JP2005257859A - Optical power limiter circuit and method - Google Patents

Optical power limiter circuit and method Download PDF

Info

Publication number
JP2005257859A
JP2005257859A JP2004067052A JP2004067052A JP2005257859A JP 2005257859 A JP2005257859 A JP 2005257859A JP 2004067052 A JP2004067052 A JP 2004067052A JP 2004067052 A JP2004067052 A JP 2004067052A JP 2005257859 A JP2005257859 A JP 2005257859A
Authority
JP
Japan
Prior art keywords
optical
optical signal
signal
power limiter
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004067052A
Other languages
Japanese (ja)
Inventor
Hiroyuki Uenohara
裕行 植之原
Hidekazu Takeda
秀和 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2004067052A priority Critical patent/JP2005257859A/en
Publication of JP2005257859A publication Critical patent/JP2005257859A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical power limiter circuit and method for performing satisfactory operation with low optical power without using an optical fiber and a passive component. <P>SOLUTION: The optical power limiter circuit is so constituted that an optical signal 25 from a signal processing system and a probe beam 26 having a wavelength different from the wavelength of the optical signal 25 from a probe beam generator 23 are inputted to a semiconductor optical amplifier 22. The probe beam 26 is amplified by optical gain of the semiconductor optical amplifier 22, but gain to the probe beam 26 is reduced only for the time at which the optical signal 25 is inputted since carrier density is reduced in an induction and emission process in which the optical signal 25 is amplified. Thereby, a signal having intensity of a high level/a low level reverse to that of the optical signal 25 is converted to the wavelength of the probe beam 26. A wavelength filter 24 selectively takes out only an optical signal 28 corresponding to the optical signal 25 among the optical signals 27 to 29 outputted from the semiconductor optical amplifier 22. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、様々な光パワーで入力された光信号を、同一の光パワーの光信号にして出力する光パワーリミッタ回路及び方法に関する。   The present invention relates to an optical power limiter circuit and method for outputting optical signals input with various optical powers as optical signals having the same optical power and outputting them.

従来、光パワーリミッタ回路としては、半導体光増幅器の利得飽和を利用したもの(例えば、非特許文献1参照)、光ファイバ中の4光波混合による強度抑制現象を用いたもの(例えば、非特許文献2参照)、非線形特性を有する方向性結合器を用いたもの(例えば、非特許文献3参照)、光ファイバ中の自己位相変調(SPM)を用いたもの(例えば、非特許文献4参照)、及び非線形材料を用いるもの(例えば、非特許文献5参照)が提案されている。   Conventionally, as an optical power limiter circuit, a circuit using gain saturation of a semiconductor optical amplifier (for example, see Non-Patent Document 1), or a circuit using an intensity suppression phenomenon due to four-wave mixing in an optical fiber (for example, Non-Patent Document) 2), using a directional coupler having nonlinear characteristics (for example, see Non-Patent Document 3), using a self-phase modulation (SPM) in an optical fiber (for example, see Non-Patent Document 4), In addition, the one using a non-linear material (for example, see Non-Patent Document 5) has been proposed.

半導体光増幅器の利得飽和を利用したものでは、図1Aに示すように、半導体光増幅器1に高レベルの電流を注入し、光信号を増幅すると、誘導放出によるキャリア密度減少によって光利得が減少する利得飽和現象が生じる。その結果、入力光を増大させたとしても、出力信号の光パワーは線形的に増大せず、増加が抑制される。   In the case of using the gain saturation of the semiconductor optical amplifier, as shown in FIG. 1A, when a high level current is injected into the semiconductor optical amplifier 1 to amplify the optical signal, the optical gain decreases due to the carrier density decrease by stimulated emission. Gain saturation occurs. As a result, even if the input light is increased, the optical power of the output signal does not increase linearly, and the increase is suppressed.

光ファイバ中の4光波混合による強度抑制現象を用いたものでは、図1Bに示すように、信号発生器2から光信号(ポンプ光)を発生するとともに、その光信号とは異なる波長のアシスト光の信号をアシスト光発生器3で発生し、これらの信号をカプラで合成して、光導波路(光ファイバ)4中の非線形効果である4光波混合を発生させる。その後、狭帯域の波長フィルタ5からは光信号(ポンプ光)のみを出力する。その強度は、入力光強度がある一定値以上になると急に増大するため、逆に信号光のパワーを奪うことになるため、出力光パワーがリミットされる。   As shown in FIG. 1B, an optical signal (pump light) is generated from the signal generator 2 and assist light having a wavelength different from that of the optical signal is used in the case of using the intensity suppression phenomenon due to the four-wave mixing in the optical fiber. These signals are generated by the assist light generator 3 and these signals are combined by a coupler to generate four-wave mixing which is a nonlinear effect in the optical waveguide (optical fiber) 4. Thereafter, only the optical signal (pump light) is output from the narrow-band wavelength filter 5. Since the intensity suddenly increases when the input light intensity exceeds a certain value, conversely, the power of the signal light is taken away, so that the output light power is limited.

非線形特性を有する方向性結合器を用いたものでは、図1Cに示すように、2本の光導波路6,7を互いに近接させた方向性結合器8の光分岐特性に非線形性を持たせた構造を作製し、入力光の増加に対して一定値から急速に出力が変化する特性を実現したものである。   In the case of using a directional coupler having nonlinear characteristics, as shown in FIG. 1C, the optical branching characteristics of the directional coupler 8 in which the two optical waveguides 6 and 7 are brought close to each other are made nonlinear. A structure is manufactured, and a characteristic in which the output changes rapidly from a constant value as the input light increases is realized.

光ファイバ中の自己位相変調を用いたものでは、図1Dに示すように、増幅器9を通じて光導波路(光ファイバ)10に高強度の光信号を入力すると、強度の強い時間で屈折率が変化するSPM現象が発生し、信号光波長が変化する。波長変化量は光強度が強くなるに従って大きくなるので、信号光強度が増加しても波長スペクトルが広がり、ピークパワーは増大しなくなる。したがって、狭帯域の波長フィルタ11で出力信号の一部を切り出すと、光パワーが一定値に保持される。   In the case of using self-phase modulation in an optical fiber, as shown in FIG. 1D, when a high-intensity optical signal is input to an optical waveguide (optical fiber) 10 through an amplifier 9, the refractive index changes in a strong time. An SPM phenomenon occurs and the signal light wavelength changes. Since the amount of wavelength change increases as the light intensity increases, the wavelength spectrum spreads and the peak power does not increase even if the signal light intensity increases. Therefore, when a part of the output signal is cut out by the narrow band wavelength filter 11, the optical power is held at a constant value.

非線形材料を用いるものでは、図1Eに示すように、CS2やポリマーのような非線形材料12を用いて光パワーリミッタを実現している。
Kyo Ineue et al. “Suppression of Signal Fluctuation Induced by Crosstalk Light in a Gain Saturated Laser Diode Amplifier”, IEEE PHOTNICS TECHNOLOGY LETTERS, VOL. 8, NO.3, MARCH 1996, pp.458 - 460 (Fig. 1) A. Hirano et al. “All-optical limiter circuit based on four-wave mixing in optical fibers” ELECTRONICS LETTERS 9th July 1998 Vol.34 No.14(Fig. 1) Byongin Ma et al. “Realization of All-Optical Wavelength Converter Based on Directionally Coupled Semiconductor Optical Amplifiers”, IEEE PHOTNICS TECHNOLOGY LETTERS, VOL. 11, NO.2, FEBRUARY 1999, pp.188 - 190 (Fig. 1) M. Matsumoto et al. “Analysis of 2R optical regenerator utilizing self-phase modulation in highly nonlinear fiber”, ELECTRONICS LETTERS 6th June 2002 Vol.38 No.12, pp 576 - 577 (Fig. 1) M. J. Soileau, “Optical Power limiter with Picosecond Response Time”, IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. QE-19, NO. 4, APRIL 1983, pp.731 - 738 (Fig. 1)
In the case of using a nonlinear material, as shown in FIG. 1E, an optical power limiter is realized using a nonlinear material 12 such as CS2 or a polymer.
Kyo Ineue et al. “Suppression of Signal Fluctuation Induced by Crosstalk Light in a Gain Saturated Laser Diode Amplifier”, IEEE PHOTNICS TECHNOLOGY LETTERS, VOL. 8, NO.3, MARCH 1996, pp.458-460 (Fig. 1) A. Hirano et al. “All-optical limiter circuit based on four-wave mixing in optical fibers” ELECTRONICS LETTERS 9th July 1998 Vol.34 No.14 (Fig. 1) Byongin Ma et al. “Realization of All-Optical Wavelength Converter Based on Directionally Coupled Semiconductor Optical Amplifiers”, IEEE PHOTNICS TECHNOLOGY LETTERS, VOL. 11, NO.2, FEBRUARY 1999, pp.188-190 (Fig. 1) M. Matsumoto et al. “Analysis of 2R optical regenerator utilizing self-phase modulation in highly nonlinear fiber”, ELECTRONICS LETTERS 6th June 2002 Vol.38 No.12, pp 576-577 (Fig. 1) MJ Soileau, “Optical Power limiter with Picosecond Response Time”, IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. QE-19, NO. 4, APRIL 1983, pp.731-738 (Fig. 1)

しかしながら、半導体光増幅器の利得飽和を利用した場合、小型の半導体光デバイスを使用できる利点があるものの、利得飽和現象が生じても、一般的には光出力の変動は少ない。すなわち、信号光1波のみを半導体光増幅器で増幅させるが、誘導放出による利得飽和現象では、キャリア密度の減少に要する時間だけ過渡応答が存在し、信号の立上がり部分は、利得飽和しない大きな利得の影響を受け、信号の立下り部分は、利得飽和による小さな利得の影響を受ける。したがって、理想的な光パワーリミッタを実現するのは困難である。   However, when the gain saturation of the semiconductor optical amplifier is utilized, there is an advantage that a small semiconductor optical device can be used, but even if the gain saturation phenomenon occurs, the fluctuation of the optical output is generally small. That is, only one wave of signal light is amplified by the semiconductor optical amplifier, but in the gain saturation phenomenon due to stimulated emission, a transient response exists only for the time required for the reduction of the carrier density, and the rising portion of the signal has a large gain that does not saturate the gain. The falling part of the signal is affected by a small gain due to gain saturation. Therefore, it is difficult to realize an ideal optical power limiter.

光ファイバ中の4光波混合による強度抑制現象を用いた場合及び光ファイバ中の自己位相変調を用いた場合、光ファイバを用いるためにkmオーダの長尺光ファイバが必要であり、かつ、数十mWの大きなパワーを必要とする。   When the intensity suppression phenomenon due to four-wave mixing in an optical fiber is used and when self-phase modulation is used in an optical fiber, a long optical fiber of the order of km is necessary to use the optical fiber, and several tens of Requires a large power of mW.

非線形特性を有する方向性結合器を用いた場合、方向性結合器がパッシブ光部品のために波長依存性が存在する。さらに、非線形材料を用いる場合、数Wから数百kWの大きな光パワーを入力しないと動作しない。   When a directional coupler having non-linear characteristics is used, the directional coupler has wavelength dependency because of the passive optical component. Furthermore, when using a nonlinear material, it does not operate unless a large optical power of several W to several hundred kW is input.

本発明の目的は、光ファイバやパッシブ部品を用いることなく、低い光パワーで良好な動作を行う光パワーリミッタ回路及び方法を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide an optical power limiter circuit and a method for performing a good operation with a low optical power without using an optical fiber or a passive component.

本発明による光パワーリミッタ回路は、
波長が互いに相違する第1及び第2の光信号をそれぞれ発生する第1の光信号発生手段と、
これら第1及び第2の光信号が入力され、相互利得変調特性を有する第1の半導体光増幅器と、
前記第1の半導体光増幅器から出力された光信号から前記第1の光信号のみを選択的に取り出す第1の光信号選択手段とを具えることを特徴とする。
An optical power limiter circuit according to the present invention includes:
First optical signal generating means for generating first and second optical signals having different wavelengths from each other;
A first semiconductor optical amplifier which receives the first and second optical signals and has a mutual gain modulation characteristic;
And a first optical signal selection means for selectively extracting only the first optical signal from the optical signal output from the first semiconductor optical amplifier.

本発明による光パワーリミッタ方法は、
波長が互いに相違する第1及び第2の光信号をそれぞれ発生するステップと、
これら第1及び第2の光信号を相互利得変調特性を利用して光増幅するステップと、
光増幅された第1及び第2の光信号のうち第1の光信号のみを選択的に取り出すステップとを具えることを特徴とする。
An optical power limiter method according to the present invention includes:
Generating first and second optical signals having different wavelengths from each other;
Optically amplifying the first and second optical signals using mutual gain modulation characteristics;
Selectively extracting only the first optical signal from the optically amplified first and second optical signals.

本発明によれば、第1の半導体光増幅器の相互利得変調(XGM)を利用する。第1の半導体光増幅器には、第1の光信号とともに、第1の光信号の波長とは異なる波長の第2の光信号が入力される。第2の光信号は、第1の半導体光増幅器の光利得によって増幅されるが、第1の光信号を増幅する誘導放出過程によりキャリア密度が減少するため、第1の光信号が入力された時間のみ第2の光信号に対する利得が減少する。   According to the present invention, the mutual gain modulation (XGM) of the first semiconductor optical amplifier is used. A first optical signal and a second optical signal having a wavelength different from the wavelength of the first optical signal are input to the first semiconductor optical amplifier. The second optical signal is amplified by the optical gain of the first semiconductor optical amplifier. However, since the carrier density is reduced by the stimulated emission process for amplifying the first optical signal, the first optical signal is input. Only the time decreases the gain for the second optical signal.

したがって、第1の光信号とはローレベル(0レベル)・ハイレベル(1レベル)の強度が反転した信号が第2の光信号の波長に変換されることになる。このような変換は、いわゆる波長変換であるが、本発明では第1の半導体光増幅器から出力された光信号のうち第1の光信号のみを選択的に取り出す。   Therefore, a signal in which the intensity of the low level (0 level) and the high level (1 level) is inverted from that of the first optical signal is converted into the wavelength of the second optical signal. Such conversion is so-called wavelength conversion, but in the present invention, only the first optical signal is selectively extracted from the optical signals output from the first semiconductor optical amplifier.

相互利得変調の際には、第2の光信号の誘導放出によって予め第1の半導体光増幅器内のキャリア密度が減少し、利得飽和状態となっている。第1の光信号の入力によって利得飽和の度合いを更に強めるが、第1の光信号のみの増幅よりもキャリア密度の変化が小さいので、既に説明したような大きな過渡特性を抑制することができる。   At the time of mutual gain modulation, the carrier density in the first semiconductor optical amplifier is reduced in advance by the stimulated emission of the second optical signal, and the gain is saturated. Although the degree of gain saturation is further enhanced by the input of the first optical signal, since the change in carrier density is smaller than the amplification of only the first optical signal, it is possible to suppress the large transient characteristics as already described.

また、第1の半導体光増幅器に入力される光信号の強度は、一つ(1波)の光信号の場合よりも二つ(2波)の光信号の場合の方が強く、誘導放出によるキャリア寿命の低減効果も大きい。その結果、光ファイバやパッシブ部品を用いることなく、良好な動作を行う光パワーリミッタ回路及び方法を実現することができる。なお、光パワーは数mW程度でよいため、従来に比べて光パワーが低くなる。   Further, the intensity of the optical signal input to the first semiconductor optical amplifier is stronger in the case of two (two waves) optical signals than in the case of one (one wave) optical signals, and is due to stimulated emission. The effect of reducing the carrier life is also great. As a result, it is possible to realize an optical power limiter circuit and a method that perform good operation without using an optical fiber or passive components. In addition, since optical power may be about several mW, optical power becomes low compared with the past.

相互利得変調では、動作原理上、出力される光信号のローレベル(0レベル)・ハイレベル(1レベル)が入力される光信号の逆になる。しかしながら、波長が互いに相違する第1及び第3の光信号を発生し、これら第1及び第3の光信号を相互利得変調特性を利用して光増幅し、光増幅された第1及び第3の光信号のうち第1の光信号のみを選択的に取り出すことによって、光信号の反転を起こさずにすむ。また、全光信号処理の観点から、第1の光信号を、直線偏波された光信号にできると応用範囲の拡大が期待できる。   In the mutual gain modulation, the low level (0 level) and the high level (1 level) of the output optical signal are reversed from those of the input optical signal due to the operation principle. However, the first and third optical signals having different wavelengths are generated, the first and third optical signals are optically amplified using the mutual gain modulation characteristics, and the optically amplified first and third optical signals are generated. By selectively taking out only the first optical signal among the optical signals, the inversion of the optical signal can be avoided. Further, from the viewpoint of all-optical signal processing, if the first optical signal can be converted into a linearly polarized optical signal, the application range can be expected to be expanded.

本発明による光パワーリミッタ回路及び方法の実施の形態を、図面を参照して詳細に説明する。
図2は、本発明による光パワーリミッタ回路の第1の実施の形態のブロック図及び信号波形の概略図である。図2Aにおいて、光パワーリミッタ回路21は、相互利得変調特性を有する半導体光増幅器22と、プローブ光発生器23と、波長フィルタ24とを具える。
Embodiments of an optical power limiter circuit and method according to the present invention will be described in detail with reference to the drawings.
FIG. 2 is a block diagram and a schematic diagram of signal waveforms of the first embodiment of the optical power limiter circuit according to the present invention. In FIG. 2A, the optical power limiter circuit 21 includes a semiconductor optical amplifier 22 having a mutual gain modulation characteristic, a probe light generator 23, and a wavelength filter 24.

本実施の形態において、半導体光増幅器22の相互利得変調(XGM)を利用する。半導体光増幅器22には、図示しない信号処理系で偏波制御された光信号25とともに、プローブ光発生器23からの(CW)プローブ光26が入力される。プローブ光26は、光信号25とは波長が異なり、半導体光増幅器22の光利得によって増幅されるが、光信号を増幅する誘導放出過程によりキャリア密度が減少するため、光信号25が入力された時間のみプローブ光26に対する利得が減少する(図2B)。   In the present embodiment, mutual gain modulation (XGM) of the semiconductor optical amplifier 22 is used. The (CW) probe light 26 from the probe light generator 23 is input to the semiconductor optical amplifier 22 together with the optical signal 25 whose polarization is controlled by a signal processing system (not shown). The probe light 26 has a wavelength different from that of the optical signal 25 and is amplified by the optical gain of the semiconductor optical amplifier 22. However, since the carrier density is reduced by the stimulated emission process for amplifying the optical signal, the optical signal 25 is input. Only for time, the gain for the probe light 26 decreases (FIG. 2B).

したがって、光信号25とはローレベル(0レベル)・ハイレベル(1レベル)の強度が反転した信号がプローブ光26の波長に変換されることになる。このような変換は、いわゆる波長変換であるが、本実施の形態では、波長フィルタ24は、半導体光増幅器22から出力された光信号27(図2B)のうち、図示しない信号処理系で偏波制御された光信号28(図2C)のみを選択的に取り出す。   Therefore, a signal in which the intensities of the low level (0 level) and the high level (1 level) are inverted from the optical signal 25 is converted into the wavelength of the probe light 26. Such conversion is so-called wavelength conversion, but in this embodiment, the wavelength filter 24 is polarized by a signal processing system (not shown) of the optical signal 27 (FIG. 2B) output from the semiconductor optical amplifier 22. Only the controlled optical signal 28 (FIG. 2C) is selectively extracted.

相互利得変調の際には、プローブ光26の誘導放出によって予め半導体光増幅器22内のキャリア密度が減少し、利得飽和状態となっている。光信号25の入力によって利得飽和の度合いを更に強めるが、光信号25のみの増幅よりもキャリア密度の変化が小さいので、既に説明したような大きな過渡特性を抑制することができる。   At the time of mutual gain modulation, the carrier density in the semiconductor optical amplifier 22 is reduced in advance by the stimulated emission of the probe light 26, and the gain saturation state is reached. Although the degree of gain saturation is further increased by the input of the optical signal 25, since the change in the carrier density is smaller than the amplification of only the optical signal 25, a large transient characteristic as described above can be suppressed.

また、半導体光増幅器22に入力される光信号の強度は、一つ(1波)の光信号の場合よりも二つ(2波)の光信号の場合の方が強く、誘導放出によるキャリア寿命の低減効果も大きい。その結果、光ファイバやパッシブ部品を用いることなく、良好な動作を行う光パワーリミッタ回路及び方法を実現することができる。なお、光パワーは数mW程度でよいため、従来に比べて光パワーが低くなる。また、半導体光増幅器は、一般的には利得帯域が50nm程度と比較的広く、その波長範囲で動作が可能である。   The intensity of the optical signal input to the semiconductor optical amplifier 22 is stronger in the case of two (two waves) optical signals than in the case of one (one wave) optical signals, and the carrier lifetime due to stimulated emission. The reduction effect is also great. As a result, it is possible to realize an optical power limiter circuit and a method that perform good operation without using an optical fiber or passive components. In addition, since optical power may be about several mW, optical power becomes low compared with the past. In addition, the semiconductor optical amplifier generally has a relatively wide gain band of about 50 nm and can operate in that wavelength range.

図3は、本発明による光パワーリミッタ回路の第2の実施の形態のブロック図である。図3において、光パワーリミッタ回路31は、2個の光パワーリミッタ回路21(図2)を組み合わせた構造を有し、相互利得変調特性を有する半導体光増幅器32と、プローブ光発生器33と、波長フィルタ34と、相互利得変調特性を有する半導体光増幅器35と、プローブ光発生器36と、波長フィルタ37とを具える。   FIG. 3 is a block diagram of a second embodiment of the optical power limiter circuit according to the present invention. In FIG. 3, an optical power limiter circuit 31 has a structure in which two optical power limiter circuits 21 (FIG. 2) are combined, a semiconductor optical amplifier 32 having a mutual gain modulation characteristic, a probe light generator 33, A wavelength filter 34, a semiconductor optical amplifier 35 having a mutual gain modulation characteristic, a probe light generator 36, and a wavelength filter 37 are provided.

相互利得変調では、動作原理上、出力される光信号のローレベル(0レベル)・ハイレベル(1レベル)が入力される光信号の逆になる。しかしながら、プローブ光発生器36から、波長フィルタ34から出力した光信号とは波長が異なるプローブ光を発生し、これらを半導体光増幅器35によって相互利得変調特性を利用して光増幅し、図示しない信号処理系から半導体光増幅器32に入力された光信号に相当する光信号のみを波長フィルタ37によって選択的に取り出すことによって、光信号の反転を起こさずにすむ。   In the mutual gain modulation, the low level (0 level) and the high level (1 level) of the output optical signal are reversed from those of the input optical signal due to the operation principle. However, the probe light generator 36 generates probe light having a wavelength different from that of the optical signal output from the wavelength filter 34, and optically amplifies the probe light using the mutual gain modulation characteristic by the semiconductor optical amplifier 35, thereby generating a signal (not shown). Only the optical signal corresponding to the optical signal input to the semiconductor optical amplifier 32 from the processing system is selectively extracted by the wavelength filter 37, thereby avoiding the inversion of the optical signal.

図4Aは、10101のデータ及び111001のデータを有する光信号を偏波制御されたものの波形であり、光パワーリミッタ回路21(図2)に入力される。図4Bは、波長フィルタ34から出力された光信号の波形である。図4Aに表す波形が入力光信号に対応し、図4Bに表す波形が出力光信号に対応し、パワー変動がリミットされている。   FIG. 4A shows a waveform of a polarization-controlled optical signal having 10101 data and 111001 data, and is input to the optical power limiter circuit 21 (FIG. 2). FIG. 4B shows the waveform of the optical signal output from the wavelength filter 34. The waveform shown in FIG. 4A corresponds to the input optical signal, the waveform shown in FIG. 4B corresponds to the output optical signal, and power fluctuation is limited.

図5は、光信号を互いに直交する直線偏波に分離する偏波制御回路を示す図である。図5において、偏波制御回路41は、偏波ビームスプリッタ42と、2個のフォトダイオード43,44と、比較器45と、2×2光スイッチ46とを具える。   FIG. 5 is a diagram illustrating a polarization control circuit that separates an optical signal into linearly polarized waves orthogonal to each other. In FIG. 5, the polarization control circuit 41 includes a polarization beam splitter 42, two photodiodes 43 and 44, a comparator 45, and a 2 × 2 optical switch 46.

図5に示すような偏光面を有する光信号が偏波ビームスプリッタ42に入力されると、この光信号は、互いに直交する直線偏波を有する二つの光信号に分離される。これら二つの光信号の光パワーは、フォトダイオード43,44によってそれぞれモニタされ、フォトダイオード43,44によって検出された光強度が比較器45にそれぞれ入力される。比較器45の比較結果は2×2光スイッチ46に入力され、2×2光スイッチ46は、比較器45の比較結果に基づいて、偏波ビームスプリッタ42によって分離された二つの光信号のうちの光パワーが強い方の光信号を光パワーリミッタ回路(図示せず)に出力する。   When an optical signal having a polarization plane as shown in FIG. 5 is input to the polarization beam splitter 42, the optical signal is separated into two optical signals having linearly polarized waves orthogonal to each other. The optical powers of these two optical signals are monitored by the photodiodes 43 and 44, respectively, and the light intensities detected by the photodiodes 43 and 44 are input to the comparator 45, respectively. The comparison result of the comparator 45 is input to the 2 × 2 optical switch 46, and the 2 × 2 optical switch 46 is based on the comparison result of the comparator 45 and is out of the two optical signals separated by the polarization beam splitter 42. The optical signal having the higher optical power is output to an optical power limiter circuit (not shown).

本発明は、上記実施の形態に限定されるものではなく、幾多の変更及び変形が可能である。
例えば、光パワーリミッタ回路に入力される光信号の偏波制御を、図5に示す偏波制御回路を用いて行う場合について説明したが、任意の偏波制御により光信号を偏波し、かかる光信号を光パワーリミッタ回路に入力することもできる。
The present invention is not limited to the above-described embodiment, and many changes and modifications can be made.
For example, the case where the polarization control of the optical signal input to the optical power limiter circuit is performed using the polarization control circuit shown in FIG. 5 has been described. An optical signal can also be input to the optical power limiter circuit.

従来の種々の光パワーリミッタ回路のブロック図である。It is a block diagram of various conventional optical power limiter circuits. 本発明による光パワーリミッタ回路の第1の実施の形態のブロック図及び信号波形の概略図である。1 is a block diagram and a schematic diagram of signal waveforms of a first embodiment of an optical power limiter circuit according to the present invention. 本発明による光パワーリミッタ回路の第2の実施の形態のブロック図である。It is a block diagram of 2nd Embodiment of the optical power limiter circuit by this invention. 図3の光パワーリミッタ回路に関連する信号波形を示す図である。It is a figure which shows the signal waveform relevant to the optical power limiter circuit of FIG. 光信号を互いに直交する直線偏波に分離する偏波制御回路を示す図である。It is a figure which shows the polarization control circuit which isolate | separates an optical signal into the linearly polarized wave which mutually orthogonally crosses.

符号の説明Explanation of symbols

1,22,32,35 半導体光増幅器
2 信号発生器
3 アシスト光発生器
4,6,7,10 光導波路
5,11,24,34,37 波長フィルタ
8 方向性結合器
9 増幅器
12 非線形材料
21,31 光パワーリミッタ回路
23,33,36 プローブ光発生器
25,27,28 光信号
26 プローブ光
41 偏波制御回路
42 偏波ビームスプリッタ
43,44 フォトダイオード
45 比較器
46 2×2光スイッチ
1, 22, 32, 35 Semiconductor optical amplifier 2 Signal generator 3 Assist light generator 4, 6, 7, 10 Optical waveguide 5, 11, 24, 34, 37 Wavelength filter 8 Directional coupler 9 Amplifier 12 Non-linear material 21 , 31 Optical power limiter circuit 23, 33, 36 Probe light generator 25, 27, 28 Optical signal 26 Probe light 41 Polarization control circuit 42 Polarization beam splitter 43, 44 Photodiode 45 Comparator 46 2 × 2 optical switch

Claims (6)

波長が互いに相違する第1及び第2の光信号をそれぞれ発生する第1の光信号発生手段と、
これら第1及び第2の光信号が入力され、相互利得変調特性を有する第1の半導体光増幅器と、
前記第1の半導体光増幅器から出力された光信号から前記第1の光信号のみを選択的に取り出す第1の光信号選択手段とを具えることを特徴とする光パワーリミッタ回路。
First optical signal generating means for generating first and second optical signals having different wavelengths from each other;
A first semiconductor optical amplifier which receives the first and second optical signals and has a mutual gain modulation characteristic;
An optical power limiter circuit comprising: first optical signal selection means for selectively extracting only the first optical signal from the optical signal output from the first semiconductor optical amplifier.
前記第1の光信号の波長と異なる波長の第3の光信号を発生する第2の光信号発生手段と、
前記光信号選択手段から出力された前記第1の光信号が前記第3の光信号とともに入力され、相互利得変調特性を有する第2の半導体光増幅器と、
前記第2の半導体光増幅器から出力された光信号から前記第1の光信号のみを選択的に取り出す第2の光信号選択手段手段とを更に具えることを特徴とする請求項1記載の光パワーリミッタ回路。
Second optical signal generating means for generating a third optical signal having a wavelength different from the wavelength of the first optical signal;
A second semiconductor optical amplifier in which the first optical signal output from the optical signal selection means is input together with the third optical signal and has a mutual gain modulation characteristic;
2. The light according to claim 1, further comprising second optical signal selection means for selectively extracting only the first optical signal from the optical signal output from the second semiconductor optical amplifier. Power limiter circuit.
前記第1の光信号を、直線偏波された光信号としたことを特徴とする請求項1又は2記載の光パワーリミッタ回路。   3. The optical power limiter circuit according to claim 1, wherein the first optical signal is a linearly polarized optical signal. 波長が互いに相違する第1及び第2の光信号をそれぞれ発生するステップと、
これら第1及び第2の光信号を相互利得変調特性を利用して光増幅するステップと、
光増幅された第1及び第2の光信号のうち第1の光信号のみを選択的に取り出すステップとを具えることを特徴とする光パワーリミッタ方法。
Generating first and second optical signals having different wavelengths from each other;
Optically amplifying the first and second optical signals using mutual gain modulation characteristics;
An optical power limiter method comprising: selectively extracting only the first optical signal from the optically amplified first and second optical signals.
前記第1の光信号の波長と異なる波長の第3の光信号を発生するステップと、
選択的に出力された第1の光信号と、前記第3の光信号とを相互利得変調特性を利用して光増幅するステップと、
光増幅された第1及び第3の光信号のうち第1の光信号のみを選択的に取り出すステップとを具えることを特徴とする請求項4記載の光パワーリミッタ方法。
Generating a third optical signal having a wavelength different from the wavelength of the first optical signal;
Optically amplifying the selectively output first optical signal and the third optical signal using mutual gain modulation characteristics;
5. The optical power limiter method according to claim 4, further comprising the step of selectively extracting only the first optical signal from the optically amplified first and third optical signals.
前記第1の光信号を、直線偏波された光信号とすることを特徴とする請求項4又は5記載の光パワーリミッタ方法。   6. The optical power limiter method according to claim 4, wherein the first optical signal is a linearly polarized optical signal.
JP2004067052A 2004-03-10 2004-03-10 Optical power limiter circuit and method Pending JP2005257859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004067052A JP2005257859A (en) 2004-03-10 2004-03-10 Optical power limiter circuit and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004067052A JP2005257859A (en) 2004-03-10 2004-03-10 Optical power limiter circuit and method

Publications (1)

Publication Number Publication Date
JP2005257859A true JP2005257859A (en) 2005-09-22

Family

ID=35083664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004067052A Pending JP2005257859A (en) 2004-03-10 2004-03-10 Optical power limiter circuit and method

Country Status (1)

Country Link
JP (1) JP2005257859A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015118135A (en) * 2013-12-16 2015-06-25 富士通株式会社 Optical litter, optical logic circuit, comparator, digital converter, optical transmission device, and optical processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015118135A (en) * 2013-12-16 2015-06-25 富士通株式会社 Optical litter, optical logic circuit, comparator, digital converter, optical transmission device, and optical processing method

Similar Documents

Publication Publication Date Title
Pleumeekers et al. Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength
US7538936B2 (en) Pulse laser beam generating device
Hamié et al. All-optical logic NOR gate using two-cascaded semiconductor optical amplifiers
JPH06224505A (en) Optical fiber amplifier
US7248400B2 (en) Embodying equipment and method for an all-optical or logic gate by using single SOA
US6424438B1 (en) Apparatus and method for realizing all-optical NOR logic device
Baveja et al. Interband four-wave mixing in semiconductor optical amplifiers with ASE-enhanced gain recovery
US6804047B2 (en) All-optical or gate embodied by using semiconductor optical amplifiers
Mao et al. Three-stage wavelength converter based on cross-gain modulation in semiconductor optical amplifiers
Hamié et al. All-optical inverted and noninverted wavelength conversion using two-cascaded semiconductor optical amplifiers
JP2005257859A (en) Optical power limiter circuit and method
JP2008270399A (en) Optical signal amplification three-terminal apparatus
JP2007124472A (en) Optical communication unit
US20030113063A1 (en) Method and apparatus for enhancing power saturation in semiconductor optical amplifiers
US7123403B2 (en) Optical signal-to-noise ratio improving device
CN112467504A (en) Intensity noise suppression device of ultra-short pulse optical fiber amplifier
JP2013205556A (en) Pulse light generating device and pulse light generating system with the same
Lal et al. Quantum-well-intermixed monolithically integrated widely tunable all-optical wavelength converter operating at 10 Gb/s
Kaur et al. Performance analysis of semiconductor optical amplifier using four wave mixing based wavelength Converter for all Optical networks
Thangavel et al. Multiwavelength Brillouin fiber laser employing semiconductor optical amplifier and microfiber Mach-Zehnder interferometer in loop mirror
Aulakh et al. To investigate effects of extinction ratio on SOA based wavelength Converters for all Optical Networks
JP2006210652A (en) Optical limiter amplifier
Ribeiro et al. Wavelength conversion and 2R-regeneration using one semiconductor optical amplifier with crossgain modulation compression
JP3806800B2 (en) Optical operational amplifier
JP2001305594A (en) Optical parametric amplifier

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060627