JP2005260909A - Surface acoustic wave element - Google Patents

Surface acoustic wave element Download PDF

Info

Publication number
JP2005260909A
JP2005260909A JP2004294829A JP2004294829A JP2005260909A JP 2005260909 A JP2005260909 A JP 2005260909A JP 2004294829 A JP2004294829 A JP 2004294829A JP 2004294829 A JP2004294829 A JP 2004294829A JP 2005260909 A JP2005260909 A JP 2005260909A
Authority
JP
Japan
Prior art keywords
resonator
comb
surface acoustic
acoustic wave
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004294829A
Other languages
Japanese (ja)
Other versions
JP4036856B2 (en
Inventor
Takuo Kudo
拓夫 工藤
Takashi Sato
崇 佐藤
Takeshi Ikeda
剛 池田
Toshihiro Meguro
利浩 目黒
Satoshi Waga
聡 和賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2004294829A priority Critical patent/JP4036856B2/en
Publication of JP2005260909A publication Critical patent/JP2005260909A/en
Application granted granted Critical
Publication of JP4036856B2 publication Critical patent/JP4036856B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface acoustic wave element which can easily bring an antiresonant frequency close to a resonant frequency. <P>SOLUTION: By forming a layer of insulating material made of silicon oxide between interdigital electrode sections 12 and 14 and a piezoelectric substrate 11, electromechanical coupling factor k<SP>2</SP>of the element becomes small, and the antiresonant frequency approaches the resonant frequency. Therefore, a frequency outside the passband can be decreased rapidly and sufficiently. As a difference between the antiresonant frequency and the resonant frequency of the surface acoustic element can be reduced without adding an external coil or capacitor to the element, the device can be miniaturized. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は共振器として用いられる弾性表面波素子に係り、とくに反共振周波数と共振周波数を近づけることが容易な弾性表面波素子に関する。   The present invention relates to a surface acoustic wave device used as a resonator, and more particularly to a surface acoustic wave device that can easily bring an antiresonance frequency and a resonance frequency close to each other.

図18は従来の弾性表面波素子を用いて形成したバンドパスフィルタF1である。このバンドパスフィルタF1は弾性表面波素子である共振器S1及び共振器S2が接続されることによって形成されている。   FIG. 18 shows a bandpass filter F1 formed using a conventional surface acoustic wave element. The band-pass filter F1 is formed by connecting a resonator S1 and a resonator S2 that are surface acoustic wave elements.

共振器S1、S2は圧電性基板1の上に、くし歯状電極部2及びくし歯状電極部3がスパッタ法やメッキ法等を用いて成膜されることによって形成されている。くし歯状電極部2とくし歯状電極部3は所定の間隔をあけて互い違いに並べられている。   The resonators S1 and S2 are formed on the piezoelectric substrate 1 by forming a comb-like electrode portion 2 and a comb-like electrode portion 3 using a sputtering method, a plating method, or the like. The comb-tooth-shaped electrode portions 2 and the comb-tooth-shaped electrode portions 3 are arranged alternately at a predetermined interval.

また、くし歯状電極部2及びくし歯状電極部3には接続部4が電気的に接続されており、接続部4を介して共振器S1と共振器S2が接続されている。   Further, the connection portion 4 is electrically connected to the comb-like electrode portion 2 and the comb-like electrode portion 3, and the resonator S <b> 1 and the resonator S <b> 2 are connected via the connection portion 4.

また共振器S1の一端部AはバンドパスフィルタF1の入力端子inに接続されて他端部Bは出力端子outに接続されている。また、共振器2の一端部Aは共振器S1の一端部Aに、共振器S2の他端部Bは端子GNDを介してグラウンド電位に接続されている。   One end A of the resonator S1 is connected to the input terminal in of the bandpass filter F1, and the other end B is connected to the output terminal out. One end A of the resonator 2 is connected to one end A of the resonator S1, and the other end B of the resonator S2 is connected to the ground potential via the terminal GND.

図19に図18にしめされたバンドパスフィルタF1の等価回路図をしめす。共振器S1及び2はコンデンサC1、C2とインダクタL1からなる共振器回路と等価になる。
図20は図18に示された共振器S1を一点鎖線D−D線で切断し矢印方向からみた断面図である。図20に示されるようにくし歯状電極部2、3は圧電性基板1に直接積層されている。
FIG. 19 shows an equivalent circuit diagram of the bandpass filter F1 shown in FIG. The resonators S1 and S2 are equivalent to a resonator circuit including capacitors C1 and C2 and an inductor L1.
20 is a cross-sectional view of the resonator S1 shown in FIG. 18 taken along the alternate long and short dash line DD and viewed from the direction of the arrows. As shown in FIG. 20, the comb-like electrode portions 2 and 3 are directly laminated on the piezoelectric substrate 1.

なお、くし歯状電極部2、3の両側部には圧電性基板1の表面に発生した表面波を反射するための反射器5,5が設けられている。   In addition, reflectors 5 and 5 for reflecting surface waves generated on the surface of the piezoelectric substrate 1 are provided on both sides of the comb-like electrode portions 2 and 3.

図18に示されるバンドパスフィルタF1の動作原理を説明する。図21(a)は共振器S1及び共振器S2の周波数特性を示すグラフである。図21(a)の縦軸はリアクタンスXを示し、横軸は周波数fを示している。共振器S1の反共振周波数farは共振器S2の反共振周波数farよりも大きく、共振器S1の共振周波数frと共振器S2の反共振周波数farは重なっている。従って、共振器S1と共振器S2を図18に示すように接続して形成したバンドパスフィルタF1の周波数特性は図21(b)のグラフによって示される。共振器S1の共振周波数fr、すなわち共振器S2の反共振周波数farがバンドパスフィルタF1の通過帯域の中心周波数になる。また、共振器S2の共振周波数fr付近及び共振器S1の反共振周波数farにおいてバンドパスフィルタF1の減衰量が大きくなり、共振器2の共振周波数fr以下及び共振器1の反共振周波数far以上の帯域が減衰帯域である。   The operating principle of the bandpass filter F1 shown in FIG. 18 will be described. FIG. 21A is a graph showing the frequency characteristics of the resonators S1 and S2. In FIG. 21A, the vertical axis represents the reactance X, and the horizontal axis represents the frequency f. The anti-resonance frequency far of the resonator S1 is higher than the anti-resonance frequency far of the resonator S2, and the resonance frequency fr of the resonator S1 and the anti-resonance frequency far of the resonator S2 overlap. Therefore, the frequency characteristic of the band-pass filter F1 formed by connecting the resonator S1 and the resonator S2 as shown in FIG. 18 is shown by the graph in FIG. The resonance frequency fr of the resonator S1, that is, the antiresonance frequency far of the resonator S2, becomes the center frequency of the pass band of the bandpass filter F1. Further, the attenuation of the bandpass filter F1 increases near the resonance frequency fr of the resonator S2 and at the antiresonance frequency far of the resonator S1, and is less than the resonance frequency fr of the resonator 2 and above the antiresonance frequency far of the resonator 1. The band is an attenuation band.

共振器を組合わせて形成した高周波フィルタの通過帯域外の周波数を急峻かつ十分に減衰させるためには共振器の反共振周波数と共振周波数を近づけることが必要である。   In order to steeply and sufficiently attenuate the frequency outside the pass band of the high frequency filter formed by combining the resonators, it is necessary to bring the antiresonance frequency and the resonance frequency of the resonator close to each other.

特許文献1には弾性表面波素子からなる共振器に外付のコンデンサーとコイルを接続することにより共振器の反共振周波数と共振周波数を近づける構成が示されている。
特開平9−321573号公報 特開平9−83282号公報(第3頁、図1)
Patent Document 1 discloses a configuration in which an anti-resonance frequency and a resonance frequency of a resonator are made closer by connecting an external capacitor and coil to a resonator made of a surface acoustic wave element.
JP-A-9-321573 JP-A-9-83282 (page 3, FIG. 1)

しかし、特許文献1に示されるバンドパスフィルタのように弾性表面波素子に外付のコンデンサとコイルを接続する構成ではバンドパスフィルタF1の容積が大きくなってしまう。   However, in the configuration in which an external capacitor and coil are connected to the surface acoustic wave element as in the bandpass filter disclosed in Patent Document 1, the volume of the bandpass filter F1 is increased.

なお、特許文献2にはくし歯状電極部と圧電性基板との間にSiOからなる絶縁層を介在させる弾性表面波素子が記載されている。しかし、特許文献2に記載された弾性表面波素子の絶縁層は弾性表面波素子の温度特性の補償やエレクトロマイグレーションの低減のためのものである。そのため、特許文献2に記載の弾性表面波素子では絶縁層の膜厚が1000Åとかなり厚くなっている。 Patent Document 2 describes a surface acoustic wave element in which an insulating layer made of SiO 2 is interposed between a comb-like electrode portion and a piezoelectric substrate. However, the insulating layer of the surface acoustic wave element described in Patent Document 2 is for compensating temperature characteristics of the surface acoustic wave element and reducing electromigration. For this reason, in the surface acoustic wave element described in Patent Document 2, the thickness of the insulating layer is as large as 1000 mm.

本発明は上記従来の問題を解決するためのものであり、外付の部品を加えることなく反共振周波数と共振周波数を近づけることが容易な弾性表面波素子を提供することを目的とする。   An object of the present invention is to provide a surface acoustic wave device that can easily bring the antiresonance frequency and the resonance frequency close to each other without adding external parts.

本発明は圧電性基板と、前記圧電性基板上に薄膜形成された電極部を有する弾性表面波素子において、
前記電極部はくし歯状電極部及び前記くし歯状電極部に接続された接続部を有し、前記くし歯状電極部と前記圧電性基板の間に絶縁性材料層が設けられていることを特徴とするものである。
The present invention relates to a surface acoustic wave device having a piezoelectric substrate and an electrode portion formed in a thin film on the piezoelectric substrate.
The electrode part has a comb-like electrode part and a connection part connected to the comb-like electrode part, and an insulating material layer is provided between the comb-like electrode part and the piezoelectric substrate. It is a feature.

