JP2005263536A - Silicon particle superlattice, method for manufacturing the same, silicon particle superlattice structure using the same, light emitting element and electronic component - Google Patents

Silicon particle superlattice, method for manufacturing the same, silicon particle superlattice structure using the same, light emitting element and electronic component Download PDF

Info

Publication number
JP2005263536A
JP2005263536A JP2004076141A JP2004076141A JP2005263536A JP 2005263536 A JP2005263536 A JP 2005263536A JP 2004076141 A JP2004076141 A JP 2004076141A JP 2004076141 A JP2004076141 A JP 2004076141A JP 2005263536 A JP2005263536 A JP 2005263536A
Authority
JP
Japan
Prior art keywords
silicon
superlattice
particles
silicon particle
particle superlattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004076141A
Other languages
Japanese (ja)
Inventor
Iichi Sato
井一 佐藤
Hirosaku Kimura
啓作 木村
Taku Kawasaki
卓 川崎
Takuya Okada
拓也 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2004076141A priority Critical patent/JP2005263536A/en
Priority to CN2005800082566A priority patent/CN1956920B/en
Priority to PCT/JP2005/002574 priority patent/WO2005090234A1/en
Priority to US10/592,864 priority patent/US7850938B2/en
Publication of JP2005263536A publication Critical patent/JP2005263536A/en
Priority to US12/823,314 priority patent/US8221881B2/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently provide a silicon particle superlattice, at a low cost, capable of realizing a high performance light emitting element and electronic components. <P>SOLUTION: The silicon particle superlattice consists of a plurality of silicon particles, wherein an average particle diameter of the silicon particles is 1-50 nm and a coefficient of variation of particle diameter is ≤20%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ナノメートル(nm)サイズのシリコン粒子を二次元的もしくは三次元的に周期的に規則正しく配列させてなる、シリコン粒子超格子及びその製造方法に関する。   The present invention relates to a silicon particle superlattice in which nanometer (nm) size silicon particles are regularly arranged two-dimensionally or three-dimensionally and a method for manufacturing the same.

ナノメートル以下のサイズの粒径を有するシリコンは、バルクシリコンとは大きく異なる物理的・化学的性質を有するため、近年、新機能材料として大きな関心を集めている。例えば、ナノメートルオーダーの粒径を有するシリコン粒子には、シリコン単結晶とは異なるバンド構造と表面準位効果とに基づいた発光が観測される事が知られている。   In recent years, silicon having a particle size of nanometer or less has greatly attracted attention as a new functional material because it has physical and chemical properties that are significantly different from those of bulk silicon. For example, it is known that light emission based on a band structure different from a silicon single crystal and a surface level effect is observed in silicon particles having a particle size of nanometer order.

かかるバンド構造と表面準位効果に基づく発光現象等が発現するためには、粒径の揃ったナノメートルオーダーのシリコン粒子が二次元的もしくは三次元的に周期的に規則正しく配列した、いわゆる超格子構造を形成されなければならない。   In order to develop a light emission phenomenon based on the band structure and the surface level effect, a so-called superlattice in which nanometer-order silicon particles having a uniform particle size are regularly arranged two-dimensionally or three-dimensionally. A structure must be formed.

従ってナノメートルオーダーのシリコン粒子を新機能材料として利用するための具体的な方法として、大量に作製したシリコン粒子のうち特定サイズの粒子のみを選択的に取り出して、二次元的または三次元的に配列させる、すなわち超格子を形成させる方法が必要になる。   Therefore, as a specific method for utilizing nanometer-order silicon particles as a new functional material, only a specific size of the silicon particles produced in large quantities is selectively extracted and then two-dimensionally or three-dimensionally. A method of arranging, that is, forming a superlattice is required.

従来、シリコン粒子若しくはシリコン粒子を含む超格子、又はシリコン粒子が配列されてなる膜若しくは成形物の製造方法として、(1)化学気相蒸着(CVD)法(特許文献1,2)、(2)スピンコート法(特許文献3)、(3)粒子を含む懸濁液から多孔質隔壁を用いて粒子を漉し採る方法(特許文献4)、(4)粒子の電気泳動を利用する方法(特許文献5)などが提案されている。   Conventionally, as a method of manufacturing silicon particles or a superlattice containing silicon particles, or a film or a molded product in which silicon particles are arranged, (1) chemical vapor deposition (CVD) (Patent Documents 1 and 2), (2 ) Spin coating method (Patent Document 3), (3) A method using a porous partition to remove particles from a suspension containing particles (Patent Document 4), and (4) A method using particle electrophoresis (Patent) Document 5) has been proposed.

特開平5−62911号公報JP-A-5-62911 特開平6−349744号公報JP-A-6-349744 特開平11−130867号公報JP-A-11-130867 特開2002−279704号公報JP 2002-279704 A 特開2003−89896法公報Japanese Patent Application Laid-Open No. 2003-89896

ところが、上記(1)の方法は、高温真空中又はプラズマ雰囲気下で行われることが多いため、高度に制御された真空加熱装置又はプラズマ発生装置が必要になり、コスト高になる。また、(2)の方法は、(1)の方法ほど高価な装置は必要でなくなるが、製品収率が著しく低下する。(3)、(4)の方法は、粒子が多孔質隔壁又は電極上に配列するが、超格子からなる膜若しくは成形物をこれらの材料から脱離させる適切な方法が無い。   However, since the method (1) is often performed in a high-temperature vacuum or in a plasma atmosphere, a highly controlled vacuum heating device or plasma generating device is required, resulting in high costs. In addition, the method (2) does not require a device as expensive as the method (1), but the product yield is significantly reduced. In the methods (3) and (4), the particles are arranged on the porous partition walls or the electrodes, but there is no appropriate method for detaching the superlattice film or molded product from these materials.

