JP2005260608A - Receiving unit, portable communication terminal and decoding method - Google Patents

Receiving unit, portable communication terminal and decoding method Download PDF

Info

Publication number
JP2005260608A
JP2005260608A JP2004069803A JP2004069803A JP2005260608A JP 2005260608 A JP2005260608 A JP 2005260608A JP 2004069803 A JP2004069803 A JP 2004069803A JP 2004069803 A JP2004069803 A JP 2004069803A JP 2005260608 A JP2005260608 A JP 2005260608A
Authority
JP
Japan
Prior art keywords
signal
reception
received
reception quality
decoding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004069803A
Other languages
Japanese (ja)
Inventor
Takashi Izumi
尚 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Ericsson Mobile Communications Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Ericsson Mobile Communications Japan Inc filed Critical Sony Ericsson Mobile Communications Japan Inc
Priority to JP2004069803A priority Critical patent/JP2005260608A/en
Publication of JP2005260608A publication Critical patent/JP2005260608A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce power consumption and a decoding processing period of time without greatly impairing decoding performance when a receiving environment is inferior in turbo decoding. <P>SOLUTION: In decoding a received signal, a reception SIR estimating part 204 estimates a reception SIR (signal to interference ratio) of the received signal, a normalizer 202 sets an operation word long when the reception SIR is satisfactory, sets the operation word short when the reception SIR is not satisfactory and outputs the received signal as a reception sequence, and a turbo decoder 203 decodes the reception sequence, corrects errors with reliability information and the reception sequence predetermined times and outputs a decoding result. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、受信信号の受信系列に対して、受信系列に含まれる信頼度情報を用いて誤り訂正を行いつつ復号結果を出力する受信ユニット、携帯通信端末及び復号方法に関する。   The present invention relates to a reception unit, a mobile communication terminal, and a decoding method for outputting a decoding result while performing error correction on a reception sequence of a reception signal using reliability information included in the reception sequence.

近年における移動体通信にあっては、送信側で情報信号を符号化し、これを受信側にて復号することによって誤り訂正を行うことが可能となり、この誤り訂正の方式として種々の開発及び実用化がなされている。この誤り訂正を行うに際し、信号対雑音比、若しくはEb/N0(Eb:1ビットあたりの電力,N0:1Hzあたりの雑音電力)が、低くなった場合に、所定の誤り率で情報信号を復調できるかが、無線通信の信頼性において重要となる。かかる誤り訂正の理論的限界を裏付ける定理として、シャノンの定理があり、このシャノンの限界に漸近的に近づける符号としてターボ符号がある(例えば、非特許文献1)。   In recent mobile communications, it is possible to perform error correction by encoding an information signal on the transmitting side and decoding it on the receiving side, and various developments and practical applications of this error correction method Has been made. When performing this error correction, if the signal-to-noise ratio or Eb / N0 (Eb: power per bit, noise power per N0: 1 Hz) becomes low, the information signal is demodulated at a predetermined error rate. Whether this is possible is important in the reliability of wireless communication. There is Shannon's theorem as a theorem to support the theoretical limit of error correction, and there is a turbo code as a code that asymptotically approaches the Shannon limit (for example, Non-Patent Document 1).

このターボ符号では、情報系列を2つの符号器にそれぞれ入力し、各々パリティビット列を生成する。このとき、一方の符号器には情報系列をそのまま入力し、他方の符号器には、インターリーバで順序を並べ替えて入力する。そして、これら2つのパリティビット列を、単純に多重化するか、あるいは間引き(puncturing)しつつ多重化し、さらに情報系列と多重化して通信路に送出する。   In this turbo code, an information sequence is input to two encoders, respectively, and a parity bit string is generated. At this time, the information sequence is input as it is to one encoder, and the other encoder is input with the order rearranged by an interleaver. Then, these two parity bit strings are simply multiplexed or multiplexed while being punctured, and further multiplexed with an information sequence and transmitted to the communication path.

一方、上述したターボ符号に対応したターボ復号器では、まず、受信系列を受け取り、第1の復号器により復号処理を行い、情報シンボルの復号結果とその信頼度情報を取得する。そして、インターリーバで並び替えられた第1の復号器からの信頼度情報及び受信系列を用いて第2の復号器により復号処理を行い、復号処理により得られた信頼度情報をデインターリーバで並び替えた後、第1の復号器へ送る。2回目以降の繰り返しでは、第1の復号器で、受信系列と、第2の復号器からの信頼度情報とに基づき復号処理を実行する。この処理を所定回数繰り返した後、最終判定を行い出力する。   On the other hand, in the turbo decoder corresponding to the above-described turbo code, first, the received sequence is received, the first decoder performs decoding processing, and the decoding result of the information symbol and its reliability information are acquired. Then, the second decoder performs decoding processing using the reliability information and the reception sequence from the first decoder rearranged by the interleaver, and the reliability information obtained by the decoding processing is converted by the deinterleaver. After rearrangement, it is sent to the first decoder. In the second and subsequent iterations, the first decoder performs a decoding process based on the received sequence and the reliability information from the second decoder. After this process is repeated a predetermined number of times, a final determination is made and output.

そして、上述したターボ復号器のハードウェア化を行う場合、回路規模、消費電流、復号処理時間を考慮して、例えば、32bit演算から8bit演算に制限するなど、演算語長を制限するのが通常である。
C.Berrou,A.Glavieux and G.Montorsi:"NEAR SHANNON LIMIT ERROR-CORRECTING CODING AND DECODING:TURBO-CODES(1)'', Proc.of ICC' 93(Geneva,Switzerland), pp.1064-1070
When implementing the above-described turbo decoder in hardware, it is usual to limit the operation word length, for example, from 32 bits to 8 bits in consideration of circuit scale, current consumption, and decoding processing time. It is.
C.Berrou, A.Glavieux and G.Montorsi: "NEAR SHANNON LIMIT ERROR-CORRECTING CODING AND DECODING: TURBO-CODES (1) '', Proc.of ICC '93 (Geneva, Switzerland), pp.1064-1070

しかしながら、上記ターボ復号器において、演算語長は短くすればするほど、回路規模の縮小や消費電力の低減、復号処理時間の短縮化を図ることができる反面、演算語長を小さく設定しすぎると、誤り訂正の効率が低下し所望の復号特性を得ることが困難になる。したがって、ハードウェア化を行う場合、これら処理時間と復号特性とのバランスを検討する必要がある。   However, in the turbo decoder, as the operation word length is shortened, the circuit scale can be reduced, the power consumption can be reduced, and the decoding processing time can be shortened. On the other hand, if the operation word length is set too small. As a result, the efficiency of error correction decreases and it becomes difficult to obtain desired decoding characteristics. Therefore, when implementing hardware, it is necessary to consider the balance between the processing time and the decoding characteristics.

その一方で、 受信環境が劣悪のときには、演算語長を大きめに設定しても、十分な誤り訂正の効果が得られず復号特性が限界が生じ、受信環境によらず一律な演算語長でハードウェア化を行うと、消費電流、復号処理時間の面で、効率が悪くなるという問題がある。   On the other hand, when the reception environment is inferior, even if the operation word length is set to a large value, the effect of sufficient error correction cannot be obtained and the decoding characteristics are limited, and the operation word length is uniform regardless of the reception environment. When hardware is used, there is a problem that the efficiency is reduced in terms of current consumption and decoding processing time.

本発明は、上記問題を解決すべくなされたものであり、受信品質に応じて、符号化における演算語長を可変とすることによって、受信環境が劣悪なときに復号性能を大きく損なうことなく、消費電力や復号処理時間を低減することのできる受信ユニット、携帯通信端末及び復号方法を提供することをその課題とする。   The present invention has been made to solve the above problem, and by varying the operation word length in encoding according to the reception quality, without greatly impairing the decoding performance when the reception environment is poor, It is an object of the present invention to provide a receiving unit, a mobile communication terminal, and a decoding method that can reduce power consumption and decoding processing time.

上記課題を解決するために、本発明は、受信信号の復号に際し、受信品質推定部において受信信号の受信品質を推定し、演算語長調節部において受信品質が良好である場合に演算語長を長く設定し、受信品質が不良である場合に演算語長を短く設定して、受信信号を受信系列として出力し、ターボ復号器において前記受信系列を復号し、信頼度情報と受信系列とにより誤り訂正を所定回数行い、復号結果を出力する。   In order to solve the above problems, the present invention estimates the reception quality of a received signal in a reception quality estimation unit when decoding a received signal, and sets the operation word length when the reception quality is good in an operation word length adjustment unit. If the reception quality is poor, the operation word length is set short, the reception signal is output as a reception sequence, the reception sequence is decoded by the turbo decoder, and there is an error depending on the reliability information and the reception sequence. Correction is performed a predetermined number of times, and the decoding result is output.

このような本発明によれば、受信環境が劣悪のときには演算語長を短く設定し、処理速度の高速化により復号特性の向上を図り、受信環境が良好なときには、演算語長を長く設定し、誤り訂正の効率化による復号特性の向上を図ることができる。   According to the present invention, the operation word length is set short when the reception environment is poor, the decoding characteristic is improved by increasing the processing speed, and the operation word length is set long when the reception environment is good. Thus, the decoding characteristics can be improved by improving the efficiency of error correction.

なお、本発明では、受信信号に含まれる制御信号の受信電力及び雑音信号の受信電力に基づいて、受信信号に含まれる情報信号のSIR(希望波対干渉波電力比)から受信品質を推定することが好ましい。この場合には、送信電力が既知の制御信号(パイロット信号)を用いて、受信品質を推定することができ、より正確な受信品質の推定が可能となる。   In the present invention, the reception quality is estimated from the SIR (desired wave to interference wave power ratio) of the information signal included in the received signal based on the received power of the control signal and the received power of the noise signal included in the received signal. It is preferable. In this case, it is possible to estimate the reception quality using a control signal (pilot signal) whose transmission power is known, and it is possible to estimate the reception quality more accurately.

以上説明したように本発明によれば、受信信号を復号する際に、復号により取得される信頼度情報と受信系列とにより誤り訂正を所定回数行うターボ復号において、受信品質に応じ、符号化における演算語長を可変とすることによって、受信環境が劣悪なときに復号性能を大きく損なうことなく、消費電力や復号処理時間を低減することができる。   As described above, according to the present invention, when decoding a received signal, in turbo decoding in which error correction is performed a predetermined number of times based on reliability information acquired by decoding and a received sequence, in the encoding according to the reception quality. By making the operation word length variable, it is possible to reduce power consumption and decoding processing time without greatly degrading decoding performance when the reception environment is poor.

(通信システムの構成)
本発明の実施形態について図面を参照しながら説明する。本実施形態では、本発明に係る受信ユニット及び通信端末装置を、図1(a)に示す通信システムに適用した場合を例に説明する。図1(a)は、本実施形態に係る通信システムの全体構成を示すブロック図である。
(Configuration of communication system)
Embodiments of the present invention will be described with reference to the drawings. In this embodiment, a case where the receiving unit and the communication terminal device according to the present invention are applied to the communication system shown in FIG. 1A will be described as an example. FIG. 1A is a block diagram showing an overall configuration of a communication system according to the present embodiment.

図1(a)に示すように、本実施形態に係る通信システムでは、送信側の通信端末1と、受信側の通信端末2とを備えており、ここでは、通信端末1において符号化された情報信号D1を、通信端末2において受信し、情報信号D3として復号する。   As shown in FIG. 1 (a), the communication system according to the present embodiment includes a communication terminal 1 on the transmission side and a communication terminal 2 on the reception side. Here, encoding is performed in the communication terminal 1. The information signal D1 is received by the communication terminal 2 and decoded as the information signal D3.

通信端末1は、送信系のモジュールとして情報信号D1を符号化するターボ符号化部101と、符号化された信号を変調する変調器102と、変調された信号にパイロット信号D2を多重化する多重器103と、多重化された信号を送信する送信部100とを備えている。   The communication terminal 1 includes a turbo encoder 101 that encodes the information signal D1 as a transmission system module, a modulator 102 that modulates the encoded signal, and a multiplex that multiplexes the pilot signal D2 into the modulated signal. And a transmission unit 100 that transmits the multiplexed signal.

図2(a)は、上記ターボ符号化部101の構成を示すブロック図である。同図に示すように、入力された情報信号D1は、符号器101bへ入力されて符号化される。一方、入力された情報信号D1の他方は、インターリーブ回路101aにより所定サイズでインターリーブされ、それから符号器101cにおいて符号化される。なお、ここで、符号器101cと符号器101cにおける符号化とは、組織的畳符号(n1,k)による符号化である。   FIG. 2A is a block diagram showing a configuration of the turbo encoding unit 101. As shown in the figure, the input information signal D1 is input to the encoder 101b and encoded. On the other hand, the other of the input information signal D1 is interleaved with a predetermined size by the interleave circuit 101a and then encoded by the encoder 101c. Here, the encoding in the encoder 101c and the encoder 101c is encoding by a systematic tatami code (n1, k).

これら各符号器101b及び101cからの出力は切替器101dに入力され、この切替器101dにおいて、インターリーブ回路101aに対応して交互に切り替えられて出力される。さらにこの切替器101dからの出力は、並/直変換器101eに入力され、無符号化ビット(入力情報のビット)と、符号化ビットの切り替え(並列/直列変換)が行われ、符号器出力として出力される。   The outputs from the encoders 101b and 101c are input to the switch 101d, and the switch 101d is alternately switched and output corresponding to the interleave circuit 101a. Further, the output from the switch 101d is input to the parallel / serial converter 101e, and the uncoded bit (bit of input information) and the coded bit are switched (parallel / serial conversion), and the encoder output is output. Is output as

一方、図1(a)に示すように、通信端末2は、受信系のモジュールとして、受信信号を受信する受信部200と、この受信された信号を復調する復調器201と、復調信号を所定の演算語長に切り出すノーマライザ202と、ターボ復号を行い情報信号D3を出力するターボ復号器203と、受信信号のSIR(希望波対干渉波電力比)を推定する受信SIR推定部204とを備えている。   On the other hand, as shown in FIG. 1A, the communication terminal 2 serves as a receiving module, a receiving unit 200 that receives a received signal, a demodulator 201 that demodulates the received signal, and a predetermined demodulated signal. A normalizer 202 that cuts out to an operation word length of 2), a turbo decoder 203 that performs turbo decoding and outputs an information signal D3, and a reception SIR estimation unit 204 that estimates an SIR (desired wave-to-interference wave power ratio) of the reception signal. ing.

図2(b)は、ターボ復号器203の構成を示すブロック図である。ターボ復号器203は、受信系列を復号し、復号により取得される信頼度情報と受信系列とにより誤り訂正を所定回数行い、復号結果を出力する復号器である。ターボ復号器203では、同図に示すように、入力信号が直/並変換器203aで直列/並列変換され、MAP復号器203b及び203dへ入力される。MAP復号器203bの一方の出力はインターリーブ回路203cに入力され、通信端末1側における符号化の際のインターリーブに対応したデータ長でソートが行われ、MAP復号器203dに入力される。   FIG. 2B is a block diagram showing the configuration of the turbo decoder 203. The turbo decoder 203 is a decoder that decodes a received sequence, performs error correction a predetermined number of times using reliability information obtained by decoding and the received sequence, and outputs a decoding result. In the turbo decoder 203, as shown in the figure, the input signal is serial / parallel converted by the serial / parallel converter 203a and input to the MAP decoders 203b and 203d. One output of the MAP decoder 203b is input to the interleave circuit 203c, sorted by the data length corresponding to the interleaving at the time of encoding on the communication terminal 1 side, and input to the MAP decoder 203d.

MAP復号器203dでは、これらの信号が復号され、デインターリーブ回路203fでインターリーブと逆の並び替え処理を受けて復号出力として出力される。一方、MAP復号器203dの出力の一部は、デインターリーブ回路203eでインターリーブと逆の並び替えが施され、信頼度情報としてMAP復号器203bに入力される。この操作を必要回数繰り返す。   In the MAP decoder 203d, these signals are decoded, subjected to a rearrangement process reverse to interleaving in the deinterleave circuit 203f, and output as a decoded output. On the other hand, a part of the output of the MAP decoder 203d is rearranged in reverse to the interleaving by the deinterleave circuit 203e, and is input to the MAP decoder 203b as reliability information. This operation is repeated as many times as necessary.

ここでMAP復号について説明する。送信側で符号化を行い、符号語wjを送信したときに、受信側で正しく復号するためには、受信語yが符号語wjの復号領域Rjに入る場合である。したがって、この場合の正しい復号の確立Pcは、各符号語が送られる確立をP(wj)とすると、

Figure 2005260608

となる。 Here, MAP decoding will be described. When encoding is performed on the transmission side and the code word wj is transmitted, in order to correctly decode on the reception side, the received word y enters the decoding region Rj of the code word wj. Accordingly, the establishment Pc of correct decoding in this case is P (wj) where the establishment that each codeword is sent is P (wj)
Figure 2005260608

It becomes.

上式において、結合確立(wj,y)=P(wj)・P(y|wj)が最大になるようにする。すなわち、ある与えられた受信語yに対し条件付確立P(y|wj)を最大とする符号語が送られたと判断する。条件付確立P(y|wj)は、事後確率と呼び、この確率を最大とする符号語が送られたと推定する復号を最大事後確率復号(maximaum a posteriori probability decoding:MAP符号)という。このアルゴリズムについては、例えば、文献「L.R.Bahl,J.Cocke,F.Jelinek,and J.Raviv,:"Optimal decoding of linear codes for minimizingsymbolerror rate,''IEEE Trans.Inform.Theory,Vol.IT-20,pp.284-287,1974」に詳細に述べられている。   In the above equation, the connection establishment (wj, y) = P (wj) · P (y | wj) is maximized. That is, it is determined that a code word that maximizes conditional establishment P (y | wj) is sent for a given received word y. Conditional establishment P (y | wj) is called a posteriori probability, and decoding that estimates that a codeword that maximizes this probability has been sent is called maximum a posteriori probability decoding (MAP code). Regarding this algorithm, for example, the document “LRBahl, J. Cocke, F. Jelinek, and J. Raviv ,:” Optimal decoding of linear codes for minimizing symbol error rate, ”IEEE Trans. Inform. Theory, Vol. IT-20. , pp.284-287, 1974 ”.

ターボ復号器203への入力信号として、"The Log-Lkelihood Ratios(以下、LLR)"が用いられることについては、文献「C.Berrou,A.Glavieux and Member, IEEE: "NEAR Optimum Error Correcting Coding And Decoding: Turbo-Codes'',Proc.of IEEE' October, 1996, Vol.44, NO.10, pp.1261-1271」で述べられており、LLRは、以下のように定義されている。

Figure 2005260608
The use of “The Log-Lkelihood Ratios (hereinafter LLR)” as an input signal to the turbo decoder 203 is described in the document “C. Berrou, A. Glavieux and Member, IEEE:“ NEAR Optimum Error Correcting Coding And ”. Decoding: Turbo-Codes'', Proc. Of IEEE' October, 1996, Vol. 44, NO. 10, pp. 1261-1271 ", and LLR is defined as follows.
Figure 2005260608

また、AWGN Channelにおいて、数2は、以下のように定義される。

Figure 2005260608
In AWGN Channel, Equation 2 is defined as follows.
Figure 2005260608

なお、上式において、Esは、1シンボル(ターボ符号化後の1bit)あたりのエネルギーであり、N0は、1Hzあたりの雑音電力である。   In the above equation, Es is energy per symbol (1 bit after turbo coding), and N0 is noise power per 1 Hz.

前記ノーマライザ202は、復調器201により復調された受信信号を、前記受信SIR推定部204により推定された受信SIRに応じた演算語長で、受信系列として出力する演算語長調節部であり、本実施形態では、図1(b)に示すような、受信SIRと演算語長とを関連付けるルックアップテーブルT1を備えており、受信SIR推定部204により推定された受信SIRに応じて演算語長を切り替える。すなわち、受信SIR推定部204により推定された受信SIRについて、ルックアップテーブルT1参照し、受信品質が良好である場合に演算語長を長く設定し、受信品質が不良である場合に演算語長を短く設定する。   The normalizer 202 is an arithmetic word length adjustment unit that outputs the reception signal demodulated by the demodulator 201 as a reception sequence with an arithmetic word length corresponding to the reception SIR estimated by the reception SIR estimation unit 204. In the embodiment, as shown in FIG. 1B, a lookup table T1 for associating the reception SIR with the operation word length is provided, and the operation word length is set according to the reception SIR estimated by the reception SIR estimation unit 204. Switch. That is, with respect to the reception SIR estimated by the reception SIR estimation unit 204, the lookup table T1 is referred to, and when the reception quality is good, the operation word length is set longer, and when the reception quality is poor, the operation word length is set. Set it short.

ルックアップテーブルT1は、図1(b)に示すように、受信SIRが0〜4の場合、演算語長は4bitに設定され、受信SIRが4〜8dBの場合、演算語長は6bitに設定され、受信SIRが8dB以上の場合、演算語長は8bitに設定される。このルックアップテーブルT1は、通信システムにおいて要求されているパフォーマンスに応じて、任意に変えることが可能である。   In the lookup table T1, as shown in FIG. 1B, when the reception SIR is 0 to 4, the operation word length is set to 4 bits, and when the reception SIR is 4 to 8 dB, the operation word length is set to 6 bits. When the received SIR is 8 dB or more, the operation word length is set to 8 bits. This lookup table T1 can be arbitrarily changed according to the performance required in the communication system.

受信SIR推定部204は、受信信号に対して、通信路で生じたSN比の劣化度合いを推定するモジュールである。ここで、受信SIR推定部204の動作について詳述する。なお、ここでは、情報信号D1がDSCHにマッピングされているものとする。   The reception SIR estimation unit 204 is a module that estimates the degree of deterioration of the S / N ratio generated in the communication path with respect to the reception signal. Here, the operation of reception SIR estimation section 204 will be described in detail. Here, it is assumed that the information signal D1 is mapped to DSCH.

まず、数4により、CPICH(Pilot channel)のRSCPを算出する。

Figure 2005260608
First, the RSCP of CPICH (Pilot channel) is calculated by Equation 4.
Figure 2005260608

次いで、数5により、CPICH ISCPを算出する。

Figure 2005260608
Next, CPICH ISCP is calculated by Equation 5.
Figure 2005260608

そして、CPICH_SN比を算出する。なお、ここでは、CPICH_RSCPは、信号成分の電力に相当し、CPICH_ISCPは干渉成分の電力に相当するので、次式により、CPICHのSN比が求まる。

Figure 2005260608
Then, the CPICH_SN ratio is calculated. Here, since CPICH_RSCP corresponds to the power of the signal component and CPICH_ISCP corresponds to the power of the interference component, the SN ratio of CPICH is obtained by the following equation.
Figure 2005260608

次に、DSCH_SN比(=受信SIR)を算出する。

Figure 2005260608
Next, the DSCH_SN ratio (= received SIR) is calculated.
Figure 2005260608

(通信システムの動作)
以上説明した本実施形態に係る通信システムの動作について説明する。まず、通信端末1において、情報信号D1をターボ符号化部101により符号化し、符号化された信号を変調器102により変調し、この変調された信号にパイロット信号D2を、多重器103により多重化し、この多重化された信号を送信部100により、通信路を通じて通信端末2に対して送信する。そして、送信された信号を通信端末2において受信する。係る通信端末2における処理を図3に示す。
(Operation of communication system)
The operation of the communication system according to the present embodiment described above will be described. First, in the communication terminal 1, the information signal D1 is encoded by the turbo encoder 101, the encoded signal is modulated by the modulator 102, and the pilot signal D2 is multiplexed on the modulated signal by the multiplexer 103. The multiplexed signal is transmitted by the transmitter 100 to the communication terminal 2 through the communication path. Then, the transmitted signal is received by the communication terminal 2. The processing in the communication terminal 2 is shown in FIG.

通信端末2において信号が受信されると(S101)、受信された信号は、復調器201に入力され復調されるとともに、受信SIR推定部204にも入力される。受信SIR推定部204では、受信信号に含まれるパイロット信号の受信電力及び雑音信号の受信電力に基づいて、受信信号に含まれる情報信号D1の受信SIRが推定される(S102)。   When a signal is received at the communication terminal 2 (S101), the received signal is input to the demodulator 201 and demodulated, and is also input to the reception SIR estimation unit 204. Reception SIR estimation section 204 estimates the reception SIR of information signal D1 included in the reception signal based on the reception power of the pilot signal and the noise signal included in the reception signal (S102).

そして、推定された受信SIRについて、ノーマライザ202でルックアップテーブルT1が参照され(S103)、受信品質に応じた演算語長が設定される(ステップS104〜S106)。すなわち、ノーマライザ202は、受信品質が良好である場合に演算語長を長く設定し、受信品質が不良である場合に演算語長を短く設定し、この設定された演算語長により受信信号を受信系列としてターボ復号器203に出力する。ターボ復号器203では、ノーマライザ202で調整された演算語長をもって受信系列を復号し、復号により取得される信頼度情報と前記受信系列とにより誤り訂正を所定回数行い、復号結果を出力する(S108)。   Then, with respect to the estimated reception SIR, the normalizer 202 refers to the lookup table T1 (S103), and sets the operation word length corresponding to the reception quality (steps S104 to S106). That is, the normalizer 202 sets the operation word length longer when the reception quality is good, sets the operation word length shorter when the reception quality is poor, and receives the reception signal with the set operation word length. The sequence is output to the turbo decoder 203. The turbo decoder 203 decodes the received sequence with the operation word length adjusted by the normalizer 202, performs error correction a predetermined number of times using the reliability information acquired by decoding and the received sequence, and outputs the decoding result (S108). ).

(本実施形態による効果)
以上説明したように本実施形態によれば、受信信号をターボ復号器により復号する際に、受信SIR等の受信品質に応じ、符号化における演算語長を可変とすることによって、受信環境が劣悪なときに復号性能を大きく損なうことなく、消費電力や復号処理時間を低減することができる。
(Effects of this embodiment)
As described above, according to the present embodiment, when the received signal is decoded by the turbo decoder, the reception environment is inferior by making the operation word length in the encoding variable according to the reception quality such as the reception SIR. In such a case, the power consumption and the decoding processing time can be reduced without significantly degrading the decoding performance.

すなわち、図4に示すように、演算語長とBLER(ブロックエラー率)特性との関係において、受信SIRが劣悪であるとき(Eb/N0が小さいとき)は、演算語長による特性さは小さく、受信SIRが良好であるとき(Eb/N0が大きいとき)は、演算語長による特性差が大きい。したがって、本実施形態によれば、受信SIRが低いときに演算語長を短く設定し、受信SIRが高いとき演算語長を長く設定することによって、大きなBLER特性を招くことなく、ターボ復号器の消費電流削減、復号処理時間の短縮化を実現することができる。   That is, as shown in FIG. 4, when the received SIR is inferior (when Eb / N0 is small) in the relationship between the arithmetic word length and the BLER (block error rate) characteristic, the characteristic due to the arithmetic word length is small. When the reception SIR is good (when Eb / N0 is large), the characteristic difference due to the operation word length is large. Therefore, according to the present embodiment, the operation word length is set short when the reception SIR is low, and the operation word length is set long when the reception SIR is high, so that the turbo decoder does not incur a large BLER characteristic. It is possible to reduce current consumption and shorten the decoding processing time.

なお、本実施形態では、受信信号に含まれるパイロット信号の受信電力及び雑音信号の受信電力に基づいて、受信信号に含まれる情報信号のSIR(希望波対干渉波電力比)から受信品質を推定するため、送信電力が既知の制御信号(パイロット信号)を用いて、受信品質を推定することができ、より正確な受信品質の推定が可能となる。   In the present embodiment, the reception quality is estimated from the SIR (desired wave to interference wave power ratio) of the information signal included in the reception signal based on the reception power of the pilot signal and the noise signal included in the reception signal. Therefore, it is possible to estimate the reception quality using a control signal (pilot signal) whose transmission power is known, and it is possible to estimate the reception quality more accurately.

(a)は、実施形態に係る通信システムの構成を示すブロック図であり、(b)は、ルックアップテーブルT1のデータ構造を示す説明図である。(A) is a block diagram which shows the structure of the communication system which concerns on embodiment, (b) is explanatory drawing which shows the data structure of lookup table T1. (a)は、実施形態に係るターボ符号化部101の構成を示す機能ブロック図であり、(b)は、実施形態に係るターボ復号器203の構成を示す機能ブロック図である。(A) is a functional block diagram which shows the structure of the turbo encoding part 101 which concerns on embodiment, (b) is a functional block diagram which shows the structure of the turbo decoder 203 which concerns on embodiment. 実施形態に係るターボ復号器203の動作を示すフローチャート図である。It is a flowchart figure which shows operation | movement of the turbo decoder 203 which concerns on embodiment. フェージング周波数240Hzにおける、演算語長とBLER(ブロックエラー率)特性との関係を示すグラフ図である。It is a graph which shows the relationship between the arithmetic word length and BLER (block error rate) characteristic in fading frequency 240Hz.

符号の説明Explanation of symbols

D1 情報信号、D2 パイロット信号、D3 情報信号、T1 ルックアップテーブル、1,2 通信端末、100 送信部、101 ターボ符号化部、101a インターリーブ回路、101b,101c 符号器、101d 切替器、101e 並/直変換器、102 変調器、103 多重器、200 受信部、201 復調器、202 ノーマライザ、203 ターボ復号器、203a 直/並変換器、203b MAP復号器、203c インターリーブ回路、203d MAP復号器、203e,203f デインターリーブ回路、204 受信SIR推定部
D1 information signal, D2 pilot signal, D3 information signal, T1 lookup table, 1, 2 communication terminal, 100 transmitter, 101 turbo encoder, 101a interleave circuit, 101b, 101c encoder, 101d switch, 101e parallel / Direct converter, 102 modulator, 103 multiplexer, 200 receiver, 201 demodulator, 202 normalizer, 203 turbo decoder, 203a direct / parallel converter, 203b MAP decoder, 203c interleave circuit, 203d MAP decoder, 203e , 203f Deinterleave circuit, 204 reception SIR estimation unit

Claims (6)

受信信号の受信品質を推定する受信品質推定部と、
前記受信品質推定部による推定結果に基づいて、受信品質が良好である場合に演算語長を長く設定し、受信品質が不良である場合に演算語長を短く設定し、前記受信信号を受信系列として出力する演算語長調節部と、
前記演算語長切部から出力された前記受信系列を復号し、該復号により取得される信頼度情報と前記受信系列とにより誤り訂正を所定回数行い、復号結果を出力するターボ復号器と
を備えることを特徴とする受信ユニット。
A reception quality estimation unit for estimating the reception quality of the received signal;
Based on the estimation result by the reception quality estimation unit, the operation word length is set long when the reception quality is good, the operation word length is set short when the reception quality is bad, and the reception signal is received An arithmetic word length adjustment unit that outputs as
A turbo decoder that decodes the received sequence output from the arithmetic word length cut unit, performs error correction a predetermined number of times using the reliability information acquired by the decoding and the received sequence, and outputs a decoding result A receiving unit characterized by that.
前記受信品質推定部は、前記受信信号に含まれる制御信号の受信電力及び雑音信号の受信電力に基づいて、該受信信号に含まれる情報信号の希望波対干渉波電力比から前記受信品質を推定することを特徴とする請求項1に記載の受信ユニット。   The reception quality estimation unit estimates the reception quality from a desired signal to interference signal power ratio of an information signal included in the reception signal based on reception power of a control signal included in the reception signal and reception power of a noise signal. The receiving unit according to claim 1, wherein: 電波信号を受信し、復調し、受信信号として出力する受信復調部と、
受信信号の受信品質を推定する受信品質推定部と、
前記受信品質推定部による推定結果に基づいて、受信品質が良好である場合に演算語長を長く設定し、受信品質が不良である場合に演算語長を短く設定し、前記受信信号を受信系列として出力する演算語長調節部と、
前記演算語長切部から出力された前記受信系列を復号し、該復号により取得される信頼度情報と前記受信系列とにより誤り訂正を所定回数行い、復号結果を出力するターボ復号器と
を備えることを特徴とする携帯通信端末。
A reception demodulator that receives a radio signal, demodulates it, and outputs it as a received signal;
A reception quality estimation unit for estimating the reception quality of the received signal;
Based on the estimation result by the reception quality estimation unit, the operation word length is set long when the reception quality is good, the operation word length is set short when the reception quality is bad, and the reception signal is received An arithmetic word length adjustment unit that outputs as
A turbo decoder that decodes the received sequence output from the arithmetic word length cut unit, performs error correction a predetermined number of times using the reliability information acquired by the decoding and the received sequence, and outputs a decoding result A mobile communication terminal characterized by the above.
前記受信品質推定部は、前記受信信号に含まれる制御信号の受信電力及び雑音信号の受信電力に基づいて、該受信信号に含まれる情報信号の希望波対干渉波電力比から前記受信品質を推定することを特徴とする請求項3に記載の携帯通信端末。   The reception quality estimation unit estimates the reception quality from a desired signal to interference signal power ratio of an information signal included in the reception signal based on reception power of a control signal included in the reception signal and reception power of a noise signal. The mobile communication terminal according to claim 3, wherein: 受信品質推定部において、受信信号の受信品質を推定するステップ(1)と、
演算語長調節部において、前記ステップ(1)による推定結果に応じ、受信品質が良好である場合に演算語長を長く設定し、受信品質が不良である場合に演算語長を短く設定し、前記受信信号を受信系列として出力するステップ(2)と、
ターボ復号器において、前記ステップ(2)により出力された前記受信系列を復号し、該復号により取得される信頼度情報と前記受信系列とにより誤り訂正を所定回数行い、復号結果を出力するステップ(3)と
を備えることを特徴とする復号方法。
In the reception quality estimation unit, the step (1) of estimating the reception quality of the received signal,
In the operation word length adjustment unit, according to the estimation result in the step (1), when the reception quality is good, set the operation word length long, and when the reception quality is bad, set the operation word length short, Outputting the received signal as a received sequence (2);
In the turbo decoder, decoding the received sequence output in the step (2), performing error correction a predetermined number of times with the reliability information acquired by the decoding and the received sequence, and outputting a decoding result ( And 3) a decoding method.
前記ステップ(1)では、前記受信信号に含まれる制御信号の受信電力及び雑音信号の受信電力に基づいて、該受信信号に含まれる情報信号の希望波対干渉波電力比から前記受信品質を推定することを特徴とする請求項5に記載の復号方法。   In the step (1), based on the received power of the control signal and the received noise signal included in the received signal, the received quality is estimated from the desired signal to interference power ratio of the information signal included in the received signal. The decoding method according to claim 5, wherein:
JP2004069803A 2004-03-11 2004-03-11 Receiving unit, portable communication terminal and decoding method Pending JP2005260608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004069803A JP2005260608A (en) 2004-03-11 2004-03-11 Receiving unit, portable communication terminal and decoding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004069803A JP2005260608A (en) 2004-03-11 2004-03-11 Receiving unit, portable communication terminal and decoding method

Publications (1)

Publication Number Publication Date
JP2005260608A true JP2005260608A (en) 2005-09-22

Family

ID=35085905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004069803A Pending JP2005260608A (en) 2004-03-11 2004-03-11 Receiving unit, portable communication terminal and decoding method

Country Status (1)

Country Link
JP (1) JP2005260608A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8959421B2 (en) 2010-05-21 2015-02-17 Nec Corporation Decoding device and decoding order control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8959421B2 (en) 2010-05-21 2015-02-17 Nec Corporation Decoding device and decoding order control method

Similar Documents

Publication Publication Date Title
US6728323B1 (en) Baseband processors, mobile terminals, base stations and methods and systems for decoding a punctured coded received signal using estimates of punctured bits
JP2004208269A (en) Concatenated code decoder and method for re-circulating parity bit
JPWO2008015742A1 (en) Receiving device and decoding method thereof
KR100374787B1 (en) Bandwidth-efficient concatenated trellis-coded modulation decoder and method thereof
US20120057641A1 (en) Transmitting method and a receiving method of a modulated data stream
Maunder et al. On the performance and complexity of irregular variable length codes for near-capacity joint source and channel coding
US20100199145A1 (en) Method and apparatus for turbo encoding
Schlegel et al. On error bounds and turbo-codes
Minallah et al. Analysis of near-capacity iterative decoding schemes for wireless communication using EXIT charts
EP1821415B1 (en) Hybrid decoding using multiple turbo decoders in parallel
Hausl et al. Hybrid ARQ with cross-packet channel coding
JP2006094012A (en) Encoding method, decoding processing method, and communication apparatus
JP3624855B2 (en) Normalization device, method, program, recording medium recording the program, and communication terminal device
KR101325741B1 (en) Apparatus for network-coding and method thereof
JP2005260608A (en) Receiving unit, portable communication terminal and decoding method
JP2001251199A (en) Transmission device, communication system and communication method
JP2004153354A (en) Receiver, decoder, communication system, and decoding method
JP2005101939A (en) Unit and method for input control
KR101177142B1 (en) High code rate turbo coding method for the high speed data transmission and therefore apparatus
Tomar et al. Efficiency enhancement techniques for wireless communication systems
Choudhury Modeling and Simulation of a Turbo Encoder and Decoder for Wireless Communication Systems
JP2000031837A (en) Encoding method
JP3514213B2 (en) Direct concatenated convolutional encoder and direct concatenated convolutional encoding method
JP2004222197A (en) Method and device for receiving data
KR100564015B1 (en) Turbo decoder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091202