JP2005257888A - Method of driving electrophoretic display element - Google Patents

Method of driving electrophoretic display element Download PDF

Info

Publication number
JP2005257888A
JP2005257888A JP2004067402A JP2004067402A JP2005257888A JP 2005257888 A JP2005257888 A JP 2005257888A JP 2004067402 A JP2004067402 A JP 2004067402A JP 2004067402 A JP2004067402 A JP 2004067402A JP 2005257888 A JP2005257888 A JP 2005257888A
Authority
JP
Japan
Prior art keywords
voltage
electrophoretic
display element
driving
electrophoretic display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004067402A
Other languages
Japanese (ja)
Other versions
JP4287310B2 (en
Inventor
Hajime Yamaguchi
口 一 山
Hideyuki Nakao
尾 英 之 中
Yutaka Nakai
井 豊 中
Tsutomu Hasegawa
励 長谷川
Aira Hotta
田 あいら 堀
Sachitami Mizuno
野 幸 民 水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004067402A priority Critical patent/JP4287310B2/en
Publication of JP2005257888A publication Critical patent/JP2005257888A/en
Application granted granted Critical
Publication of JP4287310B2 publication Critical patent/JP4287310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce power consumption and to obtain stable high contrast. <P>SOLUTION: In the method of driving the electrophoretic display element equipped with first and second substrates 1, 2 placed opposite to each other, and an electrophoretic layer 4 having migrating particles 4a sealed in between the substrates and having a specified charge and an insulating fluid to disperse the migrating particles therein, and when obtaining a colored state of the electrophoretic layer, being a state in which the color of the migrating particles is visually recognized, an AC voltage is applied to the electrophoretic layer, and at least one out of an amplitude of the AC voltage and an offset voltage is varied during the period of the colored state. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電気泳動表示素子の駆動方法に関する。   The present invention relates to a method for driving an electrophoretic display element.

低消費電力化、あるいは目への負担軽減などの観点から反射型表示装置への期待が高まっている。これまでに、反射型表示素子の一つとして電気泳動表示素子が知られている。この電気泳動表示素子は、荷電を有する電気泳動粒子と絶縁性液体からなる電気泳動層とこの電気泳動層を挟んで対峙する一組の電極からなり、この電極を介して電気泳動層に電場を印加することによって、電気泳動粒子をその荷電と反対極性の電極上に移動させて表示を行うものである。電気泳動粒子の対比色は、色素を溶解させた前述の絶縁性液体が担っている。より詳細には、電気泳動粒子が観測者に近い第1の電極の表面に付着する場合は、電気泳動粒子の色が観測され、一方、電気泳動粒子が観測者から遠い第2の電極の表面に付着する場合は、電気泳動粒子の色は絶縁性液体に隠蔽されるとともに絶縁性液体の対比色が観測されるというものである。電気泳動表示素子は、広視野角、高コントラスト、低消費電力という利点を備えているものの、絶縁性液体に溶解させた色素の電気泳動粒子への吸着、及び電気泳動粒子が吸着した電極表面と電気泳動粒子間への絶縁性液体の侵入などにより、高い反射率、すなわち明るさと、高いコントラストを両立させることは困難であるという大きな問題があった。   Expectations for reflective display devices are increasing from the standpoint of reducing power consumption and reducing the burden on the eyes. Until now, an electrophoretic display element has been known as one of reflective display elements. This electrophoretic display element comprises an electrophoretic layer composed of charged electrophoretic particles and an insulating liquid and a pair of electrodes facing each other with the electrophoretic layer interposed therebetween, and an electric field is applied to the electrophoretic layer through the electrode. By applying the electrophoretic particles, the electrophoretic particles are moved onto an electrode having a polarity opposite to that of the charge, and display is performed. The contrast color of the electrophoretic particles is borne by the above-described insulating liquid in which the dye is dissolved. More specifically, when the electrophoretic particles adhere to the surface of the first electrode close to the observer, the color of the electrophoretic particles is observed, while the surface of the second electrode is far from the observer. In the case of adhering to the surface, the color of the electrophoretic particles is concealed by the insulating liquid and the contrasting color of the insulating liquid is observed. Although the electrophoretic display element has the advantages of a wide viewing angle, high contrast, and low power consumption, the dye dissolved in the insulating liquid is adsorbed to the electrophoretic particles, and the electrode surface on which the electrophoretic particles are adsorbed Due to the penetration of the insulating liquid between the electrophoretic particles, there is a big problem that it is difficult to achieve both high reflectivity, that is, brightness and high contrast.

この問題を解決する試みの一つとして、絶縁性液体に色素などを溶解させることなく透明な状態で用い、電気泳動粒子を遮蔽層により隠蔽することで透明状態を、観測者が視認できる領域にある電極上に電気泳動粒子を吸着させることで着色状態を得ることが知られている(例えば、特許文献1参照)。しかしながら、着色状態で電気泳動粒子が電極上に均一には吸着されない場合があり、そのような場合には着色時の透過率が上昇し、結果としてコントラストが低下するという問題があった。   As one of the attempts to solve this problem, the transparent state is used in an area where the observer can visually recognize the electrophoretic particles by concealing the electrophoretic particles with a shielding layer without dissolving the pigment in the insulating liquid. It is known to obtain a colored state by adsorbing electrophoretic particles on a certain electrode (see, for example, Patent Document 1). However, there are cases where the electrophoretic particles are not uniformly adsorbed on the electrode in a colored state, and in such a case, there is a problem in that the transmittance at the time of coloring increases, resulting in a decrease in contrast.

この問題を解決する試みの一つとして、透過型電気泳動表示素子に限定しているものの、交流電圧が印加されることで表示素子の着色状態を得ることが知られている(例えば、特許文献2参照)。しかしながら、交流電圧を印加し続ける場合、消費電力が上昇するという問題が生じ、低消費電力を狙う反射型表示素子としては好ましくない。また、特許文献2中には交流電圧を印加後に電源を切るあるいは直流電圧を印加して電極に付着させることにも言及しているが、電源を切る場合には、外部の影響を受けやすくなり均一分散状態を安定に維持しにくくなる、また、直流電圧を印加して電極へ付着させる場合には、電圧の大きさの設定によっては電極への付着が不十分であり、最終的に不均一分散してしまうことが判明した。すなわち、安定な高コントラストを得るという課題は、現在でも残されている。さらにまた、交流電圧を印加して着色状態を得る場合、透明状態から着色状態への移行、および、着色状態から透明状態へ移行ともに、応答速度が従来方式である直流電圧を印加する場合より遅くなるという問題があった。さらに、特許文献2では、複数の画素から構成される表示素子をマトリックス駆動することには触れていない。
特開平9−211499号公報 特開平3−91722号公報
As one of attempts to solve this problem, although it is limited to a transmissive electrophoretic display element, it is known to obtain a colored state of the display element by applying an alternating voltage (for example, Patent Documents). 2). However, when the AC voltage is continuously applied, there arises a problem that the power consumption increases, which is not preferable as a reflective display element aiming at low power consumption. In addition, Patent Document 2 also mentions that the power is turned off after applying an AC voltage, or that the DC voltage is applied to adhere to the electrode. It becomes difficult to maintain a uniform dispersion state stably. In addition, when a DC voltage is applied to adhere to the electrode, the adhesion to the electrode may be insufficient depending on the setting of the voltage magnitude, and eventually it will be uneven. It turned out to be dispersed. That is, the problem of obtaining a stable high contrast still remains. Furthermore, when an AC voltage is applied to obtain a colored state, both the transition from the transparent state to the colored state and the transition from the colored state to the transparent state have a slower response speed than when applying the DC voltage of the conventional method. There was a problem of becoming. Furthermore, Patent Document 2 does not mention matrix driving of a display element composed of a plurality of pixels.
JP 9-2111499 A Japanese Patent Laid-Open No. 3-91722

以上のように、安定な高いコントラストおよび低消費電力を備えた電気泳動表示素子を実現することは困難であった。   As described above, it has been difficult to realize an electrophoretic display element having a stable high contrast and low power consumption.

本発明は、上記事情を考慮してなされたものであって、低消費電力であってかつ安定した高いコントラストを得ることのできる電気泳動表示素子の駆動方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for driving an electrophoretic display element that has low power consumption and can obtain a stable high contrast.

本発明の第1の態様は、対向して配置された第1および第2の基板と、これらの基板間に封入され所定の電荷を帯びた泳動粒子とこれらの泳動粒子を分散する絶縁性流体とを有する電気泳動層と、を備える電気泳動表示素子の駆動方法であって、前記泳動粒子の色が視認される状態である前記電気泳動層の着色状態を得る際に、前記電気泳動層に交流電圧を印加し、前記交流電圧の振幅およびオフセット電圧の少なくとも一方を前記着色状態の期間中に変化させることを特徴とする。   According to a first aspect of the present invention, there are provided first and second substrates arranged opposite to each other, electrophoretic particles encapsulated between the substrates and having a predetermined charge, and an insulating fluid that disperses the electrophoretic particles. An electrophoretic layer comprising: an electrophoretic layer comprising: an electrophoretic layer comprising: an electrophoretic layer, wherein the electrophoretic layer has a colored state in which a color of the electrophoretic particle is visually recognized. An AC voltage is applied, and at least one of the amplitude of the AC voltage and the offset voltage is changed during the coloring state.

また、本発明の第2の態様は、対向して配置された第1および第2の基板と、これらの基板間に封入され所定の電荷を帯びた泳動粒子とこれらの泳動粒子を分散する絶縁性流体とを有する電気泳動層と、を備える電気泳動表示素子の駆動方法であって、前記泳動粒子の色が視認される状態である前記電気泳動層の着色状態を得る際に、前記電気泳動層に最初に直流電圧を印加し、その後、交流電圧を印加し、前記直流電圧の印加時間が、前記交流電圧の1/2周期より長いことを特徴とする。   Further, the second aspect of the present invention provides the first and second substrates disposed opposite to each other, the migrating particles encapsulated between these substrates and having a predetermined charge, and the insulation for dispersing these migrating particles. An electrophoretic layer having an electrophoretic fluid, wherein the electrophoretic layer has a colored state in which the color of the electrophoretic particles is visually recognized. A DC voltage is first applied to the layer, and then an AC voltage is applied. The application time of the DC voltage is longer than a half cycle of the AC voltage.

また、本発明の第3の態様は、対向して配置された第1および第2の基板と、これらの基板間に封入され所定の電荷を帯びた泳動粒子とこれらの泳動粒子を分散する絶縁性流体とを有する電気泳動層と、を備える電気泳動表示素子の駆動方法であって、前記泳動粒子の色が視認される状態である前記電気泳動層の着色状態を得る際に、前記電気泳動層に最初に交流電圧を印加し、その後、前記交流電圧の振幅より大きな直流電圧を印加することを特徴とする。   According to a third aspect of the present invention, there are provided first and second substrates disposed opposite to each other, electrophoretic particles encapsulated between these substrates and having a predetermined charge, and insulation for dispersing the electrophoretic particles. An electrophoretic layer having an electrophoretic fluid, wherein the electrophoretic layer has a colored state in which the color of the electrophoretic particles is visually recognized. An AC voltage is first applied to the layer, and then a DC voltage larger than the amplitude of the AC voltage is applied.

また、本発明の第4の態様は、対向して配置された第1および第2の基板と、前記第1および第2の基板間に形成されてマトリクス状に配置され、それぞれが画素電極と前記第1および第2の基板間に封入された所定の電荷を帯びた泳動粒子とこれらの泳動粒子を分散する絶縁性流体とを有する電気泳動層を含む画素と、を備えた電気泳動表示素子の駆動方法であって、各画素の前記電気泳動層に交流電圧または直流電圧を印加し、前記交流電圧の高電圧および低電圧の印加時間、または前記直流電圧の印加時間が、m、nを自然数としたときフレーム周期のm/n倍であることを特徴とする。   According to a fourth aspect of the present invention, there are provided first and second substrates arranged opposite to each other, a matrix formed between the first and second substrates, each of which is a pixel electrode. An electrophoretic display device comprising: a pixel including an electrophoretic layer having electrophoretic particles having a predetermined charge enclosed between the first and second substrates; and an insulating fluid that disperses the electrophoretic particles. A driving method of applying an AC voltage or a DC voltage to the electrophoretic layer of each pixel, and applying time of high voltage and low voltage of the AC voltage or applying time of the DC voltage is set to m, n. The natural number is m / n times the frame period.

本発明によれば、低消費電力を実現できるとともに安定した高いコントラストを得ることができる。   According to the present invention, low power consumption can be realized and stable high contrast can be obtained.

本発明の一実施形態による電気泳動表示素子の駆動方法を説明する。   A method for driving an electrophoretic display device according to an embodiment of the present invention will be described.

本実施形態において、電気泳動層の「着色状態」とは電気泳動粒子が担う色を観測者が視認する状態を言う。電気泳動粒子には有彩色のものを一般的に用いるが、白色のものを利用する場合は、着色状態は白色となる。一方、電気泳動層の透過状態において観測者が視認するのは、観測者から見て電気泳動層の後方に位置する物質からの反射光、あるいは、後方からの透過光である。例えば、観測者から見て表示素子の後方に対比色を担う層を設けた場合は、電気泳動層が透過状態では観測者は対比色を視認する。さらに、対比色を担う層は電気泳動層の後部に設けられていればいいのであって、表示素子中に内蔵することが可能である。例えば、観測者から見て遠くに存在する基板自体が対比色を担う層となる、あるいは、その基板上の電極表面に対比色となる層を形成するなどが考えられる。このように本実施形態による駆動方法は、透過型、反射型の両方の電気泳動表示素子に適用できる。   In the present embodiment, the “colored state” of the electrophoretic layer refers to a state in which an observer visually recognizes the color carried by the electrophoretic particles. A chromatic color is generally used for the electrophoretic particles, but when white particles are used, the colored state is white. On the other hand, what the observer sees in the transmission state of the electrophoretic layer is reflected light from a substance located behind the electrophoretic layer as viewed from the observer or transmitted light from the rear. For example, when a layer responsible for the contrast color is provided behind the display element as viewed from the observer, the observer visually recognizes the contrast color when the electrophoretic layer is in a transmissive state. Further, the layer responsible for the contrasting color only needs to be provided at the rear of the electrophoretic layer, and can be incorporated in the display element. For example, it is conceivable that the substrate itself that exists far from the observer becomes a layer responsible for the contrasting color, or a layer that exhibits the contrasting color is formed on the electrode surface on the substrate. Thus, the driving method according to the present embodiment can be applied to both transmissive and reflective electrophoretic display elements.

本実施形態において、交流の電圧振幅とは変動する電圧の1/2を言う。交流の電圧は、電圧振幅と直流成分であるオフセット電圧により規定できる。オフセット電圧は、交流に含まれる直流成分の電圧とする。   In the present embodiment, the AC voltage amplitude means 1/2 of the fluctuating voltage. The AC voltage can be defined by a voltage amplitude and an offset voltage which is a DC component. The offset voltage is a voltage of a DC component included in AC.

本実施形態による電気泳動表示素子の駆動方法を、図1乃至図6を参照して説明する。図1乃至図3は本実施形態による駆動方法に用いられる電気泳動表示素子の駆動波形を示す波形図であり、図4乃至図6は本実施形態による駆動方法に用いられる電気泳動表示素子の一つの画素の状態を示す断面図である。この画素は、対向して配置された2枚の基板1、2と、基板1、2を所定の距離に保つスペーサ3と、基板1、2間に電荷を帯びた電気泳動粒子4aが封入された電気泳動層4と、電極6、7とを備えている。電極6は基板1とスペーサ3との間に設けられ、電極7は基板2上に設けられている。電気泳動粒子4aは着色しておりかつ負の電荷を有している。電気泳動層4は、電気泳動粒子4aと、絶縁性流体4bを備えている。図1乃至図3に示す駆動波形は電極6を基準にとった場合の電極7の電位変化を示している。図1は、第1の交流電圧を印加し、その後に第1の交流電圧よりも振幅の小さな第2の交流電圧を印加する駆動波形を示している。図2は、最初に直流電圧を印加し、その後に上記直流電圧よりも振幅の小さな交流電圧を印加する駆動波形を示している。図3は、交流電圧を印加し、その後に交流電圧よりも振幅の大きな直流電圧を印加する駆動波形を示している。   The driving method of the electrophoretic display device according to the present embodiment will be described with reference to FIGS. FIGS. 1 to 3 are waveform diagrams showing driving waveforms of the electrophoretic display element used in the driving method according to the present embodiment. FIGS. 4 to 6 show one example of the electrophoretic display element used in the driving method according to the present embodiment. It is sectional drawing which shows the state of one pixel. In this pixel, two substrates 1 and 2 arranged opposite to each other, a spacer 3 that keeps the substrates 1 and 2 at a predetermined distance, and charged electrophoretic particles 4 a are enclosed between the substrates 1 and 2. The electrophoretic layer 4 and the electrodes 6 and 7 are provided. The electrode 6 is provided between the substrate 1 and the spacer 3, and the electrode 7 is provided on the substrate 2. The electrophoretic particles 4a are colored and have a negative charge. The electrophoretic layer 4 includes electrophoretic particles 4a and an insulating fluid 4b. The driving waveforms shown in FIGS. 1 to 3 show the potential change of the electrode 7 when the electrode 6 is taken as a reference. FIG. 1 shows a driving waveform in which a first AC voltage is applied, and then a second AC voltage having a smaller amplitude than the first AC voltage is applied. FIG. 2 shows a driving waveform in which a DC voltage is first applied and then an AC voltage having an amplitude smaller than that of the DC voltage is applied. FIG. 3 shows a drive waveform in which an AC voltage is applied and then a DC voltage having a larger amplitude than the AC voltage is applied.

図6は電気泳動層4の透過状態を表しており、電気泳動粒子4aが電極6に付着している。この状態で図1に示す駆動波形で駆動させると、電圧振幅の大きい交流によって電気泳動粒子4aは電極6と電極7の間を行き来することになり、図4に示すような電気泳動層4の均一な着色状態を得ることができる。一旦、均一な分散状態を得られれば、消費電力を抑制するために電圧振幅の小さい交流にしても図4で示した均一な分散状態を安定に維持させることができる。すなわち、高いコントラストと低消費電力を実現できる。   FIG. 6 shows a transmission state of the electrophoretic layer 4, and the electrophoretic particles 4 a are attached to the electrode 6. When driven with the drive waveform shown in FIG. 1 in this state, the electrophoretic particles 4a go back and forth between the electrodes 6 and 7 by an alternating current having a large voltage amplitude, and the electrophoretic layer 4 as shown in FIG. A uniform coloring state can be obtained. Once a uniform dispersion state is obtained, the uniform dispersion state shown in FIG. 4 can be stably maintained even with an alternating current having a small voltage amplitude in order to suppress power consumption. That is, high contrast and low power consumption can be realized.

次に、図6に示す透過状態に対して、図2に示す駆動波形で駆動させると、初期の直流電圧により電気泳動粒子4aは電極6から電極7に向かって高速に移動を開始する。始めから交流電圧を印加する場合に比べ、電気泳動粒子4aが電極6へ戻されるクーロン力が働かないために、その速度はより大きい。このまま直流電圧を印加し続けた場合、電気泳動粒子4aは電極7への不均一な付着あるいは不均一な分散状態となり良好な着色状態を得ることができない。そこで直流から交流へ駆動を切り替えることで図4に示すような均一な分散状態を得ることができる。すなわち、高いコントラストと高速応答を実現できる。さらに、前述のように、均一分散後に交流の電圧振幅を小さくすれば低消費電力化も可能である。   Next, when the driving state shown in FIG. 2 is driven with respect to the transmission state shown in FIG. 6, the electrophoretic particles 4 a start moving from the electrode 6 toward the electrode 7 at a high speed by the initial DC voltage. Compared with the case where an alternating voltage is applied from the beginning, the speed is larger because the Coulomb force that returns the electrophoretic particles 4a to the electrode 6 does not work. If the DC voltage is continuously applied as it is, the electrophoretic particles 4a are not uniformly attached to the electrode 7 or are not uniformly dispersed, and a good colored state cannot be obtained. Therefore, a uniform dispersion state as shown in FIG. 4 can be obtained by switching the drive from direct current to alternating current. That is, high contrast and high-speed response can be realized. Further, as described above, the power consumption can be reduced by reducing the AC voltage amplitude after uniform dispersion.

