JP2005259595A - Electric contact and thermal protector using the same - Google Patents

Electric contact and thermal protector using the same Download PDF

Info

Publication number
JP2005259595A
JP2005259595A JP2004071243A JP2004071243A JP2005259595A JP 2005259595 A JP2005259595 A JP 2005259595A JP 2004071243 A JP2004071243 A JP 2004071243A JP 2004071243 A JP2004071243 A JP 2004071243A JP 2005259595 A JP2005259595 A JP 2005259595A
Authority
JP
Japan
Prior art keywords
contact
electrical contact
thermal protector
electrical
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004071243A
Other languages
Japanese (ja)
Inventor
Hikoharu Okuyama
彦治 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004071243A priority Critical patent/JP2005259595A/en
Publication of JP2005259595A publication Critical patent/JP2005259595A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Thermally Actuated Switches (AREA)
  • Contacts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric contact free from the possibility of melting and adhesion even at the end of its service life, and a thermal protector using the electric contact with greatly improved reliability and safety. <P>SOLUTION: The electric contact 10 includes a conductive layer 13 between a first main surface 11 and a second main surface 12 opposed to each other. The conductive layer 13 contains a conductive material, and further contains an electrically insulating material in a portion of the conductive layer 13 located near the first main surface 11 thereof. The volume ratio between the electrically insulating material and the conductive material in that portion falls within a range of 30:70 to 70:30. This electric contact 10 is used for the thermal protector. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、耐溶着性を改善した電気接点およびそれを用いたサーマルプロテクタに関する。   The present invention relates to an electrical contact with improved welding resistance and a thermal protector using the electrical contact.

従来、小型モータなどの電気機器の異常時に生じる熱的変化を検知して接点を開閉することにより電気機器を保護する装置としてサーマルプロテクタが使用されている。   2. Description of the Related Art Conventionally, a thermal protector has been used as a device that protects an electrical device by detecting a thermal change that occurs when the electrical device such as a small motor is abnormal and opening and closing contacts.

図3は、従来のガラス封止型のサーマルプロテクタの一部切欠断面図である。図3に示したサーマルプロテクタ30では、ガラス容器31内に、先端部に固定側接点32を備えた固定側内部リード線33と、先端部に可動側接点34を備え、他端部に可動側内部リード線35が接続された熱応動素子36とが対向して配置され、かつ固定側接点32と可動側接点34とが接離可能に配置されている。固定側内部リード線33および可動側内部リード線35はガラスビード37にて支持され、かつ封止部31a内において固定側内部リード線33および可動側内部リード線35は、固定側外部リード線38および可動側外部リード線39に溶接などによりそれぞれ接続されている。固定側外部リード線38および可動側外部リード線39の一端はガラス容器31の外部に導出されている。   FIG. 3 is a partially cutaway cross-sectional view of a conventional glass-sealed thermal protector. In the thermal protector 30 shown in FIG. 3, a fixed-side internal lead wire 33 having a fixed-side contact 32 at the tip, a movable-side contact 34 at the tip, and a movable-side at the other end in the glass container 31. A thermally responsive element 36 to which the internal lead wire 35 is connected is disposed to face the stationary contact 32 and the movable contact 34 is detachably disposed. The fixed-side internal lead wire 33 and the movable-side internal lead wire 35 are supported by a glass bead 37, and the fixed-side internal lead wire 33 and the movable-side internal lead wire 35 are fixed-side external lead wires 38 in the sealing portion 31a. And connected to the movable external lead wire 39 by welding or the like. One ends of the fixed-side external lead wire 38 and the movable-side external lead wire 39 are led out of the glass container 31.

このような従来のサーマルプロテクタは、小型モータなどの電気機器に使用され、機器異常時の過電流による自己発熱および雰囲気温度の上昇により、熱応動素子の反転復帰動作で固定側接点と可動側接点との開閉を行って電流を遮断することにより機器を保護している。   Such conventional thermal protectors are used in electrical devices such as small motors, and the self-heating due to overcurrent in the event of device abnormalities and the increase in ambient temperature cause the thermosensitive element to reverse and return to the fixed and movable contacts. The device is protected by cutting off the current by opening and closing.

本来、電気接点は開閉頻度が高くなるにつれてアーク放電による表面損傷が進み、従来のサーマルプロテクタにおいても寿命末期まで開閉動作を繰返した場合、その故障モードが接点の不導通か溶着かは予測できないのが現状である。ここで、接点の溶着が発生すると、保護すべき電気機器に障害を与える危険がある。   Originally, surface damage due to arc discharge progresses as the frequency of electrical contacts increases, and even if the conventional thermal protector repeats switching operation until the end of its life, it cannot be predicted whether the failure mode is contact non-conduction or welding. Is the current situation. Here, if contact welding occurs, there is a risk of causing a failure in the electrical equipment to be protected.

このため、サーマルプロテクタの最終の故障モードを不導通にするため、絶縁性繊維を内部に挟み込んだ構成の接点を備えたサーマルプロテクタが提案されている(例えば、特許文献1参照。)。   For this reason, in order to make the final failure mode of a thermal protector non-conducting, a thermal protector provided with a contact having a configuration in which an insulating fiber is sandwiched inside has been proposed (for example, see Patent Document 1).

しかし、上記構成のサーマルプロテクタでは、絶縁性繊維という異物を挟み込んで接点を作製しているため、接点の機械的強度が劣り、また絶縁性繊維の終端が接点外部に露出しているため、接点の開閉に伴い繊維くずが接点間に脱落し、サーマルプロテクタが十分正常な状態にあるにも拘わらず接点が不導通になり、サーマルプロテクタを装着した電気機器が作動しなくなるという問題があった。
特開2000−311574号公報
However, in the thermal protector configured as described above, the contact is made by interposing a foreign substance called insulating fiber, so that the mechanical strength of the contact is inferior and the end of the insulating fiber is exposed to the outside of the contact. As a result of the opening and closing of the fabric, fiber scraps fall off between the contacts, and although the thermal protector is in a sufficiently normal state, the contact becomes non-conductive, and there is a problem that the electric device equipped with the thermal protector becomes inoperable.
JP 2000-311574 A

電気機器の異常により一旦作動したサーマルプロテクタは、その異常要因が解除されるまで一定周期で接点の開閉を繰り返す。本来、電気接点は開閉頻度が高くなるにつれて表面が消耗し、最終的には互いに溶着するという危険を孕んでいる。しかし、仮にサーマルプロテクタの接点が高頻度の開閉動作により溶着すると、安全素子としての機能が失われるため、電気機器に障害を与えるおそれがある。   Once the thermal protector has been activated due to an abnormality in the electrical equipment, it repeatedly opens and closes the contact at regular intervals until the cause of the abnormality is removed. Originally, the surface of an electrical contact becomes worn as the frequency of opening and closing becomes high, and there is a danger of eventually welding each other. However, if the contacts of the thermal protector are welded by a frequent switching operation, the function as a safety element is lost, and there is a possibility that the electric device may be damaged.

本発明は、このような問題を解決するもので、寿命末期に至っても溶着することのない電気接点およびそれを用いたサーマルプロテクタを提供するものである。   The present invention solves such problems, and provides an electrical contact that does not weld even at the end of its life and a thermal protector using the electrical contact.

本発明は、対向する第1の主面と第2の主面との間に導電層を含む電気接点であって、前記導電層が導電性物質を含み、前記導電層の前記第1の主面の近傍部には、さらに電気絶縁性物質が含まれ、前記近傍部における前記電気絶縁性物質と前記導電性物質との体積比が、30:70〜70:30であることを特徴とする電気接点である。   The present invention is an electrical contact including a conductive layer between a first main surface and a second main surface facing each other, wherein the conductive layer includes a conductive substance, and the first main surface of the conductive layer is provided. An electrical insulating material is further included in the vicinity of the surface, and a volume ratio of the electrical insulating material to the conductive material in the vicinity is 30:70 to 70:30. It is an electrical contact.

また、本発明は、先端に電気接点を備えた導体部と、先端に電気接点を備えた熱応動素子とを含み、前記導体部の電気接点と、前記熱応動素子の電気接点とが接離可能に配置されたサーマルプロテクタであって、前記導体部の電気接点および前記熱応動素子の電気接点から選ばれる少なくとも一つに、上記電気接点を用い、かつ前記第1の主面を接点面としたことを特徴とするサーマルプロテクタである。   The present invention also includes a conductor portion having an electrical contact at the tip and a thermal response element having an electrical contact at the tip, and the electrical contact of the conductor portion and the electrical contact of the thermal response element are contacted and separated. A thermal protector arranged in a possible manner, wherein the electrical contact is used as at least one selected from an electrical contact of the conductor portion and an electrical contact of the thermally responsive element, and the first main surface is a contact surface. It is a thermal protector characterized by the above.

本発明は、寿命末期に至っても溶着することのない電気接点およびそれを用いた信頼性・安全性が大幅に向上したサーマルプロテクタを提供することができる。   INDUSTRIAL APPLICABILITY The present invention can provide an electrical contact that does not weld even at the end of its life and a thermal protector using the same that greatly improves reliability and safety.

本発明の電気接点は、対向する第1の主面と第2の主面との間に導電層を含み、上記導電層は導電性物質を含んでいる。さらに、第1の主面に近い上記導電層(上記導電層の第1の主面の近傍部)には電気絶縁性物質を含んでいる。これにより、第1の主面を接点面とすると、開閉の繰り返しによって接点の導電性物質が摩耗・蒸散するにつれて接点表面部に電気絶縁性物質が露出する確率が高まり、対向する接点がこの電気絶縁性物質に触れることで接点間は不導通の状態となり、寿命末期での接点の溶着を回避することができる。なお、上記導電層は複数層からなるものでもよい。   The electrical contact of the present invention includes a conductive layer between the first main surface and the second main surface facing each other, and the conductive layer includes a conductive material. Further, the conductive layer close to the first main surface (the vicinity of the first main surface of the conductive layer) contains an electrically insulating material. As a result, when the first main surface is a contact surface, the probability that the electrically insulating material is exposed to the contact surface portion increases as the conductive material of the contact wears and evaporates due to repeated opening and closing, and the opposing contact By touching the insulating material, the contacts become non-conductive, and welding of the contacts at the end of the life can be avoided. Note that the conductive layer may be composed of a plurality of layers.

また、上記電気絶縁性物質と導電性物質との体積比は30:70〜70:30であることが必要であり、より好ましくは40:60〜60:40である。この範囲内であれば、正常時における電気接点の導電性を確保しつつ、寿命末期での溶着を確実に防止できるからである。   Moreover, the volume ratio of the said electrically insulating substance and an electroconductive substance needs to be 30: 70-70: 30, More preferably, it is 40: 60-60: 40. This is because, within this range, it is possible to reliably prevent welding at the end of the life while ensuring the electrical conductivity of the electrical contact at the normal time.

さらに、上記電気絶縁性物質としては、種々の物質が使用できるが、アルミナが最も好ましい。アルミナは、蒸気圧が高いため接点間のアーク放電に対して最も安定だからである。   Further, various materials can be used as the electrical insulating material, but alumina is most preferable. This is because alumina has the highest vapor pressure and is most stable against arc discharge between contacts.

本発明のサーマルプロテクタは、上記本発明の電気接点を用い、かつ第1の主面を接点面としているため、上述のようにサーマルプロテクタの寿命末期には接点が不導通状態となり、接点溶着を回避することで機器の安全を確保することができる。   Since the thermal protector of the present invention uses the electrical contact of the present invention and has the first main surface as a contact surface, the contact becomes non-conductive at the end of the life of the thermal protector as described above, and contact welding is performed. By avoiding this, the safety of the device can be ensured.

また、上記電気絶縁性物質としてアルミナを用い、かつ上記サーマルプロテクタが使用される機器の電源電圧をV(V)、上記電気絶縁性物質の平均粒径をd(μm)としたとき、d×12>Vを満足することが好ましい。これにより、接点間にかかる電源電圧によってアルミナ粒子が絶縁破壊されなくなるからである。   Further, when alumina is used as the electrical insulating material and the power supply voltage of the device in which the thermal protector is used is V (V) and the average particle size of the electrical insulating material is d (μm), d × It is preferable that 12> V is satisfied. This is because the alumina particles are not dielectrically broken by the power supply voltage applied between the contacts.

なお、本発明の電気接点は、サーマルプロテクタの対向する接点の両方に用いてもよいし、またはいずれか一方に用いてもよい。特に、直流電源の機器などでは接点の消耗具合が接点の極性に大きく左右されることがあるため、具体的な配置方法は機器の状況に合わせて決定することが望ましい。   In addition, the electrical contact of this invention may be used for both of the contacts which a thermal protector opposes, and may be used for any one. In particular, in a DC power supply device or the like, the degree of contact consumption may be greatly affected by the polarity of the contact, so it is desirable to determine a specific arrangement method according to the state of the device.

次に、本発明の実施の形態を図面に基づき説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の電気接点の一例を示す斜視図(A)とその一部拡大断面図(B)である。図1に示すように、本実施形態の電気接点10は、対向する第1の主面11と第2の主面12とを備え、第1の主面11と第2の主面12との間には導電層13が形成されている。導電層13は、例えば、組成の異なる複数の導電層13a、13bから形成されている。また、導電層13a、13bは、導電性物質から形成されている。さらに、第1の主面11に近い導電層13aには電気絶縁性物質が含まれ、導電層13a中の電気絶縁性物質と導電性物質との体積比は、30:70〜70:30の範囲で設定されている。また、第2の主面12に近い導電層13bは、導電性物質のみから形成されている。   FIG. 1 is a perspective view (A) showing an example of an electrical contact of the present invention and a partially enlarged sectional view (B) thereof. As shown in FIG. 1, the electrical contact 10 of the present embodiment includes a first main surface 11 and a second main surface 12 that face each other, and the first main surface 11 and the second main surface 12 are in contact with each other. A conductive layer 13 is formed therebetween. The conductive layer 13 is formed from, for example, a plurality of conductive layers 13a and 13b having different compositions. The conductive layers 13a and 13b are made of a conductive material. Further, the conductive layer 13a close to the first main surface 11 contains an electrical insulating material, and the volume ratio of the electrical insulating material to the conductive material in the conductive layer 13a is 30:70 to 70:30. It is set with a range. In addition, the conductive layer 13b close to the second main surface 12 is formed only from a conductive material.

導電層13aに用いる導電性物質としては、例えば、Agなどの単独金属、またはAg−Ni、Ag−Cd、Ag−Cu、Ag−W、Ag−Pd、Ag−Sn、Cu−Wなどの合金などが使用できる。また、電気絶縁性物質としては、アルミナが使用される。アルミナ以外では、シリカ、マグネシア、ジルコニア、チタニアなどの酸化物を用いることができるが、前述のように、蒸気圧の高いアルミナが接点間のアーク放電に対して最も安定であり、本発明の効果を現出するために最適である。   As the conductive material used for the conductive layer 13a, for example, a single metal such as Ag or an alloy such as Ag-Ni, Ag-Cd, Ag-Cu, Ag-W, Ag-Pd, Ag-Sn, Cu-W, or the like. Etc. can be used. In addition, alumina is used as the electrical insulating material. Other than alumina, oxides such as silica, magnesia, zirconia, and titania can be used. As described above, alumina with high vapor pressure is the most stable against arc discharge between contacts, and the effect of the present invention. Is perfect for revealing.

図2は、本発明のサーマルプロテクタの一例を示す一部切欠断面図である。図2に示すように、本実施形態のサーマルプロテクタ20は、ガラス容器21内に、先端部に固定側接点22を備えた固定側内部リード線23と、先端部に可動側接点24を備え、他端部に可動側内部リード線25が接続された熱応動素子26とが対向して配置され、かつ固定側接点22と可動側接点24とが接離可能に配置されている。固定側内部リード線23および可動側内部リード線25はガラスビード27にて支持され、かつ封止部21a内において固定側内部リード線23および可動側内部リード線25は、固定側外部リード線28および可動側外部リード線29に溶接などによりそれぞれ接続されている。固定側外部リード線28および可動側外部リード線29の一端はガラス容器21の外部に導出されている
FIG. 2 is a partially cutaway sectional view showing an example of the thermal protector of the present invention. As shown in FIG. 2, the thermal protector 20 of the present embodiment includes a fixed-side internal lead wire 23 provided with a fixed-side contact 22 at the tip, and a movable-side contact 24 at the tip, in a glass container 21. A thermally responsive element 26 having a movable side internal lead wire 25 connected to the other end is disposed oppositely, and a fixed side contact 22 and a movable side contact 24 are disposed so as to be able to contact and separate. The fixed-side internal lead wire 23 and the movable-side internal lead wire 25 are supported by a glass bead 27, and the fixed-side internal lead wire 23 and the movable-side internal lead wire 25 are fixed to the fixed-side external lead wire 28 in the sealing portion 21a. And connected to the movable-side external lead wire 29 by welding or the like. One ends of the fixed-side external lead wire 28 and the movable-side external lead wire 29 are led out of the glass container 21.

固定側接点22には、上記図1に示した本実施形態の電気接点が用いられ、第1の主面11を接点面とし、第2の主面12を固定側内部リード線23との接続面としている。また、可動側接点24の接点面は、例えば、従来から用いられているAg−Ni、Ag−Cd、Ag−Pd、Ag−Sn、Ag−Cu、Ag−W、Cu−Wなどの合金、またはAgなどの単独金属などから形成できる。   The fixed-side contact 22 uses the electrical contact of the present embodiment shown in FIG. 1 and connects the first main surface 11 to the contact surface and the second main surface 12 to the fixed-side internal lead wire 23. It is a surface. The contact surface of the movable contact 24 is made of, for example, conventionally used alloys such as Ag—Ni, Ag—Cd, Ag—Pd, Ag—Sn, Ag—Cu, Ag—W, and Cu—W, Alternatively, it can be formed from a single metal such as Ag.

上記熱応動素子26には、熱膨張率の異なる金属板を2枚貼り合わせたバイメタル、または3枚貼り合わせたトリメタルなどが含まれる。一般に、低膨張側の金属としてはNi−Fe合金などが主に使用できる。また、高膨張側の金属には、Ni−Cr−Fe、Ni−Mn−Fe、Ni−Mo−Fe、Ni−Cu−Mnなどの各種の合金が使用できる。   The thermally responsive element 26 includes a bimetal obtained by bonding two metal plates having different thermal expansion coefficients or a trimetal obtained by bonding three sheets. In general, a Ni-Fe alloy or the like can be mainly used as the metal on the low expansion side. Moreover, various alloys, such as Ni-Cr-Fe, Ni-Mn-Fe, Ni-Mo-Fe, Ni-Cu-Mn, can be used for the metal of the high expansion side.

以下、実施例に基づき本発明をより具体的に説明する。ただし、本発明は、以下の実施例には限定されない。   Hereinafter, based on an Example, this invention is demonstrated more concretely. However, the present invention is not limited to the following examples.

先ず、以下のように粉末プレス法を用いて電気接点を作製した。   First, an electrical contact was produced using a powder press method as follows.

導電層13a用の導電性物質として平均粒径4μmの銀粉を準備し、また電気絶縁性物質として平均粒径5、10、20、40μmの4種類のアルミナ粉を準備した。この銀粉と4種類のアルミナ粉とを、理論密度から計算してアルミナの体積含有率が40%となるようそれぞれ配合し、均一に混合して第1の混合粉を4種類準備した。   Silver powder having an average particle size of 4 μm was prepared as the conductive material for the conductive layer 13a, and four types of alumina powder having an average particle size of 5, 10, 20, and 40 μm were prepared as the electrically insulating material. The silver powder and four types of alumina powder were blended so that the volume content of alumina was 40% calculated from the theoretical density, and mixed uniformly to prepare four types of first mixed powder.

また、導電層13b用の導電性物質として平均粒径7μmの銅粉と平均粒径2μmのNi粉とを準備し、この銅粉とNi粉とを、Niの重量含有率が20%となるよう配合し、均一に混合して第2の混合粉を準備した。なお、導電層13bはサーマルプロテクタの作製にあたり、抵抗溶接によって接点を固定する際に接合を強固にするために設けるものである。   Also, copper powder having an average particle diameter of 7 μm and Ni powder having an average particle diameter of 2 μm are prepared as the conductive material for the conductive layer 13b, and the weight content of Ni is 20% for the copper powder and Ni powder. The mixture was uniformly mixed to prepare a second mixed powder. The conductive layer 13b is provided in order to strengthen the bonding when fixing the contact by resistance welding in the production of the thermal protector.

次に、第1および第2の混合粉を所定量秤量し、予め用意したダイス中に、まず第1の混合粉を投入し、ダイスに若干の振動を与えて投入した粉体の表面をならした後、第2の混合粉を投入し、同様に表面をならした後、パンチを挿入して約600kg/cm2の圧力でプレスし、角型接点として2.5mm角、厚み1.5mmの成形体を作製した。同様にして、丸型接点として直径2.5mm、厚み1.2mmで第1の混合粉側に3Rの曲率をもつ成形体も作製した(図示せず)。この工程を上記4種の第1の混合粉につきそれぞれ行い、粒径の異なるアルミナ粉を含有した4種類の角型接点および丸型接点の成形体を作製した。 Next, a predetermined amount of the first and second mixed powders are weighed, the first mixed powder is first put into a previously prepared die, and the surface of the charged powder is leveled by applying a slight vibration to the die. After that, after the second mixed powder was added and the surface was smoothed in the same manner, a punch was inserted and pressed at a pressure of about 600 kg / cm 2 , and the square contact was 2.5 mm square and 1.5 mm thick. A molded body was produced. Similarly, a molded body having a diameter of 2.5 mm and a thickness of 1.2 mm and a curvature of 3R on the first mixed powder side was also produced as a round contact (not shown). This process was performed for each of the four types of first mixed powders, and four types of square contact and round contact compacts containing alumina powders having different particle sizes were produced.

次に、得られたそれぞれの成形体を窒素雰囲気中で600℃で2時間焼成して電気接点を作製した。   Next, each obtained compact was fired in a nitrogen atmosphere at 600 ° C. for 2 hours to produce an electrical contact.

続いて、図2に示すように、角型接点と丸型接点に含まれるアルミナ粉の粒径が合致するように組み合わせて、上記で得られた角型接点を固定側接点22とし、丸型接点を可動側接点24とし、アルミナ粉を含有する層が相互に対向するように配置して4種類のサーマルプロテクタを作製した。なお、熱応動素子26としては、Ni−Fe合金板とNi−Cr−Fe合金板とを貼り合わせたバイメタルを用いた。また、リード線の材料としては、Mn−Ni線を用いた。   Subsequently, as shown in FIG. 2, the square contacts obtained by combining the square contacts and the round contacts so that the particle diameters of the alumina powders coincide with each other are used as the fixed contacts 22. Four types of thermal protectors were manufactured by arranging the contact as the movable contact 24 so that the layers containing alumina powder face each other. As the thermally responsive element 26, a bimetal obtained by bonding a Ni—Fe alloy plate and a Ni—Cr—Fe alloy plate was used. In addition, a Mn—Ni wire was used as the lead wire material.

可動側接点として従来のAg−Ni合金から形成した電気接点を用いた以外は、実施例1と同様にしてサーマルプロテクタを作製した。   A thermal protector was produced in the same manner as in Example 1 except that an electrical contact formed from a conventional Ag—Ni alloy was used as the movable contact.

固定側接点として従来のAg−Ni合金から形成した電気接点を用いた以外は、実施例1と同様にしてサーマルプロテクタを作製した。   A thermal protector was produced in the same manner as in Example 1 except that an electrical contact formed from a conventional Ag-Ni alloy was used as the stationary contact.

(比較例)
固定側接点および可動側接点の両方を従来のAg−Ni合金から形成した以外は、実施例1と同様にしてサーマルプロテクタを作製した。
(Comparative example)
A thermal protector was produced in the same manner as in Example 1 except that both the fixed side contact and the movable side contact were made of a conventional Ag-Ni alloy.

次に、これらの実施例1、実施例2、実施例3および比較例のサーマルプロテタを第1の条件としてAC110V、10A、力率60%、第2の条件としてAC220V、15A、力率80%でそれぞれ1条件につき50個用いて、ライフエンドに至るまでの寿命試験を行い、最終的に接点溶着に至ったサンプルの個数を調べた。その結果を表1に示す。   Next, the thermal protectors of Examples 1, 2 and 3 and the comparative example are AC 110 V, 10 A, power factor 60% as the first condition, and AC 220 V, 15 A, power factor 80 as the second condition. A life test up to the end of life was performed using 50 samples per 1%, and the number of samples that finally reached contact welding was examined. The results are shown in Table 1.

Figure 2005259595
Figure 2005259595

表1からわかるように、比較例では50個のサンプルのうち相当数が接点溶着を起こしてライフエンドに至ったのに対し、実施例1、実施例2および実施例3では接点溶着によるライフエンドをかなり防止できた。特に、実施例1〜3のサンプルの内、d(アルミナの平均粒径)×12>V(電源電圧)を満足するサンプルについては接点溶着は一切起こらず、すべて接点が不導通状態でのライフエンドとなった。   As can be seen from Table 1, in the comparative example, a considerable number of the 50 samples caused contact welding and reached the life end, whereas in Examples 1, 2 and 3, the life end by contact welding was reached. We were able to prevent considerably. In particular, among the samples of Examples 1 to 3, contact welding does not occur at all for samples satisfying d (average particle diameter of alumina) × 12> V (power supply voltage), and all the contacts are in a non-conductive state. It was the end.

このように本発明に係る実施例1〜3のサーマルプロテクタでは、寿命末期まで接点の開閉が繰り返されても、最終的には接点の不導通状態が確保できることが実証された。   As described above, in the thermal protectors of Examples 1 to 3 according to the present invention, it was proved that even when the contact was repeatedly opened and closed until the end of its lifetime, the contact non-conductive state could be finally secured.

なお、本発明の接点の材料設計にあたり、電気接点の基本機能として電気絶縁性物質を含む層においても所定の導電性が必要となる。本実施例では、電気絶縁性物質を含む層中のアルミナ粉の体積%は40体積%としたが、アルミナ粉の体積%が70体積%以下の範囲ではサーマルプロテクタの品質に影響のない導電性を確認している。但し、アルミナ粉の体積%が30体積%を下回ると、寿命末期での接点溶着が発生するおそれがある。   In designing the contact material according to the present invention, a predetermined conductivity is required even in a layer containing an electrically insulating substance as a basic function of the electrical contact. In this example, the volume percentage of the alumina powder in the layer containing the electrical insulating material was 40 volume%, but the conductivity that does not affect the quality of the thermal protector when the volume percentage of the alumina powder is 70 volume% or less. Have confirmed. However, if the volume percentage of the alumina powder is less than 30 volume%, contact welding at the end of the life may occur.

最後に、本発明はガラス容器型サーマルプロテクタを使用して説明したが、樹脂容器型サーマルプロテクタにおいても同様の効果が得られるのは明らかであり、さらに本発明の電気接点は接点溶着のリスクを負うあらゆる有接点継電機器に適用できるものである。   Finally, although the present invention has been described using a glass container type thermal protector, it is clear that the same effect can be obtained with a resin container type thermal protector, and the electrical contact of the present invention has a risk of contact welding. It can be applied to any contact relay device that bears it.

以上説明したように本発明は、寿命末期に至っても溶着することのない電気接点およびそれを用いた信頼性・安全性が大幅に向上したサーマルプロテクタを提供することができ、その工業的価値は大である。   As described above, the present invention can provide an electrical contact that does not weld even at the end of its life, and a thermal protector using the same that greatly improves reliability and safety, and its industrial value is It ’s big.

本発明の電気接点の一例を示す斜視図(A)とその一部拡大断面図(B)である。It is the perspective view (A) which shows an example of the electrical contact of this invention, and its partial expanded sectional view (B). 本発明のサーマルプロテクタの一例を示す断面図である。It is sectional drawing which shows an example of the thermal protector of this invention. 従来のサーマルプロテクタの断面図である。It is sectional drawing of the conventional thermal protector.

符号の説明Explanation of symbols

10 電気接点
11 第1の主面
12 第2の主面
13、13a、13b 導電層
20、30 サーマルプロテクタ
21、31 ガラス容器
21a、31a 封止部
22、32 固定側接点
23、33 固定側内部リード線
24、34 可動側接点
25、35 可動側内部リード線
26、36 熱応動素子
27、37 ガラスビード
28、38 固定側外部リード線
29、39 可動側外部リード線
DESCRIPTION OF SYMBOLS 10 Electrical contact 11 1st main surface 12 2nd main surface 13, 13a, 13b Conductive layer 20, 30 Thermal protector 21, 31 Glass container 21a, 31a Sealing part 22, 32 Fixed side contact 23, 33 Fixed side inside Lead wires 24, 34 Movable side contacts 25, 35 Movable side internal lead wires 26, 36 Thermally responsive elements 27, 37 Glass beads 28, 38 Fixed side external lead wires 29, 39 Movable side external lead wires

Claims (4)

対向する第1の主面と第2の主面との間に導電層を含む電気接点であって、
前記導電層が、導電性物質を含み、
前記導電層の前記第1の主面の近傍部には、さらに電気絶縁性物質が含まれ、
前記近傍部における前記電気絶縁性物質と前記導電性物質との体積比が、30:70〜70:30であることを特徴とする電気接点。
An electrical contact including a conductive layer between opposing first and second major surfaces,
The conductive layer includes a conductive material;
The vicinity of the first main surface of the conductive layer further includes an electrically insulating material,
The electrical contact, wherein a volume ratio of the electrically insulating substance and the conductive substance in the vicinity is 30:70 to 70:30.
前記電気絶縁性物質が、アルミナである請求項1に記載の電気接点。   The electrical contact according to claim 1, wherein the electrical insulating material is alumina. 先端に電気接点を備えた導体部と、先端に電気接点を備えた熱応動素子とを含み、前記導体部の電気接点と、前記熱応動素子の電気接点とが接離可能に配置されたサーマルプロテクタであって、
前記導体部の電気接点および前記熱応動素子の電気接点から選ばれる少なくとも一つに、請求項1または2に記載の電気接点を用い、かつ前記第1の主面を接点面としたことを特徴とするサーマルプロテクタ。
A thermal unit including a conductor part having an electrical contact at a tip and a thermal response element having an electrical contact at a tip, wherein the electrical contact of the conductor part and the electrical contact of the thermal response element are arranged to be able to contact and separate A protector,
The electrical contact according to claim 1 or 2 is used as at least one selected from an electrical contact of the conductor portion and an electrical contact of the thermally responsive element, and the first main surface is a contact surface. A thermal protector.
前記電気絶縁性物質がアルミナであり、かつ前記サーマルプロテクタが使用される機器の電源電圧をV(V)、前記電気絶縁性物質の平均粒径をd(μm)としたとき、d×12>Vである請求項3に記載のサーマルプロテクタ。   When the electrical insulating material is alumina and the power supply voltage of the device in which the thermal protector is used is V (V) and the average particle size of the electrical insulating material is d (μm), d × 12> The thermal protector according to claim 3, which is V.
JP2004071243A 2004-03-12 2004-03-12 Electric contact and thermal protector using the same Withdrawn JP2005259595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004071243A JP2005259595A (en) 2004-03-12 2004-03-12 Electric contact and thermal protector using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004071243A JP2005259595A (en) 2004-03-12 2004-03-12 Electric contact and thermal protector using the same

Publications (1)

Publication Number Publication Date
JP2005259595A true JP2005259595A (en) 2005-09-22

Family

ID=35085097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004071243A Withdrawn JP2005259595A (en) 2004-03-12 2004-03-12 Electric contact and thermal protector using the same

Country Status (1)

Country Link
JP (1) JP2005259595A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141047A1 (en) * 2011-04-15 2012-10-18 株式会社小松ライト製作所 Thermal protector and battery using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141047A1 (en) * 2011-04-15 2012-10-18 株式会社小松ライト製作所 Thermal protector and battery using same
JP5148023B2 (en) * 2011-04-15 2013-02-20 株式会社小松ライト製作所 Thermal protector and battery using the same

Similar Documents

Publication Publication Date Title
KR101955747B1 (en) Temperature fuse and sliding electrode used in temperature fuse
CA2660140C (en) Thermally responsive switch
US8717140B2 (en) Thermally responsive switch
WO2014171515A1 (en) Protective device
US8902037B2 (en) Thermally responsive switch
WO2015029826A1 (en) Protective device
US4388603A (en) Current limiting fuse
TW201337997A (en) Repeatable fuse for high current
KR100549965B1 (en) microswitch
EP0155322A1 (en) Electrode of vacuum breaker
JP2005259595A (en) Electric contact and thermal protector using the same
KR101300133B1 (en) Repeatable fuse
JP2004296130A (en) Electrical contact and thermal protector using the same
KR101267500B1 (en) Small circuit braker electrode and method for making arc-chamber
JP2006269380A (en) Electric contact, its manufacturing method and thermal protector
US20230197393A1 (en) Contact material for thermal fuse and thermosensitive pellet-type thermal fuse using the same
RU2439735C1 (en) Heat-sensing circuit breaker
JPH1154005A (en) Current-temperature composite fuse, and secondary battery protecting element using it
EP2362400A2 (en) Electrical contact and switch device using same
JP2002015902A (en) Protective element
JP2004207044A (en) Thermal fuse
JP2005183094A (en) Heat-responsive member and thermal protector equipped with conductive thin film and metal layer
JPH02119022A (en) Vacuum valve
JPH02288214A (en) Electric double layer capacitor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605