JP2005259043A - Three-dimensional mesh generation method - Google Patents

Three-dimensional mesh generation method Download PDF

Info

Publication number
JP2005259043A
JP2005259043A JP2004073054A JP2004073054A JP2005259043A JP 2005259043 A JP2005259043 A JP 2005259043A JP 2004073054 A JP2004073054 A JP 2004073054A JP 2004073054 A JP2004073054 A JP 2004073054A JP 2005259043 A JP2005259043 A JP 2005259043A
Authority
JP
Japan
Prior art keywords
dimensional
dimensional mesh
mesh
reference plane
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004073054A
Other languages
Japanese (ja)
Inventor
Yasuhiro Takii
康弘 滝井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004073054A priority Critical patent/JP2005259043A/en
Publication of JP2005259043A publication Critical patent/JP2005259043A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of generating a three-dimensional mesh by simple calculation processing. <P>SOLUTION: In this method of generating the three-dimensional mesh, a two-dimensional data wherein a reference plane serving as a reference for generating the three-dimensional mesh is modeled with two-dimensional finite elements is read (S1), then normal direction data (sweep amount, division number, offset, group name and interface name) for specifying an array of three-dimensional finite elements along a normal direction of the reference plane are read (S2), the three-dimensional mesh is generated based the data therein (S3), and a three-dimensional mesh data is output (S3). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は数値解析用の3次元メッシュ生成技術に関し、特に、計算処理の簡易化とデータ量の削減を図るための改良技術に関する。   The present invention relates to a three-dimensional mesh generation technique for numerical analysis, and more particularly to an improved technique for simplifying calculation processing and reducing the amount of data.

CAD,CAE等の分野において、解析対象の内部応力や熱応力その他の静的又は動的な構造解析を行うにあたり有限要素法が用いられている。この有限要素法は解析対象を有限要素の集合体にモデル化し、各有限要素に境界条件を与えて演算によりシミュレーション解析を行い、各有限要素の近似解を求めて全体の数値解析を行うものである。有限要素法による数値解析において、解析対象を有限要素の集合体にモデル化するための3次元メッシュ生成作業は多大な時間を費やすとともに、解析結果の精度に直接関わる重要な作業である。3次元メッシュの生成手法として各種の手法が研究されており、例えば、特開平5−101152号公報には、2次元メッシュに3本又は4本のガイド曲線を設定し、このガイド曲線に沿って2次元メッシュを変形移動させて立体軌跡を生成し、この立体軌跡により3次元メッシュを生成する手法が提案されている。
特開平5−101152号公報
In the field of CAD, CAE, etc., a finite element method is used for performing static or dynamic structural analysis such as internal stress, thermal stress or the like to be analyzed. In this finite element method, the object to be analyzed is modeled as a collection of finite elements, boundary conditions are given to each finite element, and simulation analysis is performed by computation. An approximate solution of each finite element is obtained, and the entire numerical analysis is performed. is there. In the numerical analysis by the finite element method, the three-dimensional mesh generation work for modeling the analysis target into a collection of finite elements is an important work directly related to the accuracy of the analysis result as well as spending a lot of time. Various methods have been studied as a method for generating a three-dimensional mesh. For example, in Japanese Patent Laid-Open No. 5-101152, three or four guide curves are set in a two-dimensional mesh, and along these guide curves. There has been proposed a method of generating a three-dimensional trajectory by deforming and moving a two-dimensional mesh and generating a three-dimensional mesh from the three-dimensional trajectory.
JP-A-5-101152

しかし、上述の計算手法では複雑なベクトル計算等を要する上に、扱うデータ量も膨大になるため、3次元メッシュを作成するには多大な労力と、高処理能力・大記憶容量のコンピュータシステムが要求される。   However, since the above calculation method requires complicated vector calculation and the amount of data to be handled is enormous, a large amount of labor is required to create a three-dimensional mesh, and a computer system with high processing capacity and large storage capacity is required. Required.

そこで、本発明は計算処理の簡易化とデータ量の削減を図るための3次元メッシュ生成方法を提案することを課題とする。   Accordingly, an object of the present invention is to propose a three-dimensional mesh generation method for simplifying calculation processing and reducing the amount of data.

上記の課題を解決するため、本発明の3次元メッシュ生成方法は解析対象を3次元有限要素にモデル化した3次元メッシュを生成するための3次元メッシュ生成方法であって、3次元メッシュを生成する基準となる基準平面を2次元有限要素にモデル化した2次元メッシュと、この基準平面の法線方向における3次元有限要素の配列を規定する情報とに基づいて3次元メッシュを生成する。この方法によれば、3次元メッシュを生成する基準となる基準平面を2次元有限要素にモデル化した2次元メッシュと、この基準平面の法線方向における3次元有限要素の配列を規定する情報とを保持していればよいので、3次元メッシュの格子座標データを保持する従来例と比較して、取り扱うデータ量を大幅に削減でき、計算負荷も大幅に低減できる。   In order to solve the above problems, the 3D mesh generation method of the present invention is a 3D mesh generation method for generating a 3D mesh in which an analysis target is modeled as a 3D finite element. A three-dimensional mesh is generated based on a two-dimensional mesh obtained by modeling a reference plane serving as a reference to be a two-dimensional finite element and information defining an array of three-dimensional finite elements in the normal direction of the reference plane. According to this method, a two-dimensional mesh obtained by modeling a reference plane serving as a reference for generating a three-dimensional mesh into a two-dimensional finite element, and information defining an array of three-dimensional finite elements in the normal direction of the reference plane; Therefore, the amount of data to be handled can be greatly reduced and the calculation load can be greatly reduced as compared with the conventional example in which lattice coordinate data of a three-dimensional mesh is held.

本発明の方法を適用できる3次元メッシュとしては、基準平面を2次元有限要素にモデル化した2次元メッシュと、基準平面に平行な任意の断面を2次元有限要素にモデル化した2次元メッシュとが同一となるメッシュモデルに適用できる。3次元メッシュがこのようなメッシュ構造を備えている場合には、3次元メッシュの格子座標データを全て保持しなくても、解析対象の基準平面を2次元有限要素にモデル化した2次元メッシュと、この基準平面の法線方向における3次元有限要素の配列を規定する情報とに基づいて解析対象の3次元メッシュを生成することが可能となる。   The three-dimensional mesh to which the method of the present invention can be applied includes a two-dimensional mesh in which a reference plane is modeled as a two-dimensional finite element, a two-dimensional mesh in which an arbitrary cross section parallel to the reference plane is modeled as a two-dimensional finite element, Can be applied to mesh models with the same. When the three-dimensional mesh has such a mesh structure, the two-dimensional mesh in which the reference plane to be analyzed is modeled as a two-dimensional finite element without having to hold all the lattice coordinate data of the three-dimensional mesh, Based on the information defining the arrangement of the three-dimensional finite elements in the normal direction of the reference plane, a three-dimensional mesh to be analyzed can be generated.

基準平面の法線方向における3次元有限要素の配列を規定する情報としては、例えば、3次元有限要素のスイープ量、分割数、オフセット、グループ名、及び界面名を含む情報を用いることができる。また、数値解析対象の対象として、各種の物理現象に応用可能であるが、例えば、燃料電池に適用することにより、燃料電池の3次元温度分布や熱応力を数値シミュレーションすることができる。   As information defining the arrangement of the three-dimensional finite elements in the normal direction of the reference plane, for example, information including the sweep amount, the number of divisions, the offset, the group name, and the interface name of the three-dimensional finite element can be used. Moreover, the present invention can be applied to various physical phenomena as an object of numerical analysis, but for example, by applying it to a fuel cell, a three-dimensional temperature distribution and thermal stress of the fuel cell can be numerically simulated.

本発明によれば3次元メッシュを生成する基準となる基準平面を2次元有限要素にモデル化した2次元メッシュと、この基準平面の法線方向における3次元有限要素の配列を規定する情報とに基づいて3次元メッシュを生成するため、3次元メッシュの計算処理を簡易化できる。また、取り扱うデータ量も小容量化できる。   According to the present invention, a two-dimensional mesh obtained by modeling a reference plane serving as a reference for generating a three-dimensional mesh into a two-dimensional finite element, and information defining an array of three-dimensional finite elements in the normal direction of the reference plane. Since the three-dimensional mesh is generated based on this, the calculation process of the three-dimensional mesh can be simplified. In addition, the amount of data handled can be reduced.

本発明の実施形態は解析対象を3次元有限要素にモデル化した3次元メッシュを生成するための手法を提案するものであり、3次元メッシュを生成する基準となる基準平面を2次元有限要素にモデル化した2次元メッシュと、この基準平面に平行な任意の断面を2次元有限要素にモデル化した2次元メッシュとが同一となるメッシュ構造を備えた3次元メッシュを対象としている。このようなメッシュ構造を備えた3次元メッシュにおいては、基準平面を2次元有限要素にモデル化した2次元メッシュの格子座標データ(以下、2次元メッシュデータと称する。)と、基準平面の法線方向における3次元有限要素の配列を規定する情報(以下、法線方向データと称する。)に基づいて、解析対象の3次元メッシュを生成することができる。但し、3次元メッシュ内の全ての領域において3次元有限要素が形成されている必要はなく、一部の領域において3次元有限要素が形成されていない領域が存在していてもよい。   The embodiment of the present invention proposes a method for generating a three-dimensional mesh in which an analysis target is modeled as a three-dimensional finite element. A reference plane serving as a reference for generating a three-dimensional mesh is changed to a two-dimensional finite element. The target is a three-dimensional mesh having a mesh structure in which a modeled two-dimensional mesh and a two-dimensional mesh in which an arbitrary cross section parallel to the reference plane is modeled as a two-dimensional finite element are the same. In a three-dimensional mesh having such a mesh structure, two-dimensional mesh lattice coordinate data (hereinafter referred to as two-dimensional mesh data) in which the reference plane is modeled as a two-dimensional finite element, and the normal of the reference plane. A three-dimensional mesh to be analyzed can be generated based on information defining the arrangement of three-dimensional finite elements in the direction (hereinafter referred to as normal direction data). However, it is not necessary that the three-dimensional finite element is formed in all the regions in the three-dimensional mesh, and there may be a region where the three-dimensional finite element is not formed in some regions.

ここで、図3を参照しつつ、基準平面の2次元メッシュデータと、法線方向データとに基づいて解析対象の3次元メッシュを生成する手法について説明する。同図(d)は解析対象を3次元有限要素にモデル化した3次元メッシュ40を示しており、その底面は3次元メッシュ40を生成する基準となる基準平面41を構成している。基準平面41の法線方向にはH1〜H4から成る4種類の3次元メッシュが積層されており、基準平面41に平行な任意の断面の2次元メッシュは全て同一である。図中、格子が記されてない箇所は3次元メッシュが形成されていない箇所を示している。同図(a)は法線方向から視た基準平面41を示している。基準平面41は領域A、領域B、及び領域Cの3つの領域に分割される(説明の便宜上、2次元メッシュの図示は省略している)。同図(b)は3次元メッシュH1〜H4の法線方向の配列を示している。図中、ハッチングを付した箇所は3次元メッシュが形成されている領域を示している。   Here, a method for generating a three-dimensional mesh to be analyzed based on two-dimensional mesh data on the reference plane and normal direction data will be described with reference to FIG. FIG. 4D shows a three-dimensional mesh 40 in which the analysis target is modeled as a three-dimensional finite element. The bottom surface of the three-dimensional mesh 40 forms a reference plane 41 that serves as a reference for generating the three-dimensional mesh 40. Four types of three-dimensional meshes composed of H1 to H4 are stacked in the normal direction of the reference plane 41, and the two-dimensional meshes of arbitrary cross sections parallel to the reference plane 41 are all the same. In the figure, a portion where no lattice is marked indicates a portion where a three-dimensional mesh is not formed. FIG. 4A shows the reference plane 41 viewed from the normal direction. The reference plane 41 is divided into three regions, region A, region B, and region C (a two-dimensional mesh is not shown for convenience of explanation). FIG. 2B shows an arrangement in the normal direction of the three-dimensional meshes H1 to H4. In the figure, hatched portions indicate regions where a three-dimensional mesh is formed.