また、これらの方法で得られた従来のシリコン粒子を含む超格子は、粒径がバラツキを有するためバンド構造や表面準位が不安定になり、発光素子として用いる場合には発光効率が充分に上がらず、電子部品として用いる場合は誤作動が生じる等の懸念があった。   In addition, the conventional superlattice containing silicon particles obtained by these methods has a variation in particle size, resulting in unstable band structure and surface level, and sufficient luminous efficiency when used as a light emitting device. When it was used as an electronic component, there was a concern that malfunction would occur.

そこで、本発明者等は、高性能な発光素子や電子部品が実現可能なシリコン粒子の超格子を、低コストで効率良く製造する方法が無いか鋭意検討した結果、本発明を完成するに至った。   Accordingly, the present inventors have intensively studied whether there is a method for efficiently producing a silicon particle superlattice capable of realizing a high-performance light-emitting element or electronic component at low cost, and as a result, the present invention has been completed. It was.

即ち、本発明のシリコン粒子超格子は、複数のシリコン粒子から構成されるシリコン粒子超格子であって、該シリコン粒子の平均粒径が1〜50nm、粒径の変動係数が20%以下であることを特徴とする。   That is, the silicon particle superlattice of the present invention is a silicon particle superlattice composed of a plurality of silicon particles, and the silicon particles have an average particle size of 1 to 50 nm and a particle size variation coefficient of 20% or less. It is characterized by that.

また、本発明のシリコン粒子超格子の製造方法は、疎水性を有するシリコン粒子を水に分散させた懸濁液に、疎水性溶媒を加えた後に静置し、水相と有機相の界面にシリコン粒子を整列させる工程を有することを特徴とし、「前記懸濁液がフッ化水素酸を含むこと」、「前記疎水性溶媒が1−オクタノールであること」を好ましい態様として含むものである。   Further, the method for producing a silicon particle superlattice according to the present invention comprises adding a hydrophobic solvent to a suspension in which hydrophobic silicon particles are dispersed in water, and then allowing the suspension to stand at the interface between the aqueous phase and the organic phase. It has a step of aligning silicon particles, and includes “the suspension contains hydrofluoric acid” and “the hydrophobic solvent is 1-octanol” as preferred embodiments.

また、本発明のシリコン粒子超格子構造物は、疎水性表面を有する固体基板の疎水性表面上に、上記シリコン粒子超格子を有することを特徴とし、「前記固体基板が、シリコン基板またはグラファイト基板であること」を好ましい態様として含むものである。   Moreover, the silicon particle superlattice structure of the present invention is characterized in that the silicon particle superlattice is provided on the hydrophobic surface of a solid substrate having a hydrophobic surface, and “the solid substrate is a silicon substrate or a graphite substrate”. It is included as a preferable embodiment.

更に、本発明の発光素子及び電子部品は、上記シリコン粒子超格子、上記シリコン粒子超格子構造物の少なくとも一方を有することを特徴とする。   Furthermore, the light-emitting element and the electronic component of the present invention include at least one of the silicon particle superlattice and the silicon particle superlattice structure.

本発明の超格子を構成するシリコン粒子は、平均粒径が1〜50nmで比較的揃っており、しかも粒径の変動係数が20%以下である。超格子とは原子や分子が集合してなる粒子同士がさらに集合して、二次元的もしくは三次元的に周期的に規則正しく配列した格子状の粒子集合体であるが、粒径のバラツキが小さい本発明の超格子は、表面準位のバラツキの少ない粒子を優れた周期性で配列させることができることから、所望のバンド構造を有する材料を安定的に生産することができる。   The silicon particles constituting the superlattice of the present invention are relatively uniform with an average particle diameter of 1 to 50 nm, and the coefficient of variation of the particle diameter is 20% or less. A superlattice is a lattice-like particle assembly in which particles formed by a collection of atoms and molecules are further aggregated and regularly arranged two-dimensionally or three-dimensionally, but the variation in particle size is small. Since the superlattice of the present invention can arrange particles with little variation in surface states with excellent periodicity, a material having a desired band structure can be stably produced.

このように、シリコン粒子超格子は使用目的に応じて様々なバンド構造を創り出すことができることから、発光素子として用いる場合には充分な発光効率が得られ、電子部品として用いる場合は誤作動が生じにくい材料を創り出せる。従って電子機器の性能向上が容易になり、工業的規模での機能性材料製造技術に寄与するところが大きく、産業上非常に有用である。   Thus, since the silicon particle superlattice can create various band structures depending on the purpose of use, sufficient luminous efficiency is obtained when used as a light emitting device, and malfunction occurs when used as an electronic component. Can create difficult materials. Therefore, it is easy to improve the performance of the electronic device, greatly contributes to the functional material manufacturing technology on an industrial scale, and is very useful industrially.

本発明のシリコン粒子超格子を構成するシリコン粒子の平均粒径は、1〜50nm、好ましくは5〜20nmである。平均粒径が1nm未満であると、粒子の規則正しい配列が困難になる。また、平均粒径が50nmを超えると、バルクシリコンと物理的・化学的性質が殆ど変わらなくなり超格子形成の意味が無くなってしまう。   The average particle diameter of the silicon particles constituting the silicon particle superlattice of the present invention is 1 to 50 nm, preferably 5 to 20 nm. When the average particle size is less than 1 nm, it is difficult to regularly arrange the particles. On the other hand, if the average particle size exceeds 50 nm, physical and chemical properties are hardly changed from those of bulk silicon, and the meaning of superlattice formation is lost.

また、シリコン粒子粒径の変動係数は20%以下である。粒径の変動係数が20%を超えると、粒径のバラツキが大きすぎてバンドの形成ができない。尚、本発明において、「粒径の変動係数」とは、粒径の標準偏差を平均値で除した値で、粒径のバラツキを示す指標であり、この値が小さいほど、粒径のバラツキが小さいことを意味する。   Further, the variation coefficient of the silicon particle diameter is 20% or less. If the variation coefficient of the particle size exceeds 20%, the variation in particle size is too large to form a band. In the present invention, the “coefficient of variation in particle size” is a value obtained by dividing the standard deviation of the particle size by the average value, and is an index indicating the variation in particle size. The smaller this value, the more the variation in particle size. Means small.

平均粒径と変動係数を計測する具体的な方法としては、例えば超格子を撮像した透過型電子顕微鏡(TEM)像に、画像解析を行う方法が挙げられる。この時、多数のシリコン粒子からなる超格子を解析するために、100個以上の粒子を対象にすることが好ましい。   As a specific method for measuring the average particle diameter and the coefficient of variation, for example, there is a method of performing image analysis on a transmission electron microscope (TEM) image obtained by imaging a superlattice. At this time, in order to analyze a superlattice composed of a large number of silicon particles, it is preferable to target 100 or more particles.

本発明のシリコン粒子超格子において、多数の粒子同士が規則正しく配列しているか否かは、TEM像で判定することが可能であるが、さらに詳しくはTEM像のフーリエ変換像によって判定できる。粒子同士が規則正しく配列した場合、フーリエ変換像に格子の形成に対応した、対象性を有するスポットが現れる。例えば、図1は本発明のシリコン粒子超格子の一例のTEM像、図2はそのフーリエ変換像であるが、図2ではフーリエ変換像に6回対象のスポットが認められており、粒子同士が規則正しく配列した超格子が形成されていることが判る。   In the silicon particle superlattice of the present invention, whether or not a large number of particles are regularly arranged can be determined by a TEM image, but more specifically can be determined by a Fourier transform image of the TEM image. When the particles are regularly arranged, spots having objectivity corresponding to the formation of the lattice appear in the Fourier transform image. For example, FIG. 1 is a TEM image of an example of a silicon particle superlattice according to the present invention, and FIG. 2 is a Fourier transform image thereof. In FIG. It can be seen that regularly arranged superlattices are formed.

次に、本発明のシリコン粒子超格子の製造方法について説明する。   Next, the manufacturing method of the silicon particle superlattice of this invention is demonstrated.

まず、多数のシリコン粒子を製造する方法は、得られるシリコン粒子が疎水性を有するものである限り、特に限定されない。例えば、モノシランガスとモノシランガスを酸化するための酸化性ガスとを気相反応させて、シリコン粒子を内包するシリコン酸化物粒子を含む粉末を合成し、これを不活性雰囲気下800〜1400℃で保持する方法などが適用できる。この方法においては不活性雰囲気下の加熱保持によって、シリコン酸化物に内包されるシリコン粒子の粒径が1〜50nm程度に調整され、好ましい。尚、後述する様に、水相と疎水性溶媒の界面におけるシリコン粒子整列工程において、粒径のバラツキが低減されるため、仮に、この時点でのバラツキが比較的大きくても問題にならない。   First, the method for producing a large number of silicon particles is not particularly limited as long as the obtained silicon particles are hydrophobic. For example, a monosilane gas and an oxidizing gas for oxidizing the monosilane gas are reacted in a gas phase to synthesize a powder containing silicon oxide particles containing silicon particles, and this is held at 800 to 1400 ° C. in an inert atmosphere. Methods can be applied. In this method, the particle size of the silicon particles included in the silicon oxide is preferably adjusted to about 1 to 50 nm by heating and holding in an inert atmosphere. As will be described later, in the silicon particle alignment process at the interface between the aqueous phase and the hydrophobic solvent, the variation in particle size is reduced. Therefore, even if the variation at this time is relatively large, there is no problem.

シリコン粒子を内包するシリコン酸化物粒子におけるシリコン酸化物は、フッ化水素酸にて除去することができる。特にこの方法は、シリコン酸化物に内包されたシリコン粒子を露出させる工程であると同時に、シリコン粒子表面に疎水性を付与する工程を兼ねており、便宜である。フッ化水素酸によってシリコン粒子表面に疎水性が付与される理由については、フッ化水素酸によってシリコン粒子周囲のシリコン酸化物が除去されると同時に露出したシリコン粒子最表面にフッ化水素(HF)が作用して、シリコン原子と水素の結合が生じ、粒子表面が水素原子で修飾されるためであると考えられている。   Silicon oxide in silicon oxide particles enclosing silicon particles can be removed with hydrofluoric acid. In particular, this method is convenient because it is a step of exposing silicon particles encapsulated in silicon oxide and a step of imparting hydrophobicity to the surface of the silicon particles. The reason why hydrophobicity is imparted to the surface of silicon particles by hydrofluoric acid is that hydrofluoric acid removes silicon oxide around the silicon particles and simultaneously exposes hydrogen fluoride (HF) to the outermost surface of silicon particles exposed. It is thought that this is because silicon atoms and hydrogen bonds are generated, and the particle surface is modified with hydrogen atoms.

この際、予めシリコン酸化物粒子を水に分散させて懸濁液とし、これにフッ化水素酸を滴下すれば、疎水性を有するシリコン粒子を懸濁液の状態で得ることができるため、そのまま本発明のシリコン粒子超格子の製造方法を適用でき、好ましい。また、シリコン粒子の分散性を向上させるため、懸濁液に超音波による振動を印加する事が好ましい。   At this time, if silicon oxide particles are previously dispersed in water to form a suspension, and hydrofluoric acid is added dropwise to the suspension, hydrophobic silicon particles can be obtained in a suspension state. The method for producing a silicon particle superlattice of the present invention is applicable and preferable. In order to improve the dispersibility of the silicon particles, it is preferable to apply ultrasonic vibration to the suspension.

次いで、この懸濁液に疎水性溶媒が添加される。これにより疎水性を有するシリコン粒子が水相から有機相(疎水性溶媒)中へ移動する。この際、粒子の移動を促進するため、疎水性溶媒添加後も引き続き、超音波による振動を印加することが好ましい。尚、シリコン粒子が疎水性を有さない場合は、疎水性溶媒中への移動が生じない。   A hydrophobic solvent is then added to the suspension. As a result, hydrophobic silicon particles move from the aqueous phase into the organic phase (hydrophobic solvent). At this time, in order to promote the movement of the particles, it is preferable to continuously apply ultrasonic vibration after addition of the hydrophobic solvent. In addition, when a silicon particle does not have hydrophobicity, the movement to a hydrophobic solvent does not arise.

その後、これを静置することによって、水相と有機相が分離し、疎水性溶媒中に分散したシリコン粒子が徐々に水相と有機相の界面に集合・整列する。この集合・整列の際、原因は明らかではないが粒径の近接した粒子同士が選択的に集合・整列するため、水相と有機相の界面においてシリコン粒子からなる超格子が形成される。初めに粒径のバラツキが比較的大きいシリコン粒子からなる粉末を用いた場合、平均粒径の異なる超格子が、界面上の異なる場所毎に多数形成される。尚、溶媒が疎水性でない場合は、水相と有機相の界面が生じないため、超格子が形成されない。   Then, by leaving it stationary, the aqueous phase and the organic phase are separated, and the silicon particles dispersed in the hydrophobic solvent gradually gather and align at the interface between the aqueous phase and the organic phase. During this assembly / alignment, although the cause is not clear, particles close to each other in size are selectively assembled / aligned, so that a superlattice composed of silicon particles is formed at the interface between the aqueous phase and the organic phase. When a powder made of silicon particles having a relatively large particle size variation is used first, a large number of superlattices having different average particle sizes are formed at different locations on the interface. Note that when the solvent is not hydrophobic, an interface between the aqueous phase and the organic phase does not occur, so that no superlattice is formed.

疎水性溶媒の具体例としては、非水溶性又は難水溶性であるn−ヘキサン、n−ヘプタン等の脂肪族炭化水素系溶媒、シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、1−ブタノール、1−オクタノール等の高級アルコール類等が挙げられる。これらの中で、水相と有機相の界面へのシリコン粒子の集合と整列を円滑に行わせるため、適度な粘度を有する1−オクタノールが特に好ましい。   Specific examples of the hydrophobic solvent include water-insoluble or sparingly water-soluble aliphatic hydrocarbon solvents such as n-hexane and n-heptane, cycloaliphatic hydrocarbon solvents such as methylcyclohexane, toluene, Aromatic hydrocarbon solvents such as xylene and higher alcohols such as 1-butanol and 1-octanol are exemplified. Among these, 1-octanol having an appropriate viscosity is particularly preferable in order to smoothly collect and align silicon particles at the interface between the aqueous phase and the organic phase.

疎水性溶媒添加後に超音波振動を印加する時間、その後の静置時間は特に限定されないが、疎水性溶媒が1−オクタノールの場合、添加後の超音波振動は30分〜1時間程度、その後の静置は2日以上とするのが好ましい。   The time for applying ultrasonic vibration after the addition of the hydrophobic solvent and the subsequent standing time are not particularly limited. However, when the hydrophobic solvent is 1-octanol, the ultrasonic vibration after the addition is about 30 minutes to 1 hour, and thereafter It is preferable to let it stand for 2 days or more.

このようにして水相と有機相との界面に形成されたシリコン粒子からなる超格子は、例えばコロジオン膜等の半透膜を用いてすくい取った後、疎水性表面を有する固体基板上に移動することによって、基板上に直接形成された超格子構造物とすることができる。疎水性表面を有する固体基板としてはシリコン基板(シリコンウェハー)やグラファイト基板等が挙げられる。   The superlattice composed of silicon particles formed at the interface between the aqueous phase and the organic phase in this way is scraped using a semipermeable membrane such as a collodion membrane and then moved onto a solid substrate having a hydrophobic surface. By doing so, a superlattice structure directly formed on the substrate can be obtained. Examples of the solid substrate having a hydrophobic surface include a silicon substrate (silicon wafer) and a graphite substrate.

また、疎水性溶媒を添加後、水相と有機相が分離した時、直ちに両者の界面の位置に、疎水性表面を有する固体基板を疎水性表面が疎水性溶媒側を向くように挿入し、その後静置することによれば、疎水性表面を有する基板上に直接超格子を形成することも可能である。この際、リソグラフィー技術等により、基板表面上に疎水性領域と親水性領域のパターニングを予め行っておけば、基板の所望の場所に超格子を形成させることも可能である。特に、シリコン基板上に直接、本発明の超格子構造物を形成した場合は、新規な発光素子や電子部品等の機能性材料用の素子として使用することが可能になる。   Also, after adding the hydrophobic solvent, when the aqueous phase and the organic phase are separated, immediately insert a solid substrate having a hydrophobic surface at the interface between the two so that the hydrophobic surface faces the hydrophobic solvent side, If left standing thereafter, it is also possible to form a superlattice directly on a substrate having a hydrophobic surface. At this time, if the hydrophobic region and the hydrophilic region are patterned in advance on the substrate surface by a lithography technique or the like, a superlattice can be formed at a desired location on the substrate. In particular, when the superlattice structure of the present invention is formed directly on a silicon substrate, it can be used as an element for a functional material such as a novel light emitting element or electronic component.

以下、実施例及び比較例をあげて、さらに本発明を説明する。   Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples.

<実施例1>
モノシランガス0.16L/min、酸素ガス0.4L/min及び希釈用の窒素ガス17.5L/minを、温度780℃、圧力90kPaに保持した石英ガラス製反応管(内径50mm、長さ1000mm)からなる反応容器に導入したところ、茶褐色の粉末が生成した。これを反応管の下流側に設けた金属製フィルターで捕集した。
<Example 1>
From a quartz glass reaction tube (inner diameter 50 mm, length 1000 mm) in which monosilane gas 0.16 L / min, oxygen gas 0.4 L / min and dilution nitrogen gas 17.5 L / min were maintained at a temperature of 780 ° C. and a pressure of 90 kPa. When introduced into a reaction vessel, a brown powder was produced. This was collected with a metal filter provided on the downstream side of the reaction tube.

捕集した生成粉末の比表面積をBET1点法で測定したところ62m2/gであった。化学分析を行ったところ、主成分はシリコン(Si)及び酸素(O)であった。またXPS(X線光電子スペクトル)のSi2pスペクトルによってSiの結合状態を調べた結果、Si−O結合に帰属されるピークの他に、Si−Si結合に帰属されるピークが認められ、生成したシリコン酸化物粉末粒子にシリコン粒子が内包されていることが確認された。 It was 62 m < 2 > / g when the specific surface area of the collected production | generation powder was measured by the BET 1 point method. When chemical analysis was performed, the main components were silicon (Si) and oxygen (O). Moreover, as a result of examining the bonding state of Si by the XPS (X-ray photoelectron spectrum) Si 2p spectrum, in addition to the peak attributed to the Si—O bond, a peak attributed to the Si—Si bond was observed and produced. It was confirmed that silicon particles were included in the silicon oxide powder particles.

この粉末2gをアルゴン雰囲気下、1200℃の温度で30分間保持した後、室温まで冷却し、蒸留水0.1リットルを加え、さらに超音波を1時間かけて粉末を分散させ、懸濁液を作製した。これに濃度5%のフッ化水素酸(HF)0.01リットルを加えて超音波を30分間かけ、シリコン酸化物を溶解・除去した。その後、疎水性溶媒として1−オクタノール0.2リットルを加えた後、超音波を30分間かけ、さらにその後2日間静置した。   After 2 g of this powder was held at 1200 ° C. for 30 minutes in an argon atmosphere, it was cooled to room temperature, 0.1 liter of distilled water was added, and the powder was further dispersed for 1 hour with ultrasonic waves. Produced. To this was added 0.01 liter of 5% hydrofluoric acid (HF) and ultrasonic waves were applied for 30 minutes to dissolve and remove the silicon oxide. Then, after adding 0.2 liters of 1-octanol as a hydrophobic solvent, ultrasonic waves were applied for 30 minutes, and then the mixture was allowed to stand for 2 days.

その後、透過型電子顕微鏡(TEM)試料作成用の網目メッシュ(#1000)にコロジオン膜を貼り付けた支持具を用い、1−オクタノールと水溶液の界面付近をすくい取り、これを60℃で3日間乾燥した。   Then, using a support having a collodion film attached to a mesh (# 1000) for preparing a transmission electron microscope (TEM) sample, the vicinity of the interface between 1-octanol and the aqueous solution was scooped, and this was taken at 60 ° C. for 3 days. Dried.

この試料をTEMにて観察したところ、図1に示す粒子同士が規則正しく配列した構造が認められた。さらに同一視野でフーリエ変換像を撮像したところ、図2に示す6回の対象性を有するスポットが認められ、超格子の形成が確認された。また、図1のTEM像に対し、コンピューターソフトウェア(レーザーテック株式会社製、SALT Ver.3.62)を用い、115個のシリコン粒子像をサンプリングして画像解析を行った結果、平均粒径9nm、粒径の変動係数は17%であった。   When this sample was observed with a TEM, a structure in which the particles shown in FIG. 1 were regularly arranged was observed. Further, when a Fourier transform image was taken in the same field of view, spots having the objectivity of six times shown in FIG. 2 were recognized, and formation of a superlattice was confirmed. In addition, as a result of performing image analysis on the TEM image of FIG. 1 by sampling 115 silicon particle images using computer software (manufactured by Lasertec, SALT Ver. 3.62), an average particle size of 9 nm, The variation coefficient of the particle size was 17%.

<実施例2>
温度を700℃とした以外は実施例1と同様にして、茶褐色粉末を捕集した。粉末の比表面積は42m2/gであり、化学分析による主成分はシリコン(Si)及び酸素(O)であった。XPSによってSi−O結合に帰属されるピークの他に、Si−Si結合に帰属されるピークが認められ、生成したシリコン酸化物粉末粒子にシリコン粒子が内包されていることが確認された。
<Example 2>
A brown powder was collected in the same manner as in Example 1 except that the temperature was 700 ° C. The specific surface area of the powder was 42 m 2 / g, and the main components by chemical analysis were silicon (Si) and oxygen (O). In addition to the peak attributed to the Si—O bond by XPS, a peak attributed to the Si—Si bond was observed, and it was confirmed that silicon particles were included in the generated silicon oxide powder particles.

この粉末2gをアルゴン雰囲気下、1100℃の温度で60分間保持した以外は実施例1と同様にして、シリコン酸化物を溶解・除去した。その後、疎水性溶媒としてキシレン0.2リットルを加えた後、超音波を30分間かけ、さらにその後1日間静置した。   The silicon oxide was dissolved and removed in the same manner as in Example 1 except that 2 g of this powder was held at 1100 ° C. for 60 minutes in an argon atmosphere. Then, after adding 0.2 liters of xylene as a hydrophobic solvent, ultrasonic waves were applied for 30 minutes, and then the mixture was allowed to stand for 1 day.

その後、1日間乾燥した以外は実施例1と同様にしてTEM試料を作成した。TEM像において粒子同士が規則正しく配列した構造が、フーリエ変換像において6回の対象性を有するスポットが、それぞれ認められ、超格子の形成が確認された。また、TEM像に対し、実施例1と同様にして122個のシリコン粒子像をサンプリングして画像解析を行った結果、平均粒径11nm、粒径の変動係数は15%であった。   Thereafter, a TEM sample was prepared in the same manner as in Example 1 except that it was dried for 1 day. In the TEM image, the structure in which the particles are regularly arranged, and the spot having the objectivity of 6 times in the Fourier transform image were recognized, respectively, and the formation of the superlattice was confirmed. Further, 122 silicon particle images were sampled from the TEM image and analyzed in the same manner as in Example 1. As a result, the average particle size was 11 nm and the variation coefficient of the particle size was 15%.

<実施例3>
シリコンウェハーに、真空下で高出力レーザーを照射するレーザーアブレーション法によって、粒径1〜30nmのシリコン粒子を0.2g作製した。これを蒸留水10ミリリットルに加え、さらに超音波を1時間かけて粉末を分散させ、懸濁液を作製した。これに濃度5%のフッ化水素酸(HF)0.01リットルを加えて超音波を1時間かけた。その後、疎水性溶媒として1−オクタノール20ミリリットルを加えた後、超音波を30分間かけ、さらにその後2日間静置した。
<Example 3>
0.2 g of silicon particles having a particle diameter of 1 to 30 nm were produced by a laser ablation method in which a silicon wafer was irradiated with a high-power laser under vacuum. This was added to 10 ml of distilled water, and the powder was further dispersed by ultrasonic waves for 1 hour to prepare a suspension. To this was added 0.01 liter of 5% hydrofluoric acid (HF), and ultrasonic waves were applied for 1 hour. Then, after adding 20 ml of 1-octanol as a hydrophobic solvent, ultrasonic waves were applied for 30 minutes, and the mixture was further allowed to stand for 2 days.

その後、実施例1と同様にしてTEM試料を作成した。TEM像において粒子同士が規則正しく配列した構造が、フーリエ変換像において6回の対象性を有するスポットが、それぞれ認められ、超格子の形成が確認された。また、TEM像に対し、実施例1と同様にして147個のシリコン粒子像をサンプリングして画像解析を行った結果、平均粒径7nm、粒径の変動係数は17%であった。   Thereafter, a TEM sample was prepared in the same manner as in Example 1. In the TEM image, the structure in which the particles are regularly arranged, and the spot having the objectivity of 6 times in the Fourier transform image were recognized, respectively, and the formation of the superlattice was confirmed. Further, 147 silicon particle images were sampled from the TEM image in the same manner as in Example 1, and as a result of image analysis, the average particle size was 7 nm and the variation coefficient of the particle size was 17%.

<実施例4>
実施例1と同様にして合成した、シリコン粒子が内包されているシリコン酸化物粒子からなる粉末2gを、アルゴン雰囲気下、1100℃の温度で1時間保持した後、実施例1と同様にしてシリコン酸化物を溶解・除去し、疎水性溶媒として1−オクタノール0.2リットルを加え、超音波を30分間かけた。
<Example 4>
After 2 g of powder composed of silicon oxide particles containing silicon particles, which was synthesized in the same manner as in Example 1, was held at a temperature of 1100 ° C. for 1 hour in an argon atmosphere, The oxide was dissolved and removed, 0.2 l of 1-octanol was added as a hydrophobic solvent, and ultrasonic waves were applied for 30 minutes.

その後、超音波印加を止め、水溶液と疎水性溶媒が相分離して界面が形成された際、直ちに、2%−フッ化水素酸溶液に30分間浸漬して自然酸化膜を除去し、さらにpH8に調整したフッ化アンモニウム(NH4F)水溶液に10分間浸漬して表面を疎水化した(111)面が表出したシリコンウェハーを、疎水化処理を行った面が疎水性溶媒側(すなわち上側)に向くように、水溶液と疎水性溶媒の界面近傍に水平に挿入し、2日間静置した。 Thereafter, the application of ultrasonic waves was stopped, and when the aqueous solution and the hydrophobic solvent were phase-separated to form an interface, the natural oxide film was immediately removed by immersing in a 2% -hydrofluoric acid solution for 30 minutes. A silicon wafer having a (111) surface exposed by hydrophobizing the surface by immersion in an aqueous solution of ammonium fluoride (NH 4 F) adjusted for 10 minutes is shown on the hydrophobic solvent side (ie, the upper side) ) Was inserted horizontally in the vicinity of the interface between the aqueous solution and the hydrophobic solvent, and left to stand for 2 days.

静置後、シリコンウェハーを乾燥させて疎水化処理面を電解放射型走査電子顕微鏡(FE−SEM)で観察したところ、粒子が面上に規則的に配列した構造が観察され、シリコン粒子の超格子が形成されていることが解った。FE−SEM像で得られた105個のシリコン粒子像をサンプリングして画像解析を行った結果、平均粒径5nm、粒径の変動係数は18%であった。   After standing, the silicon wafer was dried and the hydrophobized surface was observed with an electrolytic emission scanning electron microscope (FE-SEM). As a result, a structure in which the particles were regularly arranged on the surface was observed. It was found that a lattice was formed. As a result of sampling and sampling 105 silicon particle images obtained by the FE-SEM image, the average particle size was 5 nm and the variation coefficient of the particle size was 18%.

このシリコン粒子が配列したシリコンウェハーに紫外線を照射したところ、橙色の発光が確認された。   When the silicon wafer on which the silicon particles were arranged was irradiated with ultraviolet rays, orange light emission was confirmed.

<比較例1>
実施例4と同様にして疎水化したシリコンウェハーの表面に、レーザーアブレーション法によってシリコン粒子を直接堆積させてシリコン粒子からなる膜を形成させた。膜表面をFE−SEMで観察したところ、部分的に粒子が面上に規則的に配列した構造が観察され、シリコン粒子の超格子が形成されていることが解った。超格子形成個所において、FE−SEM像で得られた167個のシリコン粒子像をサンプリングして画像解析を行った結果、平均粒径5nm、粒径の変動係数は29%であった。
<Comparative Example 1>
Silicon particles were directly deposited on the surface of a hydrophobized silicon wafer in the same manner as in Example 4 by laser ablation to form a film made of silicon particles. When the film surface was observed with FE-SEM, it was found that a structure in which particles were regularly arranged on the surface was partially observed, and a superlattice of silicon particles was formed. As a result of sampling and analyzing 167 silicon particle images obtained by the FE-SEM image at the superlattice formation site, the average particle size was 5 nm and the variation coefficient of the particle size was 29%.

このシリコンウェハーのシリコン粒子が配列した個所に紫外線を照射したところ、発光は確認されなかった。   When ultraviolet light was irradiated to the part where the silicon particles of this silicon wafer were arranged, no light emission was confirmed.

<比較例2>
実施例1において、1−オクタノールを加えた後の2日間の静置は行わず、水溶液と1−オクタノールが分離した後、直ぐに1−オクタノール中に分散したシリコン粒子をスポイトで吸い取り、実施例1と同じ支持具上に滴下した後、60℃で3日間乾燥した。これをTEMにて観察したところ、粒子同士の配列構造や、フーリエ変換像におけるスポットは認められず、超格子は形成されていないことが解った。
<Comparative example 2>
In Example 1, 2 days after adding 1-octanol was not allowed to stand, and after the aqueous solution and 1-octanol were separated, the silicon particles dispersed in 1-octanol were immediately sucked with a dropper. The solution was dropped on the same support and then dried at 60 ° C. for 3 days. When this was observed with a TEM, it was found that an array structure of particles and spots in a Fourier transform image were not recognized, and a superlattice was not formed.

<比較例3>
実施例3と同様にしてシリコン粒子の懸濁液を作製した。これにフッ化水素酸を加えずに、キシレン0.2リットルを加えた後、超音波を30分間かけ、さらにその後1日間静置したが、シリコン粒子はキシレン中に移動せず、疎水性を有していないことが解った。
<Comparative Example 3>
A suspension of silicon particles was produced in the same manner as in Example 3. Without adding hydrofluoric acid to this, 0.2 liters of xylene was added, and then ultrasonic waves were applied for 30 minutes, and then the mixture was allowed to stand for 1 day. I understood that I do not have.

この懸濁液をスポイトで吸い取り、実施例1と同じ支持具上に滴下した後、60℃で3日間乾燥した。これをTEMにて観察したところ、シリコン粒子は認められたものの、粒子同士の配列構造や、フーリエ変換像におけるスポットは認められず、超格子は形成されていないことが解った。   The suspension was sucked with a dropper, dropped onto the same support as in Example 1, and dried at 60 ° C. for 3 days. When this was observed with a TEM, it was found that although silicon particles were observed, the arrangement structure of the particles and spots in the Fourier transform image were not recognized, and no superlattice was formed.

本発明によれば、ナノメートルサイズのシリコン粒子からなる超格子を、特別に高価な装置等を必要とせず高い生産性で作製することが可能であり、しかも超格子を構成するシリコン粒子の粒径バラツキが小さく、表面準位のバラツキの少ない粒子を優れた周期性で配列させることができるので、所望のバンド構造を有する材料を安定的に生産することができる。このように、本発明の超格子は使用目的に応じて様々なバンド構造を創り出すことができるので、新規な発光素子や電子部品等の機能性材料に供する場合においても材料特性が安定し、性能の向上が容易になる。このため、これら機能性材料の実用化に寄与することができる。   According to the present invention, it is possible to produce a superlattice composed of silicon particles of nanometer size with high productivity without requiring a specially expensive device or the like, and the grains of silicon particles constituting the superlattice. Since particles with small diameter variation and small surface level variation can be arranged with excellent periodicity, a material having a desired band structure can be stably produced. Thus, since the superlattice of the present invention can create various band structures according to the purpose of use, the material characteristics are stable even when used for functional materials such as new light-emitting elements and electronic parts, and the performance It becomes easy to improve. For this reason, it can contribute to the practical use of these functional materials.

本発明のシリコン粒子超格子の一例を示すTEM写真像である。It is a TEM photograph image which shows an example of the silicon particle superlattice of this invention. 本発明のシリコン粒子超格子の一例を示すフーリエ変換像である。It is a Fourier-transform image which shows an example of the silicon particle superlattice of this invention.

Claims (8)

複数のシリコン粒子から構成されるシリコン粒子超格子であって、該シリコン粒子の平均粒径が1〜50nm、粒径の変動係数が20%以下であることを特徴とするシリコン粒子超格子。   A silicon particle superlattice comprising a plurality of silicon particles, wherein the silicon particles have an average particle diameter of 1 to 50 nm and a coefficient of variation of the particle diameter of 20% or less. 疎水性を有するシリコン粒子を水に分散させた懸濁液に、疎水性溶媒を加えた後に静置し、水相と有機相の界面にシリコン粒子を整列させる工程を有することを特徴とするシリコン粒子超格子の製造方法。   Silicon having a step of aligning silicon particles at an interface between an aqueous phase and an organic phase by adding a hydrophobic solvent to a suspension in which hydrophobic silicon particles are dispersed in water and then allowing to stand after adding the hydrophobic solvent Manufacturing method of particle superlattice. 前記懸濁液がフッ化水素酸を含むことを特徴とする請求項2に記載のシリコン粒子超格子の製造方法。   The method for manufacturing a silicon particle superlattice according to claim 2, wherein the suspension contains hydrofluoric acid. 前記疎水性溶媒が1−オクタノールであることを特徴とする請求項2または3に記載のシリコン粒子超格子の製造方法。   The method for producing a silicon particle superlattice according to claim 2 or 3, wherein the hydrophobic solvent is 1-octanol. 疎水性表面を有する固体基板の疎水性表面上に、請求項1に記載のシリコン粒子超格子を有することを特徴とするシリコン粒子超格子構造物。   A silicon particle superlattice structure comprising the silicon particle superlattice according to claim 1 on the hydrophobic surface of a solid substrate having a hydrophobic surface. 前記固体基板が、シリコン基板またはグラファイト基板であることを特徴とする請求項5に記載のシリコン粒子超格子構造物。   6. The silicon particle superlattice structure according to claim 5, wherein the solid substrate is a silicon substrate or a graphite substrate. 請求項1に記載のシリコン粒子超格子、請求項5または6に記載のシリコン粒子超格子構造物の少なくとも一方を有することを特徴とする発光素子。   A light emitting device comprising at least one of the silicon particle superlattice according to claim 1 and the silicon particle superlattice structure according to claim 5 or 6. 請求項1に記載のシリコン粒子超格子、請求項5または6に記載のシリコン粒子超格子構造物の少なくとも一方を有することを特徴とする電子部品。   An electronic component comprising at least one of the silicon particle superlattice according to claim 1 and the silicon particle superlattice structure according to claim 5 or 6.
JP2004076141A 2004-03-17 2004-03-17 Silicon particle superlattice, method for manufacturing the same, silicon particle superlattice structure using the same, light emitting element and electronic component Withdrawn JP2005263536A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004076141A JP2005263536A (en) 2004-03-17 2004-03-17 Silicon particle superlattice, method for manufacturing the same, silicon particle superlattice structure using the same, light emitting element and electronic component
CN2005800082566A CN1956920B (en) 2004-03-17 2005-02-18 Silicon particle, silicon particle superlattice and method for production thereof
PCT/JP2005/002574 WO2005090234A1 (en) 2004-03-17 2005-02-18 Silicon particle, silicon particle superlattice and method for production thereof
US10/592,864 US7850938B2 (en) 2004-03-17 2005-02-18 Silicon particles, silicon particle superlattice and method for producing the same
US12/823,314 US8221881B2 (en) 2004-03-17 2010-06-25 Silicon particle, silicon particle superlattice and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004076141A JP2005263536A (en) 2004-03-17 2004-03-17 Silicon particle superlattice, method for manufacturing the same, silicon particle superlattice structure using the same, light emitting element and electronic component

Publications (1)

Publication Number Publication Date
JP2005263536A true JP2005263536A (en) 2005-09-29

Family

ID=35088467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004076141A Withdrawn JP2005263536A (en) 2004-03-17 2004-03-17 Silicon particle superlattice, method for manufacturing the same, silicon particle superlattice structure using the same, light emitting element and electronic component

Country Status (1)

Country Link
JP (1) JP2005263536A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108266A1 (en) * 2007-03-06 2008-09-12 Konica Minolta Medical & Graphic, Inc. Method for producing semiconductor nanoparticle, method for producing core-shell semiconductor nanoparticle, and core-shell semiconductor nanoparticle
JP2013193933A (en) * 2012-03-21 2013-09-30 Furukawa Electric Co Ltd:The Porous silicon particle, porous silicon composite particle, and methods for producing these particles
WO2014002474A1 (en) * 2012-06-27 2014-01-03 株式会社豊田自動織機 Silicon-containing material, and secondary battery active material comprising silicon-containing material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108266A1 (en) * 2007-03-06 2008-09-12 Konica Minolta Medical & Graphic, Inc. Method for producing semiconductor nanoparticle, method for producing core-shell semiconductor nanoparticle, and core-shell semiconductor nanoparticle
JP2013193933A (en) * 2012-03-21 2013-09-30 Furukawa Electric Co Ltd:The Porous silicon particle, porous silicon composite particle, and methods for producing these particles
WO2014002474A1 (en) * 2012-06-27 2014-01-03 株式会社豊田自動織機 Silicon-containing material, and secondary battery active material comprising silicon-containing material
US9935310B2 (en) 2012-06-27 2018-04-03 Kabushiki Kaisha Toyota Jidoshokki Silicon-containing material and secondary-battery active material including silicon-containing material

Similar Documents

Publication Publication Date Title
US8221881B2 (en) Silicon particle, silicon particle superlattice and method for producing the same
JP4474502B2 (en) Method for producing carbon nanotube array
JP4508894B2 (en) Matrix structure of carbon nanotube and method for producing the same
EP2298697B1 (en) Method for producing a carbon wire assembly and a conductive film
US20120006784A1 (en) Transmission electron microscope grid and method for making same
Zhang et al. Clean transfer of 2D transition metal dichalcogenides using cellulose acetate for atomic resolution characterizations
US20080280099A1 (en) Silicon Substrates with Thermal Oxide Windows for Transmission Electron Microscopy
CN1956920B (en) Silicon particle, silicon particle superlattice and method for production thereof
US9944527B2 (en) Method for producing two-dimensionally patterned carbon nanotube and two-dimensionally patterned carbon nanotube
JP2006256948A (en) Device for growing matrix of carbon nanotube, and method for growing matrix of multi-layered carbon nanotube
JP2006176362A (en) Method for producing carbon nanotube thin film
JP5038349B2 (en) Method for producing carbon nanotube
KR101473854B1 (en) Graphene patterning method
JP2005263536A (en) Silicon particle superlattice, method for manufacturing the same, silicon particle superlattice structure using the same, light emitting element and electronic component
JP2005111583A (en) Method of manufacturing structure of nanometer scale
Salmistraro et al. Fabrication of gold nanoantennas on SiO2/TiO2 core/shell beads to study photon-driven surface reactions
JP5266303B2 (en) Method for producing semiconducting carbon nanotube
JP2007111855A (en) Core-shell structure employing nanoparticle composite as core, structure employing that as component, and method for producing structure produced from the same
KR100975656B1 (en) Locally deactivated catalysts and method for preparing the same
CN113880074B (en) Horizontal super-directional carbon nanotube bundle array and soft-locking spinning preparation method thereof
WO2022190869A1 (en) Particle immobilizing substrate, method for producing particle immobilizing substrate, method for producing diamond film immobilizing substrate, and method for producing diamond
KR20170020909A (en) Method for growing vertically oriented single-walled carbon nanotubes with the same electronic properties and for reproducing single-walled carbon nanotubes with the same electronic properties
JP2007203180A (en) Manufacturing method of carbon nanostructure, catalytic metal particle composite material and its manufacturing method
Muoth Clean integration of single-walled carbon nanotubes for electromechanical systems
JP4576603B2 (en) Method for producing indium phosphide nanotubes

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605