JP2005262016A - Air lift aeration tank suitable for batch activated sludge process - Google Patents

Air lift aeration tank suitable for batch activated sludge process Download PDF

Info

Publication number
JP2005262016A
JP2005262016A JP2004074855A JP2004074855A JP2005262016A JP 2005262016 A JP2005262016 A JP 2005262016A JP 2004074855 A JP2004074855 A JP 2004074855A JP 2004074855 A JP2004074855 A JP 2004074855A JP 2005262016 A JP2005262016 A JP 2005262016A
Authority
JP
Japan
Prior art keywords
aeration tank
partition plate
tank
liquid
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004074855A
Other languages
Japanese (ja)
Other versions
JP4354852B2 (en
Inventor
Yoshiyuki Bando
芳行 坂東
Keiji Yasuda
啓司 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Refine Co Ltd
Original Assignee
Nippon Refine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Refine Co Ltd filed Critical Nippon Refine Co Ltd
Priority to JP2004074855A priority Critical patent/JP4354852B2/en
Publication of JP2005262016A publication Critical patent/JP2005262016A/en
Application granted granted Critical
Publication of JP4354852B2 publication Critical patent/JP4354852B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air lift aeration tank suitable for a batch activated sludge process which can sufficiently cope with wastewater having a high nitrogen load, namely high nitrogen content wastewater, for example, wastewater of a food plant, by enabling the control of a liquid circulation quantity in an aeration tank without being influenced by the water level of treated liquid in the aeration tank even if the water level fluctuates. <P>SOLUTION: This air lift aeration tank comprises (1) two partition plates for partitioning the inside of the aeration tank, consisting of (i) a first partition plate for vertically partitioning the tank up to a fixed height so as to leave a fixed space between it and the bottom of the aeration tank, and (ii) a second partition plate for vertically partitioning the tank up to a fixed height so as to leave a fixed space above the first partition plate, (2) an air blowing means installed on the bottom or in the vicinity of the bottom of one side of the aeration tank partitioned by the partition plates, (3) a wastewater introduction means installed in the other side of the aeration tank partitioned by the partition plates, and (4) an aeration tank having an inclined plane, preventing sludge in the tank from depositing, in the vicinity of the bottom of the aeration tank to which the wastewater introduction means is attached. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、回分式活性汚泥法に適したエアリフト曝気槽に関する。   The present invention relates to an airlift aeration tank suitable for a batch activated sludge method.

非特許文献1によれば、Hanoら(1992)は、二重管式エアリフト気泡塔を用いてひとつの装置内に嫌気領域と好気領域を共存させて生物的窒素除去を行う方法を提案している。非特許文献2によれば本発明者らは前記エアリフト気泡塔を装置工学的に改良する技術を提案しており、さらに非特許文献3によればこれらの技術を矩形曝気槽へ応用することを提案している。また、非特許文献4によれば、本発明者らはこれらの装置における支配的因子となる処理液の循環流量についても検討している。   According to Non-Patent Document 1, Hano et al. (1992) proposed a method of performing biological nitrogen removal by using a double-tube airlift bubble column in the same apparatus in which an anaerobic region and an aerobic region coexist. ing. According to Non-Patent Document 2, the present inventors have proposed techniques for improving the air lift bubble column in terms of apparatus engineering. Further, according to Non-Patent Document 3, these techniques are applied to a rectangular aeration tank. is suggesting. In addition, according to Non-Patent Document 4, the present inventors have also examined the circulating flow rate of the processing liquid which is a dominant factor in these apparatuses.

これらいずれの装置においても、嫌気領域と好気領域とを共存させることができるが、標準液回分式の場合には排水流入時に曝気槽内の液高が大きく変化するし、1つの槽が調整槽、曝気槽、沈澱槽の役割を担う標準液回分式ではまず、排水を槽に流入させる時間帯、ついで曝気を行なう時間帯があり、その後曝気を止めて沈降分離、排出を行なう時間帯にわかれており、排水流入時(嫌気状態)には曝気をしないので液の混合状態が著しく悪いという問題点がある。   In any of these devices, the anaerobic region and aerobic region can coexist, but in the case of the standard liquid batch type, the liquid height in the aeration tank changes greatly when the wastewater flows in, and one tank is adjusted. In the standard liquid batch system, which plays the role of a tank, aeration tank, and precipitation tank, there is a time zone when the wastewater flows into the tank, followed by a time zone during which aeration is performed. There is a problem that the mixed state of the liquid is remarkably bad because aeration is not performed at the time of drainage inflow (anaerobic state).

Hano,T.外3名著、Chem.Eng.Sci.,47,3737−3744(1992)Hano, T .; Three other authors, Chem. Eng. Sci. 47, 3737-3744 (1992) Bando,Y.外4名著、J.Chem.Eng.Japan,32,770−775(1999)Bando, Y .; Four authors, J. Chem. Eng. Japan, 32, 770-775 (1999) Bando,Y.外2名著、J.Chem.Eng.Japan,37,in press(2004)Bando, Y .; Two other authors, J.M. Chem. Eng. Japan, 37, in press (2004) 坂東外3名著、流体熱工学研究,38,45−54(2003)Bando Oga, 3 authors, Fluid Thermal Engineering Research, 38, 45-54 (2003)

本発明の目的は、曝気槽内における処理液の水位が上下に変動しても、これに影響をほとんど受けることなく、槽内の液循環量を制御できるようにすることにより、窒素負荷の大きい排水いいかえれば窒素含有量の多い排水たとえば食品工場の排水に対しても充分対応できる回分式活性汚泥法に適したエアリフト曝気槽を提供する点にある。   The object of the present invention is to increase the nitrogen load by allowing the liquid circulation amount in the tank to be controlled without being substantially affected even if the water level of the processing liquid in the aeration tank fluctuates up and down. In other words, it is to provide an airlift aeration tank suitable for the batch activated sludge method that can sufficiently cope with wastewater with a high nitrogen content, for example, wastewater from a food factory.

