JP2005260744A - Method and apparatus for synchronizing phases of microphone reception signals in microphone array - Google Patents

Method and apparatus for synchronizing phases of microphone reception signals in microphone array Download PDF

Info

Publication number
JP2005260744A
JP2005260744A JP2004071551A JP2004071551A JP2005260744A JP 2005260744 A JP2005260744 A JP 2005260744A JP 2004071551 A JP2004071551 A JP 2004071551A JP 2004071551 A JP2004071551 A JP 2004071551A JP 2005260744 A JP2005260744 A JP 2005260744A
Authority
JP
Japan
Prior art keywords
microphone
sound source
phase
signal
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004071551A
Other languages
Japanese (ja)
Inventor
Toshiharu Horiuchi
俊治 堀内
Mitsunori Mizumachi
光徳 水町
Satoru Nakamura
哲 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ATR Advanced Telecommunications Research Institute International
Original Assignee
ATR Advanced Telecommunications Research Institute International
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ATR Advanced Telecommunications Research Institute International filed Critical ATR Advanced Telecommunications Research Institute International
Priority to JP2004071551A priority Critical patent/JP2005260744A/en
Publication of JP2005260744A publication Critical patent/JP2005260744A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for synchronizing phases of microphone reception signals in a microphone array in which phases of reception signals in microphones constituting the microphone array can be highly accurately synchronized. <P>SOLUTION: The apparatus for synchronizing phases of microphone reception signals in a microphone array including three or more microphones mounted in portable equipment and disposed on an xy-plane of a three-dimensional coordinate system with the portable equipment as a reference, includes a first means for calculating a coordinate estimate of a sound source in the three-dimensional coordinate system at predetermined time intervals and a second means for converting reception signals of the microphones into phase-synchronized signals based on the coordinate estimate of the sound source calculated by the first means, wherein the first means utilizes a natural gradient learning method to estimate coordinates of the sound source so as to minimize a difference of phase synchronized signals obtained by the second means. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、マイクロホンアレーにおけるマイクロホン受音信号の同相化方法および同相化装置に関する。   The present invention relates to an in-phase method and an in-phase apparatus for microphone received signals in a microphone array.

本出願の発明者らは、マイクロホンの空間的な位置や音源の到来方向が時々刻々と変化する状況下での遠隔発話音声の高品質受音目的とし、検討を行っている。   The inventors of the present application are studying for the purpose of receiving a high quality sound of a remote utterance voice in a situation where the spatial position of the microphone and the arrival direction of the sound source change every moment.

本出願の発明者らは、音源の到来方向に対するマイクロホンアレーの向きを推定し、受音信号間の時間差を補正する手法を提案した(参考文献〔1〕参照)。この手法は、1つの評価関数の最小化に基づいて、マイクロホンの空間的な位置を表す2つの座標軸の回転角を適応的に推定している。   The inventors of the present application have proposed a method for estimating the direction of the microphone array relative to the direction of arrival of the sound source and correcting the time difference between the received signals (see reference [1]). This method adaptively estimates the rotation angle of two coordinate axes representing the spatial position of the microphone based on the minimization of one evaluation function.

参考文献〔1〕:堀内,水町,中村,”複数マイクロホン受音信号の逐次時間差補正アルゴリズム,”音講論集,,Vol. I, pp. 691-692, Mar. 2003.   Reference [1]: Horiuchi, Mizumachi, Nakamura, “Sequential time difference correction algorithm for multiple microphones,” Vol. I, pp. 691-692, Mar. 2003.

それまでの従来の方向推定手法(参考文献〔2〕参照)のほとんどがフレーム単位での推定を行っているが、本出願の発明者らが提案した上記提案手法ではサンプル毎に推定を行っている。これは、上記提案手法の特徴の一つとなっている。   Most of the conventional direction estimation methods up to that point (see reference [2]) perform estimation on a frame basis, but the above proposed method proposed by the inventors of the present application performs estimation for each sample. Yes. This is one of the features of the proposed method.

参考文献〔2〕:大賀,山崎,金田,”音響システムとディジタル処理,”電子情報通信学会,1995.   Reference [2]: Oga, Yamazaki, Kaneda, “Acoustic system and digital processing,” IEICE, 1995.

しかしながら、本出願の発明者らが提案した上記提案手法は、LMSアルゴリズムを用いており、安定性や追従速度に関しては、ステップサイズパラメータに大きく依存しており、一般に、その選定には熟練した知識が必要である。   However, the proposed method proposed by the inventors of the present application uses an LMS algorithm, and the stability and tracking speed largely depend on the step size parameter. is required.

ところで、参考文献〔3〕において、甘利氏らは、特異点をもつ空間上の勾配を用いる最急降下法(確率降下法)では最適な勾配方向を与えない理由を考察し、リーマン計量を用いた自然勾配(Natural Gradient) 学習法を提案している。   By the way, in Reference [3], Amari et al. Considered the reason why the steepest descent method (probability descent method) using a gradient on a space with a singular point does not give the optimum gradient direction, and used Riemannian metric. A natural gradient learning method is proposed.

参考文献〔3〕:Amari,”Natural Gradient Works Efficiently in Learning, ” Neural Computation, vol. 10, pp. 251-276, 1998.
堀内,水町,中村,”複数マイクロホン受音信号の逐次時間差補正アルゴリズム,”音講論集,,Vol. I, pp. 691-692, Mar. 2003. 大賀,山崎,金田,”音響システムとディジタル処理,”電子情報通信学会,1995. Amari,”Natural Gradient Works Efficiently in Learning, ” Neural Computation, vol. 10, pp. 251-276, 1998.
Reference [3]: Amari, “Natural Gradient Works Efficiently in Learning,” Neural Computation, vol. 10, pp. 251-276, 1998.
Horiuchi, Mizumachi, Nakamura, “Sequential Time Difference Correction Algorithm for Multiple Microphone Signals,” Sound Lecture, Vol. I, pp. 691-692, Mar. 2003. Oga, Yamazaki, Kaneda, "Acoustic systems and digital processing," IEICE, 1995. Amari, “Natural Gradient Works Efficiently in Learning,” Neural Computation, vol. 10, pp. 251-276, 1998.

この発明は、マイクロホンアレーを構成する各マイクロホンの受音信号を、高い精度で同相化できる、マイクロホンアレーにおけるマイクロホン受音信号の同相化方法および同相化装置を提供することを目的とする。   An object of the present invention is to provide a method and an apparatus for in-phase a microphone sound reception signal in a microphone array, which can make the sound reception signal of each microphone constituting the microphone array in phase with high accuracy.

請求項1に記載の発明は、可搬型機器に搭載されかつ可搬型機器を基準とした3次元座標系のxy平面上に配置された3以上のマイクロホンを有するマイクロホンアレーにおけるマイクロホン受音信号の同相化装置において、所定時間毎に、上記3次元座標系での音源の座標推定値を算出する第1手段、および第1手段によって算出された音源の座標推定値に基づいて、各マイクロホンの受音信号を、同相化された信号に変換する第2手段を備えており、第1手段は、自然勾配学習法を利用して、第2手段によって得られる同相化信号の差が最小となるような音源の座標を推定するものであることを特徴とする。   According to the first aspect of the present invention, in-phase microphone sound reception signals in a microphone array having three or more microphones mounted on a portable device and arranged on the xy plane of a three-dimensional coordinate system based on the portable device. In the control apparatus, the first means for calculating the coordinate estimate value of the sound source in the three-dimensional coordinate system at a predetermined time, and the sound reception of each microphone based on the coordinate estimate value of the sound source calculated by the first means A second means for converting the signal into an in-phase signal, wherein the first means uses a natural gradient learning method so that the difference between the in-phase signals obtained by the second means is minimized; It is characterized by estimating the coordinates of the sound source.

請求項2に記載の発明は、可搬型機器に搭載されかつ可搬型機器を基準とした3次元座標系のxy平面上に配置された3以上のマイクロホンを有するマイクロホンアレーにおけるマイクロホン受音信号の同相化方法において、所定時間毎に、上記3次元座標系での音源の座標推定値を算出する第1ステップ、および第1ステップによって算出された音源の座標推定値に基づいて、各マイクロホンの受音信号を、同相化された信号に変換する第2ステップを備えており、第1ステップは、自然勾配学習法を利用して、第2ステップによって得られる同相化信号の差が最小となるような音源の座標を推定するものであることを特徴とする。   The invention according to claim 2 is the same phase of the microphone sound reception signal in the microphone array having three or more microphones mounted on the portable device and arranged on the xy plane of the three-dimensional coordinate system with reference to the portable device. In the conversion method, the first step of calculating the coordinate estimate value of the sound source in the three-dimensional coordinate system at a predetermined time, and the sound reception of each microphone based on the coordinate estimate value of the sound source calculated by the first step A second step of converting the signal into an in-phase signal, wherein the first step uses a natural gradient learning method so that the difference in the in-phase signal obtained by the second step is minimized. It is characterized by estimating the coordinates of the sound source.

この発明によれば、マイクロホンアレーを構成する各マイクロホンの受音信号を、高い精度で同相化できるようになる。   According to the present invention, the received sound signals of the microphones constituting the microphone array can be in phase with high accuracy.

以下、図面を参照して、この発明の実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

〔1〕マイクロホンアレー座標系の定義
図1は、マイクロホンアレー座標系を示している。
[1] Definition of Microphone Array Coordinate System FIG. 1 shows a microphone array coordinate system.

マイクロホンアレーは、可搬型機器に搭載されている。3個以上のマイクロホンMi (i=1,2,…,m)が、可搬型機器を基準とした3次元空間(3次元座標系)のxy平面上の任意位置に配置されている。各マイクロホンMi の座標(極座標)(ri ,π/2,φi )は、予め与えられている。 The microphone array is mounted on a portable device. Three or more microphones M i (i = 1, 2,..., M) are arranged at arbitrary positions on the xy plane of a three-dimensional space (three-dimensional coordinate system) based on the portable device. The coordinates (polar coordinates) (r i , π / 2, φ i ) of each microphone M i are given in advance.

また、音源Sの座標(極座標)を、(R,θ,φ)とする。ここでは、音源は単一と仮定する。   The coordinates (polar coordinates) of the sound source S are (R, θ, φ). Here, it is assumed that the sound source is single.

音源SからマイクロホンMi への到達時間τi は、音源SとイクロホンMi との間の距離d(S,Mi )を用いて、次式(1)のように表すことができる。 Arrival time tau i from the sound source S to the microphone M i is the distance d (S, M i) between the sound source S and Ikurohon M i using a can be expressed by the following equation (1).

Figure 2005260744
Figure 2005260744

ただし、cは音速である。   Where c is the speed of sound.

また、この到達時間τi を用いて、各マイクロホンMi の受音信号xi (t)は、次式(2)のように表すことができる。 Further, using this arrival time τ i , the sound reception signal x i (t) of each microphone M i can be expressed as the following equation (2).

Figure 2005260744
Figure 2005260744

ここで、s(t)は音源信号を表し、ni (t)は観測雑音を表している。 Here, s (t) represents a sound source signal, and n i (t) represents observation noise.

〔2〕マイクロホンアレーにおけるマイクロホン受音信号を同相化するための同相化回路の説明
図2は、マイクロホンアレーにおけるマイクロホン受音信号を同相化するための同相化回路を示している。
[2] Description of the in-phase circuit for in-phase the microphone sound reception signal in the microphone array FIG. 2 shows an in-phase circuit for in-phase the microphone sound reception signal in the microphone array.

各マイクロホンMi の受音信号xi (t)は、同相化回路10に送られる。同相化回路10は、各受音信号xi (t)間の遅延時間差が0となるように受音信号xi (t)を補正する。つまり、同相化回路10は、各受音信号xi (t)を同相化する。そして、同相化した信号をyi (t)として出力する。以下、同相化回路10によって行われる処理について説明する。 The sound reception signal x i (t) of each microphone M i is sent to the in-phase circuit 10. The in-phase circuit 10 corrects the sound reception signal x i (t) so that the delay time difference between the sound reception signals x i (t) becomes zero. That is, the in-phase circuit 10 in-phases each sound reception signal x i (t). Then, the in-phase signal is output as y i (t). Hereinafter, processing performed by the in-phase circuit 10 will be described.

まず、受音信号xi (t)を同相化することを考える。Sinc関数を利用すると、同相化された信号yi (t)は、次式(3)のように表すことができる。 First, consider in-phase the received sound signal x i (t). Using the Sinc function, the in-phased signal y i (t) can be expressed as the following equation (3).

Figure 2005260744
Figure 2005260744

ただし、Sinc(x)=sin(πx)/πxで与えられる。Nはフィルタ長、Dは固定遅延、Tはサンプリング間隔である。また、^τi は、後述する音源Sの推定座標(^R,^θ,^φ)から算出される到達時間τi である。 However, Sinc (x) = sin (πx) / πx. N is a filter length, D is a fixed delay, and T is a sampling interval. ^ Τ i is an arrival time τ i calculated from estimated coordinates (^ R, ^ θ, ^ φ) of the sound source S described later.

このyi (t)に関して、次式(4)のような二乗誤差Eを定義する。 With respect to y i (t), a square error E like the following equation (4) is defined.

Figure 2005260744
Figure 2005260744

音源Sの推定座標(^R,^θ,^φ)は、二乗誤差Eが最も小さくなる場合のR,θ,φとして、次式(5)で与えられる。   The estimated coordinates (^ R, ^ θ, ^ φ) of the sound source S are given by the following equation (5) as R, θ, and φ when the square error E is minimized.

Figure 2005260744
Figure 2005260744

この二乗誤差Eの最小化に自然勾配(Natural Gradient) 学習法を導入する。音源Sの推定座標(^R,^θ,^φ)を次式(6)のように定義する。   In order to minimize the square error E, a natural gradient learning method is introduced. Estimated coordinates (^ R, ^ θ, ^ φ) of the sound source S are defined as in the following equation (6).

Figure 2005260744
Figure 2005260744

ここで、Tは転置を表している。   Here, T represents transposition.

音源Sの座標の微小変化量dωは、次式(7)で与えられる。   The minute change amount dω of the coordinates of the sound source S is given by the following equation (7).

Figure 2005260744
Figure 2005260744

自然勾配(Natural Gradient) 学習法を用いると、(n+1)回目の推定座標ωn+1 は、n回目に推定された座標ωn を用いて、次式(8)で与えられる。 When the natural gradient learning method is used, the (n + 1) -th estimated coordinate ω n + 1 is given by the following equation (8) using the coordinate ω n estimated at the n-th time.

Figure 2005260744
Figure 2005260744

ここで、G-1は、次式(9)で与えられる。 Here, G −1 is given by the following equation (9).

Figure 2005260744
Figure 2005260744

上記式(8)の∇(ナブラ)は微分演算子である。上記式(8)のG-1∇E(ωn )は、音源Sの座標の微小変化量に相当している。 In the above equation (8), ∇ (nabla) is a differential operator. G −1 ∇E (ω n ) in the above equation (8) corresponds to a minute change amount of the coordinates of the sound source S.

同相化回路10は、まず、上記式(8)に基づいて、今回の音源Sの推定座標(^R,^θ,^φ)を算出する。次に、得られた音源Sの推定座標(^R,^θ,^φ)と各マイクロフォンMi の座標(ri ,π/2,φi )とに基づいて、上記式(1)から、音源SからマイクロホンMi への到達時間τi を算出する。そして、算出された到達時間τi に基づいて、上記式(3)から同相化された信号yi (t)を算出する。 First, the in-phase circuit 10 calculates the estimated coordinates (^ R, ^ θ, ^ φ) of the current sound source S based on the above equation (8). Next, based on the estimated coordinates (^ R, ^ θ, ^ φ) of the obtained sound source S and the coordinates (r i , π / 2, φ i ) of each microphone M i , the above equation (1) is used. , to calculate the arrival time τ i from the sound source S to the microphone M i. Then, based on the calculated arrival time τ i , the in-phase signal y i (t) is calculated from the above equation (3).