次に、図6の透過状態に対して、図3に示す駆動波形で駆動させると、初期の交流電圧により電気泳動粒子4aは電極6と電極7を行き来することになり図4に示すような均一な着色状態を得ることができる。続いて交流の電圧振幅より高い電圧の直流を印加すると図5に示すように電気泳動粒子4aが電極7に均一に付着した着色状態を安定に実現できる。すなわち、低消費電力で、高いコントラストを実現できる。また、前述のように着色状態へ移行させる際に、交流の1/2周期より長く、かつ電気泳動粒子4aの応答時間以下の時間、直流電圧を印加すれば均一な着色状態の実現と応答の高速化の両立が可能である。   Next, when the transmission state shown in FIG. 6 is driven with the drive waveform shown in FIG. 3, the electrophoretic particles 4a move back and forth between the electrode 6 and the electrode 7 by the initial AC voltage, as shown in FIG. A uniform coloring state can be obtained. Subsequently, when a direct current having a voltage higher than the alternating voltage amplitude is applied, a colored state in which the electrophoretic particles 4a are uniformly attached to the electrode 7 can be stably realized as shown in FIG. That is, high contrast can be realized with low power consumption. In addition, when shifting to the colored state as described above, if a DC voltage is applied for a time longer than the half cycle of the alternating current and less than the response time of the electrophoretic particles 4a, a uniform colored state can be realized and the response can be achieved. Both speeding up is possible.

本実施形態による駆動方法が適用される電気泳動表示素子の構成の一例を図7に示す。この表示素子は、マトリックス状に配置された画素群11と、信号線の駆動回路12と、走査線の駆動回路13と、駆動信号発生器14とを備えている。画素群11を構成する各画素は基板間に封入された電気泳動層4を有している。   An example of the configuration of the electrophoretic display element to which the driving method according to the present embodiment is applied is shown in FIG. The display element includes a pixel group 11, a signal line driving circuit 12, a scanning line driving circuit 13, and a driving signal generator 14 arranged in a matrix. Each pixel constituting the pixel group 11 has an electrophoretic layer 4 sealed between substrates.

画素群11を構成する各画素が薄膜トランジスタを有する場合の一具体例を図8に示す。各画素は、信号線21と、走査線22と、画素電極23と、薄膜トランジスタ24と、補助容量電極26と、補助容量線27とを備えている。補助容量電極26は、画素電極23より紙面の奥側のガラス基板上に形成されている。補助容量の大きさは、保持期間中における画素電極23の電位の低下をできるだけ小さく抑えることができる大きさであることが望ましい。透過型電気泳動表示素子として用いる場合には、より高い開口率を確保するために、補助容量電極26は透明電極材料を用いることが好ましい。   A specific example of the case where each pixel constituting the pixel group 11 includes a thin film transistor is shown in FIG. Each pixel includes a signal line 21, a scanning line 22, a pixel electrode 23, a thin film transistor 24, an auxiliary capacitance electrode 26, and an auxiliary capacitance line 27. The auxiliary capacitance electrode 26 is formed on the glass substrate on the back side of the paper surface from the pixel electrode 23. The size of the auxiliary capacitor is desirably a size that can suppress the decrease in the potential of the pixel electrode 23 during the holding period as small as possible. When used as a transmissive electrophoretic display element, it is preferable to use a transparent electrode material for the auxiliary capacitance electrode 26 in order to ensure a higher aperture ratio.

図8に示す切断線60で1つの画素を切断したときの断面を、図9および図10に示す。図9は、共通電極25の面積が画素電極23のそれより小さい一例を示す図である。図10は共通電極25の面積が画素電極23のそれより大きく、かつ図8において画素電極23が走査線方向に長い場合の一例を示す図である。図9、図10に示す表示素子は共に反射型電気泳動表示素子の場合であり、画素電極23上に電気泳動粒子4aの対比色を担う対比色層41が形成されている。共通電極25は全ての画素に同じ電位を与える。なお、基板2上に補助容量電極26が形成され、この補助容量電極26を覆うように絶縁膜40が形成され、この絶縁膜40上に画素電極23が形成されている。観測者は、共通電極25が形成された基板1側から表示素子を見ることになる。補助容量電極26は、共通電極25と同じ電位に設定されている。   9 and 10 show cross sections when one pixel is cut along the cutting line 60 shown in FIG. FIG. 9 is a diagram illustrating an example in which the area of the common electrode 25 is smaller than that of the pixel electrode 23. FIG. 10 is a diagram illustrating an example in which the area of the common electrode 25 is larger than that of the pixel electrode 23 and the pixel electrode 23 in FIG. 8 is long in the scanning line direction. Each of the display elements shown in FIGS. 9 and 10 is a case of a reflection type electrophoretic display element, and a contrasting color layer 41 that bears the contrasting color of the electrophoretic particles 4 a is formed on the pixel electrode 23. The common electrode 25 applies the same potential to all the pixels. An auxiliary capacitance electrode 26 is formed on the substrate 2, an insulating film 40 is formed so as to cover the auxiliary capacitance electrode 26, and a pixel electrode 23 is formed on the insulating film 40. The observer views the display element from the substrate 1 side on which the common electrode 25 is formed. The auxiliary capacitance electrode 26 is set to the same potential as the common electrode 25.

次に、図7に示すマトリックス状に配置された画素群11から構成され、画素の断面が図9で表される電気泳動表示素子に印加する駆動波形の例を、図13乃至図18を参照してより詳細に説明する。   Next, see FIGS. 13 to 18 for examples of drive waveforms applied to the electrophoretic display element which is composed of the pixel group 11 arranged in a matrix form shown in FIG. 7 and whose cross section is shown in FIG. Will be described in more detail.

電気泳動粒子4aは負に帯電し、黒色に着色しているとする。対比色層41は、対比色として白色であるとする。観測者は、基板1側から観測する。Vcomは共通電極25の電位、Vsigは信号線21の電位、Vgは走査線22の電位、Vsig-cは信号線21の中心電位、Vcom-cは共通電極25の電位を変化させる場合の共通電極25の中心電位である。補助容量線27には共通電極と同電位が与えられている。画素電極23には、薄膜トランジスタ24を介して信号線21の電位Vsigが与えられる。   It is assumed that the electrophoretic particles 4a are negatively charged and colored black. The contrast color layer 41 is assumed to be white as a contrast color. The observer observes from the substrate 1 side. Vcom is a potential of the common electrode 25, Vsig is a potential of the signal line 21, Vg is a potential of the scanning line 22, Vsig-c is a center potential of the signal line 21, and Vcom-c is a common potential when changing the potential of the common electrode 25. This is the center potential of the electrode 25. The auxiliary capacitance line 27 is given the same potential as the common electrode. The pixel electrode 23 is supplied with the potential Vsig of the signal line 21 through the thin film transistor 24.

図13、図15、図17では、VcomがVsig-cより低く設定されているが、薄膜トランジスタ24のフィードスルー電圧のみを考慮した場合であり、オフセット電圧を有する交流をVsigとして与える場合などはこの限りではなく、電気泳動層、電極間距離などに応じてVcomを設定する。走査線22の電位Vgは、他の電極電位に対してより低い期間が長く、その影響をできるだけ排除して良好な表示特性を得るためには、電気泳動粒子4aを負に帯電させる方が好ましい。   13, 15, and 17, Vcom is set lower than Vsig-c. However, this is a case where only the feedthrough voltage of the thin film transistor 24 is considered, and this is the case when an alternating current having an offset voltage is given as Vsig. The Vcom is set according to the electrophoretic layer, the distance between the electrodes, and the like. The potential Vg of the scanning line 22 has a longer period than other electrode potentials, and it is preferable to negatively charge the electrophoretic particles 4a in order to eliminate the influence as much as possible and obtain good display characteristics. .

図14は全画面が白表示、図13は全画面が黒表示の書き込みをした場合の駆動波形の一例を示す波形図である。白表示の際は、図14に示すように、各フレームでVgが高電圧となる際に薄膜トランジスタ24がONとなり、Vcomより低いVsigの電位が画素電極23に対して与えられ、その後、薄膜トランジスタ24がOFFの期間、すなわち保持期間において画素電極23の電位は電気泳動層4の抵抗値、容量、および補助容量線27の補助容量から決まる時定数で漸減することを繰り返して、画素電極23の電位は信号線21の電位Vsigに漸近する。この時、電気泳動粒子4aは共通電極25に付着し、観測者は対比色層41の白色を観測することになる。黒表示の際は、図13に示すように、各フレームで、信号線21の電位VsigをVcomに対して変化させながら、薄膜トランジスタ24がONとなる際に、画素電極23に対して電位Vsigを書き込んでいく。保持期間中の画素電極23の電位変化は前述のとおりである。この時、電気泳動粒子4aは電気泳動層4内に均一分散され、観測者は電気泳動粒子4aの黒色を観測する。   FIG. 14 is a waveform diagram showing an example of drive waveforms when writing is performed in which the full screen is displayed in white and FIG. 13 is written in which the full screen is displayed in black. In the white display, as shown in FIG. 14, the thin film transistor 24 is turned on when Vg becomes a high voltage in each frame, and a potential of Vsig lower than Vcom is applied to the pixel electrode 23, and thereafter, the thin film transistor 24 In the holding period, that is, in the holding period, the potential of the pixel electrode 23 is repeatedly decreased by a time constant determined from the resistance value and capacitance of the electrophoretic layer 4 and the auxiliary capacitance of the auxiliary capacitance line 27, thereby repeating the potential of the pixel electrode 23. Gradually approaches the potential Vsig of the signal line 21. At this time, the electrophoretic particles 4 a adhere to the common electrode 25, and the observer observes the white color of the contrast color layer 41. In black display, as shown in FIG. 13, the potential Vsig is applied to the pixel electrode 23 when the thin film transistor 24 is turned on while changing the potential Vsig of the signal line 21 with respect to Vcom in each frame. Write. The change in potential of the pixel electrode 23 during the holding period is as described above. At this time, the electrophoretic particles 4a are uniformly dispersed in the electrophoretic layer 4, and the observer observes the black color of the electrophoretic particles 4a.