本発明は、(1)(i)第1の仕切板は曝気槽の槽底とその仕切板との間に一定の隙間をあけて一定の高さまでを垂直に仕切るものであり、(ii)第2の仕切板は第1の仕切板の真上に一定の隙間をあけて一定の高さまでを垂直に仕切るものである、曝気槽内を仕切る2枚の仕切板、
(2)仕切板で仕切られた曝気槽の一方の側の底部またはその近傍に設けられた空気吹き込み手段、
(3)仕切板で仕切られた曝気槽の他方の側に設けられた排水導入手段、
および
(4)前記排水導入手段が設置されている部分の曝気槽底部近傍が、槽内の汚泥が堆積しない程度の傾斜面となっている曝気槽、
よりなることを特徴とするエアリフト曝気槽に関する。
In the present invention, (1) (i) the first partition plate vertically partitions a certain height with a certain gap between the bottom of the aeration tank and the partition plate, and (ii) The second partition plate is a partition plate that partitions the inside of the aeration tank vertically with a certain gap directly above the first partition plate up to a certain height,
(2) Air blowing means provided at the bottom of one side of the aeration tank partitioned by the partition plate or in the vicinity thereof,
(3) Drainage introduction means provided on the other side of the aeration tank partitioned by the partition plate,
And (4) an aeration tank in which the vicinity of the bottom of the aeration tank where the drainage introducing means is installed has an inclined surface that does not accumulate sludge in the tank,
It is related with the airlift aeration tank characterized by comprising.

従来の標準回分式活性汚泥法は図1に示すように曝気槽全体をある時間帯は嫌気状態とし、次の時間帯は好気状態とする方法であり、具体的には排水の流入開始から終了まで(約10時間)は嫌気状態、曝気開始から終了まで(約10時間)は好気状態とする。沈降分離(約4時間)も嫌気状態で行なう。通常は最大液量(曝気時)を一日の排水量の3〜4倍とし、1日に最大液量の1/3〜1/4ずつ交換する方法である。   As shown in FIG. 1, the conventional standard batch activated sludge method is a method in which the entire aeration tank is in an anaerobic state for a certain period of time and an aerobic state in the next period of time. The anaerobic state is maintained until the end (about 10 hours), and the aerobic state is maintained from the start to the end of the aeration (about 10 hours). The sedimentation separation (about 4 hours) is also performed in an anaerobic state. Usually, the maximum liquid volume (at the time of aeration) is 3 to 4 times the daily drainage volume, and 1/3 to 1/4 of the maximum liquid volume is replaced every day.

前記標準回分式活性汚泥法における曝気槽に図2に示すように1枚の仕切板を入れて流入開始時から曝気すると、曝気槽内に常に好気領域と嫌気領域が共存し、窒素除去性能の向上が期待されるが、液面が仕切板上端に達するまでは液を循環させることはできない。   When a single partition plate is inserted into the aeration tank in the standard batch activated sludge method as shown in FIG. 2 and aeration is started from the start of inflow, the aerobic and anaerobic areas always coexist in the aeration tank, and the nitrogen removal performance However, the liquid cannot be circulated until the liquid level reaches the upper end of the partition plate.

そこで、本発明では図3に示すように2枚の仕切板を、空隙を空けて設置することを考えた。この場合、下の仕切板、すなわち第1の仕切板の上端を最小液量(排出後)の液面の位置とし、少し空けて上の仕切板(第2の仕切板)を設置する。このようにすることにより、液面が第1の仕切板の上端に達する前後から曝気を行なうと液面の上下動もあることからこの段階ですでに液の循環流が発生し、曝気槽内に好気領域と嫌気領域が共存するとともに、活性汚泥と排水の混合が良好となる。   Therefore, in the present invention, as shown in FIG. 3, the two partition plates are considered to be installed with a gap. In this case, the lower partition plate, that is, the upper end of the first partition plate is set to the position of the liquid level of the minimum liquid amount (after discharge), and the upper partition plate (second partition plate) is installed with a little space. By doing so, when aeration is performed before and after the liquid level reaches the upper end of the first partition plate, the liquid level also moves up and down, so that a liquid circulation flow has already occurred at this stage, In addition, the aerobic region and the anaerobic region coexist with each other, and the mixing of the activated sludge and the waste water becomes good.

本発明における曝気槽の横断面は、四角形(たとえば矩形)、円形など任意の形状を取ることができるが、仕切板の設定のしやすさ、スケールアップの容易性などの点から矩形がもっとも好ましい〔図4(b)参照〕。横断面が四角形の場合は、仕切板は平板状であるが、円形の場合には仕切板は平板状でもよいが、円状(同心円形でも偏心円形でもよい)のものとすることもできる。曝気槽は、金属製、樹脂製、コンクリート製などとくに制限するものではない。なお、前記曝気槽の底部近傍に設けられた傾斜面は、槽内の汚泥が堆積しないような傾斜面とすることが必要であり、この角度は汚泥の安息角から容易に求めることができるものであり、新規事項ではない。   The cross section of the aeration tank in the present invention can take any shape such as a quadrangle (for example, a rectangle) or a circle, but a rectangle is most preferable from the viewpoint of ease of setting a partition plate and ease of scale-up. [Refer FIG.4 (b)]. When the cross section is a quadrangle, the partition plate has a flat plate shape. When the cross section is circular, the partition plate may have a flat plate shape, but it may have a circular shape (may be concentric or eccentric). The aeration tank is not particularly limited, such as metal, resin or concrete. The inclined surface provided near the bottom of the aeration tank needs to be an inclined surface that does not accumulate sludge in the tank, and this angle can be easily obtained from the repose angle of the sludge. It is not a new matter.

仕切板の役割は、装置内に気泡が多く存在する領域と気泡がほとんど存在しない領域を作ることである。この結果、装置内に気液混相の低密度部分と高密度部分が生まれ、この密度差を推進力として液の循環流が発生する。当然気泡の多い領域が上昇流(ライザ)となり、気泡のほとんどない領域が下降流(ダウンカマ)となり、液が仕切板を介して循環することになる。ガスを吹き込んで気泡の多い領域をつくり、この領域に上昇流を形成することを化学工学分野ではエアリフト(air lift)と称している。このような循環流を形成する上でも、仕切板は液の上下がそれぞれ開口していること(LとLが相応の寸法を有すること)が必要である。 The role of the partition plate is to create a region where many bubbles are present and a region where few bubbles are present in the apparatus. As a result, a low-density portion and a high-density portion of the gas-liquid mixed phase are generated in the apparatus, and a liquid circulation flow is generated using this density difference as a driving force. Naturally, the region with a lot of bubbles becomes an upward flow (riser), the region with almost no bubbles becomes a downward flow (downcomer), and the liquid circulates through the partition plate. Blowing a gas to create a region with a lot of bubbles and forming an upward flow in this region is called air lift in the chemical engineering field. In order to form such a circulating flow, it is necessary that the partition plate is open at the top and bottom of the liquid (L 1 and L 3 have corresponding dimensions).

さらに本発明において最も重要なことは前記仕切板が第1の仕切板と第2の仕切板の2枚に分離しており、2枚の仕切板の間に隙間を設けている点にある。
これにより液量が少ない場合でもエアリフトによって液を良好に撹拌でき、かつ嫌気領域と好気領域を共存させることができる。好気領域は当然ながら空気吹き込み側(ライザ側)であり、嫌気領域は反対側のダウンカマ側に存在する。
Further, in the present invention, the most important point is that the partition plate is separated into two plates, a first partition plate and a second partition plate, and a gap is provided between the two partition plates.
Thereby, even when the amount of liquid is small, the liquid can be satisfactorily stirred by the air lift, and the anaerobic region and the aerobic region can coexist. The aerobic region is naturally on the air blowing side (riser side), and the anaerobic region is on the opposite downcomer side.

本発明の装置を設計するに当っては、つぎのような要領で行なうことが好ましい。
(1)工場の1日の排水量{Q〔m/day(以下dと略記)〕}と排水の平均滞留時間(t〔d〕、通常3〜4d)から曝気槽の容積(V=Q×t)を求める。
(2)曝気にブロワーを用いるときは、通常、最大液高(LMAX)を5〜6mとする。したがって、曝気槽の床面積(A)が決まる(A=V/LMAX)。
(3)曝気槽の床形状(正方形に近い四角か、細長い四角か)は曝気槽を設置する地形条件によって決まるが、本方式に対しては細長い四角が望ましい。ここで、曝気槽において仕切板と直角の方向の槽幅をWとする。
※以上の設計においてLMAXおよびWが本装置の最大液高および槽幅に相当する。
(4)Wの1/4に相当する位置に仕切板を設置し、壁から仕切板の部分の底面に散気装置を設置する(この部分がライザとなる。ライザ幅W=W/4)。このように仕切板を設置することにより、曝気槽内の液循環流の制御が容易となる。
(5)第1の仕切板の高さについては、その上端の位置を最低液高(処理水を排出したときの液高)に、その下端と底面との距離はライザ幅(W)の1/2〜1倍とする。一方、第2の仕切板の上端は最大液高(排水の流入が終了して曝気しているときの液高)よりやや(ライザ幅程度)低くする。
(6)ここで、一番重要となるのが、第1の仕切板上端と第2の仕切板下端との間の距離である。液循環流量が最適値(曝気槽内で活性汚泥が円滑に循環する最適の液循環流量。液循環流量が高いほど活性汚泥は円滑に循環・混合する。しかし、液循環流量が高すぎるとダウンカマ下部へ溶存酸素が供給されて、嫌気領域が存在しなくなる。)となるように、この距離を決めるべきである。なお、実施例の排水処理実験ではこの距離を0.01mとしている。
In designing the apparatus of the present invention, it is preferable to carry out the following procedure.
(1) The daily aeration volume {Q [m 3 / day (hereinafter abbreviated as d)]} of the factory and the average dwell time (t [d], usually 3 to 4 d) of the aeration tank (V = Q Xt).
(2) When a blower is used for aeration, the maximum liquid height (L MAX ) is normally set to 5 to 6 m. Therefore, the floor area (A) of the aeration tank is determined (A = V / L MAX ).
(3) The floor shape of the aeration tank (whether it is a square close to a square or an elongated square) is determined by the topographic conditions for installing the aeration tank, but an elongated square is desirable for this method. Here, let W be the tank width in the direction perpendicular to the partition plate in the aeration tank.
* In the above design, L MAX and W correspond to the maximum liquid height and tank width of this equipment.
(4) A partition plate is installed at a position corresponding to 1/4 of W, and an air diffuser is installed from the wall to the bottom surface of the partition plate portion (this portion becomes a riser. Riser width W R = W / 4. ). By installing the partition plate in this way, it is easy to control the liquid circulation flow in the aeration tank.
(5) Regarding the height of the first partition plate, the position of the upper end is set to the lowest liquid height (the liquid height when the treated water is discharged), and the distance between the lower end and the bottom surface is the riser width (W R ). 1/2 to 1 times. On the other hand, the upper end of the second partition plate is slightly lower (about the riser width) than the maximum liquid height (the liquid height when the inflow of drainage is completed and aerated).
(6) Here, the most important is the distance between the upper end of the first partition plate and the lower end of the second partition plate. Optimum liquid circulation flow rate (optimal liquid circulation flow rate that allows activated sludge to circulate smoothly in the aeration tank. The higher the liquid circulation flow rate, the smoother the circulation and mixing of activated sludge. However, if the liquid circulation flow rate is too high, downcoma This distance should be determined so that dissolved oxygen is supplied to the bottom and there is no anaerobic region. In the wastewater treatment experiment of the example, this distance is set to 0.01 m.

1)2枚の仕切板をある隙間を介して設置する本発明の曝気槽は、液高の変化によらず、嫌気と好気領域の共存を可能とする。
2)本発明の曝気槽における液循環流量は、各位置の寸法によって決定される。言い換えると、第1と第2の仕切板の隙間、および第2の仕切板と液面の距離によって液循環流量を制御できる。
3)本発明の曝気槽では、高い窒素除去性能が得られる。
1) The aeration tank of the present invention in which two partition plates are installed through a certain gap allows coexistence of anaerobic and aerobic regions regardless of changes in liquid height.
2) The liquid circulation flow rate in the aeration tank of the present invention is determined by the size of each position. In other words, the liquid circulation flow rate can be controlled by the gap between the first and second partition plates and the distance between the second partition plate and the liquid surface.
3) In the aeration tank of the present invention, high nitrogen removal performance can be obtained.

以下に実施例を挙げて本発明を説明するが、本発明はこれにより何等限定されるものではない。   Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.

実施例1
床面積の一辺に平行に仕切板を設置した場合、曝気時における仕切板と平行の方向の液流れは小さく、深さ方向および仕切板と直角の方向の液循環流が支配的となる。
そこで、この液循環流に着目して図4に示す装置を用いて実験を行った。なお、この装置で3方向の液速度を測定したところ、仕切板と平行の方向の速度成分は他の2方向(深さ方向および仕切板と直角の方向)に比べて極めて小さいことが明らかとなった。
曝気槽は幅0.32m、奥行き0.12m、高さ2.50mの透明アクリル樹脂製とした。左壁から0.08m、底面から0.05mの位置に長さ1.20mの仕切板(第1の仕切板2)を設置し、その上方に0.01mの隙間をあけ長さ0.54mの仕切板(第2の仕切板3)を設置した槽を用いた。
活性汚泥には、食品工場で採取した汚泥をモデル排水にて2ヶ月馴養したものを用いた。モデル排水の組成を表1に示す〔BOD(生物的酸素要求量):TN(全窒素量):TP(全リン量)=100:10:1〕。排水処理の1サイクルを24時間とし、1日1サイクルの連続運転を毎日繰り返した。11時間にわたって、モデル排水を供給した(液面の位置は、第1の仕切板の上端の位置から第2の仕切板の上端から0.06m上まで変化する)。曝気は、排水供給開始時から22時間行なった。22時間で曝気を止め、沈降分離後、流入量と同じ量(1サイクルでの排出量と流入量は共に全液量の1/3とした)の上澄み液を排出した。MLSS(曝気槽内汚泥濃度)は3.0kg/mに調整した。1サイクルの工程を図4の(c)に示す。また、比較のために仕切板のない曝気槽〔比較例(標準液回分式)〕での実験も行なった。比較例では、本実施例1と同様にモデル排水を供給し、排水供給終了後11時間から22時間の間曝気した。曝気後の操作は実施例1と同じである。なお、曝気流量は実施例1では比較例の半分の量とした。2ヶ月にわたって同様の排水処理実験を繰り返し、排出水(処理水)のCOD(化学的酸素要求量)およびTN(全窒素量)を分析し、それぞれの除去率を算出した。
COD除去率(%)
=100×(流入水中COD濃度−排出水中COD濃度)/流入水中COD濃度
TN除去率(%)
=100×(流入水中全窒素濃度−排出水中全窒素濃度)/流入水中全窒素濃度

Figure 2005262016
電磁流速計を用いて槽内の液循環流量Qを求めた。溶存酸素濃度がゼロになっている領域を嫌気領域とし、その濃度分布から槽全体(V)に対する嫌気領域(VAN)の割合VAN/Vを算出した。 Example 1
When a partition plate is installed parallel to one side of the floor area, the liquid flow in the direction parallel to the partition plate during aeration is small, and the liquid circulation flow in the depth direction and the direction perpendicular to the partition plate is dominant.
Therefore, an experiment was conducted using the apparatus shown in FIG. In addition, when the liquid velocity in three directions was measured with this apparatus, it was clear that the velocity component in the direction parallel to the partition plate was extremely small compared to the other two directions (depth direction and direction perpendicular to the partition plate). became.
The aeration tank was made of a transparent acrylic resin having a width of 0.32 m, a depth of 0.12 m, and a height of 2.50 m. A partition plate (first partition plate 2) with a length of 1.20m is installed at a position of 0.08m from the left wall and 0.05m from the bottom, with a gap of 0.01m above it and a length of 0.54m The tank in which the partition plate (second partition plate 3) was installed was used.
As the activated sludge, sludge collected at a food factory and conditioned for 2 months with model waste water was used. The composition of the model wastewater is shown in Table 1 [BOD (biological oxygen demand): TN (total nitrogen content): TP (total phosphorus content) = 100: 10: 1]. One cycle of wastewater treatment was set to 24 hours, and continuous operation of one cycle per day was repeated every day. Model waste water was supplied over 11 hours (the position of the liquid level changed from the position of the upper end of the first partition plate to 0.06 m above the upper end of the second partition plate). Aeration was performed for 22 hours from the start of drainage supply. After 22 hours, aeration was stopped, and after sedimentation, the supernatant liquid was discharged in the same amount as the inflow amount (both the discharge amount and the inflow amount in one cycle were 1/3 of the total liquid amount). MLSS (sludge concentration in the aeration tank) was adjusted to 3.0 kg / m 3 . One cycle of the process is shown in FIG. For comparison, an experiment was also conducted in an aeration tank [comparative example (standard solution batch type)] without a partition plate. In the comparative example, model waste water was supplied in the same manner as in Example 1, and aerated for 11 to 22 hours after the end of waste water supply. The operation after aeration is the same as in Example 1. The aeration flow rate in Example 1 was half that of the comparative example. The same wastewater treatment experiment was repeated over two months, and COD (chemical oxygen demand) and TN (total nitrogen amount) of the discharged water (treated water) were analyzed, and the respective removal rates were calculated.
COD removal rate (%)
= 100 x (COD concentration in influent water-COD concentration in effluent water) / COD concentration TN removal rate in inflow water (%)
= 100 x (total nitrogen concentration in influent water-total nitrogen concentration in effluent water) / total nitrogen concentration in influent water
Figure 2005262016
The liquid circulation flow rate Q L in the tank was determined using an electromagnetic current meter. A region where the dissolved oxygen concentration is zero was defined as an anaerobic region, and a ratio V AN / V of the anaerobic region (V AN ) to the entire tank (V) was calculated from the concentration distribution.

図4において、曝気槽内の水溶液の高さをL、第1の仕切板の上下方向の長さをLP1、第2の仕切板の上下方向の長さをLP2、曝気槽底部と第1の仕切板下端との間の距離(下端開放部高さ)をL、第1の仕切板上端と第2の仕切板下端との間の距離(中間開放部高さ)をL、第2の仕切板上端と液面との距離(上部開放部高さ)をL、曝気槽の幅をW、曝気槽内のダウンカマ(下降部)の幅をW、曝気槽のライザ(上昇部)の幅をWとすると、曝気槽底部と第1の仕切板下端との間の距離(下端開放部高さ)Lはライザ(上昇部)の幅Wの1/2〜1倍、第2の仕切板上端と最大液高との距離(L)は、槽幅(W)以下、好ましくは槽幅(W)の半分以下、最も好ましくはライザ幅(W)の半分程度が良い。また、第1の仕切板と第2の仕切板との間隙は、活性汚泥が円滑に循環する最低の液循環流量となるように設定すべきで、最大でも50mm以下、好ましくは10〜30mm、最も好ましくは10mm程度とすべきである。なお、これらの距離は両仕切板の長さや排水量には全く依存しない。また、この距離が狭すぎると活性汚泥の付着による第1の仕切板と第2の仕切板との間隙の閉塞が危惧され、一方、この間隙が大きすぎると液循環量が多くなりすぎ、ダウンカマの上部が好気領域となってしまうので好ましくない。 In FIG. 4, the height of the aqueous solution in the aeration tank is L, the vertical length of the first partition plate is L P1 , the vertical length of the second partition plate is L P2 , the bottom of the aeration tank and the first 1 of the distance between the partition plate lower end (lower end opening height) L B, the distance between the first partition plate upper end and a second partition plate bottom (intermediate opening height) L 1, The distance between the upper end of the second partition plate and the liquid surface (upper open part height) is L 3 , the width of the aeration tank is W, the width of the downcomer (lowering part) in the aeration tank is W D , and the riser of the aeration tank ( When the width of the raised portion) and W R, the distance between the aeration tank bottom and the first partition plate lower end (lower end opening height) L B is 1/2 to the width W R of the riser (rising portion) 1 time, the distance (L 3 ) between the upper end of the second partition plate and the maximum liquid height is not more than the tank width (W), preferably not more than half of the tank width (W), most preferably the riser width (W R ) About half good. Further, the gap between the first partition plate and the second partition plate should be set so as to be the lowest liquid circulation flow rate at which activated sludge circulates smoothly, and is at most 50 mm or less, preferably 10 to 30 mm, Most preferably, it should be about 10 mm. These distances are completely independent of the length of both partition plates and the amount of drainage. Also, if this distance is too small, the gap between the first partition plate and the second partition plate due to the adhering activated sludge is feared. On the other hand, if this distance is too large, the amount of liquid circulation becomes too large, and the downcomer Since the upper part of becomes an aerobic area | region, it is not preferable.

図5に、実施例1の排水流入時の流動状態を示す。液高の変化によらず槽内には液循環流が発生しており、排水と活性汚泥は良好に混合される。
図6、7に実施例1における液循環流量に及ぼすガス速度および各位置の距離の影響を示す。図6は、L=0.01m、LP2=0.54mの条件で、L(下の仕切板上端から液面までの距離)を変えて液循環流量を測定した結果である。図6(L=0.01m、LP2=0.54mにおいてLを変えた場合の液循環流量)でわかるようにいずれのガス空塔速度においても液面が第1の仕切板上端より高く第2の仕切板上端までは達しない範囲(L=0.01〜0.55m)では、両仕切板の隙間から液が流出して循環し、液循環流量がほぼ一定となる。液面が第2の仕切板上端より高くなると、第2の仕切板上端を超える液流れが支配的となり(両仕切板の隙間からも液が流出するが)、液循環流量は、Lの増加とともに増大し、あるL以上になると一定となる。
図7では、L−L=0.2m(第2の仕切板下端から液面までの距離を0.2mで一定とした)において、液循環流量(Q)に及ぼすLとガス空塔速度U(mm/s)の影響を調べたものである。この実験では、液面は常に上の仕切板上端より0.34m低く、ここからの液循環は起こらない。いずれのガス空塔速度においてもLが長くなるほど、液循環流量は増大する。
このように、液循環流量は、各位置の距離によって強く支配されることがわかる。上述のように、第1の仕切板の上端は排水処理条件(処理流量および排水の平均滞留時間)から決定される。第1の仕切板と第2の仕切板との間隙は、活性汚泥が円滑に循環する最低の液循環流量となるように設定すべきで、最大でも50mm以下、好ましくは10〜30mm、最も好ましくは10mm程度とすべきである。また、第2の仕切板と最大液高との距離は槽幅以下、好ましくは槽幅の半分以下、もっとも好ましくはライザ幅の半分程度が良い。
In FIG. 5, the flow state at the time of the waste_water | drain inflow of Example 1 is shown. Regardless of the change in liquid height, a liquid circulation flow is generated in the tank, and the waste water and activated sludge are well mixed.
6 and 7 show the influence of the gas velocity and the distance of each position on the liquid circulation flow rate in the first embodiment. FIG. 6 is a result of measuring the liquid circulation flow rate by changing L T (distance from the upper end of the lower partition plate to the liquid level) under the conditions of L 1 = 0.01 m and L P2 = 0.54 m. 6 the liquid level in either of the gas superficial velocity as seen in (L 1 = 0.01m, L P2 = liquid circulation flow rate when changing the L T in 0.54 m) is higher than the first partition plate upper end In a range that is high and does not reach the upper end of the second partition plate (L T = 0.01 to 0.55 m), the liquid flows out from the gap between the partition plates and circulates, and the liquid circulation flow rate becomes substantially constant. When the liquid level is higher than the second partition plate upper end (although the liquid also flows out from the gap between both partition plates) liquid flow exceeds a second partition plate upper end dominant becomes, liquid circulation flow, the L T increases with increasing, constant and equal to or greater than a certain L T.
In FIG. 7, when L T -L 1 = 0.2 m (the distance from the lower end of the second partition plate to the liquid level is constant at 0.2 m), L 1 and gas that affect the liquid circulation flow rate (Q L ) The effect of the superficial velocity U G (mm / s) was examined. In this experiment, the liquid level is always 0.34 m lower than the upper end of the upper partition plate, and no liquid circulation occurs here. Higher becomes even longer L 1 at any of the gas superficial velocity, the liquid circulation rate is increased.
Thus, it can be seen that the liquid circulation flow rate is strongly governed by the distance of each position. As described above, the upper end of the first partition plate is determined from the wastewater treatment conditions (treatment flow rate and average residence time of wastewater). The gap between the first partition plate and the second partition plate should be set so as to be the lowest liquid circulation flow rate at which activated sludge circulates smoothly, and is at most 50 mm or less, preferably 10 to 30 mm, most preferably Should be about 10 mm. The distance between the second partition plate and the maximum liquid height is not more than the tank width, preferably not more than half the tank width, and most preferably about half the riser width.

図8に実施例1における液循環流量(Q)と嫌気領域の割合の1サイクルにおける経時変化(θ)を示す。排水供給により液高が変化するので、液循環流量、その結果として嫌気領域が時間とともに変化するが、約18時間までは嫌気領域が存在することがわかる。
また、図8ではL=0.01m、活性汚泥を用いた排水処理実験(0〜11時間の期間では一定流量で液が流入し、11〜22時間の期間では曝気槽内の液量は一定となる。つまりLが前半では増加し、後半では一定となる)における、液循環流量(Q)と、曝気槽全容積に対する嫌気領域の割合VAN/Vの経時変化を示している。
図6と同様、液循環流量は、液面が下の仕切板上端より高く、上の仕切板上端までは達しない期間(θ=0〜10時間)では、低い値でほぼ一定となる。液面が上の仕切板上端より高くなると(θ=10〜11時間)急激に増大し、その後(θ=11〜22時間)高い値でほぼ一定となる。一方、嫌気領域の割合VAN/Vは、液循環流量が低い期間(θ=0〜10時間)では高く、液循環流量の急増(θ=10〜11時間)とともに急減する。高い液循環流量になる(θ=18〜22時間)とゼロ、すなわち曝気槽全体が好気領域となる。つまり、上述のように、嫌気領域の割合は液循環流量に強く支配され、LおよびLが液循環に対して重要な因子であることがわかる。
なお、この場合、1サイクルにわたる嫌気領域割合の時間的平均値は約45%であった。この時間的平均値を約50%とすることが、高い窒素除去率を得るためには極めて重要である。
FIG. 8 shows the change with time (θ) in one cycle of the liquid circulation flow rate (Q L ) and the ratio of the anaerobic region in Example 1. Since the liquid height is changed by the drainage supply, the liquid circulation flow rate and, as a result, the anaerobic region changes with time, but it can be seen that the anaerobic region exists until about 18 hours.
Further, in FIG. 8, L 1 = 0.01 m, wastewater treatment experiment using activated sludge (liquid flows in at a constant flow rate during the period of 0 to 11 hours, and the amount of liquid in the aeration tank is between 11 and 22 hours. constant become. that L T is increased in the first half, at constant become) in the second half, the liquid circulation flow rate (Q L), shows the time course of the rate V aN / V anaerobic region for the aeration tank total volume .
Similar to FIG. 6, the liquid circulation flow rate is substantially constant at a low value during a period (θ = 0 to 10 hours) where the liquid level is higher than the upper end of the lower partition plate and does not reach the upper end of the upper partition plate. When the liquid level becomes higher than the upper end of the upper partition plate (θ = 10 to 11 hours), it rapidly increases, and thereafter (θ = 11 to 22 hours) becomes substantially constant at a high value. On the other hand, the ratio V AN / V of the anaerobic region is high during a period when the liquid circulation flow rate is low (θ = 0 to 10 hours), and rapidly decreases as the liquid circulation flow rate rapidly increases (θ = 10 to 11 hours). When the liquid circulation flow rate becomes high (θ = 18 to 22 hours), zero, that is, the entire aeration tank becomes an aerobic region. That is, as described above, it can be understood that the ratio of the anaerobic region is strongly governed by the liquid circulation flow rate, and L 1 and L 3 are important factors for the liquid circulation.
In this case, the temporal average value of the anaerobic region ratio over one cycle was about 45%. In order to obtain a high nitrogen removal rate, it is extremely important to set the temporal average value to about 50%.

上述のように第1の仕切板(下の仕切板)上端の位置は最小液高から、また第2の仕切板(上の仕切板)上端の位置は最大液高から決まる。両仕切板の隙間の距離(L)は、図7に示したように要求される液循環流量(活性汚泥が円滑に循環する低い液流量)から決められ、両仕切板の長さには依存しない。 As described above, the position of the upper end of the first partition plate (lower partition plate) is determined from the minimum liquid height, and the position of the upper end of the second partition plate (upper partition plate) is determined from the maximum liquid height. The distance (L 1 ) between the two partition plates is determined from the required liquid circulation flow rate (low liquid flow rate at which activated sludge circulates smoothly) as shown in FIG. Do not depend.

Figure 2005262016
表2に実施例1と比較例の両曝気槽を用いて行なった排水処理実験の結果を示す。COD除去率はいずれの槽でも高く、両槽の差異は見られない。一方、窒素除去率は実施例1がかなり高く、嫌気・好気領域の良好な共存および液循環流の効果が認められる。CODと全窒素量のそれぞれの除去率ηCOD(%)とηTN(%)は、曝気槽からの排出水(処理水)中のCOD(化学的酸素要求量、本来ならばBODを測定すべきであるが、簡略のためにCODを測定した)およびTN(全窒素量)を滴定および発色分光法によって分析し、以下の式からそれぞれの除去率を算出した。
COD除去率(%)
=100×(流入水中COD濃度−排出水中COD濃度)/流入水中COD濃度
TN除去率(%)
=100×(流入水中全窒素濃度−排出水中全窒素濃度)/流入水中全窒素濃度
Figure 2005262016
Table 2 shows the results of the wastewater treatment experiment conducted using both the aeration tanks of Example 1 and Comparative Example. The COD removal rate is high in both tanks, and there is no difference between the two tanks. On the other hand, the nitrogen removal rate is considerably high in Example 1, and good coexistence of anaerobic / aerobic regions and the effect of liquid circulation flow are recognized. The removal rates η COD (%) and η TN (%) of COD and total nitrogen, respectively, measure COD (chemical oxygen demand, originally BOD) in the discharged water (treated water) from the aeration tank. Although, for simplicity, COD was measured) and TN (total nitrogen) were analyzed by titration and color spectroscopy and the respective removal rates were calculated from the following equations.
COD removal rate (%)
= 100 x (COD concentration in influent water-COD concentration in effluent water) / COD concentration TN removal rate in inflow water (%)
= 100 x (total nitrogen concentration in influent water-total nitrogen concentration in effluent water) / total nitrogen concentration in influent water

従来の標準回分式活性汚泥法に用いる曝気槽における1日(24時間)の曝気サイクルと液の流入排出サイクルを説明する図である。It is a figure explaining the aeration cycle of a day (24 hours) and the inflow / discharge cycle of a liquid in the aeration tank used for the conventional standard batch type activated sludge method. 従来の標準回分式活性汚泥法に用いる曝気槽に1枚の仕切板を入れた場合における1日(24時間)の曝気サイクルと液の流入排出サイクルを説明する図である。It is a figure explaining the aeration cycle of a day (24 hours) and the inflow / discharge cycle of a liquid when one partition plate is put into the aeration tank used for the conventional standard batch type activated sludge method. 本発明に用いる曝気槽における1日(24時間)の曝気サイクルと液の流入排出サイクルを説明する図である。It is a figure explaining the aeration cycle of a day (24 hours) and the inflow / discharge cycle of a liquid in the aeration tank used for the present invention. 本発明に用いる曝気槽の1例を示す図であり、(a)は垂直方向の断面図、(b)は水平方向の断面図(曝気槽のみ)であり、(c)は1サイクルの工程を示す。It is a figure which shows one example of the aeration tank used for this invention, (a) is sectional drawing of a perpendicular direction, (b) is sectional drawing of a horizontal direction (only an aeration tank), (c) is the process of 1 cycle Indicates. 本発明曝気槽における(a)排水流入開始時、(b)排水流入中、(c)排水流入完了時の流動状態をそれぞれモデル的に示す図である。It is a figure which shows the flow state at the time of (a) drainage inflow start, (b) drainage inflow, (c) drainage inflow completion in this invention aeration tank, respectively. 実施例1における液循環流量(Q)に及ぼす第1の仕切板上端から液面までの高さLとガス空塔速度(U)の影響を示す図である。It is a diagram showing the effect of height L T and the gas superficial velocity from the first partition plate upper end on liquid circulation flow rate (Q L) in Example 1 to the liquid surface (U G). 実施例1における液循環流量(Q)に及ぼす第1の仕切板と第2の仕切板との間の隙間Lとガス空塔速度(U)の影響を示す図である。Shows the influence of the gap L 1 and the gas superficial velocity (U G) between the first partition plate and second partition plate on the liquid circulation flow rate (Q L) in the first embodiment. 実施例1における液循環流量(Q)と嫌気領域割合の経時変化θ(h=時間)を示す図である。Shows a liquid circulation flow rate in Example 1 (Q L) and aging theta (h = hour) anaerobic area ratio.

符号の説明Explanation of symbols

1 曝気槽
2 第1の仕切板
3 第2の仕切板
4 ガス分散器
5 人工排水用タンク
DO Probe 溶存酸素測定器
DESCRIPTION OF SYMBOLS 1 Aeration tank 2 1st partition plate 3 2nd partition plate 4 Gas disperser 5 Artificial drainage tank DO Probe Dissolved oxygen measuring device

Claims (1)

(1)(i)第1の仕切板は曝気槽の槽底とその仕切板との間に一定の隙間をあけて一定の高さまでを垂直に仕切るものであり、(ii)第2の仕切板は第1の仕切板の真上に一定の隙間をあけて一定の高さまでを垂直に仕切るものである、曝気槽内を仕切る2枚の仕切板、
(2)仕切板で仕切られた曝気槽の一方の側の底部またはその近傍に設けられた空気吹き込み手段、
(3)仕切板で仕切られた曝気槽の他方の側に設けられた排水導入手段、
および
(4)前記排水導入手段が設置されている部分の曝気槽底部近傍が、槽内の汚泥が堆積しない程度の傾斜面となっている曝気槽、
よりなることを特徴とするエアリフト曝気槽。
(1) (i) The first partition plate vertically partitions up to a certain height with a certain gap between the tank bottom of the aeration tank and the partition plate, and (ii) the second partition The plates are two partition plates that partition the inside of the aeration tank, with a certain gap directly above the first partition plate and vertically partitioning up to a certain height,
(2) Air blowing means provided at the bottom of one side of the aeration tank partitioned by the partition plate or in the vicinity thereof,
(3) Drainage introduction means provided on the other side of the aeration tank partitioned by the partition plate,
And (4) an aeration tank in which the vicinity of the bottom of the aeration tank where the drainage introducing means is installed has an inclined surface that does not accumulate sludge in the tank,
An airlift aeration tank characterized by comprising:
JP2004074855A 2004-03-16 2004-03-16 Airlift aeration tank suitable for batch activated sludge process Expired - Lifetime JP4354852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004074855A JP4354852B2 (en) 2004-03-16 2004-03-16 Airlift aeration tank suitable for batch activated sludge process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004074855A JP4354852B2 (en) 2004-03-16 2004-03-16 Airlift aeration tank suitable for batch activated sludge process

Publications (2)

Publication Number Publication Date
JP2005262016A true JP2005262016A (en) 2005-09-29
JP4354852B2 JP4354852B2 (en) 2009-10-28

Family

ID=35087115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004074855A Expired - Lifetime JP4354852B2 (en) 2004-03-16 2004-03-16 Airlift aeration tank suitable for batch activated sludge process

Country Status (1)

Country Link
JP (1) JP4354852B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172842A (en) * 2009-01-30 2010-08-12 Nippon Refine Kk Gas-liquid reaction method and apparatus using microbubble
JP2020022957A (en) * 2018-07-31 2020-02-13 オルガノ株式会社 Water treatment method and water treatment apparatus
US11760668B2 (en) 2018-07-31 2023-09-19 Organo Corporation Water treatment method and water treatment device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172842A (en) * 2009-01-30 2010-08-12 Nippon Refine Kk Gas-liquid reaction method and apparatus using microbubble
JP2020022957A (en) * 2018-07-31 2020-02-13 オルガノ株式会社 Water treatment method and water treatment apparatus
JP7262332B2 (en) 2018-07-31 2023-04-21 オルガノ株式会社 Water treatment method and water treatment equipment
US11760668B2 (en) 2018-07-31 2023-09-19 Organo Corporation Water treatment method and water treatment device

Also Published As

Publication number Publication date
JP4354852B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
JP5749731B2 (en) Sewage treatment equipment
KR20060129224A (en) Method and reactor for flocculation treatment
JPS5838238B2 (en) Two-zone method for biologically treating wastewater
KR20150069782A (en) Multi-staged air flotation system and Apparatus for treating water with the same
JP4354852B2 (en) Airlift aeration tank suitable for batch activated sludge process
KR101999229B1 (en) The intregrated direct filtration process with coagulation and flocculation for phosphorus removal
JP2008502472A (en) Water treatment process and apparatus by fluid flow
JP7068876B2 (en) Sewage sludge-containing wastewater treatment equipment and treatment methods, as well as water treatment systems
KR101009747B1 (en) Non-power mixing device for vortex
JPH0233438B2 (en)
JP3150530B2 (en) Biological nitrogen removal equipment
JPS6351994A (en) System for treating drainage
JP7262332B2 (en) Water treatment method and water treatment equipment
CN215756921U (en) Air-lift circulation reaction device
JP4765041B2 (en) Water treatment equipment
CN110002688B (en) Efficient label lifting system
JP2009028698A (en) Reaction tank for sewage treatment
RU2812426C1 (en) Bioreactor for wastewater treatment
JP2020018966A (en) Water treatment method and water treatment apparatus
JP5600525B2 (en) Upflow type reaction tank, water treatment method using the reaction tank, and water treatment apparatus provided with the reaction tank
KR20120078013A (en) Purification system having vertical multicompartment reactor for organic waste water
KR100809610B1 (en) Horizontal plant for wastewater treatment
CN208857091U (en) A kind of double-face flow-guiding integrated machine for sewage treatment of stable effluent quality
KR101223685B1 (en) Apparatus for treating modified phosphorus removal of wastewater using mixing basin in aerating tank
Corina et al. Experimental researches on aeration equipment used in biological wastewater treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090730

R150 Certificate of patent or registration of utility model

Ref document number: 4354852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term