〔3〕基礎性能の検証
計算機シミュレーションにより、上記実施例で用いた音源Sの位置の推定アルゴリズムの基礎性能を検証する。
[3] Verification of basic performance The basic performance of the algorithm for estimating the position of the sound source S used in the above embodiment is verified by computer simulation.

まず、計算機シミュレーションを行うにあたり、いくつかの条件設定を行った。マイクロホンは、x−y平面上の座標(−d,31/2 d/3,0)、(d,31/2 d/3,0)(−d,2×31/2 d/3,0)に3つ配置した。ただし、dは0.05mである。 First, several conditions were set for computer simulation. The microphone has coordinates (−d, 3 1/2 d / 3, 0), (d, 3 1/2 d / 3, 0) (−d, 2 × 3 1/2 d /) on the xy plane. 3, three). However, d is 0.05 m.

目的音源信号には、平均0,分散0.05,帯域が125Hz−6kHzのshaped gaussian noise を用いた。雑音信号には、目的音源信号と同帯域のランダム帯域雑音を用い、チャネル間および目的音源信号とは無相関である。また、信号はサンプル周波数が48kHz,16bitで量子化されたものを用いた。   For the target sound source signal, shaped gaussian noise having an average of 0, a variance of 0.05, and a band of 125 Hz-6 kHz was used. The noise signal uses random band noise in the same band as the target sound source signal, and is uncorrelated between the channels and the target sound source signal. The signal used was quantized with a sampling frequency of 48 kHz and 16 bits.

目的音源信号は、θが45degの一定方向とし、φが30degと−30degの方向から交互に到来するものとし、各マイクロホンMi (i=1,2,3)での受音信号xi (t)は、目的音源信号と雑音信号にそれぞれ適切な時間シフトを計算機上で与え、それらを加算して作成した。 It is assumed that the target sound source signal has a constant direction of θ of 45 deg and φ alternately arrives from directions of 30 deg and −30 deg, and the sound reception signal x i (i = 1, 2, 3) is received by each microphone M i. t) was created by giving appropriate time shifts to the target sound source signal and noise signal on the computer and adding them together.

θおよびφの初期値を0deg、Rの初期値を1とした。また、LMSアルゴリズムに基づいた従来手法(参考文献〔1〕に示された手法)と比較した。従来手法におけるステップサイズパラメータμは0.01とした。   The initial values of θ and φ were 0 deg, and the initial value of R was 1. Moreover, it compared with the conventional method (method shown in the reference [1]) based on the LMS algorithm. The step size parameter μ in the conventional method was set to 0.01.

図3に、雑音信号に対する目的音源信号のSNRが20dBの場合における方向推定結果を示す。図3の下側の図は、図3の上側の図の一部を拡大して示している。ただし、横軸は時間、縦軸は推定された到来方向を表している。   FIG. 3 shows a direction estimation result when the SNR of the target sound source signal with respect to the noise signal is 20 dB. The lower part of FIG. 3 shows an enlarged part of the upper part of FIG. However, the horizontal axis represents time, and the vertical axis represents the estimated arrival direction.

図3から、本実施例による手法(提案アルゴリズム)では、LMSアルゴリズムに基づいた従来手法(Conventional) と比較して、高速に音源方向を推定していることが確認できる。一般に、ステップサイズパラメータの選定は、システムの安定性と収束速度に関係し、容易ではない。提案アルゴリズムは、自然勾配(Natural Gradient) 学習法を用いたことで、各時間および推定座標において、係数更新量が適切に可変し、追従速度の高速化が実現できたといえる。   From FIG. 3, it can be confirmed that the method (proposed algorithm) according to the present embodiment estimates the sound source direction at a higher speed than the conventional method (Conventional) based on the LMS algorithm. In general, the selection of the step size parameter is not easy as it relates to system stability and convergence speed. In the proposed algorithm, the natural gradient learning method is used, so that the coefficient update amount can be appropriately varied at each time and estimated coordinates, and the tracking speed can be increased.