図16は全画面が白表示、図15は全画面が黒表示の書き込みをした場合の駆動波形の他の例を示す波形図である。共通電極25の電位Vcomを信号線21の電位Vsigと同期して変化させることで、駆動電圧が比較的高い電気泳動素子4aの低電圧駆動を実現できる。ただし、図16から分かるように、白表示の際に、共通電極25と信号線21との電位差(Vcom−Vsig)が小さくなるフレームにおいて、電気泳動粒子4aが共通電極25に保持されにくくなるため、電気泳動粒子4aが共通電極25に保持されようなメモリ性を有していることがより好ましい。   FIG. 16 is a waveform diagram showing another example of a drive waveform in the case where writing is performed so that the entire screen is displayed in white and the entire screen is displayed in black. By changing the potential Vcom of the common electrode 25 in synchronization with the potential Vsig of the signal line 21, low voltage driving of the electrophoretic element 4a having a relatively high driving voltage can be realized. However, as can be seen from FIG. 16, the electrophoretic particles 4a are not easily held by the common electrode 25 in a frame in which the potential difference (Vcom−Vsig) between the common electrode 25 and the signal line 21 is small during white display. It is more preferable that the electrophoretic particles 4 a have a memory property such that the electrophoretic particles 4 a are held by the common electrode 25.

図18は全画面が白表示、図17は全画面が黒表示の書き込みをした場合の駆動波形の他の例を示す波形図である。図13に示す場合と異なり、2フレームごと、すなわちフレーム周期の2倍で信号線21の電位Vsigを変化させて黒表示を行う。前述のとおり、画素電極23の電位は電気泳動層4の抵抗値、容量と、補助容量線27の補助容量から決まる時定数で漸減する。その漸減量は、電気泳動表示素子の場合、液晶表示素子に比較して大きく、補助容量電極26の面積を大きくすることや絶縁層40の誘電率を高くすることなどで補助容量を大きくしても漸減量を抑制することが難しい場合も多い。そこで、m、nを自然数としたとき、フレーム周期毎に信号線21の電位Vsigを変化させるのではなくm/n周期ごとに変化させて、画素電極23の電位が信号線21の電位Vsigに十分漸近するような条件で駆動するのが好ましい。   FIG. 18 is a waveform diagram showing another example of a drive waveform when writing is performed in which the entire screen is displayed in white and FIG. 17 is written in which the entire screen is displayed in black. Unlike the case shown in FIG. 13, black display is performed by changing the potential Vsig of the signal line 21 every two frames, that is, twice the frame period. As described above, the potential of the pixel electrode 23 gradually decreases with a time constant determined from the resistance value and capacitance of the electrophoretic layer 4 and the auxiliary capacitance of the auxiliary capacitance line 27. In the case of an electrophoretic display element, the gradual decrease amount is larger than that of a liquid crystal display element, and the auxiliary capacity is increased by increasing the area of the auxiliary capacity electrode 26 or increasing the dielectric constant of the insulating layer 40. In many cases, it is difficult to suppress the gradual decrease. Therefore, when m and n are natural numbers, the potential Vsig of the signal line 21 is not changed every frame period, but is changed every m / n period, so that the potential of the pixel electrode 23 becomes the potential Vsig of the signal line 21. It is preferable to drive under conditions that are sufficiently asymptotic.

なお、着色状態にある画素に着目した場合、共通電極25の電位Vcomに対する極性が、フレームで反転するフレーム反転に限らず、走査線22と平行方向の画素ラインごとに反転する行反転、信号線21と平行方向の画素ラインごとに反転する列反転で、駆動しても構わない。共通電極25の電位Vcomを変化させる場合は、フレーム反転あるいは行反転と併用できる。フリッカおよびクロストークの軽減の観点から、適切な反転方法を選択する。   Note that when attention is paid to pixels in a colored state, the polarity of the common electrode 25 with respect to the potential Vcom is not limited to frame inversion that is inverted in a frame, but is a row inversion or signal line that is inverted for each pixel line parallel to the scanning line 22. 21 may be driven by column inversion which inverts every pixel line in the direction parallel to 21. When the potential Vcom of the common electrode 25 is changed, it can be used in combination with frame inversion or row inversion. From the viewpoint of reducing flicker and crosstalk, an appropriate inversion method is selected.

図10は、画素電極23の面積が共通電極25のそれより小さい場合の例を示す断面図である。この場合、画素電極23に電気泳動粒子4aを集めて、電気泳動層4の透過状態を実現する。したがって、共通電極25に対して画素電極23が正となるような直流電位を信号線に印加すればよい。保持期間中の画素電極23の電位の変動および、電気泳動粒子4aが負に帯電していることが望ましいのは先ほどの図9での説明と同様である。   FIG. 10 is a cross-sectional view showing an example in which the area of the pixel electrode 23 is smaller than that of the common electrode 25. In this case, the electrophoretic particles 4 a are collected on the pixel electrode 23 to realize the transmission state of the electrophoretic layer 4. Therefore, a DC potential that makes the pixel electrode 23 positive with respect to the common electrode 25 may be applied to the signal line. The variation in the potential of the pixel electrode 23 during the holding period and the fact that the electrophoretic particles 4a are desirably negatively charged are the same as described with reference to FIG.

本実施形態の駆動方法に用いられる電気泳動粒子4aは、流体に安定に分散され、単一の極性を有するとともに、その粒径分布が小さいことが、表示素子の寿命、コントラスト、解像度などの観点から望ましい。また、応答速度の観点から、その粒径は0.1μmから5μmが好ましい。電気泳動粒子4aの材料としては、例えば酸化チタン、酸化亜鉛、酸化ジルコニウム、酸化鉄、酸化アルミニウム、セレン化カドミウム、カーボンブラック、硫酸バリウム、クロム酸鉛、硫化亜鉛、硫化カドミウムなどの無機顔料、あるいはフタロシアニンブルー、フタロシアニングリーン、ハンザイエロー、ウオッチングレッド、ダイアリーライドイエローなどの有機顔料を用いることができる。   The electrophoretic particles 4a used in the driving method of the present embodiment are stably dispersed in a fluid, have a single polarity, and have a small particle size distribution, so that the lifetime of the display element, contrast, resolution, and the like are considered. Desirable from. From the viewpoint of response speed, the particle diameter is preferably 0.1 μm to 5 μm. Examples of the material for the electrophoretic particles 4a include inorganic pigments such as titanium oxide, zinc oxide, zirconium oxide, iron oxide, aluminum oxide, cadmium selenide, carbon black, barium sulfate, lead chromate, zinc sulfide, cadmium sulfide, or the like. Organic pigments such as phthalocyanine blue, phthalocyanine green, Hansa yellow, watching red, and diary ride yellow can be used.

本実施形態において、前述の電気泳動粒子4aを分散させる流体4bとしては、電気泳動粒子4aに対する溶解能が小さく電気泳動粒子4aを安定に分散でき、イオンを含まずかつ電圧印加によりイオンを生じない絶縁性のものが望ましい。さらに、電気泳動粒子4aの浮沈防止のためには電気泳動粒子4aと比重がほぼ等しく、電圧印加時における電気泳動粒子4aの移動度の面からは粘性の低いものが好ましい。比較的多くの電気泳動粒子4aの材料に対して用いることのできる絶縁性液体としては例えば、ヘキサン、デカン、ヘキサデカン、ケロセン、トルエン、キシレン、オリーブ油、リン酸トリクレシル、イソプロパノール、トリクロロトリフルオロエタン、ジブロモテトラフルオロエタン、テトラクロロエチレンなどを挙げることができる。なお、電気泳動粒子4aの浮沈防止のために電気泳動粒子4aとの比重整合を行う場合などは混合流体の利用も可能である。また、流体として、気体を用いることもできる。気体としては例えば、空気、窒素、アルゴンなどを挙げることができる。   In the present embodiment, the fluid 4b in which the electrophoretic particles 4a are dispersed has a low solubility in the electrophoretic particles 4a, can stably disperse the electrophoretic particles 4a, does not contain ions, and does not generate ions when a voltage is applied. An insulating material is desirable. Furthermore, in order to prevent the electrophoretic particles 4a from floating and sinking, it is preferable that the specific gravity is substantially equal to that of the electrophoretic particles 4a and the viscosity is low in terms of mobility of the electrophoretic particles 4a when a voltage is applied. Examples of the insulating liquid that can be used for a relatively large number of electrophoretic particles 4a include hexane, decane, hexadecane, kerosene, toluene, xylene, olive oil, tricresyl phosphate, isopropanol, trichlorotrifluoroethane, and dibromo. Examples thereof include tetrafluoroethane and tetrachloroethylene. Note that a mixed fluid can also be used when specific gravity matching with the electrophoretic particles 4a is performed in order to prevent the electrophoretic particles 4a from rising and falling. Moreover, gas can also be used as a fluid. Examples of the gas include air, nitrogen, and argon.

本実施形態において、電気泳動粒子4aの電気泳動層4における混合重量率は、電気泳動粒子4aの電気泳動性が阻害されず、かつ分散層の反射制御が十分に行える限り特に限定されるものではないが、例えば1重量%から20重量%が好ましい。   In the present embodiment, the mixing weight ratio of the electrophoretic particles 4a in the electrophoretic layer 4 is not particularly limited as long as the electrophoretic properties of the electrophoretic particles 4a are not hindered and the reflection control of the dispersion layer can be sufficiently performed. For example, 1 to 20% by weight is preferable.

本実施形態において、電気泳動粒子4aの電荷を増加させるため、あるいは同一極性にするために、必要に応じて、前述の流体に、樹脂、界面活性剤等の添加剤を加える、あるいは電気泳動粒子4aを予め添加剤で処理することができる。   In this embodiment, in order to increase the charge of the electrophoretic particles 4a or to have the same polarity, an additive such as a resin or a surfactant is added to the above-described fluid as necessary, or the electrophoretic particles 4a can be pretreated with additives.

本実施形態において、電気泳動層4の厚さは電気泳動粒子4aの径より大きく、電気泳動粒子4aの運動を妨げない限り特に限定されるものではないが、電圧印加時の速い応答速度のためには、できるだけ薄いことが望ましい。このような観点から、電気泳動層4の好ましい厚さは、5μmから200μmである。   In the present embodiment, the thickness of the electrophoretic layer 4 is larger than the diameter of the electrophoretic particles 4a and is not particularly limited as long as the movement of the electrophoretic particles 4a is not hindered. It is desirable to be as thin as possible. From such a viewpoint, the preferred thickness of the electrophoretic layer 4 is 5 μm to 200 μm.

本実施形態において、交流電圧の振幅および直流電圧の大きさは基板間のギャップや電極間の距離に応じて−50V〜+50Vの間で適当な値を選べばよい。電圧振幅の大きい交流は電気泳動粒子4aを均一分散させるに十分な電圧振幅であればよく、電圧振幅の小さい交流はその分散状態を維持できる電圧振幅であればよく、電気泳動層4の特性や基板間のギャップや電極間の距離などにより適宜選択される。また、電圧振幅の大きい交流の印加時間は、電気泳動粒子4aが均一に分散するに十分な時間であって、基板間のギャップや電極間の距離などに応じて0.1秒〜5秒の間で適宜選ばれる。   In the present embodiment, the amplitude of the AC voltage and the magnitude of the DC voltage may be selected appropriately from -50V to + 50V depending on the gap between the substrates and the distance between the electrodes. An alternating current with a large voltage amplitude only needs to have a voltage amplitude sufficient to uniformly disperse the electrophoretic particles 4a, and an alternating current with a small voltage amplitude only needs to have a voltage amplitude that can maintain the dispersion state. It is appropriately selected depending on the gap between the substrates and the distance between the electrodes. The application time of alternating current with a large voltage amplitude is sufficient for the electrophoretic particles 4a to be uniformly dispersed, and is 0.1 to 5 seconds depending on the gap between the substrates and the distance between the electrodes. Is appropriately selected.

本実施形態において、交流の電圧振幅を周期的に変化させる場合は、電圧振幅の小さい交流において分散状態の維持が困難になる前に電圧振幅の大きい交流に変化させればよい。変化させる周期は、基板間のギャップや電極間の距離などに応じて5秒〜数分の間で適宜選ばれる。   In the present embodiment, when the AC voltage amplitude is periodically changed, the AC voltage amplitude may be changed to an AC voltage having a large voltage amplitude before it becomes difficult to maintain a dispersed state. The period to be changed is appropriately selected between 5 seconds and several minutes depending on the gap between the substrates, the distance between the electrodes, and the like.

本実施形態において、図1に示す駆動波形は交流電圧の振幅を変化させているが、交流のオフセット電圧を変化させてもよい。この場合は、電気泳動粒子4aの分散状態が維持されるように、基板間のギャップ、電極間距離に応じてその変化量や周期を設定すればよい。また、交流電圧の振幅およびオフセット電圧の少なくとも一方を周期的に変化させてもよい。   In the present embodiment, the drive waveform shown in FIG. 1 changes the amplitude of the AC voltage, but the AC offset voltage may be changed. In this case, the amount of change and the period may be set according to the gap between the substrates and the distance between the electrodes so that the dispersed state of the electrophoretic particles 4a is maintained. Further, at least one of the amplitude of the AC voltage and the offset voltage may be periodically changed.

本実施形態において、交流の波形は、矩形波を原則とするが、場合によっては正弦波や三角波を用いてもよい。   In this embodiment, the AC waveform is basically a rectangular wave, but a sine wave or a triangular wave may be used in some cases.

本実施形態において、図2に示す駆動波形を用いる場合は、電気泳動層4aの着色状態を得る際に最初に印加する直流電圧の大きさは、十分な応答速度が得られる程度であればよく、その印加時間は、その後の交流の1/2周期より長く設定する。印加時間の上限は、電気泳動粒子4aの応答時間である。なお、図2に示す駆動波形の交流電圧の印加後に、再び直流電圧を印加しても良いし、直流電圧と交流電圧を周期的に印加しても良い。   In the present embodiment, when the drive waveform shown in FIG. 2 is used, the magnitude of the direct-current voltage that is first applied when obtaining the colored state of the electrophoretic layer 4a may be such that a sufficient response speed can be obtained. The application time is set longer than a half cycle of the subsequent alternating current. The upper limit of the application time is the response time of the electrophoretic particles 4a. Note that a DC voltage may be applied again after the AC voltage having the drive waveform shown in FIG. 2 is applied, or a DC voltage and an AC voltage may be applied periodically.

本実施形態において、図3に示すように、最初に交流電圧を印加した後、交流電圧の振幅より大きい直流電圧を印加する場合、電気泳動粒子4aが電極上に安定に付着するに足る電圧であればよく、基板間のギャップや電極間の距離に応じて−50V〜+50Vの間で適当な値を選べばよい。   In this embodiment, as shown in FIG. 3, when an AC voltage is first applied and then a DC voltage larger than the amplitude of the AC voltage is applied, the voltage is sufficient for the electrophoretic particles 4a to stably adhere to the electrodes. What is necessary is just to select a suitable value between -50V- + 50V according to the gap between board | substrates or the distance between electrodes.

本実施形態において、交流と直流を周期的に変化させる場合には、分散状態の維持が困難になる前に交流駆動にすればよく、基板間のギャップ、電極間距離に応じて周期を決めればよい。   In the present embodiment, when alternating current and direct current are changed periodically, it is sufficient to use alternating current drive before it becomes difficult to maintain a dispersed state, and if the period is determined according to the gap between the substrates and the distance between the electrodes. Good.

本実施形態において、交流電圧の高電圧の印加時間と低電圧の印加時間が異なる、すなわち、デューティ比を1:1以外の値に設定された交流電圧を用いてもよい。この場合は、電気泳動粒子の分散状態が最も安定に維持できるように設定すればよく、電気泳動粒子の電極間の応答速度が、着色状態→透過状態と透過状態→着色状態で等しくなるように、基板間のギャップや電極間の距離などに応じて、またオフセット電圧に応じて、1:9から9:1の間で適宜選ばれる。図11に、デューティ比が1:1ではない交流波形の一例を示す。   In the present embodiment, it is possible to use an AC voltage in which the application time of the high voltage of the AC voltage is different from the application time of the low voltage, that is, the duty ratio is set to a value other than 1: 1. In this case, the dispersion state of the electrophoretic particles may be set so as to be most stably maintained, and the response speed between the electrodes of the electrophoretic particles may be equal between the colored state → the transmission state and the transmission state → the colored state. Depending on the gap between the substrates, the distance between the electrodes, etc., and also according to the offset voltage, it is appropriately selected between 1: 9 and 9: 1. FIG. 11 shows an example of an AC waveform whose duty ratio is not 1: 1.

本実施形態において、交流のオフセット電圧は、泳動粒子の分散状態が最も安定に維持できるように設定すればよく、電気泳動粒子の電極間の応答速度が、着色状態→透過状態と透過状態→着色状態で等しくなるように、基板間のギャップや電極間の距離などに応じて、また、前述のデューティ比も考慮して、−50V〜+50Vの間で設定される。図12に、オフセット電圧を有する、すなわちオフセット電圧が0Vでない交流波形の一例を示す。   In this embodiment, the AC offset voltage may be set so that the dispersed state of the electrophoretic particles can be maintained most stably, and the response speed between the electrodes of the electrophoretic particles is colored state → transmission state and transmission state → coloration. It is set between −50 V and +50 V in accordance with the gap between the substrates, the distance between the electrodes, and the like, and also considering the above-described duty ratio so as to be equal in the state. FIG. 12 shows an example of an AC waveform having an offset voltage, that is, the offset voltage is not 0V.

本実施形態において、マトリックス状の複数の画素から構成される電気泳動表示素子は、単純マトリックス駆動でもよいし、各画素に薄膜トランジスタや薄膜ダイオードを設置してアクティブマトリックス駆動によって動作させることができる。フレーム周期とは、画面を書き換える周期であり、フリッカが視認されない範囲で設定すればよい。フレーム周期の逆数はフレーム周波数であるが、フレーム周波数として、例えば0.01Hz〜120Hzで設定する。m、nを自然数としたとき、各画素における交流電圧の高電圧および低電圧の印加時間、および、直流電圧の印加時間が、フレーム周期のm/n倍にする場合、画素電極の電位が設定した電位に少なくとも50%以上、好ましくは80%以上となるようにmおよびnを設定する。   In the present embodiment, the electrophoretic display element composed of a plurality of pixels in a matrix form may be driven by simple matrix driving, or may be operated by active matrix driving by installing a thin film transistor or a thin film diode in each pixel. The frame period is a period for rewriting the screen and may be set in a range where flicker is not visually recognized. The reciprocal of the frame period is the frame frequency, and the frame frequency is set to 0.01 Hz to 120 Hz, for example. When m and n are natural numbers, the potential of the pixel electrode is set when the application time of the high voltage and the low voltage of the AC voltage and the application time of the DC voltage in each pixel are m / n times the frame period. M and n are set so that the potential is at least 50% or more, preferably 80% or more.

本実施形態において、共通電極の電位をフレーム周期のm/n倍で変化させると、高い駆動電圧を要求する電気泳動表示素子の場合でも駆動することが可能となる。自然数m、nの設定は、前述の各画素における交流電圧の高電圧および低電圧の印加時間、および、直流電圧の印加時間を考慮して行う。共通電極の電位をフレーム周期のm/n倍で変化させる場合、その電位変化量は着色状態を得る交流の電位変化量、すなわち電圧振幅の2倍以下に設定することが好ましい。透過状態を得る画素に注目すると、その画素の電気泳動層には、オフセット電圧を有する交流電圧が印加されることになる。したがって、より安定な透過状態を実現するためには、電気泳動表示素子が、メモリ性を有することが望ましい。   In the present embodiment, when the potential of the common electrode is changed by m / n times the frame period, it is possible to drive even in the case of an electrophoretic display element that requires a high driving voltage. The natural numbers m and n are set in consideration of the application time of the high voltage and the low voltage of the AC voltage and the application time of the DC voltage in each pixel described above. When the potential of the common electrode is changed at m / n times the frame period, the potential change amount is preferably set to an AC potential change amount for obtaining a colored state, that is, not more than twice the voltage amplitude. When attention is paid to a pixel that obtains a transmissive state, an AC voltage having an offset voltage is applied to the electrophoretic layer of the pixel. Therefore, in order to realize a more stable transmission state, it is desirable that the electrophoretic display element has a memory property.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

(第1実施例)
まず、一画素分が図4に示す構造と同様の構造を有する電気泳動表示素子において、各部材の選択、形成、及び設定を以下のようにして行った。基板1、2として厚0.7mmの透明なガラス板を用いた。スパッタ成膜後、リソグラフィの定法のとおり基板1に井桁形状のITOからなる電極6を形成した。電極6の高さは約0.1μm、幅10μmとした。一方、基板2へも同様にITOからなる電極7を形成した。電極7の高さは約0.1μmで、一辺が120μmの四角形とした。電極7を形成した基板2に対して、例えばネガ型レジストからなる井桁形状のスペーサ3を形成した。スペーサ3の高さは30μmに設定した。
(First embodiment)
First, in an electrophoretic display element in which one pixel has a structure similar to the structure shown in FIG. 4, selection, formation, and setting of each member were performed as follows. As the substrates 1 and 2, transparent glass plates having a thickness of 0.7 mm were used. After the sputter film formation, the electrode 6 made of ITO having a cross-shaped shape was formed on the substrate 1 according to a standard lithography method. The height of the electrode 6 was about 0.1 μm and the width was 10 μm. On the other hand, an electrode 7 made of ITO was formed on the substrate 2 in the same manner. The height of the electrode 7 was about 0.1 μm and was a quadrangle with a side of 120 μm. For example, a cross-shaped spacer 3 made of a negative resist was formed on the substrate 2 on which the electrode 7 was formed. The height of the spacer 3 was set to 30 μm.

