JP2005261040A - Inverter apparatus - Google Patents

Inverter apparatus Download PDF

Info

Publication number
JP2005261040A
JP2005261040A JP2004067380A JP2004067380A JP2005261040A JP 2005261040 A JP2005261040 A JP 2005261040A JP 2004067380 A JP2004067380 A JP 2004067380A JP 2004067380 A JP2004067380 A JP 2004067380A JP 2005261040 A JP2005261040 A JP 2005261040A
Authority
JP
Japan
Prior art keywords
relay
inverter
capacitor
voltage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004067380A
Other languages
Japanese (ja)
Other versions
JP4121972B2 (en
Inventor
Kazuhisa Otagaki
和久 太田垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004067380A priority Critical patent/JP4121972B2/en
Publication of JP2005261040A publication Critical patent/JP2005261040A/en
Application granted granted Critical
Publication of JP4121972B2 publication Critical patent/JP4121972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To precisely detect the weld of the relay in an inverter apparatus having a boosting circuit, without adding a circuit for detection of relay weld anew. <P>SOLUTION: This inverter apparatus is equipped with the boosting circuit 4 which is provided between a relay (main relay 3 and a rush current preventing relay 6) and an inverter 5, a capacitor C1 which is connected in parallel with the inverter 5, and a controller 8 which controls the boosting circuit 4, the relay and the inverter 5. The controller 8 has a detection means (charge voltage detecting circuit 19) which detects the terminal voltage of the capacitor C1, and executes the weld detecting transaction about whether the terminal voltage of the capacitor C1 is higher than that before boosting or not when it boosts the output of the boosting circuit 4 to set maximum voltage in condition that the relay is paralleled off. In case that the terminal voltage of the capacitor C1 is higher than that before boosting, the controller judges it to be weld of the relay. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電源よりリレーを介してインバータに電力を供給するインバータ装置に関するものである。   The present invention relates to an inverter device that supplies electric power from a power supply to an inverter via a relay.

従来より電気モータを使用する一般的な装置においては、装置に異常が発生した場合に電気モータの通電を遮断できるように、電気モータの電源ラインに直列に制御装置によって制御されるリレーが接続されている。この種の電源リレーの接点は、通常の装置の作動中は閉じて、その接点を介して電気モータに電力が供給される。   In a conventional device that uses an electric motor, a relay controlled by a control device is connected in series to the power line of the electric motor so that the electric motor can be de-energized when an abnormality occurs in the device. ing. The contacts of this type of power relay are closed during normal device operation, and power is supplied to the electric motor via the contacts.

ところで、装置の不具合やその他の原因により、電気モータに大電流が流れる場合があるが、その大電流も電源リレーの接点を流れる。リレーの接点はその接触抵抗が充分小さくなるようにリレーを2個並列に設け一方のリレーに突入電流を防止する工夫がなされている。該リレーは、接点に大電流を流したり遮断したりする接点開閉時、一時的に接触抵抗の増大、また、流している電流を遮断するときの接点での放電により、接点は大きな発熱により溶着してしまう。並列に設けた2個のリレーの内の何れかのリレーが故障して接点が溶着してしまうと、装置は制御不能となり動かなくなってしまう場合がある。そこで、リレーの接点溶着の検出を行う電源リレー故障検知装置が提案されている(特許文献1参照)。   By the way, there is a case where a large current flows through the electric motor due to a malfunction of the apparatus or other causes, but the large current also flows through the contact of the power relay. Two relays are arranged in parallel so that the contact resistance of the relay contacts is sufficiently small, and one relay is devised to prevent inrush current. The relay is welded due to large heat generation due to a temporary increase in contact resistance when the contact is opened or closed, which causes a large current to flow or is cut off, and discharge at the contact when the flowing current is cut off. Resulting in. If one of the two relays provided in parallel fails and the contacts are welded, the device may become uncontrollable and may not move. Accordingly, a power relay failure detection device that detects relay contact welding has been proposed (see Patent Document 1).

この電源リレー故障検知装置では、接点異常検出手段を設けている。そして、接点異常検出手段にて二次電源ラインの電圧を測定し、リレー接点に溶着が生じていなければ測定電圧はゼロ、リレー接点に溶着が生じていればゼロより高い電圧になる。この接点異常検出手段が検出した測定電圧の値によって、リレー接点の溶着を検出していた。
特許第3097723号公報
This power relay failure detection device is provided with contact abnormality detection means. Then, the voltage of the secondary power supply line is measured by the contact abnormality detection means, and if the relay contact is not welded, the measured voltage is zero, and if the relay contact is welded, the measured voltage is higher than zero. The welding of the relay contact is detected based on the value of the measured voltage detected by the contact abnormality detecting means.
Japanese Patent No. 3097723

しかしながら、従来では並列に設けた2個のリレーを開いた状態で、リレー前後の端子電圧を比較して、測定電圧がゼロならばリレーの接点溶着と判断していたが、回路には大容量のコンデンサが使用されているため、放電電圧により測定電圧は直ぐにゼロにならない。このため、コンデンサの充電電圧が無くなるまで、リレー前後の端子電圧を測定できないという問題があった。   However, in the past, when two relays provided in parallel were opened, the terminal voltages before and after the relay were compared, and if the measured voltage was zero, it was determined that the relay contact was welded. Therefore, the measured voltage does not become zero immediately due to the discharge voltage. For this reason, there has been a problem that the terminal voltages before and after the relay cannot be measured until the charging voltage of the capacitor disappears.

また、装置に電源電圧を昇圧する昇圧回路を設けている場合、リレーを開いた直後コンデンサが放電し切る前には昇圧回路の電源とは反対側の方が電圧が高くなる場合もあり、やはり測定電圧が直ぐにゼロにならずリレー前後の端子電圧を測定できないという問題があった。このため、もっと的確にリレー接点の溶着を検出することができる装置の開発が望まれていた。   In addition, when the device is provided with a booster circuit that boosts the power supply voltage, the voltage on the side opposite to the power supply of the booster circuit may become higher immediately after the relay is opened and before the capacitor is completely discharged. There was a problem that the measured voltage did not immediately become zero and the terminal voltage before and after the relay could not be measured. Therefore, it has been desired to develop a device that can detect the welding of the relay contact more accurately.

本発明は、係る従来技術の課題を解決するために成されたものであり、リレー溶着検出用の回路を新たに追加すること無く、昇圧回路のあるインバータ装置におけるリレーの溶着を的確に検出することを目的とする。   The present invention has been made to solve the problems of the related art, and accurately detects relay welding in an inverter device having a booster circuit without newly adding a relay welding detection circuit. For the purpose.

即ち、本発明のインバータ装置は、電源よりリレーを介してインバータに電力を供給するインバータ装置において、リレーとインバータ間に設けられた昇圧回路と、インバータに並列接続されたコンデンサと、昇圧回路、リレー及びインバータを制御する制御装置とを備え、この制御装置は、コンデンサの端子電圧を検出する検出手段を有し、リレーを解裂した状態で昇圧回路の出力を設定最大電圧まで昇圧させたとき、コンデンサの端子電圧が昇圧前より高いか否かの溶着検出処理を実行し、コンデンサの端子電圧が昇圧前より高い場合には、リレーの溶着と判断することを特徴とする。   That is, the inverter device of the present invention is an inverter device that supplies power to the inverter from a power source via a relay, a booster circuit provided between the relay and the inverter, a capacitor connected in parallel to the inverter, a booster circuit, and a relay And a control device for controlling the inverter, the control device has a detecting means for detecting the terminal voltage of the capacitor, and when the output of the booster circuit is boosted to the set maximum voltage in a state where the relay is opened, A welding detection process for determining whether or not the terminal voltage of the capacitor is higher than before boosting is performed, and if the terminal voltage of the capacitor is higher than before boosting, it is determined that the relay is welded.

また、請求項2の発明のインバータ装置は、上記において、制御装置は、溶着検出処理を所定回数実行し、何れもコンデンサの端子電圧が昇圧前より高い場合にリレーの溶着と判断することを特徴とする。   In the inverter device according to the second aspect of the present invention, in the above, the control device executes the welding detection process a predetermined number of times, and determines that the relay is welded when the terminal voltage of the capacitor is higher than that before boosting. And

本発明によれば、電源よりリレーを介してインバータに電力を供給するインバータ装置において、リレーとインバータ間に設けられた昇圧回路と、インバータに並列接続されたコンデンサと、昇圧回路、リレー及びインバータを制御する制御装置とを備え、この制御装置は、コンデンサの端子電圧を検出する検出手段を有し、リレーを解裂した状態で昇圧回路の出力を設定最大電圧まで昇圧させたとき、コンデンサの端子電圧が昇圧前より高いか否かの溶着検出処理を実行し、コンデンサの端子電圧が昇圧前より高い場合には、リレーの溶着と判断するようにしたので、リレー溶着用の回路を新たに追加すること無く、昇圧回路のあるインバータ装置におけるリレーの溶着を的確に検出することができるようになる。   According to the present invention, in an inverter device that supplies power to an inverter from a power source via a relay, the booster circuit provided between the relay and the inverter, the capacitor connected in parallel to the inverter, the booster circuit, the relay, and the inverter A control device for controlling, the control device has a detecting means for detecting the terminal voltage of the capacitor, and when the output of the booster circuit is boosted to the set maximum voltage with the relay disengaged, the terminal of the capacitor Welding detection processing is performed to determine whether the voltage is higher than before boosting. When the capacitor terminal voltage is higher than before boosting, it is determined that the relay is welded, so a new relay welding circuit has been added. Therefore, it is possible to accurately detect the welding of the relay in the inverter device having the booster circuit.

また、請求項2の如く、溶着検出処理を所定回数実行し、何れもコンデンサの端子電圧が昇圧前より高い場合にリレーの溶着と判断するようにすれば、一時的な誤動作による溶着判断を排除し、より確実にリレーの溶着判断を行うことができるようになる。   Further, as described in claim 2, if the welding detection process is executed a predetermined number of times, and it is determined that the relay is welded when the terminal voltage of the capacitor is higher than before boosting, the welding judgment due to a temporary malfunction is eliminated. In addition, it is possible to determine the welding of the relay more reliably.

本発明は、昇圧回路のあるインバータ装置におけるリレーの溶着を検出するため、インバータに並列接続したコンデンサの端子電圧を検出する検出手段と制御装置とを設ける。リレーの溶着を検出するという目的をコンデンサの端子電圧を測定するだけの簡単な測定で実現した。   In order to detect welding of a relay in an inverter device having a booster circuit, the present invention is provided with detection means and a control device for detecting a terminal voltage of a capacitor connected in parallel to the inverter. The purpose of detecting the welding of the relay was realized by a simple measurement just by measuring the terminal voltage of the capacitor.

次に、図面に基づき本発明の実施の形態を詳述する。図1は本発明のインバータ装置1を備えた一実施例の電気自動車の電気回路図、図2は本発明のインバータ装置1の動作説明を示すフローチャートをそれぞれ示している。   Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an electric circuit diagram of an electric vehicle according to an embodiment provided with an inverter device 1 of the present invention, and FIG. 2 is a flowchart illustrating the operation of the inverter device 1 of the present invention.

図1において、2は例えば燃料電池自動車(FCEV)に搭載された電源(この場合、燃料電池となる)であり、この電源2のプラス側の端子はメインリレー3を介して電源2の電圧を所定の設定電圧まで昇圧する昇圧回路4に接続され、この昇圧回路4はインバータ5に接続されている。該昇圧回路4は、図示しないリアクトルとダイオードとスイッチング用のパワートランジスタなどから構成され、このトランジスタのベースが制御されることにより電源電圧を昇圧して、後述するモータMを駆動可能電圧にするように構成されている。   In FIG. 1, reference numeral 2 denotes a power source (in this case, a fuel cell) mounted on a fuel cell vehicle (FCEV). The positive terminal of the power source 2 supplies the voltage of the power source 2 via the main relay 3. It is connected to a booster circuit 4 that boosts the voltage to a predetermined set voltage, and this booster circuit 4 is connected to an inverter 5. The booster circuit 4 includes a reactor, a diode, a switching power transistor, and the like (not shown). The base of the transistor is controlled so as to boost the power supply voltage so that a motor M described later can be driven. It is configured.

また、電源2のマイナス側の端子は昇圧回路4を介してインバータ5に接続され、インバータ5は、燃料電池自動車走行用のモータMに接続されている。この場合、インバータ5は昇圧回路4で昇圧された電力をモータMを駆動し自動車を走行させることができる周波数及び電圧に変換するもので、図示しないが複数のスイッチング素子とスイッチングサージ吸収用のダイオードなどにて構成されており、電源2からの直流電力をモータ駆動波形に変換してモータMに印加する。これによって、モータMを駆動し自動車を走行させる。   Further, the negative terminal of the power source 2 is connected to an inverter 5 through a booster circuit 4, and the inverter 5 is connected to a motor M for running a fuel cell vehicle. In this case, the inverter 5 converts the electric power boosted by the booster circuit 4 into a frequency and voltage at which the motor M can be driven to drive the automobile. Although not shown, a plurality of switching elements and switching surge absorbing diodes are not shown. The DC power from the power source 2 is converted into a motor drive waveform and applied to the motor M. As a result, the motor M is driven to drive the automobile.

電源2のプラス側の端子とメインリレー3との間には抵抗R1を介してスイッチSW1が直列に接続された突入電流防止リレー6の一方の端子が接続されている。突入電流防止リレー6の他方の端子は、メインリレー3と昇圧回路4との間に接続され、メインリレー3と突入電流防止リレー6は並列に接続されている。   Between the positive terminal of the power source 2 and the main relay 3, one terminal of an inrush current prevention relay 6 in which a switch SW1 is connected in series is connected via a resistor R1. The other terminal of the inrush current prevention relay 6 is connected between the main relay 3 and the booster circuit 4, and the main relay 3 and the inrush current prevention relay 6 are connected in parallel.

該突入電流防止リレー6は、汎用のマイクロコンピュータにて構成された制御装置8(図1では制御回路と図示している)に接続されている。この突入電流防止リレー6は、制御装置8によってメインリレー3より先に閉じられ、電源2からの過大な突入電流を突入電流防止リレー6を構成する抵抗R1によって吸収しながら、その電力を昇圧回路4を介して後述するコンデンサC1に充電する。   The inrush current prevention relay 6 is connected to a control device 8 (shown as a control circuit in FIG. 1) constituted by a general-purpose microcomputer. This inrush current prevention relay 6 is closed before the main relay 3 by the control device 8 and absorbs an excessive inrush current from the power source 2 by the resistor R1 constituting the inrush current prevention relay 6, while the power is boosted. The capacitor C <b> 1 described later is charged via 4.

また、電源2のプラス側の端子とマイナス側の端子間に渡って入力電圧検出回路9が接続されており、この入力電圧検出回路9は制御装置8に接続されている。該入力電圧検出回路9は、例えば直列に接続された2個の抵抗(図示せず)にて構成され、制御装置8はその両抵抗の間の電圧を検出することにより電源2の電圧を検出すると共に電源2の電圧を監視する。   Further, an input voltage detection circuit 9 is connected across the positive side terminal and the negative side terminal of the power supply 2, and this input voltage detection circuit 9 is connected to the control device 8. The input voltage detection circuit 9 is composed of, for example, two resistors (not shown) connected in series, and the control device 8 detects the voltage of the power supply 2 by detecting the voltage between the two resistors. And the voltage of the power source 2 is monitored.

また、昇圧回路4とインバータ5との間となる昇圧回路4の一方の端子と、昇圧回路4の他方の端子間に渡って抵抗R2が接続されており、この抵抗R2に並列にコンデンサC1が接続されている。該コンデンサC1は、昇圧回路4の一方の端子側を+、他方の端子側を−にて接続されている。このコンデンサC1は、インバータ5のON時の電圧ドロップの補正及びインバータ5のOFF時のモータMからの逆起電力を吸収すると共に、コンデンサC1に充電された充電電圧を放電する役割を果たす。   A resistor R2 is connected between one terminal of the booster circuit 4 between the booster circuit 4 and the inverter 5 and the other terminal of the booster circuit 4, and a capacitor C1 is connected in parallel to the resistor R2. It is connected. The capacitor C1 has one terminal side of the booster circuit 4 connected to + and the other terminal side connected to-. The capacitor C1 plays a role of correcting the voltage drop when the inverter 5 is ON and absorbing the back electromotive force from the motor M when the inverter 5 is OFF and discharging the charging voltage charged in the capacitor C1.

また、昇圧回路4とインバータ5との間となる昇圧回路4の一方の端子と、昇圧回路4の他方の端子間に渡ってコンデンサC1と並列に充電電圧検出回路19(本発明のコンデンサの端子電圧を検出する検出手段に相当)が接続されている。該充電電圧検出回路19は、コンデンサC1の両端の端子電圧を検出し、コンデンサC1の充電電圧を監視する。そして、制御装置8は充電電圧検出回路19によってコンデンサC1の充電電圧を検出し、コンデンサC1の充電電圧が所定の値まで上昇したらメインリレー3を解裂する。これによって、制御装置8はモータMの逆起電力などによってインバータ5や昇圧回路4に流れ込むのを遮断し、逆起電力によってそれらが破損してしまうのを保護する。   Further, the charging voltage detection circuit 19 (terminal of the capacitor of the present invention) is connected in parallel with the capacitor C1 across one terminal of the boosting circuit 4 between the boosting circuit 4 and the inverter 5 and the other terminal of the boosting circuit 4. Connected to a detecting means for detecting a voltage). The charging voltage detection circuit 19 detects the terminal voltage across the capacitor C1, and monitors the charging voltage of the capacitor C1. And the control apparatus 8 detects the charging voltage of the capacitor | condenser C1 with the charging voltage detection circuit 19, and when the charging voltage of the capacitor | condenser C1 rises to a predetermined value, the main relay 3 will be disassembled. Thereby, the control device 8 blocks the flow into the inverter 5 and the booster circuit 4 due to the counter electromotive force of the motor M, and protects them from being damaged by the counter electromotive force.

そして、制御装置8は、電気自動車の電気回路がONされると、先ず突入電流防止リレー6を閉じて、電源2から過大な突入電流を抵抗R1で制御しながら昇圧回路4を介してコンデンサC1に充電する。所定時間経過後充電電圧検出回路19がコンデンサC1の充電電圧が所定の値まで上昇したのを検出すると、制御装置8はメインリレー3を閉じた後、突入電流防止リレー6を解裂して電源2をそのまま昇圧回路4で昇圧してインバータ5に印加する。インバータ5は、印加された直流電力をモータ駆動波形に変換してモータMに印加し、これによってモータMが駆動し自動車を走行させる。   When the electric circuit of the electric vehicle is turned on, the control device 8 first closes the inrush current prevention relay 6 and controls the capacitor C1 through the booster circuit 4 while controlling an excessive inrush current from the power source 2 with the resistor R1. To charge. When the charging voltage detection circuit 19 detects that the charging voltage of the capacitor C1 has increased to a predetermined value after a predetermined time has elapsed, the control device 8 closes the main relay 3 and then breaks the inrush current prevention relay 6 to supply power. 2 is directly boosted by the booster circuit 4 and applied to the inverter 5. The inverter 5 converts the applied DC power into a motor drive waveform and applies it to the motor M, whereby the motor M is driven to run the automobile.

一方、これら何れかのメインリレー3或いは突入電流防止リレー6が故障して接点が溶着してしまうと、装置の制御は不能となるが、制御装置8はこれらメインリレー3或いは突入電流防止リレー6の溶着した場合の検出機能を2種類備えている。   On the other hand, if any of the main relay 3 or the inrush current prevention relay 6 breaks down and the contact is welded, the control of the apparatus becomes impossible, but the control device 8 does not control the main relay 3 or the inrush current prevention relay 6. There are two types of detection functions when welding.

先ず、第1の溶着検出機能を図2のフローチャートを参照して説明する。尚、制御装置8には図示しないが記憶装置を備えている。また、制御装置8は、昇圧回路4を通常最大昇圧せずに制御するが、メインリレー3及び突入電流防止リレー6を解裂した状態で昇圧回路4を電気回路上で最大電圧まで設定できるように構成されると共に、音やランプ等の報知手段を備えているものとする。   First, the first welding detection function will be described with reference to the flowchart of FIG. The control device 8 includes a storage device (not shown). Further, the control device 8 normally controls the booster circuit 4 without boosting the maximum voltage, but the booster circuit 4 can be set up to the maximum voltage on the electric circuit with the main relay 3 and the inrush current prevention relay 6 broken. It is assumed that a notification means such as a sound or a lamp is provided.

ステップS1で制御装置8はメインリレー3及び突入電流防止リレー6の解裂後に溶着検出処理を開始するか、或いは、メインリレー3及び突入電流防止リレー6の接点を閉じる前に溶着検出処理を開始する。次に、制御装置8はステップS2で充電電圧検出回路19からコンデンサC1の両端の電圧を検出し、その充電電圧(1)を記憶装置に記憶する。この場合、制御装置8は溶着検出処理を所定回数実行し一時的な誤動作を防止している。   In step S1, the control device 8 starts the welding detection process after the main relay 3 and the inrush current prevention relay 6 are broken, or starts the welding detection process before closing the contacts of the main relay 3 and the inrush current prevention relay 6. To do. Next, the control device 8 detects the voltage across the capacitor C1 from the charging voltage detection circuit 19 in step S2, and stores the charging voltage (1) in the storage device. In this case, the control device 8 executes the welding detection process a predetermined number of times to prevent a temporary malfunction.

これによってコンデンサC1の端子電圧が昇圧前より高い場合にリレーの溶着と判断するようにしている。ステップS3で制御装置8は、所定時間経過後に昇圧回路4を最大電圧まで昇圧する制御をしてステップS4に進む。そこで、制御装置8は再度充電電圧検出回路19からコンデンサC1の両端の電圧を検出し、記憶装置に記憶した前回の充電電圧(1)より現在測定したコンデンサC1の両端の充電電圧(2)の方が大きいかを判断する。尚、充電電圧(1)、(2)は図中丸1、丸2で表示している。   Accordingly, it is determined that the relay is welded when the terminal voltage of the capacitor C1 is higher than that before boosting. In step S3, the control device 8 performs control to boost the booster circuit 4 to the maximum voltage after a predetermined time has elapsed, and then proceeds to step S4. Therefore, the control device 8 detects again the voltage across the capacitor C1 from the charging voltage detection circuit 19, and the charging voltage (2) across the capacitor C1 measured at present from the previous charging voltage (1) stored in the storage device. Determine which is bigger. The charging voltages (1) and (2) are indicated by circles 1 and 2 in the figure.

この場合、コンデンサC1の両端には抵抗R2、或いは、インバータ5が接続されているので、コンデンサC1の両端の充電電圧(1)測定後、所定時間経過後に昇圧回路4を設定最大電圧まで昇圧制御しなければ、抵抗R2、或いは、インバータ5によってコンデンサC1の充電電圧は放電されて、その充電電圧(1)は低くなるが、メインリレー3或いは突入電流防止リレー6のどちらかの接点が溶着している場合は、電源2がメインリレー3或いは突入電流防止リレー6を通り昇圧回路4によって昇圧されて、コンデンサC1に充電される。この充電によって記憶装置に記憶した前回の充電電圧(1)より現在測定したコンデンサC1の両端の充電電圧(2)の方が大きくなる。また、メインリレー3及び突入電流防止リレー6の接点を閉じる前も同様に前回の充電電圧(1)より現在測定したコンデンサC1の両端の充電電圧(2)の方が大きくなる。   In this case, since the resistor R2 or the inverter 5 is connected to both ends of the capacitor C1, the boosting circuit 4 is boosted up to the set maximum voltage after a predetermined time has elapsed after measuring the charging voltage (1) across the capacitor C1. Otherwise, the charging voltage of the capacitor C1 is discharged by the resistor R2 or the inverter 5, and the charging voltage (1) is lowered, but the contact of either the main relay 3 or the inrush current prevention relay 6 is welded. If so, the power source 2 passes through the main relay 3 or the inrush current prevention relay 6 and is boosted by the booster circuit 4 to charge the capacitor C1. Due to this charging, the charging voltage (2) at both ends of the capacitor C1 measured at present is higher than the previous charging voltage (1) stored in the storage device. Similarly, before closing the contacts of the main relay 3 and the inrush current prevention relay 6, the charging voltage (2) at both ends of the capacitor C1 measured at present is higher than the previous charging voltage (1).

即ち、ステップS4で制御装置8は、記憶装置に記憶した前回の充電電圧(1)より現在測定したコンデンサC1の両端の充電電圧(2)の方が大きい場合はステップS5に進み、そこでメインリレー3或いは突入電流防止リレー6のどちらかの接点が溶着していると判断する。ステップS6で制御装置8は、図示しない報知手段でメインリレー3或いは突入電流防止リレー6のどちらかの接点が溶着されているのを報知して溶着検出処理を終了する。   That is, in step S4, the control device 8 proceeds to step S5 when the charging voltage (2) at both ends of the capacitor C1 currently measured is larger than the previous charging voltage (1) stored in the storage device. 3 or the contact point of the inrush current prevention relay 6 is determined to be welded. In step S6, the control device 8 informs that the contact of either the main relay 3 or the inrush current prevention relay 6 is welded by a not-shown notifying means, and ends the welding detection process.

前記ステップS4で制御装置8は、記憶装置に記憶した前回の充電電圧(1)より現在測定したコンデンサC1の両端の充電電圧(2)の方が小さい場合はステップS7に進み、そこでメインリレー3或いは突入電流防止リレー6の両方とも接点が溶着せずに正常と判断する。ステップS8で制御装置8は、図示しない報知手段でメインリレー3或いは突入電流防止リレー6が正常である旨を報知し溶着検出処理を終了する。   In step S4, if the charging voltage (2) at both ends of the capacitor C1 currently measured is smaller than the previous charging voltage (1) stored in the storage device, the control device 8 proceeds to step S7, where the main relay 3 Alternatively, both of the inrush current prevention relays 6 are determined to be normal without the contacts being welded. In step S8, the control device 8 notifies that the main relay 3 or the inrush current prevention relay 6 is normal by notifying means (not shown) and ends the welding detection process.

このように、制御装置8は、コンデンサC1の端子電圧を検出する充電電圧検出回路19を有し、メインリレー3及び突入電流防止リレー6を解裂した状態で昇圧回路4の出力を設定最大電圧まで昇圧させる。このとき、コンデンサC1の端子電圧が昇圧前より高いか否かの溶着検出処理を実行し、コンデンサC1の端子電圧が昇圧前より高い場合には、メインリレー3及び突入電流防止リレー6の双方、或いは、どちらか一方の接点が溶着していると判断するようにしているので、それらのリレー3、6の接点溶着用の回路を新たに追加しなくても、昇圧回路4を有したインバータ装置1のリレー3、6の接点溶着を検出することができる。   As described above, the control device 8 includes the charging voltage detection circuit 19 that detects the terminal voltage of the capacitor C1, and sets the output of the booster circuit 4 in a state where the main relay 3 and the inrush current prevention relay 6 are broken. Boost to. At this time, welding detection processing is performed to determine whether or not the terminal voltage of the capacitor C1 is higher than before boosting. When the terminal voltage of the capacitor C1 is higher than before boosting, both the main relay 3 and the inrush current prevention relay 6 are Alternatively, since either one of the contacts is determined to be welded, the inverter device having the booster circuit 4 can be obtained without newly adding a contact welding circuit for the relays 3 and 6. It is possible to detect contact welding of one relay 3 and 6.

また、制御装置8は溶着検出処理を所定回数実行しているので、一時的な誤動作によるメインリレー3及び突入電流防止リレー6の接点の溶着判断を排除し、より確実にリレーの溶着判断を行うことができる。   Further, since the control device 8 executes the welding detection process a predetermined number of times, the welding determination of the contacts of the main relay 3 and the inrush current prevention relay 6 due to a temporary malfunction is eliminated, and the relay welding determination is performed more reliably. be able to.

次に、第2の溶着検出機能を図3のフローチャートを参照して説明する。尚、制御装置8は前述同様の機能を備えているものとする。ステップS11で制御装置8はインバータ5を通常使用時(この場合、昇圧回路4を最大電圧で使用していないとき)に溶着検出処理を開始する。次に、ステップS12で制御装置8はメインリレー3及び突入電流防止リレー6が解裂状態になるのを待ち、メインリレー3及び突入電流防止リレー6が解裂状態になったらステップS13に進む。   Next, the second welding detection function will be described with reference to the flowchart of FIG. The control device 8 is assumed to have the same function as described above. In step S11, the control device 8 starts the welding detection process when the inverter 5 is in normal use (in this case, when the booster circuit 4 is not used at the maximum voltage). Next, in step S12, the control device 8 waits for the main relay 3 and the inrush current prevention relay 6 to be in a ruptured state. When the main relay 3 and the inrush current prevention relay 6 are in a ruptured state, the process proceeds to step S13.

そこで、制御装置8は充電電圧検出回路19によってコンデンサC1の両端の充電電圧を検出し、現在測定したコンデンサC1の両端の充電電圧(1)を記憶装置に記憶する。ステップS14で制御装置8は、所定時間経過後に昇圧回路4を設定最大電圧まで昇圧させてステップS15に進み、再度充電電圧検出回路19によってコンデンサC1の両端の充電電圧を検出して、前回記憶した前回の充電電圧(1)より現在測定したコンデンサC1の両端の充電電圧(2)の方が大きいかを判断する。   Therefore, the control device 8 detects the charging voltage at both ends of the capacitor C1 by the charging voltage detection circuit 19, and stores the charging voltage (1) at both ends of the capacitor C1 currently measured in the storage device. In step S14, the control device 8 boosts the booster circuit 4 to the set maximum voltage after a lapse of a predetermined time, and proceeds to step S15. The charge voltage detection circuit 19 detects the charge voltage across the capacitor C1 again and stores it last time. It is determined whether the charging voltage (2) at both ends of the capacitor C1 currently measured is greater than the previous charging voltage (1).

この場合も、前述同様コンデンサC1の両端には抵抗R2、或いは、インバータ5が接続されているので、コンデンサC1の両端の充電電圧(1)測定後、所定時間経過後に昇圧回路4を設定最大電圧まで昇圧させなければ、抵抗R2、或いは、インバータ5などによってコンデンサC1の充電電圧は放電され、その充電電圧(1)は低くなるが、メインリレー3或いは突入電流防止リレー6のどちらかの接点が溶着している場合は、電源2がメインリレー3或いは突入電流防止リレー6を通り昇圧回路4によって昇圧されて、コンデンサC1に充電される。この充電によって記憶した前回の充電電圧(1)より現在測定したコンデンサC1の両端の充電電圧(2)の方が大きくなる。また、メインリレー3及び突入電流防止リレー6の接点を閉じる前も同様に前回の充電電圧(1)より現在測定したコンデンサC1の両端の充電電圧(2)の方が大きくなる。   Also in this case, since the resistor R2 or the inverter 5 is connected to both ends of the capacitor C1 as described above, the booster circuit 4 is set to the set maximum voltage after a predetermined time has elapsed after measuring the charging voltage (1) at both ends of the capacitor C1. If the voltage is not boosted to the maximum, the charging voltage of the capacitor C1 is discharged by the resistor R2 or the inverter 5, and the charging voltage (1) is lowered, but the contact of either the main relay 3 or the inrush current prevention relay 6 is connected. In the case of welding, the power source 2 passes through the main relay 3 or the inrush current prevention relay 6 and is boosted by the booster circuit 4 to be charged in the capacitor C1. The charging voltage (2) at both ends of the capacitor C1 measured at present is higher than the previous charging voltage (1) stored by this charging. Similarly, before closing the contacts of the main relay 3 and the inrush current prevention relay 6, the charging voltage (2) at both ends of the capacitor C1 measured at present is higher than the previous charging voltage (1).

即ち、ステップS15で制御装置8は、記憶した前回の充電電圧(1)より現在測定したコンデンサC1の両端の充電電圧(2)の方が大きい場合はステップS16に進み、そこでメインリレー3或いは突入電流防止リレー6のどちらかの接点が溶着していると判断する。ステップS17で制御装置8は、図示しない報知手段でメインリレー3或いは突入電流防止リレー6のどちらかの接点が溶着されているのを報知して溶着検出処理を終了する。   That is, in step S15, the control device 8 proceeds to step S16 when the charging voltage (2) at both ends of the capacitor C1 measured at present is larger than the previously stored charging voltage (1), and then proceeds to step S16. It is determined that one of the contacts of the current prevention relay 6 is welded. In step S <b> 17, the control device 8 informs that the contact of either the main relay 3 or the inrush current prevention relay 6 is welded by notifying means (not shown) and ends the welding detection process.

前記ステップS15で制御装置8は、記憶した前回の充電電圧(1)より現在測定したコンデンサC1の両端の充電電圧(2)の方が小さい場合はステップS18に進み、そこでメインリレー3或いは突入電流防止リレー6の両方とも接点が溶着せずに正常と判断する。ステップS19で制御装置8は、図示しない報知手段でメインリレー3或いは突入電流防止リレー6が正常である旨を報知し溶着検出処理を終了する。   In step S15, the control device 8 proceeds to step S18 when the charging voltage (2) across the capacitor C1 currently measured is smaller than the previously stored charging voltage (1), and proceeds to step S18, where the main relay 3 or inrush current is obtained. Both of the prevention relays 6 determine that the contacts are normal without welding. In step S19, the control device 8 notifies that the main relay 3 or the inrush current prevention relay 6 is normal by notifying means (not shown) and ends the welding detection process.

このように、制御装置8はインバータ5の通常使用時であっても、昇圧回路4を最大電圧で使用していないときに溶着検出処理を行うことができる。これにより、前述同様メインリレー3及び突入電流防止リレー6の接点溶着用の回路を新たに追加することなく、昇圧回路4を有したインバータ装置1のリレー3、6の接点溶着を検出することができ便利である。また、前述同様制御装置8にて溶着検出処理を所定回数実行し、何れもコンデンサC1の端子電圧が昇圧前より高い場合にリレーの溶着と判断するようにすれば、一時的な誤動作による溶着判断を排除し、より確実にリレーの溶着判断を行うことができるようになる。   Thus, even when the inverter 5 is in normal use, the control device 8 can perform the welding detection process when the booster circuit 4 is not used at the maximum voltage. Thereby, the contact welding of the relays 3 and 6 of the inverter device 1 having the booster circuit 4 can be detected without newly adding a contact welding circuit for the main relay 3 and the inrush current prevention relay 6 as described above. It is convenient. Also, if the welding detection process is executed a predetermined number of times by the control device 8 as described above, and it is determined that the relay is welded when the terminal voltage of the capacitor C1 is higher than before boosting, the welding judgment due to a temporary malfunction will occur. This makes it possible to more reliably determine the relay welding.

次に、図4には本発明の他の実施例のインバータ装置1を備えた一実施例の家庭用の燃料電池の余剰電力を商用電力会社に売電する場合の電気回路図を示している。以下、異なる部分について説明する。尚、前述の実施例と同じ部分にはこれと同じ符号を付し、説明を省略する。   Next, FIG. 4 shows an electric circuit diagram in the case where surplus power of a household fuel cell according to an embodiment including the inverter device 1 according to another embodiment of the present invention is sold to a commercial power company. . Hereinafter, different parts will be described. The same parts as those in the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.

図4に示すようにインバータ5の後段には前述のモータMの代わりに商用交流電源ACが接続している。商用交流電源ACとインバータ5の間にはリレーを備え売電量や商用交流電源ACからインバータ5への逆流保護などを行うための連係保護装置20が接続されている。この場合、インバータ5は直流電力を一般家庭で使用できる周波数及び電圧に変換する。尚、直流電力を一般家庭で使用できる周波数及び電圧に変換する技術については、従来より周知の技術であるため詳細な説明を省略する。また、燃料電池は、家庭用のものが用いられる。   As shown in FIG. 4, a commercial AC power supply AC is connected to the subsequent stage of the inverter 5 instead of the motor M described above. A link protection device 20 is provided between the commercial AC power supply AC and the inverter 5 to provide a relay and to protect the amount of power sold and the backflow protection from the commercial AC power supply AC to the inverter 5. In this case, the inverter 5 converts the DC power into a frequency and voltage that can be used in a general household. In addition, about the technique which converts DC power into the frequency and voltage which can be used in a general household, since it is a conventionally well-known technique, detailed description is abbreviate | omitted. In addition, a household fuel cell is used.

このように、インバータ5に実施例1の電気自動車のモータMの代わりに交流商用電源ACを接続して、家庭用の燃料電池で発電した余剰電力を売電する場合にも、コンデンサC1の端子電圧が昇圧前より高い場合には、メインリレー3及び突入電流防止リレー6の双方、或いは、どちらか一方の接点が溶着していると判断することができるので、前述同様の効果を得ることができる。これにより、インバータ装置1の汎用性を拡大することができ、インバータ装置1の利便性を大幅に向上させることができる。   As described above, even when the AC commercial power supply AC is connected to the inverter 5 instead of the motor M of the electric vehicle according to the first embodiment, surplus power generated by the home fuel cell is sold, the terminal of the capacitor C1 is used. When the voltage is higher than before boosting, it can be determined that both the main relay 3 and the inrush current prevention relay 6 or one of the contacts is welded, so that the same effect as described above can be obtained. it can. Thereby, the versatility of the inverter apparatus 1 can be expanded and the convenience of the inverter apparatus 1 can be improved significantly.

次に、図5には本発明の他の実施例のインバータ装置1を備えた一実施例の家庭用エアコンACなどをインバータ5にて制御する場合の電気回路図を示している。以下、異なる部分について説明する。尚、前述の実施例1と同じ部分にはこれと同じ符号を付し、説明を省略する。   Next, FIG. 5 shows an electric circuit diagram in the case where the home air conditioner AC of one embodiment provided with the inverter device 1 of another embodiment of the present invention is controlled by the inverter 5. Hereinafter, different parts will be described. The same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

図5に示すように家庭用エアコンACをインバータ5にて制御する場合、実施例1の燃料電池の代わりに100V或いは200Vの商用交流電源からなる電源2を接続すると共に、入力電圧検出回路9とメインリレー3との間に電源2(商用交流電源)を直流に変換するための整流回路30(ダイオードブリッジ)が接続されている。また、インバータ5の後段には前述のモータMの代わりに家庭用エアコンAC(図中M)が接続されており、インバータ5は直流電力を家庭用エアコンACを駆動できる周波数及び電圧に変換する。また、入力電圧検出回路9は電源2(商用交流電源)の電圧を検出可能なものが使用される。   As shown in FIG. 5, when the home air conditioner AC is controlled by the inverter 5, the power source 2 composed of a commercial AC power source of 100 V or 200 V is connected in place of the fuel cell of the first embodiment, and the input voltage detection circuit 9 A rectifier circuit 30 (diode bridge) for converting the power source 2 (commercial AC power source) into a direct current is connected between the main relay 3 and the main relay 3. Further, a household air conditioner AC (M in the figure) is connected to the subsequent stage of the inverter 5 in place of the motor M described above, and the inverter 5 converts DC power into a frequency and voltage that can drive the household air conditioner AC. As the input voltage detection circuit 9, a circuit that can detect the voltage of the power source 2 (commercial AC power source) is used.

このように、インバータ5に実施例1の燃料電池(電源2)の代わりに商用交流電源(電源2)を接続すると共に、電気自動車のモータMの代わりに家庭用エアコンACを接続した場合にも、コンデンサC1の端子電圧が昇圧前より高い場合には、メインリレー3及び突入電流防止リレー6の双方、或いは、どちらか一方の接点が溶着していると判断することができるので、前述同様の効果を得ることができる。これにより、インバータ装置1の汎用性を拡大することができ、インバータ装置1の利便性を更に向上させることができる。   As described above, the inverter 5 is connected to the commercial AC power source (power source 2) instead of the fuel cell (power source 2) of the first embodiment, and also connected to the home air conditioner AC instead of the motor M of the electric vehicle. When the terminal voltage of the capacitor C1 is higher than before boosting, it can be determined that both the main relay 3 and the inrush current prevention relay 6 or one of the contacts is welded. An effect can be obtained. Thereby, the versatility of the inverter apparatus 1 can be expanded and the convenience of the inverter apparatus 1 can further be improved.

次に、図6には本発明の他の実施例のインバータ装置1を備えた一実施例の家庭用エアコンACなどをインバータ5にて制御する場合の電気回路図を示している。以下、異なる部分について説明する。尚、前述の実施例3と同じ部分にはこれと同じ符号を付し、説明を省略する。   Next, FIG. 6 shows an electric circuit diagram in the case where the home air conditioner AC of one embodiment provided with the inverter device 1 of another embodiment of the present invention is controlled by the inverter 5. Hereinafter, different parts will be described. The same parts as those in the third embodiment are denoted by the same reference numerals, and description thereof is omitted.

この場合、図6に示すように実施例3で入力電圧検出回路9とメインリレー3との間に電源2(商用交流電源)を直流に変換するために設けた整流回路30を取り除いて、この整流回路30をメインリレー3と昇圧回路4との間に接続している。尚、メインリレー3、突入電流防止リレー6は電源2(商用交流電源)で動作するものが使用される。   In this case, as shown in FIG. 6, the rectifier circuit 30 provided for converting the power source 2 (commercial AC power source) to DC is removed between the input voltage detection circuit 9 and the main relay 3 in the third embodiment, A rectifier circuit 30 is connected between the main relay 3 and the booster circuit 4. The main relay 3 and the inrush current prevention relay 6 are operated by a power source 2 (commercial AC power source).

このように、メインリレー3と昇圧回路4との間に整流回路30を設け、インバータ5に実施例1の燃料電池(電源2)の代わりに商用交流電源(電源2)を接続すると共に、電気自動車のモータMの代わりに家庭用エアコンACを接続した場合にも、コンデンサC1の端子電圧が昇圧前より高い場合には、メインリレー3及び突入電流防止リレー6の双方、或いは、どちらか一方の接点が溶着していると判断することができるので、前述同様の効果を得ることができる。これにより、インバータ装置1の汎用性を拡大することができ、インバータ装置1の利便性を更に大幅に向上させることができる。   As described above, the rectifier circuit 30 is provided between the main relay 3 and the booster circuit 4, and a commercial AC power supply (power supply 2) is connected to the inverter 5 instead of the fuel cell (power supply 2) of the first embodiment. Even when a home air conditioner AC is connected in place of the motor M of the automobile, if the terminal voltage of the capacitor C1 is higher than before boosting, both the main relay 3 and the inrush current prevention relay 6 or either one of them. Since it can be determined that the contact is welded, the same effect as described above can be obtained. Thereby, the versatility of the inverter apparatus 1 can be expanded and the convenience of the inverter apparatus 1 can be improved further significantly.

本発明のインバータ装置を備えた一実施例の電気自動車の電気回路図である。(実施例1)It is an electric circuit diagram of the electric vehicle of one Example provided with the inverter apparatus of this invention. (Example 1) 本発明のインバータ装置の一実施例の制御動作を示すフローチャートである。It is a flowchart which shows the control action of one Example of the inverter apparatus of this invention. 本発明のインバータ装置の一実施例の他の制御動作を示すフローチャートである。It is a flowchart which shows other control operation of one Example of the inverter apparatus of this invention. 本発明の他の実施例のインバータ装置を備えた一実施例の家庭用の燃料電池の余剰電力を商用電力会社に売電する場合の電気回路図である。(実施例2)It is an electric circuit diagram in the case of selling the surplus electric power of the household fuel cell of one Example provided with the inverter apparatus of the other Example of this invention to a commercial power company. (Example 2) 本発明の他の実施例のインバータ装置を備えた一実施例の家庭用エアコンなどをインバータにて制御する場合の電気回路図である。(実施例3)It is an electric circuit diagram in the case of controlling the household air conditioner etc. of one Example provided with the inverter apparatus of the other Example of this invention by an inverter. Example 3 本発明の他の実施例のインバータ装置を備えた一実施例のもう一つの家庭用エアコンなどをインバータにて制御する場合の電気回路図である。(実施例4)It is an electric circuit diagram in the case of controlling another household air conditioner of one Example provided with the inverter apparatus of the other Example of this invention with an inverter. (Example 4)

符号の説明Explanation of symbols

1 インバータ装置
2 電源
3 メインリレー
4 昇圧回路
5 インバータ
6 突入電流防止リレー
8 制御装置
9 入力電圧検出回路
19 充電電圧検出回路
C1 コンデンサ
M モータ
DESCRIPTION OF SYMBOLS 1 Inverter apparatus 2 Power supply 3 Main relay 4 Booster circuit 5 Inverter 6 Inrush current prevention relay 8 Controller 9 Input voltage detection circuit 19 Charging voltage detection circuit C1 Capacitor M Motor

Claims (2)

電源よりリレーを介してインバータに電力を供給するインバータ装置において、
前記リレーとインバータ間に設けられた昇圧回路と、
前記インバータに並列接続されたコンデンサと、
前記昇圧回路、前記リレー及び前記インバータを制御する制御装置とを備え、
該制御装置は、前記コンデンサの端子電圧を検出する検出手段を有し、前記リレーを解裂した状態で前記昇圧回路の出力を設定最大電圧まで昇圧させたとき、前記コンデンサの端子電圧が昇圧前より高いか否かの溶着検出処理を実行し、前記コンデンサの端子電圧が昇圧前より高い場合には、前記リレーの溶着と判断することを特徴とするインバータ装置。
In the inverter device that supplies power from the power supply to the inverter via the relay,
A booster circuit provided between the relay and the inverter;
A capacitor connected in parallel to the inverter;
A control device for controlling the booster circuit, the relay and the inverter;
The control device has detection means for detecting a terminal voltage of the capacitor, and when the output of the booster circuit is boosted to a set maximum voltage in a state where the relay is disengaged, the terminal voltage of the capacitor is not boosted. An inverter device characterized by performing a welding detection process for determining whether or not the relay is higher, and determining that the relay is welded when the terminal voltage of the capacitor is higher than that before boosting.
前記制御装置は、前記溶着検出処理を所定回数実行し、何れも前記コンデンサの端子電圧が昇圧前より高い場合に前記リレーの溶着と判断することを特徴とする請求項1のインバータ装置。   2. The inverter device according to claim 1, wherein the control device executes the welding detection process a predetermined number of times, and determines that the relay is welded when the terminal voltage of the capacitor is higher than that before boosting.
JP2004067380A 2004-03-10 2004-03-10 Inverter device Expired - Fee Related JP4121972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004067380A JP4121972B2 (en) 2004-03-10 2004-03-10 Inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004067380A JP4121972B2 (en) 2004-03-10 2004-03-10 Inverter device

Publications (2)

Publication Number Publication Date
JP2005261040A true JP2005261040A (en) 2005-09-22
JP4121972B2 JP4121972B2 (en) 2008-07-23

Family

ID=35086236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004067380A Expired - Fee Related JP4121972B2 (en) 2004-03-10 2004-03-10 Inverter device

Country Status (1)

Country Link
JP (1) JP4121972B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102450A1 (en) * 2006-03-09 2007-09-13 Toyota Jidosha Kabushiki Kaisha Electricity source system for driving vehicle
JP2009032615A (en) * 2007-07-30 2009-02-12 Honda Motor Co Ltd Method of detecting contactor failure and its device in fuel cell system
JP2009259762A (en) * 2008-03-28 2009-11-05 Hitachi Ltd Power source having a plurality of relays
JP2010268620A (en) * 2009-05-15 2010-11-25 Toshiba Corp Power supply control circuit, electronic apparatus, power supply circuit control method
JP2011066985A (en) * 2009-09-16 2011-03-31 Toyota Motor Corp Contactless power receiving apparatus and electric vehicle equipped therewith
JP2011072066A (en) * 2009-09-24 2011-04-07 Toyota Motor Corp Noncontact power receiver and electric vehicle equipped with the same
JP2013081325A (en) * 2011-10-05 2013-05-02 Aisin Seiki Co Ltd Power supply device for vehicle
CN105099280A (en) * 2014-05-09 2015-11-25 发那科株式会社 Motor drive
KR101623230B1 (en) 2012-03-30 2016-05-20 엘에스산전 주식회사 Apparatus for controlling inverter
US9929670B2 (en) 2013-05-28 2018-03-27 Mitsubishi Electric Corporation Power conversion device, motor drive control device equipped with power conversion device, compressor and blower equipped with motor drive control device, and air conditioner equipped with compressor or blower

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6133827B2 (en) * 2014-09-10 2017-05-24 ファナック株式会社 Motor driving device having welding detection function of magnetic contactor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08182115A (en) * 1994-12-26 1996-07-12 Nissan Motor Co Ltd Power supply controller for electric vehicle
JPH11341821A (en) * 1998-05-25 1999-12-10 Matsushita Electric Ind Co Ltd Inverter device
JP2000278802A (en) * 1999-03-23 2000-10-06 Toyota Motor Corp Failure decision system
JP2004064803A (en) * 2002-07-24 2004-02-26 Toyota Motor Corp Control method for drive of hybrid car
JP2004072892A (en) * 2002-08-06 2004-03-04 Toyota Motor Corp Apparatus and method for driving electrical load and computer-readable recording medium with program recorded thereon for causing computer to drive electrical load

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08182115A (en) * 1994-12-26 1996-07-12 Nissan Motor Co Ltd Power supply controller for electric vehicle
JPH11341821A (en) * 1998-05-25 1999-12-10 Matsushita Electric Ind Co Ltd Inverter device
JP2000278802A (en) * 1999-03-23 2000-10-06 Toyota Motor Corp Failure decision system
JP2004064803A (en) * 2002-07-24 2004-02-26 Toyota Motor Corp Control method for drive of hybrid car
JP2004072892A (en) * 2002-08-06 2004-03-04 Toyota Motor Corp Apparatus and method for driving electrical load and computer-readable recording medium with program recorded thereon for causing computer to drive electrical load

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101395027B (en) * 2006-03-09 2011-05-18 丰田自动车株式会社 Electricity source system for driving vehicle and control method
US7759817B2 (en) 2006-03-09 2010-07-20 Toyota Jidosha Kabushiki Kaisha Power supply system for driving vehicle
WO2007102450A1 (en) * 2006-03-09 2007-09-13 Toyota Jidosha Kabushiki Kaisha Electricity source system for driving vehicle
JP2009032615A (en) * 2007-07-30 2009-02-12 Honda Motor Co Ltd Method of detecting contactor failure and its device in fuel cell system
JP2009259762A (en) * 2008-03-28 2009-11-05 Hitachi Ltd Power source having a plurality of relays
JP2010268620A (en) * 2009-05-15 2010-11-25 Toshiba Corp Power supply control circuit, electronic apparatus, power supply circuit control method
JP2011066985A (en) * 2009-09-16 2011-03-31 Toyota Motor Corp Contactless power receiving apparatus and electric vehicle equipped therewith
JP2011072066A (en) * 2009-09-24 2011-04-07 Toyota Motor Corp Noncontact power receiver and electric vehicle equipped with the same
JP2013081325A (en) * 2011-10-05 2013-05-02 Aisin Seiki Co Ltd Power supply device for vehicle
KR101623230B1 (en) 2012-03-30 2016-05-20 엘에스산전 주식회사 Apparatus for controlling inverter
US9929670B2 (en) 2013-05-28 2018-03-27 Mitsubishi Electric Corporation Power conversion device, motor drive control device equipped with power conversion device, compressor and blower equipped with motor drive control device, and air conditioner equipped with compressor or blower
CN105099280A (en) * 2014-05-09 2015-11-25 发那科株式会社 Motor drive
JP2015216018A (en) * 2014-05-09 2015-12-03 ファナック株式会社 Motor drive device with deposition detection function for electromagnetic contactor
US9581647B2 (en) 2014-05-09 2017-02-28 Fanuc Corporation Motor drive having function of detecting welding of electromagnetic connector
CN105099280B (en) * 2014-05-09 2017-04-26 发那科株式会社 Motor drive

Also Published As

Publication number Publication date
JP4121972B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
US5465202A (en) Inverter apparatus provided with electric discharge control circuit of dc smoothing capacitor and method of controlling the same
JP4572168B2 (en) Method and apparatus for detecting welding of relay contacts
JP5728914B2 (en) Inverter device
JP4729330B2 (en) Switching power supply
JP2007174792A (en) System interconnection inverter device
JP4121972B2 (en) Inverter device
JP7103199B2 (en) Precharge controller
WO2007116707A1 (en) Controller
JP2006340532A (en) Inrush current prevention circuit and power conversion device
JPH0322821A (en) Fault diagnosis unit for power source electrolytic capacitor
JP2008128837A (en) Test method of electrical leak detecting circuit and electrical leak detector
JP2008228415A (en) Motor drive unit
JP5008465B2 (en) Uninterruptible power system
JP2002010485A (en) Power supply connecting device, its operation and air- conditioning system
JP3139193B2 (en) Power supply
JP2020145809A (en) Power converter
JP2017184301A (en) Voltage converter
JP2007028792A (en) Converter
JP2008136296A (en) Power supply unit
JPH08116664A (en) Abnormality detector for power supply
JP7487455B2 (en) Load Status Monitoring Device
JP3659113B2 (en) Electric dust collector and its abnormality detection method.
JP2010252475A (en) Power supply device system
JP4513519B2 (en) Uninterruptible power system
JPH03107332A (en) Dc power supply device for servo

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4121972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees