる傾向があり、高すぎるとα,β−不飽和ニトリルの重合が起こり、液の着色の原因となる。
反応は液相で行い、通常、無溶媒で実施することが可能であるが、必要に応じて溶媒を使用してもよい。その場合、例えば、ヘキサン、ヘプタン等の炭素数が通常6以上12以下の脂肪族炭化水素;ベンゼン、トルエン等の炭素数が通常6以上12以下の芳香族炭化水素;テトラヒドロフラン、エチレングリコールジメチルエーテル等の炭素数が通常4以上12以下のエーテル類;アセトン、メチルイソブチルケトン等の炭素数が通常3以上10以下のケトン類;の他、ジメチルスルホキシド、ジメチルホルムアミド、アセトニトリル、およびこれらの混合溶媒が用いられる。
The lower limit of the temperature during the reaction is usually 0 ° C or higher, preferably 10 ° C or higher, and the upper limit is usually 80 ° C or lower, preferably 70 ° C or lower. If the temperature is too low, the reaction rate tends to be slow, and if it is too high, polymerization of the α, β-unsaturated nitrile occurs, causing the liquid to be colored.
The reaction is carried out in a liquid phase, and can usually be carried out without a solvent, but a solvent may be used if necessary. In that case, for example, an aliphatic hydrocarbon such as hexane and heptane, usually having 6 to 12 carbon atoms; an aromatic hydrocarbon such as benzene and toluene, usually having 6 to 12 carbon atoms; tetrahydrofuran, ethylene glycol dimethyl ether, etc. Ethers having usually 4 to 12 carbon atoms; ketones usually having 3 to 10 carbon atoms such as acetone and methyl isobutyl ketone; and dimethyl sulfoxide, dimethylformamide, acetonitrile, and mixed solvents thereof are used. .

この場合、溶媒の使用量は、原料のポリオールに対して、通常100重量倍以下、好ましくは10重量倍以下である。
また、反応は通常、常圧で行うことができるが、加圧下または減圧下で行うこともできる。
反応雰囲気は、大気中でもまた不活性ガス中でもよい。
In this case, the amount of the solvent used is usually 100 times by weight or less, preferably 10 times by weight or less with respect to the raw material polyol.
The reaction can usually be carried out at normal pressure, but can also be carried out under pressure or under reduced pressure.
The reaction atmosphere may be air or an inert gas.

<反応後処理>
本発明の製造方法で得られたシアノアルコキシ化合物を水添してアミノアルコキシ化合物を製造する場合、上記方法により得られた反応液を特に精製することなく、水添反応に用いることができる。また、必要に応じて、一般の操作方法、例えば、蒸留分離、抽出、洗浄等により精製することも可能である。
<Post-reaction treatment>
When the aminoalkoxy compound is produced by hydrogenating the cyanoalkoxy compound obtained by the production method of the present invention, the reaction solution obtained by the above method can be used for the hydrogenation reaction without any particular purification. Moreover, it is also possible to refine | purify by a general operation method, for example, distillation separation, extraction, washing | cleaning etc. as needed.

<反応成績>
反応収率および水酸基基準の転化率は次式で定義される。
<Reaction results>
The reaction yield and the conversion rate based on the hydroxyl group are defined by the following formula.

Figure 2005263716
Figure 2005263716

以下に実施例により本発明をさらに具体的に説明するが、本発明はその要旨を超えない
限り、これらの実施例によって限定されるものではない。
実施例1
トリメチロールプロパン20gにナトリウムメトキシド0.15gを80℃で溶解させた後、60℃に降温した。これに攪拌しながら、アクリロニトリル17gを反応混合物が55〜65℃を保つように約1時間かけて滴下した。反応液を30℃まで冷却した後、残りのアクリロニトリル7.5gを30分かけて滴下した。滴下後、室温で2時間攪拌し、1,1,1−トリス(2−シアノエトキシメチル)プロパンを得た。滴下中の反応液の温度はオイルバスの温度よりも常に1〜5℃高く、常に反応に伴う発熱が観測されたが、滴下終了後にはオイルバスの温度よりも若干低くなり、大きな発熱は観測されなかった。尚、反応中のアクリロニトリルの濃度を分析した結果、常に10重量%以下に保たれており、滴下したアクリロニトリルが短時間で反応していることが確認された。反応収率は94%であり、トリメチロールプロパンの水酸基基準の転化率は96%であった。得られた液は微黄色透明であり、メタノールで100倍希釈した溶液のAPHAは11であった。
EXAMPLES The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples unless it exceeds the gist.
Example 1
After dissolving 0.15 g of sodium methoxide at 80 ° C. in 20 g of trimethylolpropane, the temperature was lowered to 60 ° C. While stirring, 17 g of acrylonitrile was added dropwise over about 1 hour so that the reaction mixture kept at 55 to 65 ° C. After cooling the reaction solution to 30 ° C., the remaining 7.5 g of acrylonitrile was added dropwise over 30 minutes. After the dropwise addition, the mixture was stirred at room temperature for 2 hours to obtain 1,1,1-tris (2-cyanoethoxymethyl) propane. The temperature of the reaction liquid during the dripping was always 1-5 ° C higher than the temperature of the oil bath, and the exotherm accompanying the reaction was always observed, but after the completion of the dripping, it was slightly lower than the temperature of the oil bath, and a large exotherm was observed. Was not. As a result of analyzing the concentration of acrylonitrile during the reaction, it was always kept at 10% by weight or less, and it was confirmed that the dropped acrylonitrile reacted in a short time. The reaction yield was 94%, and the conversion ratio of trimethylolpropane based on the hydroxyl group was 96%. The obtained liquid was slightly yellow and transparent, and APHA of the solution diluted 100 times with methanol was 11.

比較例1
反応温度55〜65℃においてアクリロニトリル6.0gを30分かけて滴下し、反応液を30℃まで冷却した後、残りのアクリロニトリル18.5gを1時間かけて滴下した以外は、実施例1と同様に実施した。但し、滴下終了から30分後に大きな発熱が観測され、反応液の温度が一時的に50℃まで上昇した。尚、反応中のアクリロニトリルの濃度を分析した結果、滴下中に徐々に濃度が上昇し、滴下終了後には41重量%に達していたことから、滴下したアクリロニトリルのほとんど反応せずに残っていることが確認された。大きな発熱後はアクリロニトリルの濃度は1重量%以下であった。その結果、反応収率は76%であり、トリメチロールプロパンの水酸基基準の転化率は89%であった。得られた液は黄色でアクリロニトリルの重合物と思われる不溶物が含まれていた。メタノールで100倍希釈した液のAPHAは30であった。
Comparative Example 1
In the same manner as in Example 1 except that 6.0 g of acrylonitrile was added dropwise over 30 minutes at a reaction temperature of 55 to 65 ° C., the reaction solution was cooled to 30 ° C., and then 18.5 g of the remaining acrylonitrile was added dropwise over 1 hour. Implemented. However, a large exotherm was observed 30 minutes after the completion of dropping, and the temperature of the reaction solution temporarily increased to 50 ° C. As a result of analyzing the concentration of acrylonitrile during the reaction, the concentration gradually increased during the dropping, and reached 41% by weight after the dropping was completed, so that the dropped acrylonitrile remained almost unreacted. Was confirmed. After a large exotherm, the concentration of acrylonitrile was 1% by weight or less. As a result, the reaction yield was 76%, and the conversion ratio of trimethylolpropane based on the hydroxyl group was 89%. The obtained liquid was yellow and contained an insoluble material that was considered to be a polymer of acrylonitrile. APHA of the solution diluted 100 times with methanol was 30.

実施例2
グリセロール15gにナトリウムメトキシド0.33gを80℃で溶解させた後、60℃に降温した。これに攪拌しながら、アクリロニトリル22gを反応混合物が55〜65℃を保つように約1時間かけて滴下した。反応液を30℃まで冷却した後、残りのアクリロニトリル5.0gを30分かけて滴下し、1,2,3−トリス(3−シアノエトキシ)プロパンを得た。滴下中の反応液の温度はオイルバスの温度よりも常に1〜5℃高く、常に反応に伴う発熱が観測されたが、滴下終了後にはオイルバスの温度よりも若干低くなり、大きな発熱は観測されなかった。尚、反応中のアクリロニトリルの濃度を分析した結果、常に10重量%以下に保たれており、滴下したアクリロニトリルがすぐに反応していることが確認された。反応収率は67%であり、グリセロールの水酸基基準の転化率は85%であった。得られた液は微黄色透明であり、メタノールで100倍希釈した溶液のAPHAは13であった。
Example 2
After dissolving 0.33 g of sodium methoxide at 80 ° C. in 15 g of glycerol, the temperature was lowered to 60 ° C. While stirring, 22 g of acrylonitrile was added dropwise over about 1 hour so that the reaction mixture kept at 55 to 65 ° C. After the reaction solution was cooled to 30 ° C., the remaining 5.0 g of acrylonitrile was added dropwise over 30 minutes to obtain 1,2,3-tris (3-cyanoethoxy) propane. The temperature of the reaction liquid during the dripping was always 1-5 ° C higher than the temperature of the oil bath, and the exotherm accompanying the reaction was always observed, but after the completion of the dripping, it was slightly lower than the temperature of the oil bath, and a large exotherm was observed. Was not. As a result of analyzing the concentration of acrylonitrile during the reaction, it was always kept at 10% by weight or less, and it was confirmed that the dropped acrylonitrile reacted immediately. The reaction yield was 67%, and the conversion rate of glycerol based on the hydroxyl group was 85%. The obtained liquid was slightly yellow and transparent, and APHA of the solution diluted 100 times with methanol was 13.

比較例2
反応開始から滴下終了まで30℃に維持した以外は、実施例2と同様に実施した。滴下終了時および滴下終了後1時間後に反応液の分析を行ったところ、反応収率は0%であり、原料グリセロールの水酸基の極一部だけしか反応していないことが確認された。その際のアクリロニトリルの濃度は55重量%であった。滴下終了後2時間経過したところで、50℃に反応温度を上げたところ、急激に発熱が起こり、反応液の温度は一時的に87℃まで上昇した。発熱は短時間で終わり、その後のアクリロニトリルの濃度は1重量%以下であった。その結果、反応収率は39%であり、グリセロールの水酸基基準の転化率は71%であった。得られた液は黄色でアクリロニトリルの重合物と思われる不溶物が含まれていた。メタノールで100倍希釈した液のAPHAは20であった。
Comparative Example 2
The same operation as in Example 2 was performed except that the temperature was maintained at 30 ° C. from the start of the reaction to the end of the dropping. When the reaction solution was analyzed at the end of dropping and 1 hour after the end of dropping, the reaction yield was 0%, and it was confirmed that only a very small part of the hydroxyl groups of the raw material glycerol had reacted. The concentration of acrylonitrile at that time was 55% by weight. When the reaction temperature was raised to 50 ° C. after 2 hours from the end of the dropping, heat was suddenly generated, and the temperature of the reaction solution temporarily increased to 87 ° C. The exotherm ended in a short time, and the subsequent acrylonitrile concentration was 1% by weight or less. As a result, the reaction yield was 39%, and the conversion rate of glycerol based on the hydroxyl group was 71%. The obtained liquid was yellow and contained an insoluble material that was considered to be a polymer of acrylonitrile. APHA of the solution diluted 100 times with methanol was 20.

本発明の方法によれば、シアノアルコキシ化合物を、高収率で且つ工業的に安全な方法で製造することができる。
According to the method of the present invention, a cyanoalkoxy compound can be produced in a high yield and industrially safe manner.

Claims (3)

三個以上の水酸基を有するポリオールとα,β−不飽和ニトリルとを反応させてシアノアルコキシ化合物を製造する方法において、反応溶液中のα,β−不飽和ニトリルの濃度を30重量%以下に維持しながら反応を行うことを特徴とするシアノアルコキシ化合物の製造方法。   In a method for producing a cyanoalkoxy compound by reacting a polyol having three or more hydroxyl groups with an α, β-unsaturated nitrile, the concentration of the α, β-unsaturated nitrile in the reaction solution is maintained at 30% by weight or less. A process for producing a cyanoalkoxy compound, wherein the reaction is carried out while the reaction is being carried out. 反応を塩基性触媒の存在下に行う、請求項1に記載のシアノアルコキシ化合物の製造方法。   The method for producing a cyanoalkoxy compound according to claim 1, wherein the reaction is carried out in the presence of a basic catalyst. 反応温度が、0℃以上80℃以下である請求項1または2に記載のシアノアルコキシ化合物の製造方法。   The method for producing a cyanoalkoxy compound according to claim 1 or 2, wherein the reaction temperature is from 0 ° C to 80 ° C.
JP2004080218A 2004-03-19 2004-03-19 Method for producing cyanoalkoxy compound Pending JP2005263716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004080218A JP2005263716A (en) 2004-03-19 2004-03-19 Method for producing cyanoalkoxy compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004080218A JP2005263716A (en) 2004-03-19 2004-03-19 Method for producing cyanoalkoxy compound

Publications (1)

Publication Number Publication Date
JP2005263716A true JP2005263716A (en) 2005-09-29

Family

ID=35088623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004080218A Pending JP2005263716A (en) 2004-03-19 2004-03-19 Method for producing cyanoalkoxy compound

Country Status (1)

Country Link
JP (1) JP2005263716A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128462A1 (en) * 2011-03-18 2012-09-27 주식회사 엘지화학 Method for preparing a dinitrile compound
JP2013075837A (en) * 2011-09-29 2013-04-25 Fujifilm Corp Manufacturing method for nitrile compound
US20130316252A1 (en) * 2012-05-22 2013-11-28 Lg Chem, Ltd. Non-Aqueous Electrolyte Solution For Lithium Secondary Battery And Lithium Secondary Battery Comprising The Same
CN112898181A (en) * 2019-11-18 2021-06-04 石家庄圣泰化工有限公司 Preparation method of 1,2, 3-tri (2-cyanoxy) propane
CN116606219A (en) * 2023-06-06 2023-08-18 山东永浩新材料科技有限公司 Production method and system of 1,2, 3-tri (cyanoethoxy) propane

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128462A1 (en) * 2011-03-18 2012-09-27 주식회사 엘지화학 Method for preparing a dinitrile compound
CN103429566A (en) * 2011-03-18 2013-12-04 株式会社Lg化学 Method for preparing a dinitrile compound
JP2014519473A (en) * 2011-03-18 2014-08-14 エルジー・ケム・リミテッド Method for producing dinitrile compound
US9394242B2 (en) 2011-03-18 2016-07-19 Lg Chem, Ltd. Method for preparing dinitrile compound
CN103429566B (en) * 2011-03-18 2017-03-22 株式会社Lg化学 Method for preparing a dinitrile compound
JP2013075837A (en) * 2011-09-29 2013-04-25 Fujifilm Corp Manufacturing method for nitrile compound
US20130316252A1 (en) * 2012-05-22 2013-11-28 Lg Chem, Ltd. Non-Aqueous Electrolyte Solution For Lithium Secondary Battery And Lithium Secondary Battery Comprising The Same
CN112898181A (en) * 2019-11-18 2021-06-04 石家庄圣泰化工有限公司 Preparation method of 1,2, 3-tri (2-cyanoxy) propane
CN116606219A (en) * 2023-06-06 2023-08-18 山东永浩新材料科技有限公司 Production method and system of 1,2, 3-tri (cyanoethoxy) propane
CN116606219B (en) * 2023-06-06 2024-02-23 山东永浩新材料科技有限公司 Production method and system of 1,2, 3-tri (cyanoethoxy) propane

Similar Documents

Publication Publication Date Title
US11542277B2 (en) Nitrated hydrocarbons, derivatives, and processes for their manufacture
JP5265116B2 (en) Acrylic modified polybutadiene
CN1252110C (en) Novolac aralkyl resin, its preparing method and composition containing said resin
US20050124778A1 (en) Method of producing novolak resin
JPH0791256B2 (en) Process for producing 1,3,3-trimethyl-5-oxo-cyclohexane-carbonitrile
JP2005263716A (en) Method for producing cyanoalkoxy compound
JPS5984908A (en) Production of p-vinylphenol polymer
JP7355733B2 (en) Composition containing isobornyl (meth)acrylate and method for producing the same
JP6025476B2 (en) Process for producing ethylenically unsaturated group-containing isocyanate compound
EP1772451B1 (en) Process of producing dioxane glycol
JP2005263717A (en) Method for producing cyanoalkoxy compound
JP5109658B2 (en) Method for producing esterified product
JP2013124218A (en) Novel allyl ester compound and method for preparing the same
WO2007083839A1 (en) Method for producing tertiary amine
JP2007055953A (en) Method for producing deuterated cyanohydrin compound
JP2007176881A (en) Method for producing polyfunctional (meth)acrylate
JP5207263B2 (en) Method for producing organic compound
US20100305353A1 (en) Method for producing purified formylcyclopropane compound and intermediate of such formylcyclopropane compound
JP2015044775A (en) METHOD FOR PRODUCING α-METHYLENEALDEHYDE
JP2006160680A (en) Method for producing glycidyl methacrylate
JP2005263718A (en) Method for producing aminoalkoxy compound
CN1506347A (en) Fluoridized benzaldehyde
WO2020021902A1 (en) Method for producing hydrocarbon group-containing vinyl ether polymer by means of radical polymerization
JP6286274B2 (en) Thermosetting composition and cured product
JP2022102229A (en) Process for producing epoxy compound