電気泳動層4は、以下の通り準備した。まず、電気泳動粒子4aとして黒色樹脂トナー(粒径1μm)を、また流体4bとしてイソプロパノールを用い、両者を電気泳動粒子4aの混合重量率が10%となるように混合し、さらに分散安定性の向上のために微量の界面活性剤を添加し、電気泳動層4を準備した。この場合、電気泳動粒子4aは表面が負に帯電している。   The electrophoretic layer 4 was prepared as follows. First, black resin toner (particle size 1 μm) is used as the electrophoretic particles 4a, isopropanol is used as the fluid 4b, and both are mixed so that the mixing weight ratio of the electrophoretic particles 4a is 10%. A small amount of surfactant was added for improvement, and the electrophoretic layer 4 was prepared. In this case, the surface of the electrophoretic particle 4a is negatively charged.

最後に、電気泳動層4を封入するとともに、スペーサ3と電極6が一致するように張り合わせた。   Finally, the electrophoretic layer 4 was sealed, and the spacer 3 and the electrode 6 were bonded together.

このようにして得られた電気泳動表示素子に対して、まず、電極6が電気泳動粒子4aの極性と逆極性となるように、電極6と電極7間に10Vの直流電圧を印加して図6に示す透過状態を得た。続いて図1に示す駆動波形により着色状態を実現した。すなわち、電極6と電極7間に電圧10Vで周波数30Hzの矩形波を3秒間印加して、図4に示す着色状態を得た。続いて、電圧0.5Vで周波数30Hzの矩形波を印加することで図4に示す着色状態を維持した。   For the electrophoretic display device thus obtained, first, a DC voltage of 10 V is applied between the electrode 6 and the electrode 7 so that the electrode 6 has a polarity opposite to that of the electrophoretic particles 4a. The transmission state shown in Fig. 6 was obtained. Subsequently, the coloring state was realized by the driving waveform shown in FIG. That is, a rectangular wave having a voltage of 10 V and a frequency of 30 Hz was applied between the electrode 6 and the electrode 7 for 3 seconds to obtain the colored state shown in FIG. Subsequently, the colored state shown in FIG. 4 was maintained by applying a rectangular wave with a voltage of 0.5 V and a frequency of 30 Hz.

表示素子の評価は、透過状態および着色状態において、透過率および消費電流を測定することで行った。本実施例の駆動方法では着色状態の透過率は30%、消費電流は10Vの場合、平均5μA、0.5Vの場合、平均0.2μAであった。また透過状態の透過率は70%であった。   The display element was evaluated by measuring the transmittance and the current consumption in the transmissive state and the colored state. In the driving method of this example, the transmittance in a colored state was 30%, the current consumption was 10 V on average, and the average was 5 μA, and in the case of 0.5 V, the average was 0.2 μA. The transmittance in the transmissive state was 70%.

以下においては、透明状態から着色状態への応答時間を透過率の変化率が0%から90%になる時間τで定義する。本実施例の応答時間τは1.5秒であった。   In the following, the response time from the transparent state to the colored state is defined as the time τ when the rate of change in transmittance is from 0% to 90%. The response time τ in this example was 1.5 seconds.

(比較例1)
比較例として、第1実施例で説明した電気泳動表示素子に対して電圧10Vで直流駆動を行った。この比較例の場合、透過状態の透過率は70%、着色状態の透過率は40%であった。
(Comparative Example 1)
As a comparative example, direct current driving was performed at a voltage of 10 V on the electrophoretic display element described in the first example. In the case of this comparative example, the transmittance in the transmissive state was 70%, and the transmittance in the colored state was 40%.

これにより、本実施例の場合、比較例に比べて高いコントラストを実現できることが確認できた。   Thereby, in the case of a present Example, it has confirmed that a high contrast was realizable compared with a comparative example.

(比較例2)
また、特許文献2(特開平3−91722号公報)に記載された駆動方法のように常時10Vで交流駆動を行う比較例2の場合に比べ、本実施例の駆動方法は、前述のとおり明らかに低消費電力を実現できた。なお、特許文献2(特開平3−91722号公報)には、交流駆動後に電源を切る記載もあるが、その場合電気泳動粒子4aの分布が次第に不均一となり、高いコントラストの維持が本実施例に対して劣った。また、特許文献2には、直流電圧を印加して電気泳動粒子を電極に付着させ、着色状態を維持する記載もあるが、直流電圧の設定によってはその維持が不十分であり、やはり高いコントラストの長時間維持の点で本実施例に対して劣った。なお、この比較例2の応答時間τは1.5秒であった。
(Comparative Example 2)
Further, as compared with the case of Comparative Example 2 in which AC driving is always performed at 10 V as in the driving method described in Patent Document 2 (Japanese Patent Laid-Open No. 3-91722), the driving method of this embodiment is apparent as described above. In addition, low power consumption was achieved. In addition, Patent Document 2 (Japanese Patent Laid-Open No. 3-91722) also describes that the power is turned off after AC driving. However, in this case, the distribution of the electrophoretic particles 4a becomes gradually non-uniform and high contrast is maintained in this embodiment. It was inferior to. Patent Document 2 also describes that a DC voltage is applied to attach electrophoretic particles to the electrode to maintain a colored state. However, depending on the setting of the DC voltage, the maintenance is insufficient, and a high contrast is also required. It was inferior to the present Example in the point of long-time maintenance. The response time τ of this comparative example 2 was 1.5 seconds.

(第2実施例)
次に、第2実施例の駆動方法を説明する。
(Second embodiment)
Next, the driving method of the second embodiment will be described.

まず、第1実施例で説明したと同様にして電気泳動表示素子を得る。このようにして得られた電気泳動表示素子に対して、まず、電極6が電気泳動粒子4aの極性と逆極性となるように、電極6と電極7間に10Vの直流電圧を印加して図6に示す透明状態を得た。続いて図2に示す駆動波形により着色状態を実現した。すなわち、電極6が電気泳動粒子4aの極性と逆極性となるように、電極6と電極7間に10Vの直流電圧を印加して電気泳動粒子4aを電極6から電極7へ向けて放出させる。直流電圧の時間は1秒とした。引き続き、電極6と電極7間に電圧10Vで周波数30Hzの矩形波を印加することで図4に示す着色状態を得た。   First, an electrophoretic display element is obtained in the same manner as described in the first embodiment. For the electrophoretic display device thus obtained, first, a DC voltage of 10 V is applied between the electrode 6 and the electrode 7 so that the electrode 6 has a polarity opposite to that of the electrophoretic particles 4a. The transparent state shown in 6 was obtained. Subsequently, the coloring state was realized by the driving waveform shown in FIG. That is, a DC voltage of 10 V is applied between the electrode 6 and the electrode 7 so that the electrode 6 has a polarity opposite to that of the electrophoretic particle 4 a, and the electrophoretic particle 4 a is emitted from the electrode 6 toward the electrode 7. The DC voltage time was 1 second. Subsequently, a colored state shown in FIG. 4 was obtained by applying a rectangular wave having a voltage of 10 V and a frequency of 30 Hz between the electrode 6 and the electrode 7.

表示素子の評価は第1の実施形態と同様に行った。本実施例の場合、第1実施例と同様に、着色状態における透過率は、第1実施例の比較例1の場合の40%に対して30%となり、結果として高いコントラストを実現できた。また、本実施例の応答時間は、τ=0.7秒であった。   Evaluation of the display element was performed in the same manner as in the first embodiment. In the case of this example, similarly to the first example, the transmittance in the colored state was 30% compared to 40% in the case of Comparative Example 1 of the first example, and as a result, a high contrast could be realized. The response time of this example was τ = 0.7 seconds.

一方、特許文献2(特開平3−91722号公報)に記載された駆動方法の場合、本実施例と同様に着色時の透過率は30%であるが、応答時間τが1.5秒と本実施例に比べて遅い。すなわち、本実施例の場合、高いコントラストと高速応答を実現できることが確認できた。   On the other hand, in the case of the driving method described in Patent Document 2 (Japanese Patent Laid-Open No. 3-91722), the transmittance during coloring is 30% as in the present embodiment, but the response time τ is 1.5 seconds. Slower than the present embodiment. That is, in the case of the present Example, it has confirmed that a high contrast and a high-speed response were realizable.

(第3実施例)
まず、第1実施例で説明したと同様にして電気泳動表示素子を得た。このようにして得られた電気泳動表示素子に対して、まず、電極6が電気泳動粒子4aの極性と逆極性となるように、電極6と電極7間に10Vの直流電圧を印加して図6に示す透明状態を得た。続いて図3に示す駆動波形により着色状態を実現した。すなわち、電極6と電極7間に電圧10Vで周波数30Hzの矩形波を3秒間印加して、図4に示す着色状態を得た。続いて、電圧40Vの直流電圧を印加することで図5に示す着色状態を維持した。
(Third embodiment)
First, an electrophoretic display element was obtained in the same manner as described in the first example. For the electrophoretic display device thus obtained, first, a DC voltage of 10 V is applied between the electrode 6 and the electrode 7 so that the electrode 6 has a polarity opposite to that of the electrophoretic particles 4a. The transparent state shown in 6 was obtained. Subsequently, the coloring state was realized by the driving waveform shown in FIG. That is, a rectangular wave having a voltage of 10 V and a frequency of 30 Hz was applied between the electrode 6 and the electrode 7 for 3 seconds to obtain the colored state shown in FIG. Subsequently, the coloring state shown in FIG. 5 was maintained by applying a DC voltage of 40V.