マイクロホンアレーの座標系を示す模式図である。It is a schematic diagram which shows the coordinate system of a microphone array. マイクロホンアレーにおけるマイクロホン受音信号を同相化するための回路の構成を示すブロック図である。It is a block diagram which shows the structure of the circuit for making in-phase the microphone sound-receiving signal in a microphone array. シミュレーション結果を示すグラフである。It is a graph which shows a simulation result.

符号の説明Explanation of symbols

i マイクロホン
S 音源
10 同相化回路
M i microphone S sound source 10-phase circuit

Claims (2)

可搬型機器に搭載されかつ可搬型機器を基準とした3次元座標系のxy平面上に配置された3以上のマイクロホンを有するマイクロホンアレーにおけるマイクロホン受音信号の同相化装置において、
所定時間毎に、上記3次元座標系での音源の座標推定値を算出する第1手段、および第1手段によって算出された音源の座標推定値に基づいて、各マイクロホンの受音信号を、同相化された信号に変換する第2手段を備えており、第1手段は、自然勾配学習法を利用して、第2手段によって得られる同相化信号の差が最小となるような音源の座標を推定するものであることを特徴とするマイクロホンアレーにおけるマイクロホン受音信号の同相化装置。
In an apparatus for phase-synchronizing a microphone sound signal in a microphone array having three or more microphones mounted on a portable device and arranged on an xy plane of a three-dimensional coordinate system based on the portable device.
The first means for calculating the coordinate estimate value of the sound source in the three-dimensional coordinate system at every predetermined time, and the sound reception signal of each microphone based on the coordinate estimate value of the sound source calculated by the first means Second means for converting into a normalized signal, and the first means uses a natural gradient learning method to determine the coordinates of the sound source that minimizes the difference in the in-phase signal obtained by the second means. An in-phase apparatus for receiving a microphone sound signal in a microphone array, wherein the apparatus is an estimation device.
可搬型機器に搭載されかつ可搬型機器を基準とした3次元座標系のxy平面上に配置された3以上のマイクロホンを有するマイクロホンアレーにおけるマイクロホン受音信号の同相化方法において、
所定時間毎に、上記3次元座標系での音源の座標推定値を算出する第1ステップ、および第1ステップによって算出された音源の座標推定値に基づいて、各マイクロホンの受音信号を、同相化された信号に変換する第2ステップを備えており、第1ステップは、自然勾配学習法を利用して、第2ステップによって得られる同相化信号の差が最小となるような音源の座標を推定するものであることを特徴とするマイクロホンアレーにおけるマイクロホン受音信号の同相化方法。
In the method of phase-synchronizing a microphone sound reception signal in a microphone array having three or more microphones mounted on a portable device and arranged on an xy plane of a three-dimensional coordinate system based on the portable device.
The first step of calculating the coordinate estimate value of the sound source in the three-dimensional coordinate system at predetermined time intervals, and the sound reception signal of each microphone in-phase based on the coordinate estimate value of the sound source calculated by the first step A second step of converting the signal into a normalized signal, and the first step uses a natural gradient learning method to determine the coordinates of the sound source that minimizes the difference in the in-phase signal obtained in the second step. An in-phase method for receiving a microphone sound signal in a microphone array, wherein the method is an estimation method.
JP2004071551A 2004-03-12 2004-03-12 Method and apparatus for synchronizing phases of microphone reception signals in microphone array Pending JP2005260744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004071551A JP2005260744A (en) 2004-03-12 2004-03-12 Method and apparatus for synchronizing phases of microphone reception signals in microphone array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004071551A JP2005260744A (en) 2004-03-12 2004-03-12 Method and apparatus for synchronizing phases of microphone reception signals in microphone array

Publications (1)

Publication Number Publication Date
JP2005260744A true JP2005260744A (en) 2005-09-22

Family

ID=35086022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004071551A Pending JP2005260744A (en) 2004-03-12 2004-03-12 Method and apparatus for synchronizing phases of microphone reception signals in microphone array

Country Status (1)

Country Link
JP (1) JP2005260744A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092512A (en) * 2006-10-05 2008-04-17 Casio Hitachi Mobile Communications Co Ltd Voice input unit
KR101459317B1 (en) 2007-11-30 2014-11-07 삼성전자주식회사 Method and apparatus for calibrating the sound source signal acquired through the microphone array

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140000A (en) * 1995-11-15 1997-05-27 Nippon Telegr & Teleph Corp <Ntt> Loud hearing aid for conference
JP2000242624A (en) * 1999-02-18 2000-09-08 Retsu Yamakawa Signal separation device
JP2002023776A (en) * 2000-07-13 2002-01-25 Univ Kinki Method for identifying speaker voice and non-voice noise in blind separation, and method for specifying speaker voice channel
JP2003084793A (en) * 2001-09-14 2003-03-19 Nippon Telegr & Teleph Corp <Ntt> Method, device, and program for analyzing independent component and recording medium with this program recorded thereon

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140000A (en) * 1995-11-15 1997-05-27 Nippon Telegr & Teleph Corp <Ntt> Loud hearing aid for conference
JP2000242624A (en) * 1999-02-18 2000-09-08 Retsu Yamakawa Signal separation device
JP2002023776A (en) * 2000-07-13 2002-01-25 Univ Kinki Method for identifying speaker voice and non-voice noise in blind separation, and method for specifying speaker voice channel
JP2003084793A (en) * 2001-09-14 2003-03-19 Nippon Telegr & Teleph Corp <Ntt> Method, device, and program for analyzing independent component and recording medium with this program recorded thereon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092512A (en) * 2006-10-05 2008-04-17 Casio Hitachi Mobile Communications Co Ltd Voice input unit
KR101459317B1 (en) 2007-11-30 2014-11-07 삼성전자주식회사 Method and apparatus for calibrating the sound source signal acquired through the microphone array

Similar Documents

Publication Publication Date Title
CN109074816B (en) Far field automatic speech recognition preprocessing
JP6074263B2 (en) Noise suppression device and control method thereof
JP5608678B2 (en) Estimation of sound source position using particle filtering
JP4675381B2 (en) Sound source characteristic estimation device
JP4812302B2 (en) Sound source direction estimation system, sound source direction estimation method, and sound source direction estimation program
JP5530741B2 (en) Reverberation suppression apparatus and reverberation suppression method
JP5654980B2 (en) Sound source position estimating apparatus, sound source position estimating method, and sound source position estimating program
WO2012014451A1 (en) Multi-input noise suppresion device, multi-input noise suppression method, program, and integrated circuit
WO2015106401A1 (en) Speech processing method and speech processing apparatus
JP2001309483A (en) Sound pickup method and sound pickup device
JP2019062435A (en) Equipment control device, equipment control program, equipment control method, dialog device, and communication system
JP7235534B2 (en) Microphone array position estimation device, microphone array position estimation method, and program
JP2001527317A (en) System and method for decomposing a mixed wave field into individual components
US11062723B2 (en) Enhancement of audio from remote audio sources
JP2005260744A (en) Method and apparatus for synchronizing phases of microphone reception signals in microphone array
JP4962572B2 (en) Sound receiver
KR101658001B1 (en) Online target-speech extraction method for robust automatic speech recognition
JP4886616B2 (en) Sound collection device, sound collection method, sound collection program using the method, and recording medium
JP3929863B2 (en) Method and apparatus for correcting microphone reception signal in microphone array
JP3424761B2 (en) Sound source signal estimation apparatus and method
Huang et al. Source localization
JP5635024B2 (en) Acoustic signal emphasizing device, perspective determination device, method and program thereof
JP2011188444A (en) Head tracking device and control program
JP2005077205A (en) System for estimating sound source direction, apparatus for estimating time delay of signal, and computer program
CN117037836B (en) Real-time sound source separation method and device based on signal covariance matrix reconstruction

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070117

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100121

A02 Decision of refusal

Effective date: 20100812

Free format text: JAPANESE INTERMEDIATE CODE: A02