本発明のように前記くし歯状電極部と前記圧電性基板の間に絶縁性材料層が介在していると前記圧電性基板の上に前記くし歯状電極部が直接積層されている弾性表面波素子と比べて反共振周波数が共振周波数に近づく。しかも本発明では弾性表面波素子に外付のコイルやコンデンサーを付加することなく弾性表面波素子の反共振周波数と共振周波数の差を小さくできるので装置の小型化を推進できる。   When the insulating material layer is interposed between the comb-like electrode portion and the piezoelectric substrate as in the present invention, the elastic surface in which the comb-like electrode portion is directly laminated on the piezoelectric substrate Compared to the wave element, the antiresonance frequency approaches the resonance frequency. In addition, in the present invention, since the difference between the anti-resonance frequency and the resonance frequency of the surface acoustic wave element can be reduced without adding an external coil or capacitor to the surface acoustic wave element, downsizing of the apparatus can be promoted.

本発明の弾性表面波素子において反共振周波数が共振周波数に近づくのは、前記くし歯状電極部と前記圧電性基板の間に絶縁性材料層が介在することによって弾性表面波素子の電気機械結合係数kが小さくなるためと考えられる。 In the surface acoustic wave device according to the present invention, the antiresonance frequency approaches the resonance frequency because the insulating material layer is interposed between the comb-shaped electrode portion and the piezoelectric substrate. presumably because the coefficient k 2 becomes small.

本発明では前記くし歯状電極部の側方の前記圧電性基板上に前記圧電性基板の表面に発生する表面波を反射させる反射器が設けられ、この反射器と前記圧電性基板の間に絶縁性材料層が設けられていることが好ましい。   In the present invention, a reflector for reflecting surface waves generated on the surface of the piezoelectric substrate is provided on the piezoelectric substrate on the side of the comb-shaped electrode portion, and between the reflector and the piezoelectric substrate. It is preferable that an insulating material layer is provided.

本発明では、前記絶縁性材料層を例えば酸化ケイ素(SiO)、アルミナ(Al)、窒化ケイ素(Si34)のいずれか1種または2種以上によって形成することができる。 In the present invention, the insulating material layer, for example, silicon oxide (SiO 2), alumina (Al 2 O 3), can be formed by any one or more of silicon nitride (Si 3 N 4).

本発明では前記絶縁性材料層の膜厚が5nm以上20nm以下であることが好ましい。
また、前記くし歯状電極部のくし歯部の中心間距離(ピッチ幅)をλnm、前記絶縁性材料層の膜厚をHnmとしたとき、前記絶縁性材料層の規格化膜厚H/λが0.0025以上0.01以下であることが好ましい。
In the present invention, the thickness of the insulating material layer is preferably 5 nm or more and 20 nm or less.
Further, when the inter-center distance (pitch width) of the comb-tooth portion of the comb-shaped electrode portion is λ nm and the film thickness of the insulating material layer is Hnm, the normalized film thickness H / λ of the insulating material layer Is preferably 0.0025 or more and 0.01 or less.

さらに本発明では前記くし歯状電極部と前記反射器に圧電性基板中に含有している酸素の拡散を防止するために、前記くし歯状電極部と前記反射器のいずれか一方あるいは両方がTiNからなる下地層を有していることが好ましい。   Furthermore, in the present invention, in order to prevent diffusion of oxygen contained in the piezoelectric substrate into the comb-shaped electrode portion and the reflector, either one or both of the comb-shaped electrode portion and the reflector are provided. It is preferable to have a base layer made of TiN.

本発明では、前記くし歯状電極部と前記圧電性基板の間に絶縁性材料層が介在しているので前記圧電性基板の上に前記くし歯状電極部が直接積層されている弾性表面波素子と比べて反共振周波数が共振周波数に近づく。   In the present invention, since the insulating material layer is interposed between the comb-like electrode portion and the piezoelectric substrate, the surface acoustic wave in which the comb-like electrode portion is directly laminated on the piezoelectric substrate. Compared to the element, the antiresonance frequency approaches the resonance frequency.

しかも本発明では弾性表面波素子に外付のコイルやコンデンサーを付加することなく弾性表面波素子の反共振周波数と共振周波数の差を小さくできるので装置の小型化を推進できる。   In addition, in the present invention, since the difference between the anti-resonance frequency and the resonance frequency of the surface acoustic wave element can be reduced without adding an external coil or capacitor to the surface acoustic wave element, downsizing of the apparatus can be promoted.

図1は、本発明の第1の実施の形態の共振器及びこの共振器を用いて形成した高周波フィルタを示す平面図である。共振器S11及び共振器S12は弾性表面波素子であり、図1に示されるように接続されることにより入力ポートに入力された高周波信号のうち特定の周波数帯域の信号のみを出力ポートに出力するバンドパスフィルターF11を構成している。   FIG. 1 is a plan view showing a resonator according to a first embodiment of the present invention and a high-frequency filter formed using the resonator. The resonator S11 and the resonator S12 are surface acoustic wave elements, and are connected as shown in FIG. 1 so that only a signal in a specific frequency band is output to the output port among the high-frequency signals input to the input port. A band pass filter F11 is configured.

共振器S11、S12は圧電性基板11の上に、くし歯状電極部12及びくし歯状電極部13がスパッタ法やメッキ法等を用いて成膜されることによって形成されている。くし歯状電極部12とくし歯状電極部13は図示X方向に所定の間隔をあけて互い違いに並べられている。   The resonators S11 and S12 are formed on the piezoelectric substrate 11 by forming a comb-like electrode portion 12 and a comb-like electrode portion 13 using a sputtering method, a plating method, or the like. The comb-like electrode portions 12 and the comb-like electrode portions 13 are alternately arranged with a predetermined interval in the X direction shown in the drawing.

また、くし歯状電極部12及びくし歯状電極部13には接続部14が電気的に接続されており、接続部14を介して共振器S11と共振器S12が接続されている。   Further, a connection portion 14 is electrically connected to the comb-tooth electrode portion 12 and the comb-tooth electrode portion 13, and the resonator S <b> 11 and the resonator S <b> 12 are connected via the connection portion 14.

また共振器S11の一端部AはバンドパスフィルタF11の入力端子inに接続されて他端部Bは出力端子outに接続されている。また、共振器12の一端部Aは共振器S11の一端部Aに、共振器S12の他端部Bは端子GNDを介してグラウンド電位に接続されている。本実施の形態では共振器S11が本発明の第1共振器群を構成し、共振器S12が本発明の第2共振器群に相当する。   One end A of the resonator S11 is connected to the input terminal in of the bandpass filter F11, and the other end B is connected to the output terminal out. One end A of the resonator 12 is connected to one end A of the resonator S11, and the other end B of the resonator S12 is connected to the ground potential via the terminal GND. In the present embodiment, the resonator S11 constitutes the first resonator group of the present invention, and the resonator S12 corresponds to the second resonator group of the present invention.

図2は図1に示された共振器S11を一点鎖線D1−D1線で切断し矢印方向からみた断面図である。図2に示されるようにくし歯状電極部12、13と圧電性基板11の間に絶縁性材料層16が形成されている。絶縁性材料層16の誘電率は4から5である。絶縁性材料層16は例えば酸化ケイ素(SiO)(比誘電率:3.8)、アルミナ(Al)(比誘電率:9.4)、窒化ケイ素(Si34)のいずれか1種または2種以上によって形成することができる。 2 is a cross-sectional view of the resonator S11 shown in FIG. 1 taken along the alternate long and short dash line D1-D1 and viewed from the direction of the arrow. As shown in FIG. 2, an insulating material layer 16 is formed between the comb-like electrode portions 12 and 13 and the piezoelectric substrate 11. The dielectric constant of the insulating material layer 16 is 4 to 5. The insulating material layer 16 is made of, for example, silicon oxide (SiO 2 ) (relative dielectric constant: 3.8), alumina (Al 2 O 3 ) (relative dielectric constant: 9.4), or silicon nitride (Si 3 N 4 ). It can form by 1 type (s) or 2 or more types.

本実施の形態ではくし歯状電極部12,13及び反射器15,15は下地層17及び下地層17の上に積層された金属層18の2層構造を有している。下地層17は例えば窒化チタン(TiN)からなる。金属層18はAl、AlSc合金などのAl合金、Cu、AlCu合金などのCu合金によって形成される。   In the present embodiment, the comb-like electrode portions 12 and 13 and the reflectors 15 and 15 have a two-layer structure of a base layer 17 and a metal layer 18 laminated on the base layer 17. The underlayer 17 is made of, for example, titanium nitride (TiN). The metal layer 18 is formed of an Al alloy such as Al or AlSc alloy, or a Cu alloy such as Cu or AlCu alloy.

下地層17が金属層18と圧電性基板11又は絶縁性材料層16の間に設けられると圧電性基板11や絶縁性材料層16に含まれる酸素などの拡散を防止して金属層18の劣化を抑制することができる。   When the underlayer 17 is provided between the metal layer 18 and the piezoelectric substrate 11 or the insulating material layer 16, the diffusion of oxygen or the like contained in the piezoelectric substrate 11 or the insulating material layer 16 is prevented and the metal layer 18 is deteriorated. Can be suppressed.

また、金属層18の上にTiNなどからなる保護層を設けてもよい。
なお、くし歯状電極部12、13の両側部には圧電性基板11の表面に発生した表面波を反射するための反射器15,15が設けられている。図1では、反射器15を構成する各電極の端部どうしは開放されている。ただし、反射器15を構成する各電極の端部どうしは短絡されていてもよい。
Further, a protective layer made of TiN or the like may be provided on the metal layer 18.
In addition, reflectors 15 and 15 for reflecting surface waves generated on the surface of the piezoelectric substrate 11 are provided on both sides of the comb-like electrode portions 12 and 13. In FIG. 1, the ends of the electrodes constituting the reflector 15 are opened. However, the ends of the electrodes constituting the reflector 15 may be short-circuited.

くし歯状電極部12とくし歯状電極部13に高周波信号が与えられると圧電性素子11の表面に弾性表面波が発生し、この表面波が図示X方向及び図示X方向と反平行方向に進行する。前記表面波は反射器15,15によって反射されて、くし歯状電極部12,13に戻って来る。共振器(弾性表面波素子)S11と共振器(弾性表面波素子S12)は、共振周波数と反共振周波数を有しており、反共振周波数において最もインピーダンスが高くなる。   When a high frequency signal is applied to the comb-like electrode portion 12 and the comb-like electrode portion 13, a surface acoustic wave is generated on the surface of the piezoelectric element 11, and this surface wave travels in the X direction shown in the figure and in a direction parallel to the X direction shown in the figure. To do. The surface wave is reflected by the reflectors 15 and 15 and returns to the comb-like electrode portions 12 and 13. The resonator (surface acoustic wave element) S11 and the resonator (surface acoustic wave element S12) have a resonance frequency and an antiresonance frequency, and the impedance is highest at the antiresonance frequency.

接続部14及び反射器15,15は、くし歯状電極部12,13と同じ材料で形成されてもよいし、Auなど他の導電性材料によって形成されてもよい。   The connection part 14 and the reflectors 15 and 15 may be formed with the same material as the comb-tooth shaped electrode parts 12 and 13, and may be formed with other electroconductive materials, such as Au.

図1及び図2に示される実施の形態では、くし歯状電極部12のくし歯部12aとくし歯状電極部13のくし歯部13aは同じ幅寸法W1を有しており、間隔幅P1も一定の値である。また、くし歯部12aとくし歯部13aはL1の長さ寸法で交差している。なお、幅寸法W1は0.3μm以上で1.5μm以下、間隔幅P1は0.6μm以上で1.5μm以下、長さ寸法L1は16μm以上で200μm以下である。また、共振器(弾性表面波素子)S11のくし歯部12aの中心間距離(ピッチ幅)λとくし歯部13aの中心間距離(ピッチ幅)λは同じでありλは1.2μm以上6.0μm以下である。この中心間距離(ピッチ幅)λと共振器(弾性表面波素子)の表面波の波長が等しくなる。なお、くし歯状電極部12、13、接続部14、反射器15,15はスパッタ法や蒸着法などの薄膜形成プロセス及びレジストフォトリソグラフィによるパターン形成によって形成される。   In the embodiment shown in FIGS. 1 and 2, the comb tooth portion 12a of the comb-like electrode portion 12 and the comb tooth portion 13a of the comb-like electrode portion 13 have the same width dimension W1, and the interval width P1 is also set. It is a constant value. Moreover, the comb tooth part 12a and the comb tooth part 13a cross | intersect with the length dimension of L1. The width dimension W1 is 0.3 μm or more and 1.5 μm or less, the interval width P1 is 0.6 μm or more and 1.5 μm or less, and the length dimension L1 is 16 μm or more and 200 μm or less. Further, the inter-center distance (pitch width) λ of the comb tooth portion 12a of the resonator (surface acoustic wave element) S11 is the same as the inter-center distance (pitch width) λ of the comb tooth portion 13a, and λ is 1.2 μm or more. 0 μm or less. The center distance (pitch width) λ is equal to the wavelength of the surface wave of the resonator (surface acoustic wave element). The comb-like electrode portions 12 and 13, the connection portion 14, and the reflectors 15 and 15 are formed by a thin film formation process such as a sputtering method or a vapor deposition method and a pattern formation by resist photolithography.

図3に図1にしめされたバンドパスフィルタF11の等価回路図をしめす。共振器S11はコンデンサC11、インダクタL11、コンデンサC13とコンデンサC14からなる共振器回路と等価になる。コンデンサC11とインダクタL11の直列接続は弾性表面波素子の電気機械結合を反映しておりコンデンサC11の静電容量とインダクタL11のインダクタンスの値によって共振器S11の共振周波数が規定される。コンデンサC11及びインダクタL11に並列に接続されているコンデンサC13はくし歯状電極部の各くし歯間の静電容量を反映している。さらに、コンデンサC13に直列接続されているコンデンサ14が本発明の特徴である絶縁性材料層16による付加的な静電容量を反映している。   FIG. 3 shows an equivalent circuit diagram of the bandpass filter F11 shown in FIG. The resonator S11 is equivalent to a resonator circuit including a capacitor C11, an inductor L11, a capacitor C13, and a capacitor C14. The series connection of the capacitor C11 and the inductor L11 reflects the electromechanical coupling of the surface acoustic wave element, and the resonance frequency of the resonator S11 is defined by the capacitance of the capacitor C11 and the inductance value of the inductor L11. A capacitor C13 connected in parallel to the capacitor C11 and the inductor L11 reflects the capacitance between the comb teeth of the comb-shaped electrode portion. Furthermore, the capacitor 14 connected in series with the capacitor C13 reflects the additional capacitance due to the insulating material layer 16 which is a feature of the present invention.

一方、くし歯状電極部12,13が圧電性基板の上に直接積層されている共振器S12はコンデンサC21、インダクタL21とコンデンサC22からなる共振器回路と等価になる。すなわち、共振器S12の等価回路は従来の共振器の等価回路と同じである。   On the other hand, the resonator S12 in which the comb-like electrode portions 12 and 13 are directly laminated on the piezoelectric substrate is equivalent to a resonator circuit including a capacitor C21, an inductor L21, and a capacitor C22. That is, the equivalent circuit of the resonator S12 is the same as the equivalent circuit of the conventional resonator.

共振器S11のくし歯状電極部12,13と 圧電性基板11の間に絶縁性材料層16が介在していると圧電性基板11の上にくし歯状電極部12,13が直接積層されている弾性表面波素子と比べて反共振周波数が共振周波数に近づく。しかも本発明では弾性表面波素子に外付のコイルやコンデンサーを付加することなく弾性表面波素子の反共振周波数と共振周波数の差を小さくできるので装置の小型化を推進できる。   When the insulating material layer 16 is interposed between the comb-like electrode portions 12 and 13 of the resonator S11 and the piezoelectric substrate 11, the comb-like electrode portions 12 and 13 are directly laminated on the piezoelectric substrate 11. The antiresonance frequency approaches the resonance frequency as compared with the surface acoustic wave element. In addition, in the present invention, since the difference between the anti-resonance frequency and the resonance frequency of the surface acoustic wave element can be reduced without adding an external coil or capacitor to the surface acoustic wave element, downsizing of the apparatus can be promoted.

本発明の弾性表面波素子において反共振周波数が共振周波数に近づくのは、くし歯状電極部12,13と圧電性基板11の間に絶縁性材料層16が介在することによって弾性表面波素子の電気機械結合係数kが小さくなるためと考えられる。 In the surface acoustic wave device of the present invention, the anti-resonance frequency approaches the resonance frequency because the insulating material layer 16 is interposed between the comb-like electrode portions 12 and 13 and the piezoelectric substrate 11. presumably because the electromechanical coupling coefficient k 2 becomes small.

なお、共振器S11の圧電性基板11を介したくし歯状電極部12,13間の静電容量(図3のC13とC14の合成静電容量)は共振器S12のの圧電性基板11を介したくし歯状電極部12,13間の静電容量(図3のC22)より小さい。   Note that the capacitance between the comb-like electrode portions 12 and 13 via the piezoelectric substrate 11 of the resonator S11 (the combined capacitance of C13 and C14 in FIG. 3) is via the piezoelectric substrate 11 of the resonator S12. It is smaller than the electrostatic capacity (C22 in FIG. 3) between the comb-like electrode portions 12 and 13.

なお、図1では反射器15、15と圧電性基板11の間にも絶縁性材料層16が設けられている。ただし反射器15、15と圧電性基板11の間に絶縁性材料層16が設けられずに反射器15、15の上に圧電性基板11が直接積層されていてもよい。   In FIG. 1, an insulating material layer 16 is also provided between the reflectors 15 and 15 and the piezoelectric substrate 11. However, the piezoelectric substrate 11 may be directly laminated on the reflectors 15 and 15 without providing the insulating material layer 16 between the reflectors 15 and 15 and the piezoelectric substrate 11.

本発明では 絶縁性材料層16の膜厚が5nm以上20nm以下であることが好ましい。また、 くし歯状電極部12,13のくし歯部12a,13aの中心間距離(ピッチ幅)をλnm、絶縁性材料層16の膜厚をHnmとしたとき、絶縁性材料層16の規格化膜厚H/λが0.0025以上0.01以下であることが好ましい。   In the present invention, the thickness of the insulating material layer 16 is preferably 5 nm or more and 20 nm or less. Further, when the inter-center distance (pitch width) of the comb-tooth portions 12a and 13a of the comb-tooth electrode portions 12 and 13 is λ nm and the film thickness of the insulating material layer 16 is Hnm, the insulating material layer 16 is normalized. The film thickness H / λ is preferably 0.0025 or more and 0.01 or less.

バンドパスフィルタF11の動作原理を説明する。図4(a)は共振器S11及び共振器S12の周波数特性を示すグラフである。図4(a)の縦軸はリアクタンスXを示し、横軸は周波数fを示している。共振器S11の反共振周波数far2は共振器S12の反共振周波数far1よりも大きく、共振器S11の共振周波数fr2と共振器S12の反共振周波数far1は重なっている。   The operation principle of the bandpass filter F11 will be described. FIG. 4A is a graph showing the frequency characteristics of the resonators S11 and S12. In FIG. 4A, the vertical axis represents the reactance X, and the horizontal axis represents the frequency f. The anti-resonance frequency far2 of the resonator S11 is larger than the anti-resonance frequency far1 of the resonator S12, and the resonance frequency fr2 of the resonator S11 and the anti-resonance frequency far1 of the resonator S12 overlap.

参考のため図18に示された従来のバンドパスフィルターに搭載された共振器S1の周波数特性を点線で示す。共振器S11のくし歯状電極部12,13と圧電性基板11の間に絶縁性材料層16が介在している(実施の形態)と圧電性基板11の上にくし歯状電極部12,13が直接積層されている弾性表面波素子(従来例)と比べて反共振周波数far2が共振周波数fr2に近づく。なお共振周波数fr2は従来例のものから変化していない。また共振器S12の共振周波数fr1及び反共振周波数far1は従来のバンドパスフィルターF1の共振器S2と同じである。   For reference, the frequency characteristic of the resonator S1 mounted on the conventional bandpass filter shown in FIG. 18 is indicated by a dotted line. When the insulating material layer 16 is interposed between the comb-like electrode portions 12 and 13 of the resonator S11 and the piezoelectric substrate 11 (embodiment), the comb-like electrode portions 12 and 12 are disposed on the piezoelectric substrate 11. Compared to the surface acoustic wave element (conventional example) in which 13 is directly laminated, the antiresonance frequency far2 approaches the resonance frequency fr2. The resonance frequency fr2 is not changed from that of the conventional example. The resonance frequency fr1 and antiresonance frequency far1 of the resonator S12 are the same as those of the resonator S2 of the conventional bandpass filter F1.

共振器S11と共振器S12を図に示すように接続して形成したバンドパスフィルタF11の周波数特性は図4(b)のグラフによって示される。共振器S11の共振周波数fr2、すなわち共振器S12の反共振周波数far1がバンドパスフィルタF11の通過帯域の中心周波数になる。また、共振器S12の共振周波数fr1付近及び共振器S11の反共振周波数far2付近においてバンドパスフィルタF11の減衰量が大きくなり、共振器S12の共振周波数fr1以下及び共振器S11の反共振周波数far2以上の帯域が減衰帯域である。   The frequency characteristic of the bandpass filter F11 formed by connecting the resonator S11 and the resonator S12 as shown in the figure is shown by the graph in FIG. 4B. The resonance frequency fr2 of the resonator S11, that is, the anti-resonance frequency far1 of the resonator S12 becomes the center frequency of the pass band of the bandpass filter F11. In addition, the attenuation of the bandpass filter F11 increases near the resonance frequency fr1 of the resonator S12 and the antiresonance frequency far2 of the resonator S11, and is below the resonance frequency fr1 of the resonator S12 and above the antiresonance frequency far2 of the resonator S11. Is the attenuation band.

本実施の形態のバンドパスフィルタF11は共振器S11の反共振周波数far2と共振周波数fr2を近づけることができるため通過帯域外の周波数を急峻かつ十分に減衰させることができる。   Since the bandpass filter F11 of the present embodiment can bring the antiresonance frequency far2 and the resonance frequency fr2 of the resonator S11 close to each other, the frequency outside the passband can be steeply and sufficiently attenuated.

図5は本発明の第2の実施の形態の高周波フィルタとしてのバンドパスフィルタを示す平面図である。   FIG. 5 is a plan view showing a band-pass filter as a high-frequency filter according to the second embodiment of the present invention.

このバンドパスフィルタF12も図1に示されるバンドパスフィルタF11と同様に弾性表面波素子である共振器S21、共振器S22及び共振器S23が接続されることによって形成されている。弾性表面波素子である共振器S21は図1の共振器S11と同様の構成であり、共振器S22及び共振器S23は図1の共振器S12と同様の構成である。従って、図5では共振器S21が本発明の共振器であり、共振器S21のくし歯状電極部12及びくし歯状電極部13並びに反射器15,15と圧電性基板11の間に絶縁性材料層16が設けられている。   This bandpass filter F12 is also formed by connecting a resonator S21, a resonator S22, and a resonator S23, which are surface acoustic wave elements, like the bandpass filter F11 shown in FIG. The resonator S21, which is a surface acoustic wave element, has the same configuration as the resonator S11 in FIG. 1, and the resonator S22 and the resonator S23 have the same configuration as the resonator S12 in FIG. Therefore, in FIG. 5, the resonator S21 is the resonator of the present invention, and the comb-like electrode portion 12 and the comb-like electrode portion 13 of the resonator S21 and the reflectors 15 and 15 and the piezoelectric substrate 11 are insulated. A material layer 16 is provided.

共振器S21、S22、S23も圧電性基板11の上に、くし歯状電極部12及びくし歯状電極部13がスパッタ法やメッキ法等を用いて成膜されることによって形成されている。くし歯状電極部12とくし歯状電極部13は図示X方向に所定の間隔をあけて互い違いに並べられている。なお、共振器S21をD1−D1線で切断して矢印方向からみた断面図は図2に示された断面図と同様である。   The resonators S21, S22, and S23 are also formed on the piezoelectric substrate 11 by forming the comb-like electrode portion 12 and the comb-like electrode portion 13 using a sputtering method, a plating method, or the like. The comb-like electrode portions 12 and the comb-like electrode portions 13 are alternately arranged with a predetermined interval in the X direction shown in the drawing. The sectional view of the resonator S21 taken along line D1-D1 and viewed from the direction of the arrow is the same as the sectional view shown in FIG.

また、共振器S21のくし歯状電極部13と共振器S22のくし歯状電極部12は接続部14を介して電気的に接続されており、共振器S21のくし歯状電極部12と共振器S23のくし歯状電極部12は接続部20を介して電気的に接続されている。   Further, the comb-like electrode portion 13 of the resonator S21 and the comb-like electrode portion 12 of the resonator S22 are electrically connected via the connection portion 14, and resonate with the comb-like electrode portion 12 of the resonator S21. The comb-like electrode portion 12 of the vessel S23 is electrically connected via the connection portion 20.

共振器S21の一端部AはバンドパスフィルタF12の入力端子inに接続されて他端部Bは出力端子outに接続されている。共振器S22の一端部Aは共振器S21の一端部Aに、共振器S22の他端部Bは端子GNDを介してグラウンド電位に接続されている。共振器S23の一端部Aは共振器S21の他端部Aに、共振器S23の他端部Bは端子GNDを介してグラウンド電位に接続されている。本実施の形態では共振器S21が本発明の第1共振器群を構成し、共振器S22及び共振器S23が本発明の第2共振器群を構成する。   One end A of the resonator S21 is connected to the input terminal in of the bandpass filter F12, and the other end B is connected to the output terminal out. One end A of the resonator S22 is connected to one end A of the resonator S21, and the other end B of the resonator S22 is connected to the ground potential via the terminal GND. One end A of the resonator S23 is connected to the other end A of the resonator S21, and the other end B of the resonator S23 is connected to the ground potential via the terminal GND. In the present embodiment, the resonator S21 constitutes the first resonator group of the present invention, and the resonator S22 and the resonator S23 constitute the second resonator group of the present invention.

バンドパスフィルタF12の端子inと端子GNDからなる入力ポート側に入力された高周波信号のうち特定の周波数帯域の信号のみが端子outと端子GNDからなる出力ポートに出力される。   Of the high-frequency signal input to the input port side consisting of the terminal in and the terminal GND of the bandpass filter F12, only a signal in a specific frequency band is output to the output port consisting of the terminal out and the terminal GND.

図6に図5にしめされたバンドパスフィルタF12の等価回路図をしめす。バンドパスフィルタF12はいわゆるπ型のバンドパスフィルタである。   FIG. 6 shows an equivalent circuit diagram of the bandpass filter F12 shown in FIG. The bandpass filter F12 is a so-called π-type bandpass filter.

共振器S21はコンデンサC11、インダクタL11、コンデンサC13とコンデンサC14からなる共振器回路と等価になる。コンデンサ13に直列接続されているコンデンサ14が本発明の特徴である絶縁性材料層16による付加的な静電容量を反映している。   The resonator S21 is equivalent to a resonator circuit including a capacitor C11, an inductor L11, a capacitor C13, and a capacitor C14. The capacitor 14 connected in series with the capacitor 13 reflects the additional capacitance due to the insulating material layer 16 which is a feature of the present invention.

一方、くし歯状電極部12,13が圧電性基板の上に直接積層されている共振器S22及び共振器S23はそれぞれコンデンサC21、インダクタL21とコンデンサC22からなる共振器回路及びコンデンサC31、インダクタL31とコンデンサC32からなる共振器回路と等価になる。すなわち、共振器S22及び共振器S23の等価回路は従来の共振器の等価回路と同じである。   On the other hand, the resonator S22 and the resonator S23 in which the comb-like electrode portions 12 and 13 are directly laminated on the piezoelectric substrate are a resonator circuit including a capacitor C21, an inductor L21 and a capacitor C22, a capacitor C31, and an inductor L31, respectively. And a resonator circuit composed of the capacitor C32. That is, the equivalent circuit of the resonators S22 and S23 is the same as the equivalent circuit of the conventional resonator.

本実施の形態でも本実施の形態のバンドパスフィルタF12は共振器S21の反共振周波数farと共振周波数frを近づけることができるため通過帯域外の周波数を急峻かつ十分に減衰させることができる。   Also in the present embodiment, the bandpass filter F12 of the present embodiment can bring the anti-resonance frequency far and the resonance frequency fr of the resonator S21 close to each other, so that the frequency outside the passband can be attenuated steeply and sufficiently.

図7は本発明の第3の実施の形態の高周波フィルタとしてのバンドパスフィルタを示す平面図である。   FIG. 7 is a plan view showing a band-pass filter as a high-frequency filter according to the third embodiment of the present invention.

このバンドパスフィルタF13も弾性表面波素子である共振器S31、共振器S32及び共振器S33が接続されることによって形成されている。弾性表面波素子である共振器S31及びS33は図1の共振器S11と同様の構成であり、共振器S32は図1の共振器S12と同様の構成である。従って、図5では共振器S31及びS33が本発明の共振器であり、共振器S31及びS33のくし歯状電極部12及びくし歯状電極部13並びに反射器15,15と圧電性基板11の間に絶縁性材料層16が設けられている。   The bandpass filter F13 is also formed by connecting a resonator S31, a resonator S32, and a resonator S33, which are surface acoustic wave elements. The resonators S31 and S33, which are surface acoustic wave elements, have the same configuration as the resonator S11 in FIG. 1, and the resonator S32 has the same configuration as the resonator S12 in FIG. Therefore, in FIG. 5, the resonators S31 and S33 are the resonators of the present invention, and the comb-like electrode portions 12 and the comb-like electrode portions 13 of the resonators S31 and S33 and the reflectors 15 and 15 and the piezoelectric substrate 11 are provided. An insulating material layer 16 is provided therebetween.

共振器S31、S32、S33も圧電性基板11の上に、くし歯状電極部12及びくし歯状電極部13がスパッタ法やメッキ法等を用いて成膜されることによって形成されている。くし歯状電極部12とくし歯状電極部13は図示X方向に所定の間隔をあけて互い違いに並べられている。なお、共振器S31及び共振器S32をD1−D1線で切断して矢印方向からみた断面図は図2に示された断面図と同様である。   The resonators S31, S32, and S33 are also formed on the piezoelectric substrate 11 by forming the comb-like electrode portion 12 and the comb-like electrode portion 13 using a sputtering method, a plating method, or the like. The comb-like electrode portions 12 and the comb-like electrode portions 13 are alternately arranged with a predetermined interval in the X direction shown in the drawing. The sectional view of the resonator S31 and the resonator S32 taken along the line D1-D1 and viewed from the direction of the arrow is the same as the sectional view shown in FIG.

共振器S31のくし歯状電極部12、共振器S32のくし歯状電極部12及び共振器S33のくし歯状電極部13は接続部14を介して電気的に接続されている。   The comb-like electrode part 12 of the resonator S31, the comb-like electrode part 12 of the resonator S32, and the comb-like electrode part 13 of the resonator S33 are electrically connected via the connection part 14.

共振器S31の一端部AはバンドパスフィルタF13の入力端子inに接続されて他端部Bは共振器S33の一端部Aに接続されている。共振器S33の他端部Bは出力端子outに接続されている。共振器S32の一端部Aは共振器S31の他端部B及び共振器S33の一端部Aに、共振器S32の他端部Bは端子GNDを介してグラウンド電位に接続されている。本実施の形態では共振器S31及び共振器S33が本発明の第1共振器群を構成し、共振器S32が本発明の第2共振器群に相当する。   One end A of the resonator S31 is connected to the input terminal in of the bandpass filter F13, and the other end B is connected to one end A of the resonator S33. The other end B of the resonator S33 is connected to the output terminal out. One end A of the resonator S32 is connected to the other end B of the resonator S31 and one end A of the resonator S33, and the other end B of the resonator S32 is connected to the ground potential via the terminal GND. In the present embodiment, the resonator S31 and the resonator S33 constitute a first resonator group of the present invention, and the resonator S32 corresponds to a second resonator group of the present invention.

バンドパスフィルタF13の端子inと端子GNDからなる入力ポートP1側に入力された高周波信号のうち特定の周波数帯域の信号のみが端子outと端子GNDからなる出力ポートP2に出力される。   Of the high-frequency signal input to the input port P1 side composed of the terminal in and the terminal GND of the bandpass filter F13, only a signal in a specific frequency band is output to the output port P2 composed of the terminal out and the terminal GND.

図8に図7にしめされたバンドパスフィルタF13の等価回路図をしめす。このバンドパスフィルタF13はいわゆるT型のバンドパスフィルタである。   FIG. 8 shows an equivalent circuit diagram of the bandpass filter F13 shown in FIG. This bandpass filter F13 is a so-called T-type bandpass filter.

共振器S31はコンデンサC41、インダクタL41、コンデンサC43とコンデンサC44からなる共振器回路と等価になり、共振器S33はコンデンサC61、インダクタL61、コンデンサC63とコンデンサC64からなる共振器回路と等価になる。コンデンサC43に直列接続されているコンデンサC44及びコンデンサC63に直列接続されているコンデンサC64が本発明の特徴である絶縁性材料層16による付加的な静電容量を反映している。   The resonator S31 is equivalent to a resonator circuit composed of a capacitor C41, an inductor L41, a capacitor C43 and a capacitor C44, and the resonator S33 is equivalent to a resonator circuit composed of a capacitor C61, an inductor L61, a capacitor C63 and a capacitor C64. The capacitor C44 connected in series to the capacitor C43 and the capacitor C64 connected in series to the capacitor C63 reflect the additional capacitance due to the insulating material layer 16 that is a feature of the present invention.

一方、くし歯状電極部12,13が圧電性基板の上に直接積層されている共振器S32はコンデンサC51、インダクタL51とコンデンサC52からなる共振器回路と等価になる。すなわち、共振器S32の等価回路は従来の共振器の等価回路と同じである。   On the other hand, the resonator S32 in which the comb-like electrode portions 12 and 13 are directly laminated on the piezoelectric substrate is equivalent to a resonator circuit including a capacitor C51, an inductor L51, and a capacitor C52. That is, the equivalent circuit of the resonator S32 is the same as the equivalent circuit of the conventional resonator.

本実施の形態でも本実施の形態のバンドパスフィルタF13は共振器S31及び共振器S33の共振周波数frと反共振周波数farを近づけることができるため通過帯域外の周波数を急峻かつ十分に減衰させることができる。   Also in this embodiment, the bandpass filter F13 of this embodiment can bring the resonance frequency fr of the resonator S31 and the resonator S33 close to the anti-resonance frequency far, so that the frequency outside the passband is steeply and sufficiently attenuated. Can do.

また、共振器S31の絶縁性材料層16と共振器S32の絶縁性材料層16の膜厚を変化させてくし歯状電極部12,13間の静電容量を変更することによって図9に示されるような周波数特性を有するバンドパスフィルタを構成することもできる。   Further, by changing the capacitance between the comb-like electrode portions 12 and 13 by changing the film thickness of the insulating material layer 16 of the resonator S31 and the insulating material layer 16 of the resonator S32, it is shown in FIG. A bandpass filter having such a frequency characteristic can also be configured.

図10は本発明の第4の実施の形態の高周波フィルタとしてのバンドパスフィルタを示す平面図である。   FIG. 10 is a plan view showing a band-pass filter as a high-frequency filter according to the fourth embodiment of the present invention.

このバンドパスフィルタF14も共振器S41、共振器S42、共振器S43及び共振器S44が接続されることによって形成されている。弾性表面波素子である共振器S41及びS43は図1の共振器11と同様の構成であり、共振器S42及び共振器S44は図1の共振器S12と同様の構成である。従って、図5では共振器S41及びS43が本発明の共振器であり、共振器S41及びS43のくし歯状電極部12及びくし歯状電極部13並びに反射器15,15と圧電性基板11の間に絶縁性材料層16が設けられている。   This band pass filter F14 is also formed by connecting the resonator S41, the resonator S42, the resonator S43, and the resonator S44. The resonators S41 and S43, which are surface acoustic wave elements, have the same configuration as the resonator 11 in FIG. 1, and the resonator S42 and the resonator S44 have the same configuration as the resonator S12 in FIG. Therefore, in FIG. 5, the resonators S41 and S43 are the resonators of the present invention, and the comb-like electrode portions 12 and comb-like electrode portions 13 of the resonators S41 and S43 and the reflectors 15 and 15 and the piezoelectric substrate 11 are provided. An insulating material layer 16 is provided therebetween.

共振器S41、S42、S43、S44は圧電性基板11の上に、くし歯状電極部12及びくし歯状電極部13がスパッタ法やメッキ法等を用いて成膜されることによって形成されている。くし歯状電極部12とくし歯状電極部13は図示X方向に所定の間隔をあけて互い違いに並べられている。なお、共振器S41及び共振器S43をD1−D1線で切断して矢印方向からみた断面図は図2に示された断面図と同様である。   The resonators S41, S42, S43, and S44 are formed by forming the comb-like electrode portion 12 and the comb-like electrode portion 13 on the piezoelectric substrate 11 using a sputtering method, a plating method, or the like. Yes. The comb-like electrode portions 12 and the comb-like electrode portions 13 are alternately arranged with a predetermined interval in the X direction shown in the drawing. The sectional view of the resonator S41 and the resonator S43 taken along the line D1-D1 and viewed from the arrow direction is the same as the sectional view shown in FIG.

共振器S41のくし歯状電極部12、共振器S42のくし歯状電極部12及び共振器S43のくし歯状電極部13は接続部14を介して電気的に接続されている。共振器S43のくし歯状電極部12と共振器S44のくし歯状電極部12は接続部21を介して電気的に接続されている。   The comb-like electrode part 12 of the resonator S41, the comb-like electrode part 12 of the resonator S42, and the comb-like electrode part 13 of the resonator S43 are electrically connected via the connection part 14. The comb-like electrode portion 12 of the resonator S43 and the comb-like electrode portion 12 of the resonator S44 are electrically connected via the connection portion 21.

共振器S41の一端部AはバンドパスフィルタF14の入力端子inに接続されて他端部Bは共振器S43の一端部A及び共振器S42の一端部Aに接続されている。共振器S43の他端部Bは出力端子outに接続されている。共振器S42の他端部Bは端子GNDを介してグラウンド電位に接続されている。共振器S44の一端部Aは共振器S43の他端部Bに接続され他端部Bは端子GNDを介してグラウンド電位に接続されている。   One end A of the resonator S41 is connected to the input terminal in of the bandpass filter F14, and the other end B is connected to one end A of the resonator S43 and one end A of the resonator S42. The other end B of the resonator S43 is connected to the output terminal out. The other end B of the resonator S42 is connected to the ground potential via the terminal GND. One end A of the resonator S44 is connected to the other end B of the resonator S43, and the other end B is connected to the ground potential via the terminal GND.

本実施の形態では共振器S41及び共振器S43が本発明の第1共振器群を構成し、共振器S42及び共振器S44が本発明の第2共振器群を構成する。   In the present embodiment, the resonator S41 and the resonator S43 constitute a first resonator group of the present invention, and the resonator S42 and the resonator S44 constitute a second resonator group of the present invention.

バンドパスフィルタF14の端子inと端子GNDからなる入力ポートP1側に入力された高周波信号のうち特定の周波数帯域の信号のみが端子outと端子GNDからなる出力ポートP2に出力される。   Of the high-frequency signal input to the input port P1 side composed of the terminal in and the terminal GND of the bandpass filter F14, only a signal in a specific frequency band is output to the output port P2 composed of the terminal out and the terminal GND.

図11は、本発明の第5の実施の形態の共振器及びこの共振器を用いて形成した高周波フィルタを示す平面図である。このバンドパスフィルタF15は弾性表面波素子である共振器S51及び共振器S52が接続されることによって形成されている。   FIG. 11 is a plan view showing a resonator according to the fifth embodiment of the present invention and a high-frequency filter formed using the resonator. The bandpass filter F15 is formed by connecting a resonator S51 and a resonator S52, which are surface acoustic wave elements.

共振器S51、S52は圧電性基板11の上に、くし歯状電極部12及びくし歯状電極部13がスパッタ法やメッキ法等を用いて成膜されることによって形成されている。くし歯状電極部12とくし歯状電極部13は図示X方向に所定の間隔をあけて互い違いに並べられている。   The resonators S51 and S52 are formed on the piezoelectric substrate 11 by forming the comb-like electrode portion 12 and the comb-like electrode portion 13 using a sputtering method, a plating method, or the like. The comb-like electrode portions 12 and the comb-like electrode portions 13 are alternately arranged with a predetermined interval in the X direction shown in the drawing.

くし歯状電極部12及びくし歯状電極部13には接続部14が電気的に接続されており、接続部14を介して共振器S51と共振器S52が接続されている。   A connecting portion 14 is electrically connected to the comb-shaped electrode portion 12 and the comb-shaped electrode portion 13, and the resonator S 51 and the resonator S 52 are connected via the connecting portion 14.

また共振器S51の一端部AはバンドパスフィルタF15の入力端子inに接続されて他端部Bは出力端子outに接続されている。また、共振器S51の他端部Bは共振器S52の一端部Aに、共振器S52の他端部Bは端子GNDを介してグラウンド電位に接続されている。本実施の形態では共振器S51が本発明の第1共振器群を構成し、共振器S52が本発明の第2共振器群に相当する。図12に図11にしめされたバンドパスフィルタF15の等価回路図をしめす。   One end A of the resonator S51 is connected to the input terminal in of the bandpass filter F15, and the other end B is connected to the output terminal out. The other end B of the resonator S51 is connected to one end A of the resonator S52, and the other end B of the resonator S52 is connected to the ground potential via the terminal GND. In the present embodiment, the resonator S51 constitutes the first resonator group of the present invention, and the resonator S52 corresponds to the second resonator group of the present invention. FIG. 12 shows an equivalent circuit diagram of the bandpass filter F15 shown in FIG.

本実施の形態でもバンドパスフィルタF15は共振器S51の共振周波数frと反共振周波数farを近づけることができるため通過帯域外の周波数を急峻かつ十分に減衰させることができる。   Also in this embodiment, the bandpass filter F15 can bring the resonance frequency fr and the antiresonance frequency far of the resonator S51 close to each other, so that the frequency outside the passband can be attenuated steeply and sufficiently.

なお、上述した本発明の実施の形態の共振器(弾性表面波素子)では反射器15、15と圧電性基板11の間にも絶縁性材料層16が設けられている。ただし反射器15、15と圧電性基板11の間に絶縁性材料層16が設けられずに反射器15、15の上に圧電性基板11が直接積層されていてもよい。   In the resonator (surface acoustic wave element) according to the embodiment of the present invention described above, the insulating material layer 16 is also provided between the reflectors 15 and 15 and the piezoelectric substrate 11. However, the piezoelectric substrate 11 may be directly laminated on the reflectors 15 and 15 without providing the insulating material layer 16 between the reflectors 15 and 15 and the piezoelectric substrate 11.

圧電性基板とくし歯状電極部の間に絶縁性材料層が設けられた本発明の弾性表面波素子(共振器)の前記絶縁性材料層の膜厚と共振器の静電容量Co及び電気機械結合係数k、並びに反共振周波数farと共振周波数frの差との関係を調べた。 The film thickness of the insulating material layer of the surface acoustic wave element (resonator) of the present invention in which an insulating material layer is provided between the piezoelectric substrate and the comb-like electrode portion, the capacitance Co of the resonator, and the electric machine The relationship between the coupling coefficient k 2 and the difference between the antiresonance frequency far and the resonance frequency fr was examined.

まず、圧電性基板上にスパッタ法を用いて酸化ケイ素(SiO)からなる絶縁性材料層を形成し、この絶縁性材料層の上に、導電性材料を用いてくし歯状電極部及び反射器を形成する。 First, an insulating material layer made of silicon oxide (SiO 2 ) is formed on a piezoelectric substrate by a sputtering method, and a comb-like electrode portion and a reflective electrode are formed on the insulating material layer using a conductive material. To form a vessel.

本実施例の弾性表面波素子(共振器)は図1に示される共振器S11と同じ形状である。なお、測定は一個の弾性表面波素子(共振器)に対して行なった。くし歯状電極部と反射器の各寸法を以下に示す。   The surface acoustic wave element (resonator) of this example has the same shape as the resonator S11 shown in FIG. The measurement was performed on one surface acoustic wave element (resonator). Each dimension of the comb-like electrode part and the reflector is shown below.

くし歯状電極部のくし歯部の幅寸法W1及び反射器の各ストリップの幅寸法W2:W1=W2=0.4μm〜0.545μm The width dimension W1 of the comb tooth portion of the comb-like electrode part and the width dimension W2 of each strip of the reflector: W1 = W2 = 0.4 μm to 0.545 μm

くし歯状電極部のくし歯部の間隔寸法P1及び反射器の各ストリップの間隔寸法P2:P1=P2=0.4μm〜0.545μm Interdigital dimension P1 of the comb-like electrode part and the standard dimension P2 of each strip of the reflector: P1 = P2 = 0.4 μm to 0.545 μm

くし歯部13aとくし歯部14aの交差長さ寸法L1
:L1=33×(弾性表面波の波長λ)=40×2×(W1+P1)
Intersection length dimension L1 of comb tooth part 13a and comb tooth part 14a
: L1 = 33 × (wavelength λ of surface acoustic wave) = 40 × 2 × (W1 + P1)

くし歯状電極部の膜厚及び反射器の各ストリップの膜厚:H1=0.095μm
くし歯状電極部のくし歯部の本数:200本
反射器のストリップの本数:50本
The film thickness of the comb-like electrode part and the film thickness of each strip of the reflector: H1 = 0.095 μm
Number of comb teeth of comb-like electrode part: 200 Number of strips of reflector: 50

くし歯状電極部と反射器の間の距離L2:L2=P1=P2=0.4μm〜0.545μm Distance L2 between comb-like electrode portion and reflector: L2 = P1 = P2 = 0.4 μm to 0.545 μm

なお、圧電基板の材料はLiTaOである。本実施例では1.7GHz〜2.1GHzにしている。また、くし歯状電極部及び反射器はCu97.0Ag3.0合金(下付きの数値は質量%)によって形成されている。 The material of the piezoelectric substrate is LiTaO 3. In this embodiment, the frequency is set to 1.7 GHz to 2.1 GHz. Further, the comb-like electrode portion and the reflector are formed of a Cu 97.0 Ag 3.0 alloy (subscript is a mass%).

図13は絶縁性材料層の膜厚(SiO膜厚)と弾性表面波素子の電気機械結合係数kとの関係を示すグラフである。 FIG. 13 is a graph showing the relationship between the thickness of the insulating material layer (SiO 2 thickness) and the electromechanical coupling coefficient k 2 of the surface acoustic wave element.

また、図14のグラフは絶縁性材料層の規格化膜厚(H(SiO)/λ)と弾性表面波素子の電気機械結合係数kとの関係を示している。前記絶縁性材料層の規格化膜厚H/λとは、くし歯状電極部12,13の絶縁性材料層16の膜厚Hnmをくし歯部の中心間距離(ピッチ幅)λnmで割った値である。なお、くし歯部の中心間距離(ピッチ幅)λは圧電性基板の表面を伝播する弾性表面波の波長に等しい。 The graph of FIG. 14 shows the relationship between the normalized film thickness (H (SiO 2 ) / λ) of the insulating material layer and the electromechanical coupling coefficient k 2 of the surface acoustic wave element. The normalized film thickness H / λ of the insulating material layer is obtained by dividing the film thickness Hnm of the insulating material layer 16 of the comb-shaped electrode portions 12 and 13 by the center-to-center distance (pitch width) λnm of the comb-tooth portions. Value. The inter-center distance (pitch width) λ of the comb teeth is equal to the wavelength of the surface acoustic wave propagating on the surface of the piezoelectric substrate.

図13の結果から、くし歯状電極部と圧電性基板との間に設けられた絶縁層の膜厚が大きくなるほど弾性表面波素子の電気機械結合係数kが線形的に小さくなることがわかる。 From the results of FIG. 13, it is understood that the electromechanical coefficient k 2 of about SAW device film thickness provided the insulating layer is increased between the interdigital transducer electrode portions and the piezoelectric substrate becomes linearly smaller .

図14の結果も前記絶縁性材料層の規格化膜厚H/λが大きくなるほど弾性表面波素子の電気機械結合係数kが線形的に小さくなることを示している。 The results of FIG. 14 shows that the insulating electromechanical coupling of surface acoustic wave device as standardized thickness H / lambda becomes large material layer coefficient k 2 becomes linearly smaller.

図15は絶縁性材料層の膜厚(SiO膜厚)とくし歯状電極部の間の静電容量Coとの関係を示すグラフである。図16は絶縁性材料層の規格化膜厚H/λとくし歯状電極部の間の静電容量Coとの関係を示すグラフである。 FIG. 15 is a graph showing the relationship between the film thickness of the insulating material layer (SiO 2 film thickness) and the capacitance Co between the comb-like electrode portions. FIG. 16 is a graph showing the relationship between the normalized film thickness H / λ of the insulating material layer and the capacitance Co between the comb-shaped electrode portions.

くし歯状電極部の間の静電容量Coとは、図2における圧電性基板11及び絶縁性材料層16を介したくし歯状電極部12,13間の静電容量の合計(図3のC13とC14の合成静電容量)である。   The capacitance Co between the comb-like electrode portions is the total capacitance between the comb-like electrode portions 12 and 13 via the piezoelectric substrate 11 and the insulating material layer 16 in FIG. 2 (C13 in FIG. 3). And the combined capacitance of C14).

図15の結果から、くし歯状電極部と圧電性基板との間に設けられた絶縁性材料層の膜厚が大きくなるほど弾性表面波素子とくし歯状電極部の間の静電容量Coが線形的に小さくなることがわかる。また、図16の結果も前記絶縁性材料層の規格化膜厚H/λが大きくなるほど弾性表面波素子とくし歯状電極部の間の静電容量Coが線形的に小さくなることを示している。   From the result of FIG. 15, as the film thickness of the insulating material layer provided between the comb-shaped electrode portion and the piezoelectric substrate increases, the capacitance Co between the surface acoustic wave element and the comb-shaped electrode portion becomes linear. It turns out that it becomes small automatically. Also, the result of FIG. 16 shows that the capacitance Co between the surface acoustic wave element and the comb-like electrode portion linearly decreases as the normalized film thickness H / λ of the insulating material layer increases. .

図17のグラフは絶縁性材料層の規格化膜厚(H(SiO)/λ)と弾性表面波素子(共振器)の反共振周波数farと共振周波数frの差を共振周波数で割った値Δf/frとの関係を示すグラフである。 The graph of FIG. 17 is a value obtained by dividing the difference between the normalized film thickness (H (SiO 2 ) / λ) of the insulating material layer and the antiresonance frequency far and the resonance frequency fr of the surface acoustic wave element (resonator) by the resonance frequency. It is a graph which shows the relationship with (DELTA) f / fr.

図17の結果から前記絶縁性材料層の規格化膜厚H/λが大きくなるほどΔf/frが線形的に小さくなることがわかる。   From the results of FIG. 17, it can be seen that Δf / fr decreases linearly as the normalized film thickness H / λ of the insulating material layer increases.

共振器のΔf/frを小さくすることによって、この共振器を用いて形成したバンドパスフィルタの通過帯域外の周波数を急峻に減衰させることができる。   By reducing Δf / fr of the resonator, the frequency outside the pass band of the bandpass filter formed using this resonator can be sharply attenuated.

前記絶縁性材料層の規格化膜厚H/λが大きくなるほどΔf/frが線形的に小さくなるのは、図13及び図14に示されたように弾性表面波素子の電気機械結合係数kが小さくなるためであると考えられる。 As the normalized film thickness H / λ of the insulating material layer increases, Δf / fr decreases linearly, as shown in FIGS. 13 and 14, the electromechanical coupling coefficient k 2 of the surface acoustic wave device. This is considered to be because of the decrease.

なお、図15及び図16に示されるようにくし歯状電極部と圧電性基板の間に絶縁性材料層を設けることによって、弾性表面波素子(共振器)のΔf/frを小さくすると同時に弾性表面波素子とくし歯状電極部の間の静電容量Coを小さくすることができる。   As shown in FIGS. 15 and 16, by providing an insulating material layer between the comb-like electrode portion and the piezoelectric substrate, Δf / fr of the surface acoustic wave element (resonator) is reduced and elastic at the same time. Capacitance Co between the surface wave element and the comb-like electrode portion can be reduced.

本発明は、弾性表面波素子(共振器)のΔf/frを小さくするところに特徴がある。
ただし、くし歯状電極部と圧電性基板の間の絶縁性材料層の膜厚及び規格化膜厚が大きすぎると、圧電性基板の表面に弾性表面波を励起する効率が低下する。このため、本発明では絶縁性材料層の膜厚の上限は20nm以下、また規格化膜厚の上限が0.01以下であることが好ましいとした。
The present invention is characterized in that Δf / fr of the surface acoustic wave element (resonator) is reduced.
However, if the thickness of the insulating material layer between the comb-like electrode portion and the piezoelectric substrate and the normalized thickness are too large, the efficiency of exciting the surface acoustic wave on the surface of the piezoelectric substrate decreases. For this reason, in the present invention, the upper limit of the thickness of the insulating material layer is preferably 20 nm or less, and the upper limit of the normalized film thickness is preferably 0.01 or less.

本発明の共振器(弾性表面波素子)及びこの共振器を用いて形成したバンドパスフィルタの第1の実施の形態を示す平面図、The top view which shows 1st Embodiment of the resonator (surface acoustic wave element) of this invention and the band pass filter formed using this resonator, 図1の弾性表面波素子をD1−D1線で切断して矢印方向から見た部分断面図、FIG. 1 is a partial cross-sectional view of the surface acoustic wave element of FIG. 図1に示されたバンドパスフィルタの等価回路図、1 is an equivalent circuit diagram of the bandpass filter shown in FIG. 図1に示された共振器の周波数特性をしめす図、The figure which shows the frequency characteristic of the resonator shown by FIG. 図1に示されたバンドパスフィルタの周波数特性をしめす図、The figure which shows the frequency characteristic of the band pass filter shown by FIG. 本発明の共振器(弾性表面波素子)及びこの共振器を用いて形成したバンドパスフィルタの第2の実施の形態を示す平面図、The top view which shows 2nd Embodiment of the resonator (surface acoustic wave element) of this invention and the band pass filter formed using this resonator, 図5に示されたバンドパスフィルタの等価回路図、FIG. 5 is an equivalent circuit diagram of the bandpass filter shown in FIG. 本発明の共振器(弾性表面波素子)及びこの共振器を用いて形成したバンドパスフィルタの第3の実施の形態を示す平面図、The top view which shows 3rd Embodiment of the resonator (surface acoustic wave element) of this invention and the band pass filter formed using this resonator, 図7に示されたバンドパスフィルタの等価回路図、FIG. 7 is an equivalent circuit diagram of the bandpass filter shown in FIG. 図7に示されたバンドパスフィルタの周波数特性の一例をしめす図、The figure which shows an example of the frequency characteristic of the band pass filter shown by FIG. 本発明の共振器(弾性表面波素子)及びこの共振器を用いて形成したバンドパスフィルタの第4の実施の形態を示す平面図、The top view which shows 4th Embodiment of the resonator (surface acoustic wave element) of this invention and the band pass filter formed using this resonator, 本発明の共振器(弾性表面波素子)及びこの共振器を用いて形成したバンドパスフィルタの第5の実施の形態を示す平面図、The top view which shows 5th Embodiment of the resonator (surface acoustic wave element) of this invention and the band pass filter formed using this resonator, 図11に示されたバンドパスフィルタの等価回路図、FIG. 11 is an equivalent circuit diagram of the bandpass filter shown in FIG. 絶縁性材料層の膜厚(SiO膜厚)と弾性表面波素子の電気機械結合係数kとの関係を示すグラフ、A graph showing the relationship between the film thickness of the insulating material layer (SiO 2 film thickness) and the electromechanical coupling coefficient k 2 of the surface acoustic wave element; 絶縁性材料層の規格化膜厚(H(SiO)/λ)と弾性表面波素子の電気機械結合係数kとの関係を示すグラフ、A graph showing the relationship between the normalized film thickness (H (SiO 2 ) / λ) of the insulating material layer and the electromechanical coupling coefficient k 2 of the surface acoustic wave element; 絶縁性材料層の膜厚(SiO膜厚)とくし歯状電極部の間の静電容量Coとの関係を示すグラフ、A graph showing the relationship between the film thickness of the insulating material layer (SiO 2 film thickness) and the capacitance Co between the comb-like electrode portions; 絶縁性材料層の規格化膜厚H/λとくし歯状電極部の間の静電容量Coとの関係を示すグラフ、A graph showing the relationship between the normalized film thickness H / λ of the insulating material layer and the capacitance Co between the comb-like electrode portions; 絶縁性材料層の規格化膜厚(H(SiO)/λ)と弾性表面波素子(共振器)の反共振周波数farと共振周波数frの差を共振周波数で割った値Δf/frとの関係を示すグラフ、The normalized thickness of the insulating material layer (H (SiO 2 ) / λ) and the value Δf / fr obtained by dividing the difference between the anti-resonance frequency far and the resonance frequency fr of the surface acoustic wave element (resonator) by the resonance frequency A graph showing the relationship, 従来の共振器(弾性表面波素子)及びこの共振器を用いて形成したバンドパスフィルタの平面図、Plan view of a conventional resonator (surface acoustic wave element) and a bandpass filter formed using this resonator, 図18に示されたバンドパスフィルタの等価回路図、FIG. 18 is an equivalent circuit diagram of the bandpass filter shown in FIG. 図18の弾性表面波素子をD−D線で切断して矢印方向から見た部分断面図、FIG. 18 is a partial cross-sectional view of the surface acoustic wave element of FIG. 図18に示された共振器の周波数特性をしめす図、The figure which shows the frequency characteristic of the resonator shown by FIG. 図18に示されたバンドパスフィルタの周波数特性をしめす図、The figure which shows the frequency characteristic of the band pass filter shown by FIG.