同図(c)は3次元メッシュH1〜H4の法線方向データを示しており、スイープ量、分割数、オフセット、グループ名、及び界面名が例示されている。スイープ量は3次元メッシュの法線方向の高さ(押し出し量)を示す。分割数は3次元有限要素を法線方向に積層した数を示す。オフセットは各領域における3次元メッシュの有無を示す(○は該当する領域に3次元メッシュが存在することを示し、×は該当する領域に3次元メッシュが存在しないことを示している。)。グループ名は同一のグループ(又は属性)を構成する3次元有限要素の集合名称を示す。例えば、格子数をn、押し出し領域数をm、2次元格子座標を(X,Y)、押し出し方向座標をZ(n)、i番目の領域をA(i)、押し出し方向界面座標をc(m)とし、A(i)に属する任意の(X,Y)について、あるZ(n)がc(m−1)〜c(m)に含まれるとき、座標値(X,Y,Z(n))はA(m)に含まれる。界面名は隣接するグループ同士の界面の名称を示す(説明の便宜上、界面名の図示は省略している。)。同図に示す例について、3次元メッシュH4を例に挙げて詳述すると、3次元メッシュH4のスイープ量は4mm、分割数は5である。また、3次元メッシュH4の領域A,Bにはメッシュが存在し、領域Cにはメッシュが存在しない。この領域A,Bの3次元メッシュは共にNo.3のグループに属している。このように、3次元メッシュ40は基準平面41の2次元メッシュと、法線方向データに基づいて、基準平面41上に3次元有限要素を法線方向に積層していくことにより得られるため、簡易な計算処理により3次元メッシュ40を生成できる。   FIG. 4C shows normal direction data of the three-dimensional meshes H1 to H4, and illustrates the sweep amount, the number of divisions, the offset, the group name, and the interface name. The sweep amount indicates the height (extrusion amount) in the normal direction of the three-dimensional mesh. The number of divisions indicates the number of three-dimensional finite elements stacked in the normal direction. The offset indicates the presence or absence of a three-dimensional mesh in each region (◯ indicates that a three-dimensional mesh exists in the corresponding region, and x indicates that a three-dimensional mesh does not exist in the corresponding region). The group name indicates a set name of three-dimensional finite elements constituting the same group (or attribute). For example, the number of grids is n, the number of extrusion areas is m, the two-dimensional grid coordinates are (X, Y), the extrusion direction coordinates are Z (n), the i-th area is A (i), and the extrusion direction interface coordinates are c ( m), and for any (X, Y) belonging to A (i), when a certain Z (n) is included in c (m−1) to c (m), the coordinate values (X, Y, Z ( n)) is included in A (m). The interface name indicates the name of the interface between adjacent groups (for convenience of description, the interface name is not shown). The example shown in the figure will be described in detail by taking the three-dimensional mesh H4 as an example. The sweep amount of the three-dimensional mesh H4 is 4 mm and the number of divisions is five. Further, a mesh exists in the areas A and B of the three-dimensional mesh H4, and no mesh exists in the area C. The three-dimensional meshes of the areas A and B are both No. It belongs to 3 groups. Thus, since the three-dimensional mesh 40 is obtained by laminating three-dimensional finite elements in the normal direction on the reference plane 41 based on the two-dimensional mesh of the reference plane 41 and the normal direction data, The three-dimensional mesh 40 can be generated by a simple calculation process.

図1は本実施形態の3次元メッシュ生成装置の機能ブロック図、図2は3次元メッシュ生成ルーチンを示している。3次元メッシュ生成装置10は3次元メッシュ生成処理を行うプロセッサ20と、3次元メッシュ生成に必要な各種のプログラム及びデータ類を格納するメモリ30を備えている。メモリ30には、3次元メッシュ生成方法を実行する3次元メッシュ生成プログラム31と、基準平面の2次元メッシュデータ32と、法線方向データ33が格納され、更に、所定メモリ領域は3次元メッシュデータの出力領域34が割り当てられている。プロセッサ20は3次元メッシュ生成プログラムを解釈、実行することにより3次元メッシュ生成手段21として機能する。3次元メッシュ生成手段21は2次元メッシュデータ32を読み取り(S1)、次いで、法線方向データを読み取って(S2)、これらのデータに基づいて3次元メッシュを生成し(S3)、3次元メッシュデータ出力領域34に3次元メッシュデータを出力する(S4)。具体的には、2次元格子座標を(X,Y)、押し出し方向座標をZ(n)、i番目の領域をA(i)、押し出し界面座標をcとし、A(i)に属する任意の(X,Y)について、あるZ(n)でflag(A(i),c)=1である場合は、座標値(X,Y,Z(n))を出力する。ここで、領域A(i)の押し出し界面座標cに格子がある場合をflag(A(i),c)=1とし、格子がない場合をflag(A(i),c)=0とする。   FIG. 1 is a functional block diagram of the three-dimensional mesh generation apparatus of this embodiment, and FIG. 2 shows a three-dimensional mesh generation routine. The three-dimensional mesh generation apparatus 10 includes a processor 20 that performs a three-dimensional mesh generation process, and a memory 30 that stores various programs and data necessary for three-dimensional mesh generation. The memory 30 stores a three-dimensional mesh generation program 31 for executing a three-dimensional mesh generation method, two-dimensional mesh data 32 of a reference plane, and normal direction data 33. Further, the predetermined memory area has three-dimensional mesh data. Output area 34 is allocated. The processor 20 functions as the three-dimensional mesh generation means 21 by interpreting and executing the three-dimensional mesh generation program. The three-dimensional mesh generation means 21 reads the two-dimensional mesh data 32 (S1), then reads the normal direction data (S2), and generates a three-dimensional mesh based on these data (S3). Three-dimensional mesh data is output to the data output area 34 (S4). Specifically, the two-dimensional grid coordinate is (X, Y), the extrusion direction coordinate is Z (n), the i-th region is A (i), the extrusion interface coordinate is c, and any arbitrary belonging to A (i) For (X, Y), if flag (A (i), c) = 1 at a certain Z (n), the coordinate value (X, Y, Z (n)) is output. Here, flag (A (i), c) = 1 is set when there is a grid at the extrusion interface coordinate c of the area A (i), and flag (A (i), c) = 0 is set when there is no grid. .

本実施形態によれば簡易な計算処理で3次元メッシュを生成できる。また、3次元メッシュを生成する基準となる基準平面を2次元有限要素にモデル化した2次元メッシュと、この基準平面の法線方向における3次元有限要素の配列を規定する情報とを保持していればよいので、3次元メッシュの格子座標データを保持する従来例と比較して、取り扱うデータ量を大幅に削減できる。   According to this embodiment, a three-dimensional mesh can be generated by a simple calculation process. In addition, a two-dimensional mesh obtained by modeling a reference plane as a reference for generating a three-dimensional mesh into a two-dimensional finite element, and information for defining an array of three-dimensional finite elements in the normal direction of the reference plane are held. Therefore, the amount of data to be handled can be greatly reduced as compared with the conventional example that holds the lattice coordinate data of the three-dimensional mesh.

本実施形態の3次元メッシュ生成装置の機能ブロック図である。It is a functional block diagram of the three-dimensional mesh production | generation apparatus of this embodiment. 本実施形態の3次元メッシュ生成処理ルーチンである。It is a three-dimensional mesh generation processing routine of this embodiment. 本実施形態の3次元メッシュの説明図である。It is explanatory drawing of the three-dimensional mesh of this embodiment.

符号の説明Explanation of symbols

10…3次元メッシュ生成装置 20…プロセッサ 21…3次元メッシュ生成手段 30…メモリ 31…3次元メッシュ生成プログラム 32…3次元メッシュデータ 33…法線方向データ 34…3次元メッシュデータ出力領域 40…3次元メッシュ 41…基準平面 DESCRIPTION OF SYMBOLS 10 ... Three-dimensional mesh production | generation apparatus 20 ... Processor 21 ... Three-dimensional mesh production | generation means 30 ... Memory 31 ... Three-dimensional mesh production | generation program 32 ... Three-dimensional mesh data 33 ... Normal direction data 34 ... Three-dimensional mesh data output area 40 ... 3 Dimensional mesh 41 ... Reference plane

Claims (4)

解析対象を3次元有限要素にモデル化した3次元メッシュを生成するための3次元メッシュ生成方法であって、前記3次元メッシュを生成する基準となる基準平面を2次元有限要素にモデル化した2次元メッシュと、前記基準平面の法線方向における前記3次元有限要素の配列を規定する情報とに基づいて前記3次元メッシュを生成する、3次元メッシュ生成方法。   A 3D mesh generation method for generating a 3D mesh in which an analysis target is modeled as a 3D finite element, wherein a reference plane used as a reference for generating the 3D mesh is modeled as a 2D finite element 2 A three-dimensional mesh generation method for generating the three-dimensional mesh based on a three-dimensional mesh and information defining an array of the three-dimensional finite elements in a normal direction of the reference plane. 請求項1に記載の3次元メッシュ生成方法であって、前記3次元メッシュは前記基準平面を2次元有限要素にモデル化した2次元メッシュと、前記基準平面に平行な任意の断面を2次元有限要素にモデル化した2次元メッシュとが同一となるメッシュモデルである、3次元メッシュ生成方法。   2. The three-dimensional mesh generation method according to claim 1, wherein the three-dimensional mesh includes a two-dimensional mesh obtained by modeling the reference plane as a two-dimensional finite element, and an arbitrary cross section parallel to the reference plane. A three-dimensional mesh generation method, which is a mesh model in which a two-dimensional mesh modeled as an element is the same. 請求項1又は請求項2に記載の3次元メッシュ生成方法であって、前記基準平面の法線方向における前記3次元有限要素の配列を規定する情報は、前記基準平面の法線方向における3次元有限要素のスイープ量、分割数、オフセット、グループ名、及び界面名を含む、3次元メッシュ生成方法。   3. The three-dimensional mesh generation method according to claim 1, wherein the information defining the arrangement of the three-dimensional finite elements in the normal direction of the reference plane is three-dimensional in the normal direction of the reference plane. A three-dimensional mesh generation method including a sweep amount of a finite element, the number of divisions, an offset, a group name, and an interface name. 請求項1乃至請求項3のうち何れか1項に記載の3次元メッシュ生成方法であって、前記解析対象は燃料電池である、3次元メッシュ生成方法。

4. The three-dimensional mesh generation method according to claim 1, wherein the analysis target is a fuel cell. 5.

JP2004073054A 2004-03-15 2004-03-15 Three-dimensional mesh generation method Withdrawn JP2005259043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004073054A JP2005259043A (en) 2004-03-15 2004-03-15 Three-dimensional mesh generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004073054A JP2005259043A (en) 2004-03-15 2004-03-15 Three-dimensional mesh generation method

Publications (1)

Publication Number Publication Date
JP2005259043A true JP2005259043A (en) 2005-09-22

Family

ID=35084664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004073054A Withdrawn JP2005259043A (en) 2004-03-15 2004-03-15 Three-dimensional mesh generation method

Country Status (1)

Country Link
JP (1) JP2005259043A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105787176A (en) * 2016-02-25 2016-07-20 辽宁工程技术大学 Three-dimensional stability calculation method of side slope containing down-dip weak layer of open pit coal mine
WO2016133679A1 (en) * 2015-02-20 2016-08-25 Siemens Product Lifecycle Management Software Inc. Computer-aided simulation of additive manufacturing processes
US10409933B2 (en) 2014-09-19 2019-09-10 Siemens Product Lifecycle Management Software Inc. Computer-aided simulation of additive manufacturing processes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10409933B2 (en) 2014-09-19 2019-09-10 Siemens Product Lifecycle Management Software Inc. Computer-aided simulation of additive manufacturing processes
WO2016133679A1 (en) * 2015-02-20 2016-08-25 Siemens Product Lifecycle Management Software Inc. Computer-aided simulation of additive manufacturing processes
CN105787176A (en) * 2016-02-25 2016-07-20 辽宁工程技术大学 Three-dimensional stability calculation method of side slope containing down-dip weak layer of open pit coal mine
CN105787176B (en) * 2016-02-25 2018-11-30 辽宁工程技术大学 A kind of three-dimensional stability calculation method of the open coal mine containing suitable weak layer side slope of inclining

Similar Documents

Publication Publication Date Title
JP2009069930A (en) Sliced data structure for particle-based simulation and method for loading particle-based simulation using sliced data structure into gpu
CN103093036A (en) Simulation of the machining of a workpiece
JP5441422B2 (en) Simulation method and program
US10217291B2 (en) Designing a modeled volume represented by dexels
JP2007179548A (en) Method and device for automatically forming grid of multi-cell system dynamics model
CN103092577A (en) System and method for generating three-dimensional image measuring program
KR100188176B1 (en) Process simulating method
O’Hara et al. Efficient analysis of transient heat transfer problems exhibiting sharp thermal gradients
CN112015735A (en) Data storage structure and data storage method of unstructured grid
CN107886573B (en) Slope three-dimensional finite element grid generation method under complex geological conditions
JP6424651B2 (en) Magnetic field simulator program, magnetic field simulator device and magnetic field simulation method
CN113673186A (en) Cartesian grid rapid generation method based on STL file
US7388584B2 (en) Method and program for determining insides and outsides of boundaries
CN106846457B (en) Octree parallel construction method for CT slice data visual reconstruction
JP2005259043A (en) Three-dimensional mesh generation method
JP6087242B2 (en) Model conversion method and model conversion apparatus
JP2008027302A (en) Layout evaluation device
CN112685936B (en) Modeling method for shell mother-of-pearl microstructure finite element analysis
KR101989118B1 (en) Direction of complex design
JP4622987B2 (en) Tool reference plane data creation device and creation method
Jamroz et al. Asynchronous communication in spectral-element and discontinuous Galerkin methods for atmospheric dynamics–a case study using the High-Order Methods Modeling Environment (HOMME-homme_dg_branch)
JP2008197921A (en) Simulation device, simulation method and simulation program
US7606688B2 (en) Object oriented finite element modeling tools
CN110796729B (en) Grid division method based on binary tree
US20240202406A1 (en) Structural analysis method and information processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061127

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081224