表示素子の評価は第1実施例と同様に行った。本実施例の駆動方法における着色状態の透過率は31%であり、第1実施例で説明した、電圧10Vで直流駆動を行う比較例1の駆動方法の40%に比べて低い透過率に抑えることができた。また、着色状態を安定に維持できることを確認できた。   The evaluation of the display element was performed in the same manner as in the first example. The transmittance in the colored state in the driving method of the present embodiment is 31%, which is suppressed to a lower transmittance than the 40% of the driving method of the comparative example 1 that performs DC driving at a voltage of 10 V described in the first embodiment. I was able to. Moreover, it has confirmed that a coloring state could be maintained stably.

すなわち、本実施例の場合、安定な高いコントラストを実現できることを確認できた。なお、本実施例の応答時間τは1.5秒であった。   That is, in the case of the present Example, it has confirmed that stable high contrast was realizable. The response time τ in this example was 1.5 seconds.

(第4実施例)
各画素が薄膜トランジスタ(TFT)を有し、横が1024個、縦が768個のマトリックス状に配列された画素群からなるTFTアレイ電極基板2(0.7mm厚)と井桁状の電極基板1(0.7mm厚)を用いて、一つの画素の断面が図9に示された構造を有する電気泳動表示素子を作製した。井桁状の共通電極25は幅15μmのクロム/酸化クロム電極であり、井桁スペーサ3の高さは20μm、幅8μmとした。対比色層41としては、二酸化チタンを用いた。一つの画素の大きさは一辺が127μmの四角形とした。電気泳動層4は、以下の通り準備した。まず、電気泳動粒子4aとして黒色樹脂トナー(粒径1μm)を、また流体4bとしてイソプロパノールを用い、両者を電気泳動粒子4aの混合重量率が10%となるように混合し、さらに分散安定性の向上のために微量の界面活性剤を添加し、電気泳動層4を準備した。この場合、電気泳動粒子4aは表面が負に帯電している。
(Fourth embodiment)
Each pixel has a thin film transistor (TFT), a TFT array electrode substrate 2 (0.7 mm thick) and a cross-shaped electrode substrate 1 (with a thickness of 1024 pixels and a vertical size of 768 pixels) arranged in a matrix. An electrophoretic display element in which the cross section of one pixel has the structure shown in FIG. The cross-shaped common electrode 25 is a chromium / chromium oxide electrode having a width of 15 μm, and the height of the cross-beam spacer 3 is 20 μm and the width is 8 μm. As the contrasting color layer 41, titanium dioxide was used. The size of one pixel was a quadrangle with a side of 127 μm. The electrophoretic layer 4 was prepared as follows. First, a black resin toner (particle size: 1 μm) is used as the electrophoretic particles 4a, and isopropanol is used as the fluid 4b. A small amount of surfactant was added for improvement, and the electrophoretic layer 4 was prepared. In this case, the surface of the electrophoretic particle 4a is negatively charged.

図18に示す駆動波形で全面白表示を行って反射率を測定したところ、反射率75%であり、図17に示す駆動波形で全面黒表示を行って反射率を測地したところ、反射率7%であった。なお、走査線22の電位Vgの低電位値を−9V、高電位値を+20V、信号線21の電位Vsigの低電位値を+1V、高電位値を+10V、共通電極25の電位Vcomを+4.5V、フレーム周期を16.7ms(フレーム周波数60Hz)とした。   When the reflectance was measured by performing white display on the entire surface with the driving waveform shown in FIG. 18, the reflectance was 75%. When the reflectance was measured by performing black display on the entire surface with the driving waveform shown in FIG. %Met. The low potential value of the potential Vg of the scanning line 22 is −9 V, the high potential value is +20 V, the low potential value of the potential Vsig of the signal line 21 is +1 V, the high potential value is +10 V, and the potential Vcom of the common electrode 25 is +4. The frame period was 5V and the frame period was 16.7 ms (frame frequency 60 Hz).

本実施例の駆動方法により、安定な高いコントラストと低消費電力を実現することができる。   By the driving method of this embodiment, stable high contrast and low power consumption can be realized.

本発明の一実施形態による駆動方法の駆動波形の一例を示す波形図。The wave form diagram which shows an example of the drive waveform of the drive method by one Embodiment of this invention. 本発明の一実施形態による駆動方法の駆動波形の一例を示す波形図。The wave form diagram which shows an example of the drive waveform of the drive method by one Embodiment of this invention. 本発明の一実施形態による駆動方法の駆動波形の一例を示す波形図。The wave form diagram which shows an example of the drive waveform of the drive method by one Embodiment of this invention. 本発明の一実施形態による駆動方法に用いられ電気泳動表示素子の一画素の電気泳動層の着色状態を示す断面図。Sectional drawing which shows the coloring state of the electrophoretic layer of 1 pixel of an electrophoretic display element used for the drive method by one Embodiment of this invention. 本発明の一実施形態による駆動方法に用いられ電気泳動表示素子の一画素の電気泳動層の着色状態を示す断面図。Sectional drawing which shows the coloring state of the electrophoretic layer of 1 pixel of an electrophoretic display element used for the drive method by one Embodiment of this invention. 本発明の一実施形態による駆動方法に用いられ電気泳動表示素子の一画素の電気泳動層の透過状態を示す断面図。FIG. 4 is a cross-sectional view showing a transmission state of an electrophoretic layer of one pixel of an electrophoretic display element used in a driving method according to an embodiment of the present invention. 本発明の一実施形態による駆動方法に用いられるマトリックス状に配置された画素を有する電気泳動表示素子の構成を示すブロック図。The block diagram which shows the structure of the electrophoretic display element which has the pixel arrange | positioned at the matrix form used for the drive method by one Embodiment of this invention. 本発明の一実施形態による駆動方法に用いられる表示素子の、薄膜トランジスタを有する画素の構成を示す図。The figure which shows the structure of the pixel which has a thin-film transistor of the display element used for the drive method by one Embodiment of this invention. 本発明の一実施形態による駆動方法に用いられる電気泳動表示素子の構成を示す断面図。FIG. 3 is a cross-sectional view illustrating a configuration of an electrophoretic display element used in a driving method according to an embodiment of the present invention. 本発明の一実施形態による駆動方法に用いられる電気泳動表示素子の構成を示す断面図。FIG. 3 is a cross-sectional view illustrating a configuration of an electrophoretic display element used in a driving method according to an embodiment of the present invention. 高電圧と低電圧で印加時間が異なるデューティ比が1:1でない交流波形の一例を示す波形図。The wave form diagram which shows an example of the alternating current waveform whose duty ratio from which application time differs by high voltage and low voltage is not 1: 1. オフセット電圧を有する交流波形の一例を示す波形図。The wave form diagram which shows an example of the alternating current waveform which has an offset voltage. 本発明の一実施形態による駆動方法に用いられるマトリックス駆動波形の一例を示す波形図。The wave form diagram which shows an example of the matrix drive waveform used for the drive method by one Embodiment of this invention. 本発明の一実施形態による駆動方法に用いられるマトリックス駆動波形の一例を示す波形図。The wave form diagram which shows an example of the matrix drive waveform used for the drive method by one Embodiment of this invention. 本発明の一実施形態による駆動方法に用いられるマトリックス駆動波形の一例を示す波形図。The wave form diagram which shows an example of the matrix drive waveform used for the drive method by one Embodiment of this invention. 本発明の一実施形態による駆動方法に用いられるマトリックス駆動波形の一例を示す波形図。The wave form diagram which shows an example of the matrix drive waveform used for the drive method by one Embodiment of this invention. 本発明の一実施形態による駆動方法に用いられるマトリックス駆動波形の一例を示す波形図。The wave form diagram which shows an example of the matrix drive waveform used for the drive method by one Embodiment of this invention. 本発明の一実施形態による駆動方法に用いられるマトリックス駆動波形の一例を示す波形図。The wave form diagram which shows an example of the matrix drive waveform used for the drive method by one Embodiment of this invention.

符号の説明Explanation of symbols

1 基板
2 基板
3 スペーサ
4 電気泳動層
4a 電気泳動粒子
4b 絶縁性流体
6 電極
7 電極
11 画素群
12 信号線駆動回路
13 走査線駆動回路
14 駆動信号発生回路
21 信号線
22 走査線
23 画素電極
24 薄膜トランジスタ
25 共通電極
26 補助容量電極
27 補助容量線
40 絶縁膜
41 対比色層
60 切断線
DESCRIPTION OF SYMBOLS 1 Substrate 2 Substrate 3 Spacer 4 Electrophoretic layer 4a Electrophoretic particle 4b Insulating fluid 6 Electrode 7 Electrode 11 Pixel group 12 Signal line drive circuit 13 Scan line drive circuit 14 Drive signal generation circuit 21 Signal line 22 Scan line 23 Pixel electrode 24 Thin film transistor 25 Common electrode 26 Auxiliary capacitance electrode 27 Auxiliary capacitance line 40 Insulating film 41 Contrasting color layer 60 Cutting line

Claims (12)

対向して配置された第1および第2の基板と、これらの基板間に封入され所定の電荷を帯びた泳動粒子とこれらの泳動粒子を分散する絶縁性流体とを有する電気泳動層と、を備える電気泳動表示素子の駆動方法であって、
前記泳動粒子の色が視認される状態である前記電気泳動層の着色状態を得る際に、前記電気泳動層に交流電圧を印加し、前記交流電圧の振幅およびオフセット電圧の少なくとも一方を前記着色状態の期間中に変化させることを特徴とする電気泳動表示素子の駆動方法。
An electrophoretic layer having first and second substrates disposed opposite to each other, electrophoretic particles encapsulated between the substrates and having a predetermined charge, and an insulating fluid that disperses the electrophoretic particles. A method for driving an electrophoretic display element comprising:
When obtaining the colored state of the electrophoretic layer in which the color of the electrophoretic particles is visually recognized, an alternating voltage is applied to the electrophoretic layer, and at least one of the amplitude of the alternating voltage and the offset voltage is the colored state. A method for driving an electrophoretic display element, wherein the electrophoretic display element is changed during the period.
対向して配置された第1および第2の基板と、これらの基板間に封入され所定の電荷を帯びた泳動粒子とこれらの泳動粒子を分散する絶縁性流体とを有する電気泳動層と、を備える電気泳動表示素子の駆動方法であって、
前記泳動粒子の色が視認される状態である前記電気泳動層の着色状態を得る際に、前記電気泳動層に最初に直流電圧を印加し、その後、交流電圧を印加し、前記直流電圧の印加時間が、前記交流電圧の1/2周期より長いことを特徴とする電気泳動表示素子の駆動方法。
An electrophoretic layer having first and second substrates disposed opposite to each other, electrophoretic particles encapsulated between the substrates and having a predetermined charge, and an insulating fluid that disperses the electrophoretic particles. A method for driving an electrophoretic display element comprising:
When obtaining a colored state of the electrophoretic layer in which the color of the electrophoretic particles is visually recognized, a DC voltage is first applied to the electrophoretic layer, then an AC voltage is applied, and the DC voltage is applied. A method for driving an electrophoretic display element, characterized in that the time is longer than a half cycle of the AC voltage.
前記交流電圧の印加は、第1の交流電圧を印加後、前記第1の交流電圧より小さい振幅の第2の交流電圧を印加することを特徴とする請求項1または2記載の電気泳動表示素子の駆動方法。   3. The electrophoretic display element according to claim 1, wherein the alternating voltage is applied by applying a second alternating voltage having an amplitude smaller than that of the first alternating voltage after the first alternating voltage is applied. Driving method. 前記交流電圧の印加は、振幅およびオフセット電圧の少なくとも一方を周期的に変化させることを特徴とする請求項1または2記載の電気泳動表示素子の駆動方法。   3. The method for driving an electrophoretic display element according to claim 1, wherein the application of the AC voltage periodically changes at least one of an amplitude and an offset voltage. 前記交流電圧を印加後、再び直流電圧を印加することを特徴とする請求項2記載の電気泳動表示素子の駆動方法。   3. The method for driving an electrophoretic display element according to claim 2, wherein the DC voltage is applied again after the AC voltage is applied. 前記交流電圧の印加後に印加する前記直流電圧の大きさが、前記交流電圧の振幅より大きいことを特徴とする請求項5記載の電気泳動表示素子の駆動方法。   6. The method for driving an electrophoretic display element according to claim 5, wherein the magnitude of the DC voltage applied after application of the AC voltage is larger than the amplitude of the AC voltage. 前記交流電圧の印加後、直流電圧と交流電圧を周期的に印加することを特徴とする請求項2記載の電気泳動表示素子の駆動方法。   3. The method for driving an electrophoretic display element according to claim 2, wherein a DC voltage and an AC voltage are periodically applied after the application of the AC voltage. 対向して配置された第1および第2の基板と、これらの基板間に封入され所定の電荷を帯びた泳動粒子とこれらの泳動粒子を分散する絶縁性流体とを有する電気泳動層と、を備える電気泳動表示素子の駆動方法であって、
前記泳動粒子の色が視認される状態である前記電気泳動層の着色状態を得る際に、前記電気泳動層に最初に交流電圧を印加し、その後、前記交流電圧の振幅より大きな直流電圧を印加することを特徴とする電気泳動表示素子の駆動方法。
An electrophoretic layer having first and second substrates disposed opposite to each other, electrophoretic particles encapsulated between the substrates and having a predetermined charge, and an insulating fluid that disperses the electrophoretic particles. A method for driving an electrophoretic display element comprising:
When obtaining a colored state of the electrophoretic layer in which the color of the electrophoretic particles is visually recognized, an AC voltage is first applied to the electrophoretic layer, and then a DC voltage greater than the amplitude of the AC voltage is applied. A method for driving an electrophoretic display element.
前記交流電圧はオフセット電圧を有するかまたは高電圧の印加時間と低電圧の印加時間が異なることを特徴とする請求項1乃至8のいずれかに記載の電気泳動表示素子の駆動方法。   9. The method of driving an electrophoretic display element according to claim 1, wherein the AC voltage has an offset voltage, or a high voltage application time and a low voltage application time are different. 対向して配置された第1および第2の基板と、前記第1および第2の基板間に形成されてマトリクス状に配置され、それぞれが画素電極と前記第1および第2の基板間に封入された所定の電荷を帯びた泳動粒子とこれらの泳動粒子を分散する絶縁性流体とを有する電気泳動層と、を含む画素を備えた電気泳動表示素子の駆動方法であって、
各画素の前記電気泳動層に交流電圧または直流電圧を印加し、前記交流電圧の高電圧および低電圧の印加時間、または前記直流電圧の印加時間が、m、nを自然数としたときフレーム周期のm/n倍であることを特徴とする電気泳動表示素子の駆動方法。
The first and second substrates arranged opposite to each other and the first and second substrates are arranged in a matrix, and each is enclosed between the pixel electrode and the first and second substrates. An electrophoretic display element including a pixel including an electrophoretic layer having electrophoretic particles having a predetermined charge and an insulating fluid that disperses the electrophoretic particles,
When an AC voltage or a DC voltage is applied to the electrophoretic layer of each pixel, and the application time of the high voltage and the low voltage of the AC voltage, or the application time of the DC voltage is m and n are natural numbers, A method of driving an electrophoretic display element, wherein the driving ratio is m / n times.
各画素に薄膜トランジスタが設けられ、前記第1の基板に前記画素電極が設けられ、前記第2の基板に、全ての画素に共通な電位を与える共通電極が設けられていることを特徴とする請求項10記載の電気泳動表示素子の駆動方法。   A thin film transistor is provided in each pixel, the pixel electrode is provided on the first substrate, and a common electrode for applying a potential common to all pixels is provided on the second substrate. Item 11. A driving method of an electrophoretic display element according to Item 10. 前記電気泳動層に対して電圧を印加する際、前記共通電極の電位をフレーム周期のm/n倍で変化させることを特徴とする請求項11記載の電気泳動表示素子の駆動方法。   12. The method of driving an electrophoretic display element according to claim 11, wherein when applying a voltage to the electrophoretic layer, the potential of the common electrode is changed at m / n times the frame period.
JP2004067402A 2004-03-10 2004-03-10 Driving method of electrophoretic display element Expired - Fee Related JP4287310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004067402A JP4287310B2 (en) 2004-03-10 2004-03-10 Driving method of electrophoretic display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004067402A JP4287310B2 (en) 2004-03-10 2004-03-10 Driving method of electrophoretic display element

Publications (2)

Publication Number Publication Date
JP2005257888A true JP2005257888A (en) 2005-09-22
JP4287310B2 JP4287310B2 (en) 2009-07-01

Family

ID=35083687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004067402A Expired - Fee Related JP4287310B2 (en) 2004-03-10 2004-03-10 Driving method of electrophoretic display element

Country Status (1)

Country Link
JP (1) JP4287310B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086529A (en) * 2005-09-22 2007-04-05 Seiko Epson Corp Electrophoretic device, electronic equipment, and method of driving electrophoretic device
JP2007279320A (en) * 2006-04-05 2007-10-25 Fuji Xerox Co Ltd Drive unit for image display medium
JP2008107740A (en) * 2006-10-27 2008-05-08 Tdk Corp Light transmission control device and display device
JPWO2008012934A1 (en) * 2006-07-24 2009-12-17 太田 勲夫 Display device and manufacturing method thereof
JP2010032835A (en) * 2008-07-30 2010-02-12 Dainippon Printing Co Ltd Matrix type display device
JP2011145710A (en) * 2011-04-27 2011-07-28 Sakura Color Products Corp Electrophoresis display element, electrophoresis display device, colored phoretic fine particle, insulating liquid and method of driving electrophoresis display element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086529A (en) * 2005-09-22 2007-04-05 Seiko Epson Corp Electrophoretic device, electronic equipment, and method of driving electrophoretic device
JP4530167B2 (en) * 2005-09-22 2010-08-25 セイコーエプソン株式会社 Electrophoresis device, electronic apparatus, and method for driving electrophoresis device
JP2007279320A (en) * 2006-04-05 2007-10-25 Fuji Xerox Co Ltd Drive unit for image display medium
JPWO2008012934A1 (en) * 2006-07-24 2009-12-17 太田 勲夫 Display device and manufacturing method thereof
JP2008107740A (en) * 2006-10-27 2008-05-08 Tdk Corp Light transmission control device and display device
JP2010032835A (en) * 2008-07-30 2010-02-12 Dainippon Printing Co Ltd Matrix type display device
JP2011145710A (en) * 2011-04-27 2011-07-28 Sakura Color Products Corp Electrophoresis display element, electrophoresis display device, colored phoretic fine particle, insulating liquid and method of driving electrophoresis display element

Also Published As

Publication number Publication date
JP4287310B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
JP6739540B2 (en) Method for driving an electro-optical display
US10229641B2 (en) Driving method of electrophoretic display
US8558855B2 (en) Driving methods for electrophoretic displays
US9019318B2 (en) Driving methods for electrophoretic displays employing grey level waveforms
JP2019074768A (en) Color display device
US20220019119A1 (en) Methods for updating color electrophoretic displays
JP4522101B2 (en) Electrophoretic display device and driving method of electrophoretic display device
TWI667648B (en) Method for driving an electrophoretic display and controller for an electrophoretic display
KR20070082680A (en) Electrophoretic display device
US20120069425A1 (en) Electrophoretic display device, driving method of electrophoretic display device, and electronic apparatus
WO2018128040A1 (en) Display device and driving method
JP2012003231A (en) Electrophoretic display device and method for driving the same, and electronic apparatus
WO2011111263A1 (en) Display element, and electrical device using same
TWI807419B (en) Four particle electrophoretic medium providing fast, high-contrast optical state switching
JP4287310B2 (en) Driving method of electrophoretic display element
JP2012181451A (en) Electrophoretic display device, driving method thereof and electronic apparatus
TWI803978B (en) Improved driving voltages for advanced color electrophoretic displays and displays with improved driving voltages
Fleming et al. 36‐3: Tablet‐size eTIR Display for Low‐power ePaper Applications with Color Video Capability
TWI838294B (en) A color electrophoretic display
US11580920B2 (en) Synchronized driving waveforms for four-particle electrophoretic displays
JP2011237582A (en) Electrophoresis display device and electronic device
JP2023545278A (en) Driving sequence for removing previous state information from color electrophoretic displays
KR20090020988A (en) Driving apparatus and method for pixel of electro phoretic display
KR20070058071A (en) Method for driving an electrophoretic display panel
JP2011221343A (en) Electrophoretic display device, method for driving the same and electronic apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees