JP2005261284A - Method for immobilizing enzyme and reactor using immobilized enzyme - Google Patents

Method for immobilizing enzyme and reactor using immobilized enzyme Download PDF

Info

Publication number
JP2005261284A
JP2005261284A JP2004077789A JP2004077789A JP2005261284A JP 2005261284 A JP2005261284 A JP 2005261284A JP 2004077789 A JP2004077789 A JP 2004077789A JP 2004077789 A JP2004077789 A JP 2004077789A JP 2005261284 A JP2005261284 A JP 2005261284A
Authority
JP
Japan
Prior art keywords
enzyme
phospholipase
immobilized
reaction
konjac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004077789A
Other languages
Japanese (ja)
Inventor
Atsuro Nishina
仁科淳良
Tsutomu Takiguchi
強 滝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma Prefecture
Original Assignee
Gunma Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma Prefecture filed Critical Gunma Prefecture
Priority to JP2004077789A priority Critical patent/JP2005261284A/en
Publication of JP2005261284A publication Critical patent/JP2005261284A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems that sufficient satisfactory immobilized phospholipase D cannot be obtained in aspects of inexpensive and efficient industrial obtaining of the objective product though phospholipase D is conventionally immobilized by various methods using glutaraldehyde or a gel unusable for producing foods. <P>SOLUTION: The phospholipase D can be immobilized in a gel containing konjac mannan, i.e. a carrier to thereby minimize the lowering of enzymic activity when the enzyme is immobilized. The phospholipase D can firmly be immobilized and the leakage of the enzyme during a reaction can be minimized by the method. An industrially excellent reaction product can be provided by a reactor using the immobilized phospholipase D. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、酵素 の固定化 に関するものであり、更に詳細には脂質の改質に有用な酵素 であるホスホリパーゼDを繰り返し効率良く利用できるよう、そして該酵素 を工業的使用に適した固定化 担体に固定化 する方法に関するものである。本発明はこの得られたホスホリパーゼD固定化 酵素 を利用したりん脂質の製造法、特には、ホスファチジン酸、ホスファチジルグリセロール、ホファチジルセリンを効率的に得るための製造法にも関する。 The present invention relates to immobilization of an enzyme. More specifically, the present invention relates to an immobilization carrier suitable for industrial use so that phospholipase D, which is an enzyme useful for modifying lipids, can be used repeatedly and efficiently. It is related to the method of immobilization. The present invention also relates to a method for producing phospholipids using the obtained phospholipase D-immobilized enzyme, and particularly to a method for producing phosphatidic acid, phosphatidylglycerol, and phosphatidylserine efficiently.

ホスホリパーゼは,その選択性や特異性を利用し,油脂を含む各種脂質の高度改質による高機能化を実現した。リパーゼに関して、1)油糧種子や穀物類に含まれるリパーゼは,基質特異性が高く特定油脂類生成に関与する,2)植物リパーゼは,存在量が僅かなため応用事例が少ないが,カラス麦,ヒマの実,ナタネ,クーミン等のリパーゼ並びにキャベツ起源ホスホリパーゼDによる油脂改質が実験室的に検討されている,3)パパイヤ(CPL)は,プロテアーゼの植物起源であるが処理条件によりリパーゼ活性を発現し,短鎖-長鎖の各種トリグリセリド分解活性やエステル交換に関するデータが報告され,その後油脂改質応用事例も増加している,4)パインアップルやパパインより得られるブロメラインは,食品加工への応用に目処を得つつあるが油脂改質に十分なリパーゼ活性は得られておらず検討中である(非特許文献1)。 Phospholipase achieved high functionality by advanced modification of various lipids including fats and oils, utilizing its selectivity and specificity. Regarding lipases, 1) Lipases contained in oil seeds and cereals have high substrate specificity and are involved in the production of specific fats and oils. 2) Plant lipases have few applications because of their small abundance. Oil and fat modification by lipases such as peanut, castor seed, rapeseed, coumin, and cabbage-derived phospholipase D has been studied in the laboratory. 3) Papaya (CPL) is a plant origin of protease, but lipase activity depends on the processing conditions Data on various short- and long-chain triglyceride degradation activities and transesterification have been reported, and fat oil modification applications have been increasing since then. 4) Bromelain obtained from pineapple and papain is used for food processing. However, the lipase activity sufficient for oil and fat modification has not been obtained (Non-patent Document 1).

種々のホスホリパーゼのうち、ホスホリパーゼDは加水分解だけでなく塩基交換反応を触媒し、新たな化合物の製造に使用できるため注目を集めている。鎌田ら(非特許文献2)はホスフォリパーゼDを用いてホスファチジルコリン90%とホスファチジルエタノールアミン10%から成る大豆りん脂質からホスファチジルセリン(PS)調製条件を検討した。ホスフォリパーゼDの変換活性はpH5.6の酢酸緩衝液でホスフォリパーゼDを1h前処理することで向上し,30分間でPS含有量を52%まで高めることができることを明らかにした。さらに、鎌田らは、ホスホリパーゼD粗酵素(17IU/g)を用いて,大豆りん脂質からホスファチジルグリセリン(PG)を定量的に調製するホスファチジル基変換反応条件を検討した(非特許文献3)。また、ホスホリパーゼDにより競争的に起こる加水分解反応の抑制がPGの調製における課題となるため,変換反応に先立ち加水分解反応についても併せて検討した。その結果,加水分解反応においては従来ホスフォリパーゼDの最適条件とされているpH5.6で定量的にホスファチジン酸が生成したのに対し,変換反応においてはやや酸性側のpH4.8を用いることにより加水分解反応が効果的に抑制でき,ホスファチジルコリンおよびホスファチジルエタノールアミンを定量的にPGに変換できることを報告している。Junejaら(非特許文献4)は、ホスファチジルコリンにグリセリン存在下でホスホリパーゼDを作用させてホスファチジルグリセリンへ変換するときの,ホスファチジン酸の生成を抑制するための解決策として1)ミセル系反応法2)基質のエーテル溶液を水に懸濁して反応させる方法を考え,比較したところ,2)では速度は遅いが水解がほとんど無くて100%変換できることを報告している。Aurichら(非特許文献5)は、ホスホリパーゼDを用いたN-(2-ヒドロキシ-エチル)-N-メチルピペリジンによるオクタデシルホスホコリンのコリンの交換は動力学的に制御され、緩衝液中で最大60%,緩衝液/ヘキサン中で43%,緩衝液/n-ヘキサン/1-オクタノール中で82%の交換が得られることを報告している。Subraminoら(非特許文献6)は、Triton X-100を含むジエチルエーテル中におけるホスホリパーゼDのホスファチジルコリンの分解に及ぼす含水量, ホスホリパーゼD濃度及びホスファチジルコリン濃度の影響を調べた。Ryuら(非特許文献7)は、ホスホリパーゼDの活性が,リゾホスファチジルエタノールアミンおよびリゾホスファチジルイノシトールにより阻害されることを示した。一方、リゾホスファチジルコリン,リゾホスファチジルグリセロール,リゾホスファチジルセリンでは効果がなかった。上記以外の特許文献として、ホスホリパーゼを用いて、コレステロールを低減する技術(例えば特許文献1)が知られている。 Among various phospholipases, phospholipase D has attracted attention because it can be used for the production of new compounds by catalyzing not only hydrolysis but also base exchange reaction. Kamada et al. (Non-Patent Document 2) studied the conditions for preparing phosphatidylserine (PS) from soybean phospholipid consisting of phosphatidylcholine 90% and phosphatidylethanolamine 10% using phospholipase D. It was clarified that the conversion activity of phospholipase D was improved by pretreatment of phospholipase D with acetic acid buffer at pH 5.6 for 1 h, and the PS content could be increased to 52% in 30 minutes. Furthermore, Kamada et al. Examined phosphatidyl group conversion reaction conditions for quantitatively preparing phosphatidylglycerin (PG) from soybean phospholipids using phospholipase D crude enzyme (17 IU / g) (Non-patent Document 3). In addition, since suppression of the hydrolysis reaction that occurs competitively with phospholipase D becomes an issue in the preparation of PG, the hydrolysis reaction was also examined prior to the conversion reaction. As a result, in the hydrolysis reaction, phosphatidic acid was quantitatively produced at pH 5.6, which was the optimum condition for phospholipase D, while in the conversion reaction, a slightly acidic pH of 4.8 was used. It is reported that the hydrolysis reaction can be effectively suppressed by phosphatidylcholine and phosphatidylethanolamine can be converted quantitatively to PG. Juneja et al. (Non-Patent Document 4) proposed 1) micellar reaction method 2) as a solution to suppress the formation of phosphatidic acid when phosphatidylcholine is converted to phosphatidylglycerol by acting phospholipase D in the presence of glycerol. Considering a method of reacting by suspending the ether solution of the substrate in water, 2) reports that the rate is slow but there is almost no hydrolysis and 100% conversion is possible. Aurich et al. (Non-Patent Document 5) show that the exchange of choline of octadecylphosphocholine by N- (2-hydroxy-ethyl) -N-methylpiperidine using phospholipase D is kinetically controlled and is maximal in buffer. It is reported that 60%, 43% in buffer / hexane, 82% exchange in buffer / n-hexane / 1-octanol can be obtained. Subramino et al. (Non-Patent Document 6) examined the effects of water content, phospholipase D concentration, and phosphatidylcholine concentration on the degradation of phosphatidylcholine of phospholipase D in diethyl ether containing Triton X-100. Ryu et al. (Non-Patent Document 7) showed that the activity of phospholipase D is inhibited by lysophosphatidylethanolamine and lysophosphatidylinositol. On the other hand, lysophosphatidylcholine, lysophosphatidylglycerol, and lysophosphatidylserine had no effect. As a patent document other than the above, a technique for reducing cholesterol using phospholipase (for example, Patent Document 1) is known.

以上のように、工業的に有用なホスホリパーゼDを効率的に利用するために、固定化酵素を調製する試みがなされている。JUNEJAら(非特許文献8)は、L-またはD-セリンの存在下、両親媒性ゲルに固定化したホスホリパーゼDによるホスファチジルコリンのホスファチジルセリンへの転換を調べた。2層反応は30±0.5°CでセリンとホスホリパーゼDを含む水層とホスファチジルコリンを含む酢酸エチルで行なった。溶媒として酢酸エチルとジエチルエーテルは十分なトランスホスファチジル化を示した。MASOOMら(非特許文献9)は、ホスホリパーゼDをガラスビーズに固定化たカラムと,アルカリ性ホスファターゼおよびコリンオキシダーゼを固定化したカラムを連結することにより,両カラム共にフローインジェクション系で生成する過酸化水素を電流滴定することによりホスファチジルコリンを定量できることを報告した。JUNEJAら(非特許文献10)は、ホスホリパーゼDの固定化の方法および固定化酵素を用いたホスファチジルセリンの効率のよい生産方法について検討した。連続処理システムおよびバッチ処理システムにおいてそれぞれ最適な条件を調べた。ホスホリパーゼDの固定化率および活性は100%に達し,反復バッチ処理においてきわめて良好な結果が得られたという。MASOOMら(非特許文献11)は、ホスホリパーゼDをグルタルアルデヒドにより多孔性ガラスビーズに固定化し,カラムリアクタに充填した。カルシウム,トリトンX-100を含むジエチルバルビトンバッファにホスファチジルコリンを溶解し,上記カラム内を循環させて反応した。PL-Dの反応に脂肪酸特異性はなく、ホスファチジン酸を調製した。 As described above, in order to efficiently use industrially useful phospholipase D, attempts have been made to prepare immobilized enzymes. JUNEJA et al. (Non-Patent Document 8) examined the conversion of phosphatidylcholine to phosphatidylserine by phospholipase D immobilized on an amphiphilic gel in the presence of L- or D-serine. The two-layer reaction was performed at 30 ± 0.5 ° C with an aqueous layer containing serine and phospholipase D and ethyl acetate containing phosphatidylcholine. Ethyl acetate and diethyl ether as solvents showed sufficient transphosphatidylation. MASOOM et al. (Non-patent Document 9) describe that hydrogen peroxide generated in a flow injection system is obtained by linking a column in which phospholipase D is immobilized on glass beads and a column in which alkaline phosphatase and choline oxidase are immobilized. It was reported that phosphatidylcholine could be quantified by amperometric titration. JUNEJA et al. (Non-Patent Document 10) examined a method for immobilizing phospholipase D and an efficient method for producing phosphatidylserine using an immobilized enzyme. The optimum conditions were investigated in the continuous processing system and batch processing system, respectively. The immobilization rate and activity of phospholipase D reached 100%, and very good results were obtained in repeated batch processing. MASOOM et al. (Non-Patent Document 11) immobilized phospholipase D on porous glass beads with glutaraldehyde and packed it in a column reactor. Phosphatidylcholine was dissolved in diethylbarbitone buffer containing calcium and Triton X-100 and circulated through the column for reaction. There was no fatty acid specificity in the reaction of PL-D, and phosphatidic acid was prepared.

ホスホリパーゼ以外の酵素の固定化技術として、プロテアーゼをキトサンやイオン交換樹脂に固定化する技術(例えば特許文献3)、マルトジェニックα―アミラーゼを多孔質に固定化する技術(例えば特許文献4)、β―ガラクトシダーゼをポリマーやガラスに固定化する技術(例えば特許文献5)が知られている。 As an immobilization technique for an enzyme other than phospholipase, a technique for immobilizing a protease to chitosan or an ion exchange resin (for example, Patent Document 3), a technique for immobilizing maltogenic α-amylase in a porous state (for example, Patent Document 4), β -A technique for immobilizing galactosidase on a polymer or glass (for example, Patent Document 5) is known.

特開平5−49414JP-A-5-49414

特開平8−291188JP-A-8-291188

特開平11−221049JP-A-11-2221049

特開2000−189161JP 2000-189161 A

特開平6−141822JP-A-6-141822

Eur J Lipid Sci Technol Vol.105, No.6, Page308-317 (2003)Eur J Lipid Sci Technol Vol.105, No.6, Page308-317 (2003)

日本油化学会誌 Vol.47, No.1, Page51-56 (1998)Japan Oil Chemists' Society Vol.47, No.1, Page51-56 (1998)

油化学 Vol.42, No.4, Page297-301 (1993)Petrochemistry Vol.42, No.4, Page297-301 (1993)

Enzyme Microb Technol Vol.9, No.6, Page350-354 (1987)Enzyme Microb Technol Vol.9, No.6, Page350-354 (1987)

ULBRICH-HOFMANN R Vol.19, No.9, Page875-879 (1997)ULBRICH-HOFMANN R Vol.19, No.9, Page875-879 (1997)

ULBRICH-HOFMANN R Vol.18, No.7, Page815-820 (1996)ULBRICH-HOFMANN R Vol.18, No.7, Page815-820 (1996)

Proc Natl Acad Sci USA Vol.94, No.23, Page12717-12721 (1997)Proc Natl Acad Sci USA Vol.94, No.23, Page12717-12721 (1997)

Biochim Biophys Acta Vol.1003, No.3, Page277-283 (1989)Biochim Biophys Acta Vol.1003, No.3, Page277-283 (1989)

Anal Biochem Vol.187, No.2, Page240-245 (1990)Anal Biochem Vol.187, No.2, Page240-245 (1990)

化学工学協会年会研究発表講演要旨集 Vol.53rd, Page27 (1988)Abstracts of Annual Meeting of Chemical Engineering Society Vol.53rd, Page27 (1988)

Process Biochem Vol.30, No.8, Page701-704 (1995)Process Biochem Vol.30, No.8, Page701-704 (1995)

上述のように、ホスホリパーゼDの固定化が行われてきたが、いずれも、グルタルアルデヒドや、食品製造に用いることができないゲルを用いている。また、工業的に目的生産物を安価に且つ効率よく得るという点でこれまで十分に満足するものは得られていない。そこで、本発明は、食品製造に使用可能な固定化ホスホリパーゼDの製造法と固定化ホスホリパーゼDを利用したバイオリアクターを提供することを課題とする。 As described above, phospholipase D has been immobilized, but all use glutaraldehyde or a gel that cannot be used for food production. Moreover, what has been sufficiently satisfied so far in terms of industrially obtaining a target product at low cost and efficiently has not been obtained. Then, this invention makes it a subject to provide the bioreactor using the manufacturing method of the immobilized phospholipase D which can be used for foodstuff manufacture, and the immobilized phospholipase D.

これらの点を克服し、食品の製造に使用でき、工業的に有利な固定化酵素を得るため、鋭意研究を行った。そしてホスホリパーゼを各種ゲル化剤を使用しその固定化を種々検討した結果、こんにゃくマンナンゲルを用いると効率よく固定化 できることを見出した。しかも得られた酵素 を用いて塩基交換反応を行い、その活性を比較したところ活性がほとんど低下せず、むしろ増大するという現象を見出した。また、得られた本固定化 酵素 は、その固定化 は極めて強固であり、高濃度の基質溶液中でも酵素 の漏出がほとんど認められず、充填カラムによる連続的生産に効率的に使用され得ることを見出した。そして、本固定化 ホスホリパーゼを利用すれば工業的にも優れた反応物が提供できることを知見し、結果、本発明を完成したのである。 In order to overcome these points and obtain an industrially advantageous immobilized enzyme that can be used in the production of food, intensive research was conducted. As a result of various investigations on the immobilization of phospholipase using various gelling agents, it was found that immobilization can be carried out efficiently by using konjac mannan gel. Moreover, when the base exchange reaction was performed using the obtained enzyme and the activities were compared, it was found that the activity hardly increased but rather increased. In addition, the obtained immobilized enzyme is extremely strong in immobilization, and almost no leakage of the enzyme is observed even in a high concentration substrate solution, so that it can be used efficiently for continuous production using a packed column. I found it. And it was discovered that industrially superior reactants could be provided by using the present immobilized phospholipase, and as a result, the present invention was completed.

かくして、本発明は、〔1〕 こんにゃくマンナンを主体とする担体に、ホスフォリパーゼDを固定化 していることを特徴とするホスフォリパーゼD固定化 酵素;
〔2〕ホスフォリパーゼDが、キャベツまたは細菌より得られるものであることを特徴とする〔1〕記載の固定化 酵素 ;
〔3〕 細菌がActinomadura sp.またはStreptomyces sp.であることを特徴とする〔2〕記載の固定化 酵素;
〔4〕 酵素 固定化 用担体が、こんにゃく 生芋をすりおろしたもの又はこんにゃく 精粉に凝固剤を添加したゲル化物である〔1〕〜〔3〕記載の固定化酵素;
〔5〕酵素 固定化 用担体が、こんにゃく 生芋をすりおろしたもの又はこんにゃく 精粉に凝固剤を添加してゲル化物であり、添加物として、こんにゃく以外の原料由来のゲル化剤を含む〔1〕〜〔3〕の固定化酵素;
〔6〕 〔1〕〜〔5〕のいずれか一記載の固定化酵素 を含有していることを特徴とするバイオリアクターである。
Thus, the present invention provides: [1] Phospholipase D-immobilized enzyme characterized in that phospholipase D is immobilized on a carrier mainly composed of konjac mannan;
[2] The immobilized enzyme according to [1], wherein the phospholipase D is obtained from cabbage or bacteria;
[3] The bacterium is Actinomadura sp. Or Streptomyces sp. The immobilized enzyme according to [2], characterized in that:
[4] The immobilized enzyme according to [1] to [3], wherein the carrier for enzyme immobilization is konjac ginger grated or gelled product obtained by adding a coagulant to konjac fine powder;
[5] The carrier for enzyme immobilization is a gelled product obtained by adding a coagulant to grated konjac ginger or konjac fine powder, and includes a gelling agent derived from a raw material other than konjac as an additive. 1] to [3] immobilized enzyme;
[6] A bioreactor comprising the immobilized enzyme according to any one of [1] to [5].

こんにゃくマンナンを含むゲルすなわち担体に、ホスフォリパーゼDを固定化することにより、酵素固定化時の、酵素活性の低下を最小限に抑えることができる。また、本発明の方法によりホスホリパーゼDが強固に固定化され、反応時の酵素の漏出が最小限に抑えられる。さらに、本発明の固定化ホスホリパーゼ用いたリアクターにより工業的にも優れた反応物が提供できる。 By immobilizing phospholipase D on a gel containing konjac mannan, that is, a carrier, a decrease in enzyme activity during enzyme immobilization can be minimized. In addition, phospholipase D is firmly immobilized by the method of the present invention, and leakage of the enzyme during the reaction is minimized. Furthermore, industrially excellent reactants can be provided by the reactor using the immobilized phospholipase of the present invention.

本発明は、こんにゃくマンナンを担体として使用し、その担体に固定化 されたホスホリパーゼに関する。本発明で担体として使用されるこんにゃくマンナンは、グルコマンナンすなわち、こんにゃく生芋をスライスし、乾燥した後、副産物である飛粉を除去した(精粉)である。精粉を精製し、グルコマンナン含量を高めた精製品の使用が好ましい。精製グルコマンナンとしては、一般市販の製品、例えば製品名スーパーマンナン(荻野商店製)やマンナンベース(サンフラワースミヨシ製)を使用できる。こんにゃくマンナンをゲル化する方法には、以下の2方法を採用できる。すなわち、精粉または精製品を水で希釈した後、水酸化カルシウムや炭酸ナトリウムを添加しアルカリ性とするか、加温下で精粉または精製品とこんにゃく以外のゲル化剤を混合した水溶液とし、冷却する方法でゲル化できる。ゲル化剤としては、食品添加物として認められているもの、例えば、カラギーナン、キサンタンガム、ジェランガム、アラビアガム、デンプン等を単独または組み合わせて使用することができる。ゲル中のこんにゃくマンナンまたは/およびゲル化剤の含有量は、0.02〜20重量%、好ましくは0.1〜5重量%、より好ましくは1から3重量%とする。ゲル中のこんにゃくマンナンまたは/およびゲル化剤の含有量が0.02重量%未満では、ゲルの強度が不足し、リアクターに応用することができず、20重量%より多くなると、ゲル強度が強すぎて、微細な固定化酵素の調製が困難になる。 The present invention relates to a phospholipase that uses konjac mannan as a carrier and is immobilized on the carrier. The konjac mannan used as a carrier in the present invention is glucomannan, that is, konjac ginger sliced and dried, and then the by-product flying powder is removed (fine powder). It is preferable to use a refined product obtained by purifying the refined powder and increasing the glucomannan content. As the purified glucomannan, a commercially available product such as supermannan (manufactured by Hadano Shoten) or mannan base (manufactured by Sunflower Sugiyoshi) can be used. The following two methods can be adopted as a method for gelling konjac mannan. That is, after diluting the fine powder or purified product with water, add calcium hydroxide or sodium carbonate to make it alkaline, or make it an aqueous solution mixed with a gelling agent other than fine powder or purified product and konjac under heating, Gelation can be achieved by cooling. As the gelling agent, those recognized as food additives such as carrageenan, xanthan gum, gellan gum, gum arabic, starch and the like can be used alone or in combination. The content of konjac mannan or / and the gelling agent in the gel is 0.02 to 20% by weight, preferably 0.1 to 5% by weight, more preferably 1 to 3% by weight. If the content of konjac mannan or / and gelling agent in the gel is less than 0.02% by weight, the gel strength is insufficient and cannot be applied to the reactor. If the content is more than 20% by weight, the gel strength is high. Thus, it becomes difficult to prepare a fine immobilized enzyme.

本発明に使用するこんにゃくマンナンの原料となるこんにゃく芋は、里芋科のAmorphophallus rivieri var. konjacである。コンニャク芋の品種として在来種 (赤茎、白ヅル、平玉、和玉、大玉種など)、支那種 、備中種 (青茎、黒ヅル、長玉、石玉など)があり、育成品種として、はるなくろ(こんにゃく農林1号) 、あかぎおおだま(こんにゃく農林2号) 、みょうぎゆたか(こんにゃく農林3号) 、みやままさり(こんにゃく農林4号)が知られているが、本発明にはいずれの品種のコンニャク芋も使用できる。また、上記の品種のうちの1種類または複数を組み合わせて使用する。こんにゃくマンナンを採取できる部位は、球茎と生子である。また、栽培または天然のコンニャクを適宜組み合わせて用いることができる。 The konjac koji used as a raw material for the konjac mannan used in the present invention is Amorphophallus rivieri var. Konjac of the taro family. There are native varieties of konjac varieties (red stalks, white birch, flat, Japanese and large varieties), Chinese varieties and binaka varieties (blue stalks, black leopards, long balls, stone balls, etc.) Harunuroro (Konnyaku Norin 1), Akagi Odama (Konnyaku No. 2), Myo Yutaka (Konnyaku No. 3) and Miyama Sari (Konnyaku No. 4) are known. Any varieties of konjac can be used. Also, one or more of the above varieties are used in combination. The parts from which konjac mannan can be collected are the corms and the offspring. In addition, cultivated or natural konjac can be used in appropriate combination.

本発明で固定化するホスホリパーゼDは、天然由来のもの、例えば、キャベツ、ピーナッツ、微生物等由来の物を単独または適宜組み合わせて使用することができる。ホスホリパーゼDの原料となる細菌として、バチルス族のActinomadura sp.や放線菌Streptomyces sp.を挙げることができる。本発明には、起源を限定せず、ホスホリパーゼDの活性を有するタンパク質を単独または適宜組み合わせて使用することができる。本発明の固定化酵素中の酵素含量は、酵素活性が0.001〜1000U/mgになるよう調製する。酵素活性が0.001U/mgでは、必要な反応生成物を得るために長時間を要すことになり、結果コスト面で不利が生じる。また、酵素活性が1000U/mgにした場合に、酵素添加量に応じた反応速度の増加が見込めない。 The phospholipase D to be immobilized in the present invention may be a naturally derived material such as cabbage, peanut, microorganism or the like alone or in combination. As a bacterium which is a raw material of phospholipase D, Actinomadura sp. And actinomycetes Streptomyces sp. Can be mentioned. In the present invention, the origin is not limited, and proteins having phospholipase D activity can be used alone or in appropriate combination. The enzyme content in the immobilized enzyme of the present invention is prepared so that the enzyme activity is 0.001 to 1000 U / mg. When the enzyme activity is 0.001 U / mg, it takes a long time to obtain a necessary reaction product, resulting in a disadvantage in cost. Further, when the enzyme activity is 1000 U / mg, an increase in reaction rate according to the amount of enzyme added cannot be expected.

酵素ホスホリパーゼDを担体に固定するには、当該酵素 を極端に失活させることのないような条件下で行われ、例えば、溶液にこんにゃくマンナンおよび/またはゲル化剤を所定量溶解し、最終的な酵素活性が約0.001〜1000U/mgとなる量の酵素を添加する。次いで、酵素 の安定範囲、例えば pH 約 3〜10、温度約 0〜80℃の範囲で、約 0.1〜50時間混合し、水酸化カルシウムや炭酸ナトリウムを添加しアルカリ性するか、溶液を冷却することによりゲル化させる。溶液をノズルや押し出し造粒機等を用いて、微細化することにより、表面積を大きくし、効率を高めることができる。また、あらかじめ板状のゲルを作り、次いで、カッター、粉砕機等により微細に切断することにより微細な小手か酵素を調製することが可能である。 Enzyme phospholipase D is immobilized on a carrier under conditions that do not extremely inactivate the enzyme. For example, a predetermined amount of konjac mannan and / or gelling agent is dissolved in a solution, and finally Enzyme is added in such an amount that the enzyme activity is about 0.001 to 1000 U / mg. Next, mix for about 0.1 to 50 hours in the stable range of the enzyme, for example, at a pH of about 3 to 10 and a temperature of about 0 to 80 ° C., and add calcium hydroxide or sodium carbonate to make it alkaline, or cool the solution. To gel. By refining the solution using a nozzle, an extrusion granulator or the like, the surface area can be increased and the efficiency can be increased. Further, it is possible to prepare a fine hand or an enzyme by making a plate-like gel in advance and then finely cutting it with a cutter, a pulverizer or the like.

本発明の固定化酵素が触媒する反応は、加水分解と塩基交換である。反応基質としてホスファチジルコリンとセリンを用いた反応系では、反応物として、加水分解物すなわちホスファチジン酸と塩基交換反応物すなわちホスファチジルセリンが得られ、セリンの代わりにグリセリンを用いた反応系では、ホスファチジルセリンの代わりに、ホスファチジルグリセロールが得られる。反応液中のホスファチジルコリン、セリン、グリセロールは化学合成品、天然物を問わず、両者を単独または適宜組み合わせて使用できる。反応の溶媒としては、セリン、グリセリンを水層、ホスファチジルコリンを有機溶媒、すなわち、エーテル、クロロホルム、トルエン等に溶解し、両者を攪拌により混合して、反応を行う方法、または、セリン、グリセリン等を含む水溶液に、ホスファチジルコリン等の油溶性物質を乳化して反応を行う方法を採用することができる。 Reactions catalyzed by the immobilized enzyme of the present invention are hydrolysis and base exchange. In a reaction system using phosphatidylcholine and serine as reaction substrates, a hydrolyzate, that is, phosphatidic acid, and a base exchange reaction product, that is, phosphatidylserine, are obtained as reactants. In a reaction system using glycerin instead of serine, phosphatidylserine Instead, phosphatidylglycerol is obtained. The phosphatidylcholine, serine, and glycerol in the reaction solution can be used alone or in appropriate combination, regardless of whether they are chemically synthesized products or natural products. As a solvent for the reaction, serine, glycerin is dissolved in an aqueous layer, phosphatidylcholine is dissolved in an organic solvent, that is, ether, chloroform, toluene, etc., and both are mixed by stirring. A method of emulsifying an oil-soluble substance such as phosphatidylcholine in the aqueous solution to be reacted can be employed.

本発明の固定化 酵素 と、反応液とは、回分法、あるいは連続法で接触せしめて加水分解または塩基交換反応させることができ、工業的に実施するに適した方法を適宜選択して行うことができる。反応液中の成分濃度は、ホスファチジルコリン等の油溶性成分が、約 5〜50w/v% 、そしてセリン、グリセリンなどの水溶性成分の濃度が、約 5〜30重量%とする。基質溶液に約1〜10重量%のカルシウム塩、例えば、塩化カルシウムを共存させることにより反応速度を高めることができる。反応条件としては、固定化酵素中の酵素が安定で、しかも充分に作用し得る条件、例えば pH 約 3〜10、より好ましくは pH 約 5〜10、温度約 20 〜80℃、より好ましくは約40〜60℃の範囲で選ばれる。反応液中の油溶成分または水溶成分の濃度が5重量%未満では、十分な反応速度が得られない。また、反応液中の油溶成分または水溶成分の濃度がそれぞれ50または30重量%より多くなると、粘度が高くなり連続した反応を行うことが困難になる。 The immobilized enzyme of the present invention and the reaction solution can be contacted by a batch method or a continuous method for hydrolysis or base exchange reaction, and a method suitable for industrial implementation is selected as appropriate. Can do. The component concentration in the reaction solution is about 5 to 50 w / v% for oil-soluble components such as phosphatidylcholine, and about 5 to 30% by weight for water-soluble components such as serine and glycerin. The reaction rate can be increased by allowing about 1 to 10% by weight of a calcium salt such as calcium chloride to coexist in the substrate solution. The reaction conditions are such that the enzyme in the immobilized enzyme is stable and can act sufficiently, such as pH of about 3 to 10, more preferably about pH 5 to 10, temperature of about 20 to 80 ° C., more preferably about It is chosen in the range of 40-60 ° C. If the concentration of the oil-soluble component or water-soluble component in the reaction solution is less than 5% by weight, a sufficient reaction rate cannot be obtained. On the other hand, when the concentration of the oil-soluble component or water-soluble component in the reaction solution exceeds 50 or 30% by weight, respectively, the viscosity increases and it becomes difficult to carry out a continuous reaction.

本発明のバイオリアクターは、酵素 担持された担体が反応させるべき流体と接触できるようにする装置を有しているものである。有利には、該装置は、撹拌型リアクター、バスケット型リアクター、流動床式リアクター、バックベッド式リアクター、フィルター式リアクターなどから選ばれたものである。ごく一般的な固定化 酵素 の使用形式としては、充填カラムによる連続式のものでも、あるいは固定化 酵素 の回収が容易なバッチ式でもよい。バイオリアクターは、同様にして、1本のカラムあるいは有利には複数のカラムを有する装置で構成されていてよい。処理されるべき反応液は、好ましくは、カラムの中を重力の働く方向に流れるものである。バイオリアクターの別の有利な実施態様としては、該装置に加えて、処理すべき基質の入った槽、バイオリアクターからの流出物を後処理するための後処理槽、及び生成物の貯蔵用槽を含むものである。 The bioreactor of the present invention has a device that allows an enzyme-supported carrier to come into contact with a fluid to be reacted. Advantageously, the apparatus is selected from a stirred reactor, a basket reactor, a fluidized bed reactor, a backbed reactor, a filter reactor, and the like. The most commonly used form of the immobilized enzyme may be a continuous type with a packed column or a batch type in which the immobilized enzyme can be easily recovered. The bioreactor may likewise consist of a device having a single column or advantageously a plurality of columns. The reaction liquid to be treated is preferably one that flows in the direction of gravity in the column. Another advantageous embodiment of the bioreactor includes, in addition to the apparatus, a tank containing the substrate to be treated, a post-treatment tank for post-treating the effluent from the bioreactor, and a product storage tank Is included.

次に、本発明を実施例にてさらに詳しく説明する。   Next, the present invention will be described in more detail with reference to examples.

1.キャベツホスフォリパーゼ(粗酵素)の調製
原料として、群馬県吾妻郡田代の群馬県園芸試験場高冷地分場で栽培したキャベツ(つまみどり)を用いた。内側の明るい緑色の葉(200g)に300mlの水を加え、5minホモジナイズした。 粉砕した試料は絹を通して圧搾した。ろ液を13000×gで30min遠心分離し、クリアな上清が380mlを得た。上清を55℃、3min熱処理した。迅速に急冷し、不溶成分は4℃、15000×g、30min遠心で分離除去した。クリアな上清に0.4倍量エタノールを加え、-15℃で20min以上冷却した。15min、-15℃中で攪拌した。沈殿物を3000×g、5min遠心除去した。沈殿物を水に再び溶かし、15000×g、5min遠心分離した。再懸濁と遠心を、上清に酵素活性が検出できなくなるまで繰り返した。Amicon X100膜(日本ミリポア製)を通して限外濾過した。凍結乾燥し、粗酵素とした。
2.ホスホリパーゼの精製
2gの凍結乾燥した粗酵素を20ml 30mM Pipes buffer (pH6.2) ,50mM CaCl2に懸濁した。12000×g、5min遠心分離した。酵素活性を含む黄色い上清を Octyl-Sepharose CL-4B column (2.5cm×20cm;アムシャム製)にチャージした。充填材は30mM Pipes buffer (pH6.2),50mM CaCl2、flow rate : 24ml/hであらかじめ平衡化した。黄色の物質が洗い流されるまで同様のバッファーで少なくとも60mlリンスした。活性画分は10mM Pipes Buffer (pH6.2),30mM CaCl2で溶出した。最終的に10mM Pipes Buffer (pH6.2),0.1mM EDTAで溶出した。5mlの活性フラクションをプールした。20mM Tris-HCl (pH7.5)中で透析した。透析した酵素溶液をMono-Q HR 5/5 column(trimethylammonium, Pharmacia)にチャージした。リニアグラジエントで溶出(20mM Tris-HCl (pH7.5) 90ml中の0〜0.5M NaCl flow rate : 1ml/min pressure: 1.0と2.0Mpaの間を維持(FPLC,Pharmacia))した。活性フラクションをプールした。PM30膜を用いたAmicon cellにおける限外濾過で10倍に濃縮した。精製酵素を分注し、30%のグリセロールを加えて-80℃で保存した。
3.酵素活性測定法
第一反応試薬混合液は、0.1M Tris-HCl buffer pH8.0 1.6ml、0.1M CaCl2 0.4ml、H2O 1.2ml、25mM 基質溶液(シグマ社製 ジオレオイルホスファチジルコリン88.5mgを5%(W/V)TritonX-100溶液4.5mlで溶解後4℃、10min超音波乳化)0.8mlの混合液とした。第二反応試薬混合液は、15mM 4-アミノアンチピリン(4-AA)溶液 0.8ml、0.2%(W/V)フェノール液 0.8ml、60mM EDTA溶液 pH8.0 0.8ml、50mM Tris-HCl buffer 16ml、90U/ml ペルオキシダーゼ(POD)溶液{POD(旭化成製) 900Uを精製水10mlで溶解したもの}0.8ml、30U/ml コリンオキシダーゼ(COD)溶液{COD(旭化成製) 300Uを10mM Tris-HCl buffer pH8.0 10mlで溶解したもの} 0.8mlの混合液とした。酵素溶解希釈溶液は、0.05%(W/V)BSA(シグマ社製)と0.1%(W/V)TritonX-100を含む10mM Tris-HCl buffer pH8.0とした。酵素試料液は、 検品約20mgを精密に量り、酵素溶解希釈溶液で全容20mlとした。その液を酵素溶解希釈溶液で適宜希釈した。小試験管に第一反応試薬混合液40ml を正確に分注し、37℃で予備加温した。5分経過後、酵素試料液4mlを正確に加えて混和し、37℃で第一反応を開始した。10分経過後、第二反応試薬混合液200ml を加えて混和し、37℃で第二反応を開始した。盲検はこの時点で酵素試料液4mlを加えた。20分経過後、500nmにおける吸光度を測定した。
4.ホスファチジルセリンの定量法
塩基交換反応中に経時的にサンプリングを行い、油脂中のPS含有量を高速液体クロマトグラフィー(HPLC)により測定した。すなわち、有機溶媒相を0.5ml採取し、水5ml、ヘキサン5mlを加え攪拌した後、遠心分離(2500rpm、10分間)に供し、上清を1ml回収した。さらに、溶媒を乾燥させ、乾燥物を試料とした。試料10mgに対して内部標準溶液1mlを加えHPLCに供した。分析はDEVELOSIL 60-5(4.6×250mm、野村化学製)をWaters製HPLC LC Module-I型に装着し、カラム温度は45℃、移動相としてアセトニトリル:メタノール:リン酸=780:50:9(V/V/V)を用い、流速を1.5ml/minとした。検出はUV検出器を用い、202nmの波長で検出した。
1. As a raw material for preparing cabbage phospholipase (crude enzyme), cabbage (snacks) cultivated in a cold district of Gunma Horticultural Experiment Station in Tashiro, Agatsuma-gun, Gunma Prefecture was used. 300 ml of water was added to the inner bright green leaf (200 g) and homogenized for 5 min. The ground sample was squeezed through silk. The filtrate was centrifuged at 13000 × g for 30 min to obtain 380 ml of a clear supernatant. The supernatant was heat-treated at 55 ° C. for 3 minutes. Rapid cooling was performed, and insoluble components were separated and removed by centrifugation at 4 ° C., 15000 × g, 30 min. 0.4 times volume of ethanol was added to the clear supernatant and cooled at -15 ° C for 20 min or longer. Stir for 15 min at -15 ° C. The precipitate was removed by centrifugation at 3000 × g for 5 minutes. The precipitate was redissolved in water and centrifuged at 15000 × g for 5 min. Resuspension and centrifugation were repeated until no enzyme activity could be detected in the supernatant. Ultrafiltration was performed through an Amicon X100 membrane (Nippon Millipore). Lyophilized to obtain crude enzyme.
2. Purification of phospholipase
2 g of the lyophilized crude enzyme was suspended in 20 ml of 30 mM Pipes buffer (pH 6.2) and 50 mM CaCl 2 . Centrifuged at 12000 × g for 5 minutes. The yellow supernatant containing the enzyme activity was charged on an Octyl-Sepharose CL-4B column (2.5 cm × 20 cm; manufactured by Amsham). The filler was equilibrated in advance with 30 mM Pipes buffer (pH 6.2), 50 mM CaCl 2 and a flow rate of 24 ml / h. Rinse at least 60 ml with the same buffer until the yellow material was washed away. The active fraction was eluted with 10 mM Pipes Buffer (pH 6.2) and 30 mM CaCl 2 . Finally, elution was performed with 10 mM Pipes Buffer (pH 6.2) and 0.1 mM EDTA. 5 ml active fractions were pooled. Dialyzed in 20 mM Tris-HCl (pH 7.5). The dialyzed enzyme solution was charged to Mono-Q HR 5/5 column (trimethylammonium, Pharmacia). Elution was performed with a linear gradient (0 to 0.5 M NaCl flow rate in 90 ml of 20 mM Tris-HCl (pH 7.5): 1 ml / min pressure: maintained between 1.0 and 2.0 Mpa (FPLC, Pharmacia)). Active fractions were pooled. It concentrated 10 time by ultrafiltration in Amicon cell using PM30 membrane. Purified enzyme was dispensed, 30% glycerol was added, and the mixture was stored at -80 ° C.
3. The first reaction mixture into the enzyme activity assay, 0.1M Tris-HCl buffer pH8.0 1.6ml , 0.1M CaCl 2 0.4ml, H 2 O 1.2ml, 25mM substrate solution (Sigma dioleoylphosphatidylcholine 88.5mg Was dissolved in 4.5 ml of a 5% (W / V) Triton X-100 solution, and then 0.8 ml of a mixed solution at 4 ° C. for 10 minutes by ultrasonic emulsification. The second reaction reagent mixture was 0.8 ml of 15 mM 4-aminoantipyrine (4-AA) solution, 0.8 ml of 0.2% (W / V) phenol solution, pH 8.0 0.8 ml of 60 mM EDTA solution, 16 ml of 50 mM Tris-HCl buffer, 90 U / ml peroxidase (POD) solution {POD (Asahi Kasei) 900 U dissolved in 10 ml of purified water} 0.8 ml, 30 U / ml choline oxidase (COD) solution {COD (Asahi Kasei) 300 U in 10 mM Tris-HCl buffer pH 8 0.0 Dissolved in 10 ml} A mixed solution of 0.8 ml was prepared. The enzyme-dissolved diluted solution was 10 mM Tris-HCl buffer pH 8.0 containing 0.05% (W / V) BSA (manufactured by Sigma) and 0.1% (W / V) TritonX-100. The enzyme sample solution was accurately weighed about 20 mg of the test sample, and made up to a total volume of 20 ml with the enzyme-dissolved diluted solution. The solution was appropriately diluted with an enzyme-dissolved diluted solution. 40 ml of the first reaction reagent mixture was accurately dispensed into a small test tube and pre-warmed at 37 ° C. After 5 minutes, 4 ml of the enzyme sample solution was accurately added and mixed, and the first reaction was started at 37 ° C. After 10 minutes, 200 ml of the second reaction reagent mixture was added and mixed, and the second reaction was started at 37 ° C. In the blind test, 4 ml of enzyme sample solution was added at this point. After 20 minutes, the absorbance at 500 nm was measured.
4). Quantitative determination of phosphatidylserine Sampling was performed over time during the base exchange reaction, and the PS content in the oil was measured by high performance liquid chromatography (HPLC). That is, 0.5 ml of an organic solvent phase was collected, 5 ml of water and 5 ml of hexane were added and stirred, and then centrifuged (2500 rpm, 10 minutes), and 1 ml of the supernatant was collected. Further, the solvent was dried, and a dried product was used as a sample. An internal standard solution (1 ml) was added to 10 mg of the sample and subjected to HPLC. For analysis, DEVELOSIL 60-5 (4.6 × 250 mm, Nomura Chemical Co., Ltd.) was mounted on a Waters HPLC LC Module-I type, the column temperature was 45 ° C., and the mobile phase was acetonitrile: methanol: phosphoric acid = 780: 50: 9 ( V / V / V) and a flow rate of 1.5 ml / min. Detection was performed using a UV detector at a wavelength of 202 nm.

酵素の固定化
こんにゃくマンナン(スーパーマンナン;荻野商店製)250mgとカラギーナン(シグマ社製)250mgを100gの蒸留水に添加し、80℃で30分間攪拌して溶解した。50℃まで冷却後に実施例で得たキャベツホスホリパーゼを10g添加しさらに30分攪拌した。ペリスターポンプ(2ml/分)で5℃に冷却した油脂(パナセート810;日本油脂製)に滴下して30分保持することによりゲル化した。ゲル化した固定化酵素をメッシュで受けて中鎖脂肪酸トリグリセリドを除去した後、1Lのエタノールで洗浄して完全に油分を除去した。酵素活性の測定結果は、1.5U/mgであった。
Immobilization of enzyme 250 mg of konjac mannan (manufactured by Sagano) and 250 mg of carrageenan (manufactured by Sigma) were added to 100 g of distilled water, and dissolved by stirring at 80 ° C. for 30 minutes. After cooling to 50 ° C., 10 g of cabbage phospholipase obtained in the example was added, and the mixture was further stirred for 30 minutes. It was gelled by dropping it into oil (Panasate 810; manufactured by Nippon Oil and Fats) cooled to 5 ° C. with a peristaltic pump (2 ml / min) and holding it for 30 minutes. The gelled immobilized enzyme was received with a mesh to remove the medium chain fatty acid triglyceride, and then washed with 1 L of ethanol to completely remove the oil. The measurement result of enzyme activity was 1.5 U / mg.

こんにゃく芋精粉(荻野商店製)30gと蒸留水900を加温攪拌してこんにゃく糊とした。水酸化カルシウム2gと放線菌由来ホスフォリパーゼD(旭化成製)1gを添加して攪拌後、30分放置し、60℃で2時間加温してゲル化した。ゲルをミートチョッパーを用いて切断し、粒径1mm程度の固定化酵素を得た。固定化酵素の活性は10U/mgであった。 30 g of konjac koji fine powder (manufactured by Hadano Shoten) and distilled water 900 were heated and stirred to obtain konjac paste. After adding 2 g of calcium hydroxide and 1 g of actinomycete-derived phospholipase D (manufactured by Asahi Kasei), the mixture was allowed to stand for 30 minutes, and heated at 60 ° C. for 2 hours to gel. The gel was cut using a meat chopper to obtain an immobilized enzyme having a particle size of about 1 mm. The activity of the immobilized enzyme was 10 U / mg.

蒸留水100mlにグリセリン10gと塩化カルシウム0.2gを添加して水層とした。ジエチルエーテル100mlにホスファチジルコリン(SLP−PC70;ツルーレシチン製)10gを溶解し有機溶媒層とした。水層と有機溶媒層と実施例1の固定化酵素10gを40℃を保って8時間攪拌した。反応液開始時の総脂質中のホスファチジルコリン、ホスファチジン酸、ホスファチジルグリセロールの含量はそれぞれ56重量%、3重量%、0.5重量%であったが、反応開始8時間後の総脂質中のホスファチジルコリン、ホスファチジン酸、ホスファチジルグリセロールの含量は20重量%、11重量%、28.5%であった。反応収量後にメッシュにより固定化酵素を回収した。回収した固定化酵素の活性は1.3U/mgであった。  10 g of glycerin and 0.2 g of calcium chloride were added to 100 ml of distilled water to form an aqueous layer. 10 g of phosphatidylcholine (SLP-PC70; manufactured by True Lecithin) was dissolved in 100 ml of diethyl ether to form an organic solvent layer. The aqueous layer, the organic solvent layer and 10 g of the immobilized enzyme of Example 1 were stirred at 8O 0 C for 8 hours. The contents of phosphatidylcholine, phosphatidic acid, and phosphatidylglycerol in the total lipid at the start of the reaction solution were 56 wt%, 3 wt%, and 0.5 wt%, respectively, but phosphatidylcholine in the total lipid 8 hours after the start of the reaction, The contents of phosphatidic acid and phosphatidylglycerol were 20% by weight, 11% by weight, and 28.5%. After the reaction yield, the immobilized enzyme was recovered with a mesh. The activity of the recovered immobilized enzyme was 1.3 U / mg.

蒸留水10kgにホスファチジルコリン(含有率95%;日清製油製)200g、L−セリン200g、塩化カルシウム0.5gを添加して、ポリトロン(キネマチカ製)で20分間乳化した。カラム(直径 1.8 cm 、長さ 18 cm)に実施例2の固定化酵素を10g充填し、上記の乳化物をペリスターポンプで20ml/分の速度で3時間循環させた。カラムは50℃の恒温槽中に入れ、反応を50℃近傍で行った。反応開始時の総脂質中のホスファチジルコリン、ホスファチジン酸、ホスファチジルセリンの含量はそれぞれ95重量%、0重量%、0.5重量%であったが、反応開始8時間後の総脂質中のホスファチジルコリン、ホスファチジン酸、ホスファチジルセリンの含量は32重量%、5重量%、58.5%であった。反応終了後の固定化酵素の活性は、9U/mgであった。
(比較例1)
酵素の固定化
寒天1.5gを100gの蒸留水に添加し、80℃で30分間攪拌して溶解した。50℃まで冷却後に実施例で得たキャベツホスホリパーゼを10g添加しさらに30分攪拌した。ペリスターポンプ(2ml/分)で5℃に冷却した油脂(パナセート810;日本油脂製)に滴下して30分保持することによりゲル化した。ゲル化した固定化酵素をメッシュで受けて中鎖脂肪酸トリグリセリドを除去した後、1Lのエタノールで洗浄して完全に油分を除去した。酵素活性の測定結果は、0.5U/mgであった。
(比較例2)
アルギン酸ナトリウム(新進科研製)20gと蒸留水480mlを加温攪拌して溶解した後、放線菌由来ホスフォリパーゼD(旭化成製)1gを添加して攪拌後、4重量%の塩化カルシウム溶液500mlを添加し攪拌後30分放置してゲル化した。ゲルをミートチョッパーを用いて切断したが、粒子状にならず、糊状になった。酵素の活性は2U/mgであった。
(比較例3)
実施例1の固定化酵素の代わりに比較例1の酵素を用いた以外は実施例3と同様の方法で、反応を行った。反応液開始時の総脂質中のホスファチジルコリン、ホスファチジン酸、ホスファチジルグリセロールの含量はそれぞれ56重量%、3重量%、0.5重量%であったが、反応開始8時間後の総脂質中のホスファチジルコリン、ホスファチジン酸、ホスファチジルグリセロールの含量は43重量%、5重量%、11.5%であった。反応収量後にメッシュにより固定化酵素を回収した。回収した固定化酵素の活性は0.2U/mgであった。
(比較例4)
実施例2の固定化酵素の代わりに比較例2の酵素を用いた以外は実施例4の同様の方法で反応を行った。反応開始後10分で、カラムの出口で目詰まりを起こし、反応液を循環することができなくなった。ゲルを回収して酵素活性を測定した結果、酵素が流出したため、活性が認められなかった。
To 10 kg of distilled water, 200 g of phosphatidylcholine (95% content; manufactured by Nissin Oil Co., Ltd.), 200 g of L-serine and 0.5 g of calcium chloride were added and emulsified with Polytron (manufactured by Kinematica) for 20 minutes. A column (1.8 cm in diameter, 18 cm in length) was filled with 10 g of the immobilized enzyme of Example 2, and the above emulsion was circulated with a peristaltic pump at a rate of 20 ml / min for 3 hours. The column was placed in a constant temperature bath at 50 ° C., and the reaction was performed at around 50 ° C. The contents of phosphatidylcholine, phosphatidic acid, and phosphatidylserine in the total lipid at the start of the reaction were 95%, 0%, and 0.5% by weight, respectively, but phosphatidylcholine and phosphatidine in the total lipid at 8 hours after the start of the reaction. The contents of acid and phosphatidylserine were 32% by weight, 5% by weight and 58.5%. The activity of the immobilized enzyme after completion of the reaction was 9 U / mg.
(Comparative Example 1)
Enzyme-immobilized agar (1.5 g) was added to 100 g of distilled water, and dissolved by stirring at 80 ° C. for 30 minutes. After cooling to 50 ° C., 10 g of cabbage phospholipase obtained in the example was added, and the mixture was further stirred for 30 minutes. It was gelled by dropping it into oil (Panasate 810; manufactured by Nippon Oil and Fats) cooled to 5 ° C. with a peristaltic pump (2 ml / min) and holding it for 30 minutes. The gelled immobilized enzyme was received with a mesh to remove the medium chain fatty acid triglyceride, and then washed with 1 L of ethanol to completely remove the oil. The measurement result of enzyme activity was 0.5 U / mg.
(Comparative Example 2)
20 g of sodium alginate (manufactured by Shinshin Kaken) and 480 ml of distilled water are dissolved by heating and stirring, 1 g of actinomycetes-derived phospholipase D (manufactured by Asahi Kasei) is added, and after stirring, 500 ml of a 4% by weight calcium chloride solution is added. After adding and stirring, the mixture was left for 30 minutes to gel. The gel was cut using a meat chopper, but it did not become particles but became paste. The enzyme activity was 2 U / mg.
(Comparative Example 3)
The reaction was performed in the same manner as in Example 3 except that the enzyme of Comparative Example 1 was used instead of the immobilized enzyme of Example 1. The contents of phosphatidylcholine, phosphatidic acid, and phosphatidylglycerol in the total lipid at the start of the reaction solution were 56 wt%, 3 wt%, and 0.5 wt%, respectively. The contents of phosphatidic acid and phosphatidylglycerol were 43% by weight, 5% by weight and 11.5%. After the reaction yield, the immobilized enzyme was recovered with a mesh. The activity of the recovered immobilized enzyme was 0.2 U / mg.
(Comparative Example 4)
The reaction was performed in the same manner as in Example 4 except that the enzyme of Comparative Example 2 was used instead of the immobilized enzyme of Example 2. Ten minutes after the start of the reaction, clogging occurred at the outlet of the column, making it impossible to circulate the reaction solution. As a result of recovering the gel and measuring the enzyme activity, no activity was observed because the enzyme flowed out.

以上の実施例、比較例から、本発明の固定化酵素が固定化時の酵素のロスが少なく、反応時の酵素の保持に優れているのことが分かる。

From the above Examples and Comparative Examples, it can be seen that the immobilized enzyme of the present invention has little loss of enzyme during immobilization and is excellent in retention of the enzyme during the reaction.

Claims (6)

こんにゃくマンナンを含有する担体に、ホスフォリパーゼDを固定化することを特徴とするホスフォリパーゼD固定化酵素 。 A phospholipase D-immobilized enzyme, wherein phospholipase D is immobilized on a carrier containing konjac mannan. ホスフォリパーゼDが、キャベツまたは細菌より得られるものであることを特徴とする請求項1記載の固定化酵素 。 The immobilized enzyme according to claim 1, wherein the phospholipase D is obtained from cabbage or bacteria. 細菌がActinomadura sp.またはStreptomyces sp.であることを特徴とする請求項2記載の固定化酵素。 The bacterium is Actinomadura sp. Or Streptomyces sp. The immobilized enzyme according to claim 2, wherein 酵素固定化用担体が、こんにゃく生芋をすりおろしたもの又はこんにゃく精粉に凝固剤を添加したゲル化物である請求項1〜3記載の固定化酵素。 The immobilized enzyme according to claims 1 to 3, wherein the enzyme immobilization carrier is a konjac ginger grated or a gelled product obtained by adding a coagulant to konjac fine powder. 酵素固定化用担体が、こんにゃく生芋をすりおろしたもの又はこんにゃく精粉に凝固剤を添加してゲル化物であり、添加物として、こんにゃく以外の原料由来のゲル化剤を含む請求項1〜3記載の固定化酵素。 The enzyme immobilization carrier is a gelled product obtained by adding a coagulant to grated konjac ginger or konjac fine powder, and contains a gelling agent derived from a raw material other than konjac as an additive. 3. The immobilized enzyme according to 3. 請求項1〜5のいずれか一記載の固定化酵素 を含有していることを特徴とするバイオリアクター。



A bioreactor comprising the immobilized enzyme according to any one of claims 1 to 5.



JP2004077789A 2004-03-18 2004-03-18 Method for immobilizing enzyme and reactor using immobilized enzyme Pending JP2005261284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004077789A JP2005261284A (en) 2004-03-18 2004-03-18 Method for immobilizing enzyme and reactor using immobilized enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004077789A JP2005261284A (en) 2004-03-18 2004-03-18 Method for immobilizing enzyme and reactor using immobilized enzyme

Publications (1)

Publication Number Publication Date
JP2005261284A true JP2005261284A (en) 2005-09-29

Family

ID=35086444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004077789A Pending JP2005261284A (en) 2004-03-18 2004-03-18 Method for immobilizing enzyme and reactor using immobilized enzyme

Country Status (1)

Country Link
JP (1) JP2005261284A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100582228C (en) * 2007-03-29 2010-01-20 中国农业科学院农产品加工研究所 Immobilization lipase, and preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100582228C (en) * 2007-03-29 2010-01-20 中国农业科学院农产品加工研究所 Immobilization lipase, and preparation method

Similar Documents

Publication Publication Date Title
Filho et al. Lipases: sources, immobilization methods, and industrial applications
Virgen-Ortiz et al. Lecitase ultra: A phospholipase with great potential in biocatalysis
Sheelu et al. Efficient immobilization of lecitase in gelatin hydrogel and degumming of rice bran oil using a spinning basket reactor
Gerits et al. Lipases and their functionality in the production of wheat‐based food systems
Horchani et al. Staphylococcal lipases: biotechnological applications
De Maria et al. Phospholipases and their industrial applications
Topakas et al. Purification and characterization of a feruloyl esterase from Fusarium oxysporum catalyzing esterification of phenolic acids in ternary water–organic solvent mixtures
Paula et al. Porcine pancreatic lipase immobilized on polysiloxane–polyvinyl alcohol hybrid matrix: catalytic properties and feasibility to mediate synthesis of surfactants and biodiesel
Yiğitoğlu et al. Immobilization of Candida rugosa lipase on glutaraldehyde-activated polyester fiber and its application for hydrolysis of some vegetable oils
Zoumpanioti et al. Microemulsion-based organogels as matrices for lipase immobilization
Dheeman et al. Purification and characterization of an extracellular lipase from a novel strain Penicillium sp. DS-39 (DSM 23773)
Aryee et al. Lipase fraction from the viscera of grey mullet (Mugil cephalus): Isolation, partial purification and some biochemical characteristics
Patel et al. An extracellular solvent stable alkaline lipase from Pseudomonas sp. DMVR46: Partial purification, characterization and application in non-aqueous environment
EP1740708B1 (en) Enzymatic production of hydrolyzed lecithin products
Duan et al. Biochemical characterization of a novel lipase from Malbranchea cinnamomea suitable for production of lipolyzed milkfat flavor and biodegradation of phthalate esters
Cheirsilp et al. Optimizing an alginate immobilized lipase for monoacylglycerol production by the glycerolysis reaction
Zoumpanioti et al. Lipase biocatalytic processes in surfactant free microemulsion-like ternary systems and related organogels
Kurtovic et al. Immobilisation of Candida rugosa lipase on a highly hydrophobic support: A stable immobilised lipase suitable for non-aqueous synthesis
Yong et al. Kinetic studies on immobilised lipase esterification of oleic acid and octanol
Li et al. Enhancing the performance of a phospholipase A1 for oil degumming by bio-imprinting and immobilization
Eddehech et al. Production, purification and functional characterization of phospholipase C from Bacillus thuringiensis with high catalytic activity
EP0398666B1 (en) A process for modifying the properties of egg yolk
Yin et al. Cellulose nanofibril-stabilized Pickering emulsion as a high-performance interfacial biocatalysis system for the synthesis of phosphatidylserine
Yu et al. Stability of soybean oil degumming using immobilized phospholipase A2
Morgado et al. Hydrolysis of lecithin by phospholipase A2 in mixed reversed micelles of lecithin and sodium dioctyl sulphosuccinate