符号の説明Explanation of symbols

11 圧電基板
12、13 くし歯状電極部
14 接続電極部
15 反射器
16 絶縁性材料層
S11、S12 共振器(弾性表面波素子)
F11 バンドパスフィルタ
DESCRIPTION OF SYMBOLS 11 Piezoelectric substrate 12, 13 Comb-tooth shaped electrode part 14 Connection electrode part 15 Reflector 16 Insulating material layer S11, S12 Resonator (surface acoustic wave element)
F11 bandpass filter

Claims (6)

圧電性基板と、前記圧電性基板上に薄膜形成された電極部を有する弾性表面波素子において、
前記電極部はくし歯状電極部及び前記くし歯状電極部に接続された接続部を有し、前記くし歯状電極部と前記圧電性基板の間に絶縁性材料層が設けられていることを特徴とする弾性表面波素子。
In a surface acoustic wave device having a piezoelectric substrate and an electrode portion formed in a thin film on the piezoelectric substrate,
The electrode part has a comb-like electrode part and a connection part connected to the comb-like electrode part, and an insulating material layer is provided between the comb-like electrode part and the piezoelectric substrate. A surface acoustic wave device.
前記くし歯状電極部の側方の前記圧電性基板上に前記圧電性基板の表面に発生する表面波を反射させる反射器が設けられ、この反射器と前記圧電性基板の間に絶縁性材料層が設けられている請求項1記載の弾性表面波素子。   A reflector for reflecting surface waves generated on the surface of the piezoelectric substrate is provided on the piezoelectric substrate on the side of the comb-like electrode portion, and an insulating material is provided between the reflector and the piezoelectric substrate. The surface acoustic wave device according to claim 1, further comprising a layer. 前記絶縁性材料層が酸化ケイ素(SiO)、アルミナ(Al)、窒化ケイ素(Si34)のいずれか1種または2種以上によって形成されている請求項1または2に記載の弾性表面波素子。 The insulating material layer is formed of one or more of silicon oxide (SiO 2 ), alumina (Al 2 O 3 ), and silicon nitride (Si 3 N 4 ). Surface acoustic wave element. 前記絶縁性材料層の膜厚が5nm以上20nm以下である請求項1ないし3のいずれかに記載の弾性表面波素子。   The surface acoustic wave device according to any one of claims 1 to 3, wherein the insulating material layer has a thickness of 5 nm to 20 nm. 前記くし歯状電極部のくし歯部の中心間距離(ピッチ幅)をλnm、前記絶縁性材料層の膜厚をHnmとしたとき、前記絶縁性材料層の規格化膜厚H/λが0.0025以上0.01以下である請求項1ないし4のいずれかに記載の弾性表面波素子。   When the inter-center distance (pitch width) of the comb teeth of the comb-like electrode portion is λ nm and the thickness of the insulating material layer is Hnm, the normalized thickness H / λ of the insulating material layer is 0. 5. The surface acoustic wave element according to claim 1, wherein the surface acoustic wave element is not less than 0.01 and not more than 0.01. 前記くし歯状電極部と前記反射器のいずれか一方あるいは両方がTiNからなる下地層を有している請求項1ないし5のいずれかに記載の弾性表面波素子。   6. The surface acoustic wave device according to claim 1, wherein either one or both of the comb-like electrode portion and the reflector have a base layer made of TiN.
JP2004294829A 2004-10-07 2004-10-07 Bandpass filter using surface acoustic wave element Expired - Fee Related JP4036856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004294829A JP4036856B2 (en) 2004-10-07 2004-10-07 Bandpass filter using surface acoustic wave element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004294829A JP4036856B2 (en) 2004-10-07 2004-10-07 Bandpass filter using surface acoustic wave element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004069901 Division 2004-03-12 2004-03-12

Publications (2)

Publication Number Publication Date
JP2005260909A true JP2005260909A (en) 2005-09-22
JP4036856B2 JP4036856B2 (en) 2008-01-23

Family

ID=35086165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004294829A Expired - Fee Related JP4036856B2 (en) 2004-10-07 2004-10-07 Bandpass filter using surface acoustic wave element

Country Status (1)

Country Link
JP (1) JP4036856B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169707A (en) * 2011-02-09 2012-09-06 Taiyo Yuden Co Ltd Elastic wave device
WO2015052888A1 (en) * 2013-10-09 2015-04-16 スカイワークス・パナソニックフィルターソリューションズジャパン株式会社 Elastic wave element, duplexer including same, and electronic appliance
US20160285430A1 (en) * 2013-12-26 2016-09-29 Murata Manufacturing Co., Ltd. Elastic wave device and fabrication method thereof
WO2018061436A1 (en) * 2016-09-27 2018-04-05 株式会社村田製作所 Elastic wave device, high frequency front-end circuit, and communication device
KR20190099065A (en) 2017-02-10 2019-08-23 가부시키가이샤 무라타 세이사쿠쇼 Acoustic Wave Device, High Frequency Front End Circuit and Communication Device
US10630260B2 (en) 2016-03-08 2020-04-21 Murata Manufacturing Co., Ltd. Elastic wave apparatus and duplexer
US10886892B2 (en) 2017-02-20 2021-01-05 Murata Manufacturing Co., Ltd. Filter apparatus, multiplexer, radio-frequency front end circuit, and communication apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109983696B (en) 2016-11-25 2023-04-11 株式会社村田制作所 Elastic wave filter device
KR102276515B1 (en) 2019-02-15 2021-07-14 삼성전기주식회사 Bulk-acoustic wave resonator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169707A (en) * 2011-02-09 2012-09-06 Taiyo Yuden Co Ltd Elastic wave device
US9252732B2 (en) 2011-02-09 2016-02-02 Taiyo Yuden Co., Ltd. Acoustic wave device and method for manufacturing the same
WO2015052888A1 (en) * 2013-10-09 2015-04-16 スカイワークス・パナソニックフィルターソリューションズジャパン株式会社 Elastic wave element, duplexer including same, and electronic appliance
CN105612693A (en) * 2013-10-09 2016-05-25 天工松下滤波方案日本有限公司 Elastic wave element, duplexer including same, and electronic appliance
US20160285430A1 (en) * 2013-12-26 2016-09-29 Murata Manufacturing Co., Ltd. Elastic wave device and fabrication method thereof
US9998091B2 (en) * 2013-12-26 2018-06-12 Murata Manufacturing Co., Ltd. Elastic wave device and fabrication method thereof
US10630260B2 (en) 2016-03-08 2020-04-21 Murata Manufacturing Co., Ltd. Elastic wave apparatus and duplexer
WO2018061436A1 (en) * 2016-09-27 2018-04-05 株式会社村田製作所 Elastic wave device, high frequency front-end circuit, and communication device
US11387807B2 (en) 2016-09-27 2022-07-12 Murata Manufacturing Co., Ltd. Elastic wave device, high-frequency front end circuit, and communication device
KR20190099065A (en) 2017-02-10 2019-08-23 가부시키가이샤 무라타 세이사쿠쇼 Acoustic Wave Device, High Frequency Front End Circuit and Communication Device
US10886896B2 (en) 2017-02-10 2021-01-05 Murata Manufacturing Co., Ltd. Acoustic wave device, high-frequency front-end circuit, and communication device
US10886892B2 (en) 2017-02-20 2021-01-05 Murata Manufacturing Co., Ltd. Filter apparatus, multiplexer, radio-frequency front end circuit, and communication apparatus

Also Published As

Publication number Publication date
JP4036856B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
US10826461B2 (en) Acoustic wave device
JP6133216B2 (en) Ladder type elastic wave filter and antenna duplexer using the same
KR101514742B1 (en) Surface acoustic wave device
CN112673568B (en) Load resonator for adjusting frequency response of acoustic wave resonator
EP0897218B1 (en) Surface acoustic wave filter
JP4798319B1 (en) Elastic wave device
JP6573668B2 (en) Elastic wave device and communication device
KR100290204B1 (en) Multimode surface acoustic wave filter
CN104467729B (en) Elastic wave device and its duplexer and electronic equipment for using
CN112673569A (en) Two-stage transverse bulk acoustic wave filter
US7843285B2 (en) Piezoelectric thin-film filter
JP5146160B2 (en) Elastic wave resonator and ladder type filter
CN112689956A (en) Transverse bulk acoustic wave filter
JP4036856B2 (en) Bandpass filter using surface acoustic wave element
JP2005260833A (en) Surface acoustic resonator and its filter
WO2019065667A1 (en) Acoustic wave filter device
JP2002111442A (en) Surface acoustic wave resonator and surface acoustic wave filter using the resonator
US20230261634A1 (en) Acoustic wave device and ladder filter
KR20220044321A (en) seismic filter
JP2005295496A (en) High frequency filter and transceiver using the same
JP4665965B2 (en) Boundary acoustic wave device
JP2003243966A (en) Filter circuit
JPWO2008068951A1 (en) Surface acoustic wave filter device
JP2005354650A (en) Surface acoustic wave device
JPH09186542A (en) Surface acoustic wave resonator filter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071030

R150 Certificate of patent or registration of utility model

Ref document number: 4036856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees