JP2005263568A - Silicon nitride-based powder, its producing method, and toner external additive - Google Patents

Silicon nitride-based powder, its producing method, and toner external additive Download PDF

Info

Publication number
JP2005263568A
JP2005263568A JP2004079428A JP2004079428A JP2005263568A JP 2005263568 A JP2005263568 A JP 2005263568A JP 2004079428 A JP2004079428 A JP 2004079428A JP 2004079428 A JP2004079428 A JP 2004079428A JP 2005263568 A JP2005263568 A JP 2005263568A
Authority
JP
Japan
Prior art keywords
silicon nitride
less
based powder
powder
nitride powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004079428A
Other languages
Japanese (ja)
Other versions
JP4166181B2 (en
Inventor
Kiyonari Zenba
研也 善場
Masao Tsukijihara
雅夫 築地原
Tetsuo Kaga
鉄夫 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2004079428A priority Critical patent/JP4166181B2/en
Publication of JP2005263568A publication Critical patent/JP2005263568A/en
Application granted granted Critical
Publication of JP4166181B2 publication Critical patent/JP4166181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silicon nitride-based powder which has excellent resistance to hydrolysis and adequate electrostatic charge amount, hardly generates ammonia odors, and contains a small amount of coarse particles; and to provide a method for producing the same, and a toner external additive obtained by using the silicon nitride-based powder. <P>SOLUTION: The silicon nitride-based powder is obtained by treating a silicon nitride powder having an oxide film in an amount of 6-20 mass % expressed in terms of oxygen with a surface treatment agent comprising at least one of a fatty acid or its salt, and characterized in that the average particle diameter is ≤2 μm, the content of coarse particles having particle diameters of ≥25 μm is ≤50 μg/g, and the elution amount of ammonium ions after heating/extracting at 80°C for 15 days is <50 μg per 1 g of the silicon nitride-based powder. Further, the method for producing the silicon nitride-based powder and the toner external additive comprising the silicon nitride-based powder are also provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、耐加水分解性に優れ、アンモニア臭の発生が少なく、適度な帯電量を有し、例えばトナー外添材として好適な窒化珪素質粉末、その製造方法、トナー外添材に関する。   The present invention relates to a silicon nitride powder excellent in hydrolysis resistance, generating little ammonia smell, having an appropriate charge amount, and suitable as, for example, a toner external additive, a method for producing the same, and a toner external additive.

窒化珪素粉末は、耐摩耗性、高強度、破壊靱性、低比重、低熱膨張など優れた特性を有し、産業機械や自動車部品等のエンジニアリングセラミックス焼結体用原料、樹脂等の充填材として使用されており、最近では高硬度の性質を利用し、トナー外添材としての検討が進んでいる。   Silicon nitride powder has excellent properties such as wear resistance, high strength, fracture toughness, low specific gravity, and low thermal expansion, and is used as a raw material for engineering ceramics sintered bodies such as industrial machines and automotive parts, and as a filler for resins, etc. Recently, studies on the use as a toner external additive have been made using the property of high hardness.

従来、トナー外添材としては、疎水性シリカ微粉末(特許文献1)、アナターゼ型酸化チタン(特許文献2)、シリカ微粒子と酸化アルミニウム又は酸化チタン微粒子との混合物(特許文献3)等が知られ、更にはこれらの表面処理物、例えば気相法酸化チタンの疎水化処理物(特許文献4)、酸化アルミニウム被覆酸化チタン(特許文献5)、酸化チタン等のシランカップリング剤による処理物( 特許文献6、7)等が知られている。
特開昭56−128956号公報 特開昭60−112052号公報 特開昭60−238847号公報 特開昭59−52255号公報 特開昭57−79961号公報 特開平4−40467号公報 特開平4−348354号公報
Conventional toner external additives include hydrophobic silica fine powder (Patent Document 1), anatase-type titanium oxide (Patent Document 2), a mixture of silica fine particles and aluminum oxide or titanium oxide fine particles (Patent Document 3), and the like. Further, these surface-treated products, for example, hydrophobized products of vapor-phase titanium oxide (Patent Document 4), aluminum oxide-coated titanium oxide (Patent Document 5), treated with a silane coupling agent such as titanium oxide ( Patent Documents 6 and 7) are known.
JP 56-128956 A JP 60-112052 A JP-A-60-238847 JP 59-52255 A JP-A-57-79961 JP-A-4-40467 JP-A-4-348354

窒化珪素粉末をトナー外添材として用いるには、粒子径が25μm以上の粗粒(以下、単に「粗粒」という。)と、窒化珪素の加水分解性と、帯電量を考慮しておかなければならない。粗粒の存在は、感光体のドラムの表面を傷つけ、加水分解によるアンモニアの発生は異臭と画像濃度に悪影響を与え、また帯電量が適度でないとトナー粒子が飛ばず印刷ができなくなる。   In order to use silicon nitride powder as a toner external additive, coarse particles having a particle diameter of 25 μm or more (hereinafter simply referred to as “coarse particles”), hydrolyzability of silicon nitride, and charge amount must be taken into consideration. I must. The presence of coarse particles damages the surface of the drum of the photoreceptor, and the generation of ammonia by hydrolysis adversely affects the off-flavor and image density. If the charge amount is not appropriate, toner particles do not fly and printing cannot be performed.

窒化珪素粉末の耐加水分解性を向上させるためには表面改質することが必要である。つまり、窒化珪素粉末の表面に酸化膜を形成させ、窒化珪素と水との接触を遮断してアンモニアの発生を抑制すると共に、カップリング剤等で酸化膜表面のヒドロキシル基等の親水基をつぶすことである。また、凝集粒を含め、粗粒を低減することが肝要である。   In order to improve the hydrolysis resistance of the silicon nitride powder, it is necessary to modify the surface. In other words, an oxide film is formed on the surface of the silicon nitride powder, the generation of ammonia is suppressed by blocking the contact between silicon nitride and water, and hydrophilic groups such as hydroxyl groups on the oxide film surface are crushed with a coupling agent or the like. That is. In addition, it is important to reduce coarse particles including agglomerated particles.

酸化膜を形成する方法として、窒化珪素微粉体を湿式酸化処理又は加熱酸化処理をした後粉砕する工程を繰り返し行うことが提案されているが(特許文献8)、工程が長くなりコストアップする。
特開2001−265052号公報
As a method for forming an oxide film, it has been proposed to repeat a process of pulverizing silicon nitride fine powder after wet oxidation or heat oxidation (Patent Document 8), but the process becomes longer and the cost is increased.
JP 2001-265052 A

本発明の目的は、上記に鑑み、耐加水分解性に優れ、粗粒の含有量が低減され、しかも適度な帯電量を有し、特にトナー外添材として好適な窒化珪素質粉末とその製造方法及びトナー外添材を提供することである。本発明の目的は、所定の充填密度、充填厚みで充填された窒化珪素粉末を、所定温度で酸化処理した後、脂肪酸系の表面処理剤で処理することによって達成することができる。   In view of the above, an object of the present invention is to provide a silicon nitride-based powder that is excellent in hydrolysis resistance, has a reduced content of coarse particles, has an appropriate charge amount, and is particularly suitable as a toner external additive. A method and toner external additive are provided. The object of the present invention can be achieved by treating a silicon nitride powder filled with a predetermined packing density and a predetermined thickness with a fatty acid-based surface treatment agent after oxidation treatment at a predetermined temperature.

すなわち、本発明は、酸化膜を有しその量が酸素含有量として6〜20質量%である窒化珪素粉末が、脂肪酸及びその塩の少なくとも一方からなる表面処理剤で処理されており、その平均粒子径が2μm以下、粗粒の含有量が50μg/g以下、80℃で15日間加熱抽出後のアンモニウムイオンの溶出量が窒化珪素質粉末1g当たり50μg未満であることを特徴とする窒化珪素質粉末である。   That is, according to the present invention, the silicon nitride powder having an oxide film and having an oxygen content of 6 to 20% by mass is treated with a surface treatment agent composed of at least one of a fatty acid and a salt thereof. A silicon nitride material having a particle size of 2 μm or less, a coarse particle content of 50 μg / g or less, and an elution amount of ammonium ions after heating and extraction at 80 ° C. for 15 days is less than 50 μg per gram of silicon nitride powder. It is a powder.

また、本発明は、平均粒子径が2μm以下、6μm以上の粒子含有率が1質量%以下である窒化珪素粉末を、充填密度が1g/cm以下、充填厚みが50mm以下にして充填し、それを、酸素を含む雰囲気下、温度1100〜1300℃で加熱処理して窒化珪素粉末に酸化膜を形成させた後、脂肪酸及びその塩の少なくとも一方からなる表面処理剤で処理することを特徴とする窒化珪素質粉末の製造方法である。この場合において、表面処理剤による処理を、表面処理剤の融点以上の温度に加熱して行うことが好ましい。 Further, the present invention is filled with silicon nitride powder having an average particle diameter of 2 μm or less and a particle content of 6 μm or more of 1% by mass or less with a packing density of 1 g / cm 3 or less and a filling thickness of 50 mm or less. A heat treatment is performed at a temperature of 1100 to 1300 ° C. in an oxygen-containing atmosphere to form an oxide film on the silicon nitride powder, and then it is treated with a surface treatment agent comprising at least one of a fatty acid and a salt thereof. This is a method for producing silicon nitride powder. In this case, the treatment with the surface treatment agent is preferably performed by heating to a temperature equal to or higher than the melting point of the surface treatment agent.

さらに、本発明は本発明の窒化珪素質粉末からなることを特徴とするトナー外添材である。   Furthermore, the present invention is a toner external additive comprising the silicon nitride powder of the present invention.

本発明によれば、耐加水分解性に優れ、アンモニア臭の発生が少なく、粗粒の含有量が少ない、適度な帯電量を有する窒化珪素粉末とその製造方法、及び画像濃度の低下や高温高湿下での絵ぼけ(ゴースト画像)等の問題を起こしにくいトナー外添材が提供される。   According to the present invention, silicon nitride powder having excellent hydrolysis resistance, less generation of ammonia odor, low content of coarse particles, an appropriate charge amount, a method for producing the same, and a reduction in image density and high temperature Provided is an external toner additive material which is less likely to cause problems such as a blurred image (ghost image) under humidity.

本発明においては、窒化珪素粉末の加水分解を抑える方法として、窒化珪素粉末表面にSiO等の酸化膜を形成する方法を採用する。酸化膜の存在は、透過型電子顕微鏡によって確認することができ、その存在量は窒化珪素質粉末の酸素含有量を指標として6〜20質量%である。酸素含有量が6質量%未満に相当する酸化膜量では、膜厚が薄いため、次の表面処理工程等で破壊されて耐加水分解性が低下し、また20質量%をこえる酸化膜量では、粗粒が多く残留してしまう。好ましい酸化膜量は、酸素含有量として9〜16質量%である。この値は、特許文献8の1.7質量%よりも著しく多い。 In the present invention, as a method for suppressing the hydrolysis of the silicon nitride powder, a method of forming an oxide film such as SiO 2 on the surface of the silicon nitride powder is employed. The presence of the oxide film can be confirmed by a transmission electron microscope, and the amount of the oxide film is 6 to 20% by mass using the oxygen content of the silicon nitride powder as an index. When the amount of oxide film corresponding to an oxygen content of less than 6% by mass is thin, the film is thin, so that it is destroyed in the next surface treatment process or the like, resulting in a decrease in hydrolysis resistance, and an amount of oxide film exceeding 20% by mass. Many coarse grains remain. A preferable amount of oxide film is 9 to 16% by mass as oxygen content. This value is significantly higher than 1.7% by mass of Patent Document 8.

また、本発明の窒化珪素質粉末は、その平均粒子径が2μm以下、粗粒の含有量が50μg/g以下であることが必要である。これらの条件は、本発明の窒化珪素質粉末の用途がトナー外添材である場合、感光体に傷をつけない許容レベルである。好ましくは、平均粒子径が0.9〜1.5μm、粗粒の含有量が40μg/g以下である。   The silicon nitride powder of the present invention needs to have an average particle diameter of 2 μm or less and a coarse particle content of 50 μg / g or less. These conditions are acceptable levels that do not damage the photoreceptor when the use of the silicon nitride powder of the present invention is an external toner additive. Preferably, the average particle size is 0.9 to 1.5 μm, and the content of coarse particles is 40 μg / g or less.

また、80℃で15日間加熱抽出後のアンモニウムイオンの溶出量が窒化珪素質粉末1g当たり50μg未満(50μg/g未満)であることが必要である。この条件は、本発明の窒化珪素質粉末の用途がトナー外添材である場合、画像濃度の低下や高温高湿下での絵ぼけ(ゴースト画像)等の問題を起こし難く、しかも異臭を許容できる最低レベルである。   Further, it is necessary that the elution amount of ammonium ions after heating and extraction at 80 ° C. for 15 days is less than 50 μg / g of silicon nitride powder (less than 50 μg / g). This condition is such that when the use of the silicon nitride powder of the present invention is an external toner additive, it is difficult to cause problems such as a decrease in image density and a blurred image (ghost image) under high temperature and high humidity, and an unpleasant odor is allowed. The lowest level you can do.

さらには、適度な帯電量を有させるため、脂肪酸及びその塩の少なくとも一方からなる表面処理剤で表面処理されていることが必要である。表面処理を行う程度としては、正帯電及び負帯電のトナー用途とも80μC/g以上の帯電量とすることが好ましい。これを表面処理剤の使用量で示せば、窒化珪素粉末100質量部あたり、0.5〜5質量部、特に1〜2質量部である。表面処理が行われる前の窒化珪素粉末には酸化膜が形成されている(すなわちシラノール基で覆われている)ので負帯電(−20μC/g程度)である。これを帯電させても親水性が強いので放電しやすく、トナー外添材としても、トナー粒子が飛ばずに印刷に不具合が生じる恐れがある。    Furthermore, in order to have an appropriate charge amount, it is necessary that the surface treatment is performed with a surface treatment agent comprising at least one of a fatty acid and a salt thereof. The degree of surface treatment is preferably set to a charge amount of 80 μC / g or more for both positively and negatively charged toner applications. If this is shown by the usage-amount of a surface treating agent, it will be 0.5-5 mass parts per 100 mass parts of silicon nitride powder, especially 1-2 mass parts. Since the silicon nitride powder before the surface treatment has an oxide film (that is, covered with silanol groups), it is negatively charged (about −20 μC / g). Even if it is charged, it has a strong hydrophilicity, so that it is easy to discharge, and even if it is a toner external additive, there is a possibility that the toner particles do not fly and there is a problem in printing.

本発明で用いられる表面処理剤を例示すると、ステアリン酸、ラウリン酸、パルチミン酸等の脂肪酸及びそれらのアルカリ金属塩、アルカリ土類金属塩等である。脂肪酸の具体的をステアリン酸について例示すれば、ステアリン酸ナトリウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛、ステアリン酸アルミニウム、ステアリン酸バリウム、ステアリン酸カリウムなどである。これらの中、ステアリン酸、ステアリン酸マグネシウムが好適である。   Illustrative examples of the surface treating agent used in the present invention include fatty acids such as stearic acid, lauric acid, and palmitic acid, and alkali metal salts and alkaline earth metal salts thereof. Specific examples of fatty acids are stearic acid, sodium stearate, calcium stearate, magnesium stearate, zinc stearate, aluminum stearate, barium stearate, potassium stearate and the like. Of these, stearic acid and magnesium stearate are preferred.

本発明において、粒度は粒度分布測定機(LEEDS&NORTHRUP社製、商品名「MICROTRAC−II、SPA:MODEL7997−20」)を用い、エタノール溶液中で測定した。また、酸素含有量は、酸素/窒素同時分析計(堀場製作所製、商品名「EMGA−620W」)を用い、ニッケルカプセルに試料を入れて測定した。   In the present invention, the particle size was measured in an ethanol solution using a particle size distribution analyzer (manufactured by LEEDS & NORTHUP, trade name “MICROTRAC-II, SPA: MODEL 7997-20”). The oxygen content was measured by putting a sample into a nickel capsule using an oxygen / nitrogen simultaneous analyzer (manufactured by Horiba, Ltd., trade name “EMGA-620W”).

粗粒の含有量は、窒化珪素質粉末50gに、ヘキサメタリン酸ナトリウムの0.2質量%蒸留水250gを加えて10分間超音波分散させ、目開き25μmのJIS篩を通過させ、篩上を採取し、乾燥後、質量を測定して算出した。   The content of the coarse particles is 50 g of silicon nitride powder, 250 g of 0.2 mass% distilled water of sodium hexametaphosphate is added and ultrasonically dispersed for 10 minutes, passed through a JIS sieve having an opening of 25 μm, and the top of the sieve is collected. After drying, the mass was measured and calculated.

アンモニウムイオンの溶出量は、蓋付きのフッ素樹脂製の容器(50ml)に、窒化珪素質粉末2.5gと蒸留水25gを入れて密閉し、80℃設定の乾燥器内で15日間保管し加熱抽出し、イオンクロマト装置(DIONEX社製、商品名「DX−100」)を用いて測定した。   The elution amount of ammonium ions was sealed in a fluororesin container (50 ml) with a lid containing 2.5 g of silicon nitride powder and 25 g of distilled water, stored in a dryer set at 80 ° C. for 15 days, and heated. Extraction was performed using an ion chromatograph (trade name “DX-100”, manufactured by DIONEX).

帯電量は、吸引ブローオフ法によって測定した。すなわち、窒化珪素質粉末と平均粒子径100μmのフェライト粉とを0.1:19.9の質量比でポリエチレン瓶に入れ、手振とうにて200回振とう混合した。この混合粉をファラデーケージに仕込み、混合してから5分後に測定を開始した。測定はファラデーケージ下部からの目開き34μmのメッシュを通じて、吸引装置により窒化珪素質粉末のみを吸引し、3分後、ファラデーケージに残余した電荷量をエレクトロメータにて検出することにより行った。吸引ブローオフ帯電量[μC/g]は、式、{(ファラデーケージ内に残余したフェライト粉の電荷量[μC])/(窒化珪素質粉末の吸引質量[g])}、により算出した。   The charge amount was measured by a suction blow-off method. That is, silicon nitride powder and ferrite powder having an average particle diameter of 100 μm were put in a polyethylene bottle at a mass ratio of 0.1: 19.9, and mixed by shaking 200 times by hand shaking. This mixed powder was charged into a Faraday cage, and measurement was started 5 minutes after mixing. The measurement was performed by sucking only the silicon nitride powder with a suction device through a mesh having a mesh opening of 34 μm from the lower part of the Faraday cage, and detecting the amount of charge remaining in the Faraday cage with an electrometer after 3 minutes. The suction blow-off charge amount [μC / g] was calculated by the formula {(charge amount of ferrite powder remaining in the Faraday cage [μC]) / (suction mass [g] of silicon nitride powder)}.

本発明の窒化珪素質粉末の製造方法について説明すると、加熱処理される窒化珪素粉末としては、金属シリコンの直接窒化法、シリカの還元窒化法、イミド化合物を用いる方法等によって製造されたものが使用できる。その平均粒子径が2μm以下、6μm以上の粒子含有率が1質量%以下であることが必要である。その理由は、これよりも粒度が粗いと、酸化処理中に表面に微粉が付着し、粗大粒子化するからである。特に好ましい粒度は、平均粒子径が0.9〜1.6μm、最大粒子径が4μm以下である。   The silicon nitride powder production method of the present invention will be described. As the silicon nitride powder to be heat-treated, those produced by a direct nitridation method of metal silicon, a reductive nitridation method of silica, a method using an imide compound, etc. are used. it can. It is necessary that the average particle diameter is 2 μm or less and the content of particles of 6 μm or more is 1% by mass or less. The reason is that if the particle size is coarser than this, fine powder adheres to the surface during the oxidation treatment, resulting in coarse particles. Particularly preferable particle sizes are an average particle size of 0.9 to 1.6 μm and a maximum particle size of 4 μm or less.

ついで、窒化珪素粉末は、充填密度が1g/cm以下、充填厚みが50mm以下にして容器に充填される。充填密度がこれよりも高いと、粉末同士の接触点が増加し、強固な凝集が生じやすくなる。充填密度を小さくしても構わないが、生産能力が低下するので、その下限は0.5g/cmとすることが好ましい。 Next, the silicon nitride powder is filled into the container with a filling density of 1 g / cm 3 or less and a filling thickness of 50 mm or less. When the packing density is higher than this, the contact points between the powders increase, and strong aggregation tends to occur. Although the filling density may be reduced, the production capacity is lowered, so the lower limit is preferably 0.5 g / cm 3 .

充填厚みについては、それが厚すぎると、酸化時に生じる反応熱が蓄積され、充填粉末中心部の温度が周囲の設定温度よりも上昇し、強固な凝集粒が生じる。さらに説明すると、充填厚みが大きいと、粉末の上部や端部と比べて、中心部は放熱が悪いこと、及び窒化珪素の酸化反応は発熱反応であることから、蓄熱し易い傾向にある。そのため、酸化反応と放熱のバランスから、粉の中心部の方がより高温となり、部分的にサンプリングした窒化珪素粉末の酸素含有量は大きくばらつく傾向にある。酸化膜を均一に形成させるには、各箇所の酸素含有量のバラツキを小さくする必要があり、本発明者らの検討結果によれば、充填厚みを50mm以下で充填した場合、酸素含有量のバラツキを10%以内に抑えることができた。これに対し、充填厚みを50mmをこえて充填すると、酸素含有量のバラツキは30%をこえ、酸素含有量が高い部分では強固な凝集を生成し、低い部分では解砕した場合に新生面が現れた。充填厚みを薄くしても構わないが、生産能力が低下するので、その下限は20mmとすることが好ましい。   As for the filling thickness, if it is too thick, reaction heat generated during oxidation accumulates, the temperature of the center of the filling powder rises above the surrounding set temperature, and strong agglomerated particles are produced. To explain further, when the filling thickness is large, the heat dissipation tends to be easier in the center than in the upper part and the end of the powder, and the oxidation reaction of silicon nitride is an exothermic reaction, so that heat tends to be stored. Therefore, from the balance between the oxidation reaction and the heat dissipation, the central portion of the powder has a higher temperature, and the oxygen content of the partially sampled silicon nitride powder tends to vary greatly. In order to form an oxide film uniformly, it is necessary to reduce the variation in oxygen content at each location. According to the results of the study by the present inventors, when the filling thickness is 50 mm or less, the oxygen content is reduced. The variation could be suppressed within 10%. On the other hand, when the filling thickness exceeds 50 mm, the variation in oxygen content exceeds 30%, and a strong agglomeration is generated at a portion where the oxygen content is high, and a new surface appears when crushed at a low portion. It was. Although the filling thickness may be reduced, the production capacity is lowered, so the lower limit is preferably 20 mm.

充填された窒化珪素粉末の酸化処理は、大気等の酸素を含む雰囲気下、1100〜1300℃、好ましくは1150〜1200℃で行われる。1100℃未満では、窒化珪素粉末の酸素含有量は6質量%を下回り、十分な酸化膜を形成させることはできず、窒化珪素粉末のアンモニウムイオンの溶出量は100μg/g以上となる。この理由は、窒化珪素粉末の表面に形成された酸化膜は解砕等により壊れ、新生面が現れたためであると考えている。1000℃程度の熱処理においても、窒化珪素粉末の表面には酸化膜が形成されるが、壊れ難い強固な酸化膜を形成させることは困難である。酸化処理温度が1300℃をこえると、酸素含有量が20質量%をこえ、より厚い酸化膜が形成される一方、粗粒の含有量が50μg/gをこえる。上記温度範囲における保持時間は、5〜50時間、特に10〜30時間が好ましい。   The filled silicon nitride powder is oxidized at 1100 to 1300 ° C., preferably 1150 to 1200 ° C. in an atmosphere containing oxygen such as the air. Below 1100 ° C., the oxygen content of the silicon nitride powder is less than 6% by mass, so that a sufficient oxide film cannot be formed, and the elution amount of ammonium ions in the silicon nitride powder is 100 μg / g or more. The reason for this is thought to be that the oxide film formed on the surface of the silicon nitride powder was broken by crushing or the like and a new surface appeared. Even in heat treatment at about 1000 ° C., an oxide film is formed on the surface of the silicon nitride powder, but it is difficult to form a strong oxide film that is not easily broken. When the oxidation treatment temperature exceeds 1300 ° C., the oxygen content exceeds 20% by mass and a thicker oxide film is formed, while the content of coarse particles exceeds 50 μg / g. The holding time in the above temperature range is preferably 5 to 50 hours, particularly 10 to 30 hours.

上記酸化処理によって、窒化珪素粒子の内部にまで酸化が進み粉末が凝集しているので、表面処理剤による表面処理を行うに先立ちその凝集を解きほぐし(解砕し)、必要に応じて分級を行い、平均粒子径が1μm以下、粗粒の含有量が50μg/g以下の窒化珪素粉末にしておくことが好ましい。   Oxidation proceeds to the inside of the silicon nitride particles by the above oxidation treatment, and the powder is agglomerated. Therefore, before the surface treatment with the surface treatment agent is performed, the agglomeration is broken (pulverized) and classified as necessary. The silicon nitride powder preferably has an average particle size of 1 μm or less and a coarse particle content of 50 μg / g or less.

表面処理剤による処理は、乾式混合法、湿式混合法のいずれでもよいが、湿式混合法は、濾過、乾燥、解砕工程が必要となる反面、粗粒の含有量が乾式混合よりも少なくなる利点がある。そこで、粗粒の含有量が少なくできる湿式混合法の利点を乾式混合法で発現させるため、乾式混合法を採用するときは、表面処理剤の融点以上の温度に加熱して行うことが好ましい。なお、湿式混合法としては、容器内に撹拌羽根を入れて、水、有機溶媒等の媒体の存在下で混合する方法である。   The treatment with the surface treatment agent may be either a dry mixing method or a wet mixing method, but the wet mixing method requires filtration, drying, and crushing steps, but the content of coarse particles is less than that of dry mixing. There are advantages. Therefore, in order to express the advantage of the wet mixing method that can reduce the content of coarse particles by the dry mixing method, when adopting the dry mixing method, it is preferable to carry out heating at a temperature equal to or higher than the melting point of the surface treatment agent. The wet mixing method is a method in which a stirring blade is placed in a container and mixing is performed in the presence of a medium such as water or an organic solvent.

乾式混合法の一例を示せば、窒化珪素粉末と表面処理剤とを、表面処理剤の融点以上に加熱して、又は加熱しないでヘンシェルミキサー等の混合機で5〜60分間混合した後、必要に応じて更に表面処理剤の融点以上で0.5〜10時間保持することである。この場合において、融点以上で加熱し融液状態にした表面処理剤を、ヘンシェルミキサーの上部に取り付けた二流体ノズル等から噴霧させながら混合するような方法を採用しても構わない。また、湿式混合法の一例を示せば、窒化珪素粉末と蒸留水等の媒体と表面処理剤とを、撹拌羽根で0.5〜5時間混合した後、濾過、乾燥をし、その後必要に応じて解砕する。   An example of the dry mixing method is that the silicon nitride powder and the surface treatment agent are heated to a temperature equal to or higher than the melting point of the surface treatment agent, or after being mixed for 5 to 60 minutes with a mixer such as a Henschel mixer. Depending on the condition, it is further held for 0.5 to 10 hours above the melting point of the surface treatment agent. In this case, a method may be employed in which the surface treatment agent heated to a melting point or higher and brought into a molten state is mixed while being sprayed from a two-fluid nozzle or the like attached to the top of the Henschel mixer. Moreover, if an example of a wet mixing method is shown, after mixing a silicon nitride powder, a medium, such as distilled water, and a surface treating agent with a stirring blade for 0.5 to 5 hours, it is filtered and dried, and then as necessary. Crush.

実施例1〜11 比較例1〜8
市販の窒化珪素粉末を分級機を用いて表1、表2のように粒度調整し、それを炭化珪素製容器に表1、2に示す充填密度及び充填厚みにして充填し、大気中、昇温速度250℃/hで、表1、2に示される熱処理温度まで昇温し、その温度で20時間保持してから冷却することによって、窒化珪素粉末に酸化膜を形成させた。
Examples 1-11 Comparative Examples 1-8
Use a classifier to adjust the particle size of commercially available silicon nitride powder as shown in Tables 1 and 2 and fill it into a silicon carbide container with the packing density and thickness shown in Tables 1 and 2 and then in the atmosphere. The temperature was raised to a heat treatment temperature shown in Tables 1 and 2 at a temperature rate of 250 ° C./h, held at that temperature for 20 hours, and then cooled to form an oxide film on the silicon nitride powder.

これを解砕機(日本ニューマチック社製、商品名「ジェットミルPJM−200SP」)を用いて解砕し、表1、表2に示される平均粒子径、酸素含有量、粗粒の含有量、アンモニウムイオンの溶出量、帯電量を有する窒化珪素粉末とした。なお、解砕後の窒化珪素質粉末の粒子表面を透過型電子顕微鏡で観察した結果、いずれもSiOの存在が認められた。 This was pulverized using a crusher (trade name “Jet Mill PJM-200SP”, manufactured by Nippon Pneumatic Co., Ltd.), and the average particle diameter, oxygen content, and coarse particle content shown in Tables 1 and 2, A silicon nitride powder having ammonium ion elution amount and charge amount was obtained. As a result of observing the particle surface of the pulverized silicon nitride powder with a transmission electron microscope, the presence of SiO 2 was observed in all cases.

その後、乾式混合法による表面処理を、表面処理剤として、表1、表2に示されるものを窒化珪素粉末100質量部に対し1質量部を添加し、ヘンシェルミキサーで20分間混合することによって行った。実施例11では、ステアリン酸の融点が約70℃であることから、混合後に更に100℃で4時間保持した。得られた窒化珪素質粉末について、上記方法に従い、平均粒子径、酸素含有量、粗粒の含有量、アンモニウムイオンの溶出量、帯電量を測定した。実施例の結果を表1、比較例の結果を表2に示す。   Thereafter, surface treatment by dry mixing is performed by adding 1 part by mass of the surface treatment agent shown in Tables 1 and 2 to 100 parts by mass of silicon nitride powder and mixing with a Henschel mixer for 20 minutes. It was. In Example 11, since the melting point of stearic acid was about 70 ° C., it was kept at 100 ° C. for 4 hours after mixing. With respect to the obtained silicon nitride powder, the average particle size, oxygen content, coarse particle content, ammonium ion elution amount, and charge amount were measured in accordance with the above methods. Table 1 shows the results of the examples and Table 2 shows the results of the comparative examples.

Figure 2005263568
Figure 2005263568

Figure 2005263568
Figure 2005263568

表1と表2の対比から次のことがわかる。実施例では、窒化珪素粉末原料を1100〜1300℃で熱処理し、酸化膜形成による表面処理した結果、窒化珪素粉末の酸素含有量は6〜20質量%であり、解砕後の粗粒の含有量も50ppm以下で、アンモニウムイオンの溶出量も50ppm未満であった。また、熱処理温度の増加に伴い、粗粒の含有量は増加傾向、アンモニウムイオンの溶出量は減少傾向を示した。帯電量については、表面処理剤によって表面処理した結果、いずれも著しく向上した。とくに、ステアリン酸を用いたときには顕著であった。   The following can be understood from the comparison between Table 1 and Table 2. In the examples, the silicon nitride powder raw material was heat-treated at 1100 to 1300 ° C. and subjected to surface treatment by forming an oxide film. As a result, the oxygen content of the silicon nitride powder was 6 to 20% by mass, and the inclusion of coarse particles after pulverization The amount was 50 ppm or less, and the amount of ammonium ions eluted was less than 50 ppm. In addition, as the heat treatment temperature increased, the content of coarse particles tended to increase and the elution amount of ammonium ions tended to decrease. As for the charge amount, as a result of the surface treatment with the surface treatment agent, all of them were remarkably improved. This was particularly noticeable when stearic acid was used.

また、最終的に得られた窒化珪素質粉末を走査型電子顕微鏡にて観察した結果、実施例1〜10では、表面処理剤が窒化珪素質粉末表面に被覆されずに残っている部分もあったが、実施例11ではそれが観察されず、より均一に処理されていた。   Further, as a result of observing the finally obtained silicon nitride powder with a scanning electron microscope, in Examples 1 to 10, there was a portion where the surface treatment agent remained without being coated on the surface of the silicon nitride powder. However, in Example 11, it was not observed and was processed more uniformly.

これに対し、比較例1では、熱処理温度が1100℃未満であるので酸素含有量は8%未満となり、アンモニウムイオンの溶出量は100ppmレベルであった。比較例2では、1300℃をこえる温度で熱処理したので、アンモニウムイオンの溶出量は50ppm未満であったが、粗粒の含有量は100ppmをこえた。比較例3、4では、充填厚みを50mmをこえさせたので、厚みに比例して酸素含有量は低下する傾向にあり、アンモニウムイオンの溶出量もそれに準じて増加傾向となり、いずれも50ppm以上であった。   On the other hand, in Comparative Example 1, since the heat treatment temperature was less than 1100 ° C., the oxygen content was less than 8%, and the elution amount of ammonium ions was at the 100 ppm level. In Comparative Example 2, since heat treatment was performed at a temperature exceeding 1300 ° C., the elution amount of ammonium ions was less than 50 ppm, but the content of coarse particles exceeded 100 ppm. In Comparative Examples 3 and 4, since the filling thickness exceeded 50 mm, the oxygen content tends to decrease in proportion to the thickness, and the elution amount of ammonium ions tends to increase accordingly, both at 50 ppm or more. there were.

窒素珪素粉末原料の粒度を本発明の範囲を逸脱させた比較例5、及び充填密度を逸脱させた比較例6では、いずれも粗粒の含有量のみならず、アンモニウムイオンの溶出量も増加した。これは粗粒が解砕されて、新生面が現れたためと考えられる。   In Comparative Example 5 in which the particle size of the nitrogen silicon powder raw material deviated from the scope of the present invention and Comparative Example 6 in which the packing density deviated, not only the content of coarse particles but also the elution amount of ammonium ions increased. . This is probably because coarse grains were crushed and a new surface appeared.

つぎに、上記で製造された窒化珪素質粉末をトナー外添材として評価するため、連続印刷により、印字具合を確認する耐刷試験を行った。その結果、実施例の窒化珪素質粉末を用いたトナー外添材では、いずれも印刷濃度低下等の印刷不具合は起こらなかったが、比較例1〜6では起こった。また、本発明とは異なる表面処理剤で処理された比較例7、8においては、耐刷試験の結果、トナーが飛ばず、印刷濃度低下による印刷不具合が起こった。   Next, in order to evaluate the silicon nitride-based powder produced as a toner external additive, a printing durability test for confirming the printing condition was performed by continuous printing. As a result, in the toner external additives using the silicon nitride-based powders of the examples, printing defects such as a decrease in printing density did not occur, but in the comparative examples 1 to 6. Further, in Comparative Examples 7 and 8 treated with a surface treating agent different from the present invention, as a result of the printing durability test, the toner did not fly and a printing defect due to a decrease in printing density occurred.

本発明の窒化珪素質粉末は、各種の分散剤、充填材、トナー外添材等として、更には窒化珪素焼結体製造用原料として使用できる。   The silicon nitride powder of the present invention can be used as various dispersants, fillers, toner external additives and the like, and further as a raw material for producing a silicon nitride sintered body.

Claims (4)

酸化膜を有しその量が酸素含有量として6〜20質量%である窒化珪素粉末が、脂肪酸及びその塩の少なくとも一方からなる表面処理剤で処理されており、その平均粒子径が2μm以下、25μm以上の粗粒の含有量が50μg/g以下、80℃で15日間加熱抽出後のアンモニウムイオンの溶出量が窒化珪素質粉末1g当たり50μg未満であることを特徴とする窒化珪素質粉末。   A silicon nitride powder having an oxide film and having an oxygen content of 6 to 20% by mass is treated with a surface treatment agent comprising at least one of a fatty acid and a salt thereof, and the average particle diameter is 2 μm or less, A silicon nitride-based powder, wherein the content of coarse particles of 25 μm or more is 50 μg / g or less, and the amount of ammonium ions eluted after 15 days of heat extraction at 80 ° C. is less than 50 μg per 1 g of silicon nitride-based powder. 平均粒子径が2μm以下、6μm以上の粒子含有率が1質量%以下である窒化珪素粉末を、充填密度が1g/cm以下、充填厚みが50mm以下にして充填し、それを、酸素を含む雰囲気下、温度1100〜1300℃で加熱処理して窒化珪素粉末に酸化膜を形成させた後、脂肪酸及びその塩の少なくとも一方からなる表面処理剤で処理することを特徴とする窒化珪素質粉末の製造方法。 A silicon nitride powder having an average particle diameter of 2 μm or less and a particle content of 6 μm or more of 1% by mass or less is filled with a filling density of 1 g / cm 3 or less and a filling thickness of 50 mm or less, and contains oxygen. A silicon nitride-based powder characterized in that after heat treatment is performed at a temperature of 1100 to 1300 ° C. in an atmosphere to form an oxide film on the silicon nitride powder, the silicon nitride powder is treated with a surface treatment agent comprising at least one of fatty acids and salts thereof. Production method. 表面処理剤による処理を、表面処理剤の融点以上の温度に加熱して行うことを特徴とする請求項2記載の窒化珪素質粉末の製造方法。 The method for producing a silicon nitride-based powder according to claim 2, wherein the treatment with the surface treatment agent is performed by heating to a temperature equal to or higher than the melting point of the surface treatment agent. 請求項1記載の窒化珪素質粉末からなることを特徴とするトナー外添材。 A toner external additive comprising the silicon nitride powder according to claim 1.
JP2004079428A 2004-03-19 2004-03-19 Silicon nitride powder, method for producing the same, toner external additive Expired - Fee Related JP4166181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004079428A JP4166181B2 (en) 2004-03-19 2004-03-19 Silicon nitride powder, method for producing the same, toner external additive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004079428A JP4166181B2 (en) 2004-03-19 2004-03-19 Silicon nitride powder, method for producing the same, toner external additive

Publications (2)

Publication Number Publication Date
JP2005263568A true JP2005263568A (en) 2005-09-29
JP4166181B2 JP4166181B2 (en) 2008-10-15

Family

ID=35088494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004079428A Expired - Fee Related JP4166181B2 (en) 2004-03-19 2004-03-19 Silicon nitride powder, method for producing the same, toner external additive

Country Status (1)

Country Link
JP (1) JP4166181B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300473A (en) * 2008-06-10 2009-12-24 Ricoh Co Ltd Fixing member, fixing device using the same, and image forming apparatus
JP2013071864A (en) * 2011-09-28 2013-04-22 Denki Kagaku Kogyo Kk Silicon nitride powder for mold releasing agent, and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300473A (en) * 2008-06-10 2009-12-24 Ricoh Co Ltd Fixing member, fixing device using the same, and image forming apparatus
JP2013071864A (en) * 2011-09-28 2013-04-22 Denki Kagaku Kogyo Kk Silicon nitride powder for mold releasing agent, and method for producing the same

Also Published As

Publication number Publication date
JP4166181B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
JP4600258B2 (en) Purification agent for purification treatment of soil and groundwater, its production method and purification treatment method of soil and groundwater
JP5197369B2 (en) A method of agglomerating and agglomerating metal particles
CN110944943B (en) Magnesium oxide powder, method for producing same, thermally conductive resin composition, thermally conductive paste, and thermally conductive coating material
JP2011098882A (en) Hexagonal boron nitride powder and method for producing the same
KR20180103068A (en) Treatment of surface-reacted calcium carbonate
JP6766399B2 (en) Sintering powder and sintered body
JP2004168559A (en) Highly dispersible, highly hydrophobic silica powder and its manufacturing process
JP2008285406A (en) Silica spherical particle
JP4166181B2 (en) Silicon nitride powder, method for producing the same, toner external additive
Boopasiri et al. Fabrication of zinc oxide‐coated microcrystalline cellulose and its application in truck tire tread compounds
US7438976B2 (en) Nano-talc powders of high specific surface area obtained by hybrid milling
JP2008143725A (en) Method for manufacturing surface-treated inorganic particle powder
JP4184683B2 (en) Metal oxide spherical particles and method for producing the same
JP2021113138A (en) Method for producing silicon nitride
JP4378160B2 (en) Porous granular basic magnesium carbonate and method for producing the same
JP2004359476A (en) Hydrophobized silica composition
JPH05330819A (en) Dry pulverizing method for alumina
JP4176706B2 (en) Silicon nitride powder, method for producing the same, and toner external additive
JP2006102675A (en) Cleaning agent for cleaning soil/ground water, manufacturing method therefor, and cleaning method for soil/ground water
JP4141932B2 (en) Silicon nitride powder and method for producing the same
JP4641445B2 (en) Magnetite particle powder
JP3521057B2 (en) Iron powder for oxygen scavenger and method for producing the same
JP4479890B2 (en) Purification agent for soil and groundwater purification, its production method, and soil and groundwater purification method
JP7357181B1 (en) Boron nitride particles and heat dissipation sheet
JP7357180B1 (en) Boron nitride particles and heat dissipation sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080729

R150 Certificate of patent or registration of utility model

Ref document number: 4166181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees