JP2005257412A - Tactile sensor and multipoint type tactile sensor - Google Patents

Tactile sensor and multipoint type tactile sensor Download PDF

Info

Publication number
JP2005257412A
JP2005257412A JP2004067992A JP2004067992A JP2005257412A JP 2005257412 A JP2005257412 A JP 2005257412A JP 2004067992 A JP2004067992 A JP 2004067992A JP 2004067992 A JP2004067992 A JP 2004067992A JP 2005257412 A JP2005257412 A JP 2005257412A
Authority
JP
Japan
Prior art keywords
strain
disposed
tactile sensor
gauge
generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004067992A
Other languages
Japanese (ja)
Other versions
JP4399545B2 (en
Inventor
Naomichi Hirama
直道 平間
Shiro Kuroki
史郎 黒木
Yuji Nemoto
裕二 根本
Yoshiro Nojiri
芳郎 野尻
Nobuyoshi Tsujiuchi
伸好 辻内
Kazumi Koketsu
和美 纐纈
Yotaro Tsuchiya
陽太郎 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha Co Ltd
Toshiba Development and Engineering Corp
Tec Gihan Co Ltd
Original Assignee
Doshisha Co Ltd
Tec Gihan Co Ltd
Toshiba Electronic Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha Co Ltd, Tec Gihan Co Ltd, Toshiba Electronic Engineering Co Ltd filed Critical Doshisha Co Ltd
Priority to JP2004067992A priority Critical patent/JP4399545B2/en
Publication of JP2005257412A publication Critical patent/JP2005257412A/en
Application granted granted Critical
Publication of JP4399545B2 publication Critical patent/JP4399545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate a circuit connection work by simplifying arrangement of a lead wire for bridge circuit constitution provided on each strain gage. <P>SOLUTION: Each pair of two strain gages 4a and 4b, 4c and 4d, 5a and 5b, 5c and 5d is disposed above and below respectively on one surface of a second or a fifth strain generation parts 2a, 2b, 2c, 2d, and the surface where the strain gages are disposed on the second or fifth strain generation parts 2a, 2b, 2c, 2d and the surface where gage terminals are disposed on a first or a fourth foot parts 12a, 12b, 13a, 13b are on the same side respectively as the surface where diaphragm-shaped strain gages 8a, 8b, 8c, 8d are disposed on a first strain generation part 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、装着面に加わっている力(圧力)を検知する触覚センサおよび多点型触覚センサに係り、特に、外部から加えられる力の三分力を高精度に検知するのに適する触覚センサおよび多点型触覚センサに関する。   The present invention relates to a tactile sensor and a multi-point tactile sensor that detect a force (pressure) applied to a mounting surface, and in particular, a tactile sensor suitable for detecting a three-component force of an externally applied force with high accuracy. And a multipoint tactile sensor.

指先に装着できるような触覚センサとしては、例えば、特開平8‐323678号公報に記載の「柔軟物体把持装置」に用いられているものがある。この触覚センサは、微小なON/OFFスイッチを多数設置し接触面積を検出するものである。検出された接触面積と指先の開き量との関係から物体の大きさや柔軟度を認識し、最適な物体把持が行なわれるよう意図する。触覚センサは、基本的に、装着面に垂直な方向(Z方向)の力を検知する。   As a tactile sensor that can be attached to a fingertip, for example, there is one used in a “flexible object gripping device” described in Japanese Patent Application Laid-Open No. 8-323678. This tactile sensor detects a contact area by installing a large number of minute ON / OFF switches. The size and flexibility of the object are recognized from the relationship between the detected contact area and the opening amount of the fingertip, and it is intended that optimal object grasping is performed. The tactile sensor basically detects a force in a direction (Z direction) perpendicular to the mounting surface.

このような触覚センサとしては、樹脂フィルム内に感圧素子を配列し、曲面に装着可能にしたものが提案されているが、Z(垂直)方向の応力分解能が小さく、X、Y方向(水平)方向にかかる応力の検出はできない。これに対し、小形の三分力センサ構造の触覚センサが提案されている。   As such a tactile sensor, a sensor in which pressure-sensitive elements are arranged in a resin film and can be mounted on a curved surface has been proposed. However, stress resolution in the Z (vertical) direction is small, and X and Y directions (horizontal) are proposed. ) Stress in the direction cannot be detected. On the other hand, a tactile sensor having a small three-component force sensor structure has been proposed.

この三分力センサ構造の触覚センサは、外部の3方向からどのような合成力が印加されても、起歪体に引張応力、圧縮応力の両方を発生させるようにしたものである。この起歪体は、円盤状の第1の起歪部と、この第1の起歪部に連接された板状の第2ないし第5の起歪部と、これらの第2ないし第5の起歪部に対し円板状の第1起歪部とは異なる側に連接された足部とからなる。
特開平8‐323678号公報
The tactile sensor having the three-component force sensor structure is configured to generate both tensile stress and compressive stress in the strain generating body regardless of any composite force applied from three external directions. The strain generating body includes a disk-shaped first strain generating portion, plate-shaped second to fifth strain generating portions connected to the first strain generating portion, and these second to fifth strain generating portions. It consists of a foot part connected to a different side from the disc-shaped first strain part with respect to the strain part.
JP-A-8-323678

しかしながら、前記三分力センサ構造の触覚センサにあっては、起歪体の両面に、歪ゲージをブリッジ回路の四辺に接続されるようにそれぞれ配置し、各歪ゲージごとに端子間をブリッジ回路構成用リード線で結線し、さらに電源供給用配線、信号出力用配線を接続する必要がある。従って、多数の配線が入り込み、極めて微細で、煩雑な回路接続作業が必要であった。   However, in the tactile sensor having the three-component force sensor structure, the strain gauges are arranged on both sides of the strain generating body so as to be connected to the four sides of the bridge circuit, and the bridge circuit is connected between the terminals for each strain gauge. It is necessary to connect with configuration lead wires, and further connect power supply wiring and signal output wiring. Therefore, a large number of wirings have entered, and an extremely fine and complicated circuit connection work has been required.

本発明は、第1、第2ないし第5の起歪部および第1ないし第4の足部の同一面側に歪ゲージおよびゲージ端子を配置することで、歪ゲージごとに設けられるブリッジ回路構成用リード線の配置を簡単にし、これにより回路接続作業の容易化と回路接続部の信頼性確保を図ことができる触角センサおよび多点型触覚センサを提供するものである。   The present invention provides a bridge circuit configuration provided for each strain gauge by disposing a strain gauge and a gauge terminal on the same surface side of the first, second to fifth strain generating portions and the first to fourth foot portions. It is an object of the present invention to provide a tactile sensor and a multipoint tactile sensor that can simplify the arrangement of the lead wires for the circuit, thereby facilitating the circuit connection work and ensuring the reliability of the circuit connection portion.

前記課題を解決するために、本発明にかかる触角センサは、円板状の第1の起歪部と、前記第1の起歪部の周縁をほぼ等角度で4分割する位置より板状に延設され、前記第1の起歪部の脚となって前記第1の起歪部を支持するとともに、第1の起歪部に対し90度ないし130度をなす構造の第2ないし第5の起歪部と、前記第2ないし第5の起歪部のそれぞれより前記第1の起歪部とは異なる側に延設された第1ないし第4の足部と、前記第1の起歪部の円板面上に配設されたダイアフラム状の歪ゲージと、前記第2ないし第5の起歪部の板面上にそれぞれ配設された歪ゲージと、前記第1ないし第4の足部に配設されたゲージ端子とを具備する触覚センサであって、前記第2ないし第5の起歪部の片面に2個ずつの前記歪ゲージを配設し、第2ないし第5の起歪部上に歪ゲージを配設する面と、第1ないし第4の足部にゲージ端子を配設する面とは、第1の起歪部にダイアフラム状の歪ゲージを配設する面に対し、それぞれ同じ側の面としたことを特徴とする。   In order to solve the above-mentioned problems, a tactile sensor according to the present invention is formed in a plate shape from a disc-shaped first strain generating portion and a position where the periphery of the first strain generating portion is divided into four at substantially equal angles. Second to fifth structures that are extended and serve as legs of the first strain-generating portion to support the first strain-generating portion and form 90 to 130 degrees with respect to the first strain-generating portion. The first to fourth leg portions extending from the second to fifth strain-generating portions to a side different from the first strain-generating portion, and the first to the first strain-generating portion. Diaphragm-shaped strain gauges disposed on the disk surface of the strain portion, strain gauges respectively disposed on the plate surfaces of the second to fifth strain-generating portions, and the first to fourth A tactile sensor having a gauge terminal disposed on a foot portion, wherein two strain gauges are disposed on one side of the second to fifth strain-generating portions. The surface on which the strain gauge is disposed on the second to fifth strain generating portions and the surface on which the gauge terminal is disposed on the first to fourth foot portions are formed as diaphragm-like strains on the first strain generating portion. It is characterized in that the surface on the same side with respect to the surface on which the gauge is disposed is used.

この触覚センサは、装着面に対し垂直(Z)方向の力を受けると、第1の起歪部に形成されたダイアフラム状の4つの歪ゲージがそれぞれ力に応じた抵抗値の減少、および増加を示す。
これらの歪ゲージを四辺とするブリッジ回路の前記各抵抗値の変化にもとづく出力電圧の変化から、Z方向の力を検出することができる。
When this tactile sensor receives a force in a direction perpendicular to the mounting surface (Z), the four strain gauges formed in the first strain-generating portion decrease and increase in resistance value according to the force, respectively. Indicates.
The force in the Z direction can be detected from the change in output voltage based on the change in each resistance value of the bridge circuit having four sides of these strain gauges.

また、この触覚センサが水平(X)方向の力を受けると、これらの第2ないし第5の起歪部のうち対抗する2つの起歪部に歪に応じた変化が生じる。対抗する2つの起歪部の一方は、起歪部同一面にある上側の歪ゲージは圧縮応力を受けて抵抗値が減少し、下側の歪ゲージは引張応力を受けて抵抗値が増加する。対抗する起歪部の他方は、起歪部同一面にある上側の歪ゲージは引張応力を受けて抵抗値が増加し、下側の歪ゲージは圧縮応力を受けて抵抗値が減少する。
これらの歪ゲージを四辺とするブリッジ回路ごとの、前記各抵抗値の増減にもとづく出力電圧の変化から、X方向の力を検出することができる。第2ないし第5の起歪部が受ける水平(Y)方向の力も、同様にして検出できる。
この場合には、第1の起歪部には歪はほとんど生じないので、ダイアフラム状の歪ゲージの抵抗値変化はほとんど無く、したがってブリッジ回路出力はほとんど発生しない。
Further, when the tactile sensor receives a force in the horizontal (X) direction, a change corresponding to the strain occurs in two opposing strain-generating portions among the second to fifth strain-generating portions. One of the two opposing strain-generating portions is such that the upper strain gauge on the same plane of the strain-generating portion receives a compressive stress and decreases its resistance value, while the lower strain gauge receives a tensile stress and increases its resistance value. . On the other side of the opposing strain generating portion, the upper strain gauge on the same surface of the strain generating portion receives a tensile stress and increases its resistance value, while the lower strain gauge receives a compressive stress and decreases its resistance value.
The force in the X direction can be detected from the change in the output voltage based on the increase / decrease of each resistance value for each bridge circuit having these strain gauges as four sides. The force in the horizontal (Y) direction received by the second to fifth strain generating portions can be detected in the same manner.
In this case, almost no strain is generated in the first strain generating section, so that there is almost no change in the resistance value of the diaphragm-shaped strain gauge, and therefore, almost no bridge circuit output is generated.

起歪部のそれぞれは板状であり撓みが生じやすいので、小さな力でも歪を検知できる。また、X、Y、Zそれぞれの方向の力検知に専用の歪ゲージを具備することで、例えば互いの干渉を小さくして検知精度の向上を図ることができる。   Since each of the strain generating portions is plate-like and easily bent, the strain can be detected with a small force. In addition, by providing a dedicated strain gauge for force detection in the X, Y, and Z directions, for example, mutual interference can be reduced and detection accuracy can be improved.

また、触覚センサは、第2ないし第5の起歪部が支持する前記第1の起歪部の円板と第2ないし第5の起歪部の板との角度が、90度ないし130度である。この角度は、触覚センサとしての高さを小さく抑えるとともに第2ないし第5の起歪部の板面に歪ゲージを設置する面積が確保されるように設計される。構造の単純さでは90度が最も普通の角度と言えるが、これよりやや大きな角度にすることにより高さを高くせずに、板面面積の確保が容易になる。   Further, in the tactile sensor, an angle between the disc of the first strain generating portion supported by the second to fifth strain generating portions and the plate of the second to fifth strain generating portions is 90 degrees to 130 degrees. It is. This angle is designed such that the height of the tactile sensor is kept small and an area for installing the strain gauge is secured on the plate surfaces of the second to fifth strain generating portions. In terms of the simplicity of the structure, 90 degrees can be said to be the most common angle, but by making the angle slightly larger than this, it is easy to ensure the plate surface area without increasing the height.

また、本発明にかかる触角センサは、前記第1の起歪部の円板面上に配設されたダイアフラム状の歪ゲージと、前記第2ないし第5の起歪部に片面1面あたり2個を配設した歪ゲージと、前記第1ないし第4の足部に配設されたゲージ端子とを、同一抵抗体により一体形成していることを特徴とする。   In addition, the antenna sensor according to the present invention includes a diaphragm-like strain gauge disposed on the disk surface of the first strain-generating portion, and two per one surface on the second to fifth strain-generating portions. The strain gauges having the individual pieces and the gauge terminals arranged on the first to fourth legs are integrally formed of the same resistor.

第1の起歪部と、第1の起歪部を支持する第2ないし第5の起歪部と、第1ないし第4の足部とを備える起歪体は、プレスで一枚のリン青銅板などを十字形に打ち抜いて形成してある。従って、各起歪部上の歪ゲージおよび足部上のゲージ端子は、それぞれ起歪体の同じ側の面上で同一抵抗体により途切れることなく、一体形成(面実装)可能となる。
これにより、歪ゲージ、ゲージ端子およびこれらを接続する配線形成の工程が簡略化される。
The strain generating body including the first strain generating section, the second to fifth strain generating sections that support the first strain generating section, and the first to fourth foot sections is obtained by pressing one phosphorus It is formed by punching a bronze plate into a cross shape. Accordingly, the strain gauge on each strain generating portion and the gauge terminal on the foot portion can be integrally formed (surface mounted) without being interrupted by the same resistor on the same side surface of the strain generating body.
This simplifies the process of forming strain gauges, gauge terminals, and wiring connecting them.

また、本発明にかかる触覚センサは、歪ゲージが配設された前記起歪体全体が、縦弾性係数が0.2〜4.0MPaの樹脂によって覆われていることを特徴とする。
ウレタン樹脂等の柔軟性がある樹脂は、起歪体による歪検出を阻害しない柔軟性を持ちながら、起歪体への湿気、塵埃、油の付着などを防止する。
従って、歪ゲージの出力特性の非直線性、Z方向およびX、Y方向の力を検知するそれぞれの歪ゲージによる出力の相互干渉を増加させることなく、信頼性の高い触圧検出を行うことができる。
Moreover, the tactile sensor according to the present invention is characterized in that the entire strain generating body provided with a strain gauge is covered with a resin having a longitudinal elastic modulus of 0.2 to 4.0 MPa.
Resin having flexibility such as urethane resin prevents adhesion of moisture, dust, oil, etc. to the strain-generating body while having flexibility that does not inhibit strain detection by the strain-generating body.
Therefore, it is possible to perform highly reliable tactile pressure detection without increasing the mutual interference of outputs by the respective strain gauges that detect the nonlinearity of the output characteristics of the strain gauge and the forces in the Z direction and the X and Y directions. it can.

また、本発明にかかる多点型触覚センサは、前記触覚センサを、回路基板上に複数配列し、前記第1ないし第4の足部に配設されたゲージ端子と、回路基板上に設置した配線ランドとをはんだ接続し、前記足部と回路基板との接続部周辺をと接着剤で固定したことを特徴とする。
複数の触覚センサを回路基板上に搭載することで、装着面の触覚点を増やせるので、様々な形状、大きさの対象物に対し力の検知が可能になる。
In the multipoint tactile sensor according to the present invention, a plurality of the tactile sensors are arranged on the circuit board, and are installed on the circuit board and gauge terminals arranged on the first to fourth legs. The wiring land is solder-connected, and the periphery of the connecting portion between the foot portion and the circuit board is fixed with an adhesive.
By mounting a plurality of tactile sensors on the circuit board, the number of tactile points on the mounting surface can be increased, so that it is possible to detect forces on objects of various shapes and sizes.

また、ブリッジ回路を構成する配線、および入出力配線を回路基板にあらかじめ設けておくことで、触覚センサのゲージ端子を回路基板上にはんだ接続すればすべての配線が完了するようになるので、配線作業が大幅に簡素化できる。
さらに、接着剤で回路基板との接着を行うことにより、不用意に大きな外力を受けても、触覚センサが装着部から外れるのを回避することができる。
Also, by providing wiring that constitutes the bridge circuit and input / output wiring in advance on the circuit board, all wiring can be completed by soldering the gauge terminal of the tactile sensor onto the circuit board. Work can be greatly simplified.
Furthermore, by adhering to the circuit board with an adhesive, it is possible to prevent the tactile sensor from being detached from the mounting portion even if a large external force is inadvertently applied.

また、本発明にかかる多点型触覚センサは、触覚センサを、回路基板上に複数配列し、前記第1ないし第4の足部に配設されたゲージ端子と、回路基板上に設置した配線ランドとを導電性樹脂で接合し、前記足部と回路基板との接続部周辺を接着剤で固定したことを特徴とする。   The multipoint tactile sensor according to the present invention includes a plurality of tactile sensors arranged on a circuit board, gauge terminals disposed on the first to fourth legs, and wiring installed on the circuit board. The land is bonded with a conductive resin, and the periphery of the connecting portion between the foot and the circuit board is fixed with an adhesive.

前記のように、ゲージ端子と配線ランドとの接合に導電性樹脂を使用することにより、配線接合時にセンサにかかる熱エネルギは、はんだ接合に比べ小さくなる。そのため、ゲージ部に使用されている樹脂材料の熱による損傷を防ぐことができる。   As described above, by using the conductive resin for joining the gauge terminal and the wiring land, the thermal energy applied to the sensor at the time of wiring joining becomes smaller than that of solder joining. Therefore, the heat damage of the resin material used for the gauge part can be prevented.

本発明によれば、歪ゲージを起歪体の片面のみに設けることで、性能を劣化させることなく、かつシンプルな配線構造にて3分力センサを構成できる。また、歪ゲージの前記片面配置によって、歪ゲージと配線基板との間の配線接続を面実装で容易に行える。この面実装化により、配線接続部の耐久性、信頼性が向上する。   According to the present invention, by providing the strain gauge only on one side of the strain generating body, the three-component force sensor can be configured with a simple wiring structure without degrading the performance. In addition, the single-sided arrangement of the strain gauge allows easy wiring connection between the strain gauge and the wiring board by surface mounting. This surface mounting improves the durability and reliability of the wiring connection part.

本発明の触覚センサは、第2ないし第5の起歪部の片面に2個ずつの歪ゲージを配設し、第2ないし第5の起歪部の歪ゲージは、第1の起歪部においてダイアフラム状の歪ゲージを配設する面と同じ側の面に配設している。   In the tactile sensor of the present invention, two strain gauges are arranged on one side of the second to fifth strain generating portions, and the strain gauges of the second to fifth strain generating portions are the first strain generating portions. Are disposed on the same surface as the surface on which the diaphragm-shaped strain gauge is disposed.

第2ないし第5の起歪部と第1の起歪部との境界部は、90度ないし130度の角度で、板厚の1〜3倍の曲率をもってつながっており、第2ないし第5の起歪部と前記第1ないし第4の足部の境界部は、90度ないし130度の角度で、板厚の1〜3倍の曲率をもって、前記第1の起歪部とは反対側につながっている。   The boundary between the second to fifth strain generating portions and the first strain generating portion is connected at an angle of 90 degrees to 130 degrees with a curvature of 1 to 3 times the plate thickness. The boundary portion between the first strain portion and the first to fourth foot portions has an angle of 90 to 130 degrees and a curvature of 1 to 3 times the plate thickness, and is opposite to the first strain portion. Connected to.

この起歪部構造に力が加わると、板状の第2ないし第5の起歪部は、力の方向にかかわらずS字状に撓み、第2ないし第5の起歪部の片面表面上に引張応力と圧縮応力との両方が発生する。従って、引張応力発生位置と圧縮応力発生位置それぞれに歪ゲージ配設すれば起歪体に加えられる力を検出することができる。   When a force is applied to the strain generating portion structure, the plate-like second to fifth strain generating portions bend into an S shape regardless of the direction of the force, and on the surface of one side of the second to fifth strain generating portions. Both tensile stress and compressive stress are generated. Therefore, if a strain gauge is provided at each of the tensile stress generation position and the compression stress generation position, the force applied to the strain generating body can be detected.

以下、本発明の実施の形態について、図面を参照しながら説明する。
図1(a)は本発明の実施の形態に係る触覚センサの模式的な構造を示す断面図である。図1(b)は同図(a)に示す触覚センサの下面図である。図2は起歪体に着設する歪ゲージの模式図、図3は起歪体を示す斜視図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Fig.1 (a) is sectional drawing which shows the typical structure of the tactile sensor which concerns on embodiment of this invention. FIG. 1B is a bottom view of the tactile sensor shown in FIG. FIG. 2 is a schematic diagram of a strain gauge attached to the strain body, and FIG. 3 is a perspective view showing the strain body.

図1に示すように、この触覚センサは、円板状の起歪部1が、その周縁をほぼ4分割する位置から延設された板状の起歪部2a,2b,3a,3bに支持された形状になっている。板状の起歪部2a,2b,3a,3bは、円板状の起歪部1の脚となっており、それぞれ起歪部1側と反対の側には装着面に固定するための足部12a,12b,13a,13bが連接されている。   As shown in FIG. 1, this tactile sensor has a disc-shaped strain generating portion 1 supported by plate-shaped strain generating portions 2a, 2b, 3a, 3b extending from a position where the periphery thereof is divided into almost four parts. It has become a shape. The plate-shaped strain generating portions 2a, 2b, 3a, 3b are legs of the disk-shaped strain generating portion 1, and feet for fixing to the mounting surface on the side opposite to the strain generating portion 1 side, respectively. The parts 12a, 12b, 13a, 13b are connected.

円板状の起歪部1の下面にはダイアフラム状の歪ゲージ8a,8b,8c,8dが着設されており、板状の起歪部2a,2b,3a,3bの片面(内面)には、単軸の歪ゲージ4a,4b,4c,4d、5a,…(計8つ)が上下に二つずつ着設されている。
板状の起歪部2a,2b,3a,3b上の歪ゲージ4a,4b,4c,4d,5a,…は、起歪部1周縁から足部12a,12b,13a,13bに向かう方向の各板における曲げなどの変形に対して歪を検知するように、その方向にゲージ軸方向が平行となるように着設される。
Diaphragm strain gauges 8a, 8b, 8c and 8d are attached to the lower surface of the disc-shaped strain generating portion 1, and are attached to one side (inner surface) of the plate-shaped strain generating portions 2a, 2b, 3a and 3b. Are provided with two uniaxial strain gauges 4a, 4b, 4c, 4d, 5a,.
The strain gauges 4a, 4b, 4c, 4d, 5a,... On the plate-like strain generating portions 2a, 2b, 3a, 3b are each in the direction from the periphery of the strain generating portion 1 to the foot portions 12a, 12b, 13a, 13b. In order to detect strain against deformation such as bending in the plate, the gauge shaft direction is parallel to that direction.

円板状の起歪部1と各脚たる板状の起歪部2a,2b,3a,3bとがなす角度は、この実施形態では、90度ないし130度で、板厚の1ないし3倍の曲率をもってつながっている。
これにより、触覚センサとしての高さをあまり高くすることなく板状の起歪部2a,2b,3a,3bの面積を確保できる。また、短軸の各歪ゲージ4a,4b,4c,4d、5a,5b,5c,5dおよびダイアフラム状の歪ゲージ8a,8b,8c,8dと、これらのすべてのリード線が同一抵抗体により一括形成されている。
In this embodiment, the angle formed by the disk-shaped strain generating portion 1 and the plate-shaped strain generating portions 2a, 2b, 3a, 3b, which are the legs, is 90 to 130 degrees, which is 1 to 3 times the plate thickness. It is connected with the curvature of.
Thereby, the area of the plate-like strain generating portions 2a, 2b, 3a, 3b can be ensured without increasing the height as the tactile sensor. The short axis strain gauges 4a, 4b, 4c, 4d, 5a, 5b, 5c, 5d and the diaphragm-like strain gauges 8a, 8b, 8c, 8d, and all of these lead wires are collectively formed by the same resistor. Is formed.

図2は、円板状の起歪部1の下面に着設されたダイアフラム状の歪ゲージ8a,8b,8c,8dの構成を模式的に示し、図1に示した構成要素と対応する部位には同一符号を付してある。   FIG. 2 schematically shows the configuration of the diaphragm-like strain gauges 8a, 8b, 8c, and 8d attached to the lower surface of the disc-shaped strain generating portion 1, and corresponds to the components shown in FIG. Are denoted by the same reference numerals.

図2に示すように、歪ゲージ8a,8b,8c,8dは、全体として円状のシート(図示しない)上に設けられている。歪ゲージ8a,8b,8c,8dのそれぞれ、歪ゲージ4 a,4b,4c,4dのそれぞれ、歪ゲージ5a,5b,5c,5dのそれぞれは図4に示すようにブリッジを構成するように接続されている。入力端子I1、I2から入力電圧が印加され、3つのブリッジ回路すべてに電圧を供給している。また、各ブリッジの出力は出力端子O1,O2,O3,O4から得る。   As shown in FIG. 2, the strain gauges 8a, 8b, 8c, and 8d are provided on a circular sheet (not shown) as a whole. Each of the strain gauges 8a, 8b, 8c, 8d, each of the strain gauges 4a, 4b, 4c, 4d, and each of the strain gauges 5a, 5b, 5c, 5d are connected to form a bridge as shown in FIG. Has been. Input voltages are applied from the input terminals I1 and I2 to supply voltages to all three bridge circuits. The output of each bridge is obtained from output terminals O1, O2, O3, and O4.

起歪部1における周縁側の歪ゲージ8a,8bと中心側の歪ゲージ8c,8dとは、起歪部1の変形により互いに反対の歪(すなわち圧縮歪と引張歪)を検知するものである。   The strain gauges 8a and 8b on the peripheral side and the strain gauges 8c and 8d on the center side in the strain generating portion 1 detect opposite strains (ie, compressive strain and tensile strain) due to deformation of the strain generating portion 1. .

図5は、図1および図2に示した触覚センサがZ方向の力を検知する原理を説明する図である。図5において、既に説明した構成要素に対応するものには、同一符合を付してある。   FIG. 5 is a diagram for explaining the principle by which the tactile sensor shown in FIGS. 1 and 2 detects a force in the Z direction. In FIG. 5, components corresponding to the components already described are given the same reference numerals.

いま、触覚センサ起歪体にZ方向の力Fzが加えられると、円板中心側の歪ゲージ8c,8dは引張応力に応じて抵抗が増加する。一方、周縁側の歪ゲ8a,8bは圧縮応力に応じて抵抗が減少する。
従って、起歪部1にZ方向の力Fzが加えられると、出力端子O1、O2の各接続パッド間に電圧が発生する。この電圧の検出により、Z方向の力が検出(測定)できる。この力による出力電圧は、第1の起歪部1の弾性限界内ではFzに比例する。
歪ゲージ8a,8b,8c,8dからなるブリッジ回路の出力端子O1,O2の各接続パッド間には、出力電圧が発生する。
Now, when a force Fz in the Z direction is applied to the tactile sensor strain generating body, the strain gauges 8c and 8d on the disc center side increase in resistance according to the tensile stress. On the other hand, the resistance of the peripheral strains 8a and 8b decreases according to the compressive stress.
Therefore, when a force Fz in the Z direction is applied to the strain generating portion 1, a voltage is generated between the connection pads of the output terminals O1 and O2. By detecting this voltage, the force in the Z direction can be detected (measured). The output voltage due to this force is proportional to Fz within the elastic limit of the first strain generating portion 1.
An output voltage is generated between the connection pads of the output terminals O1 and O2 of the bridge circuit including the strain gauges 8a, 8b, 8c, and 8d.

一方、触覚センサ起歪体にX方向の力Fxが加えられると、第2起歪部2aの上側歪ゲージ4aは圧縮応力に応じて抵抗が減少し、下側歪ゲージ4bは引張応力に応じて抵抗が増加する。第3起歪部2bの上側歪ゲージ4cは引張応力に応じて抵抗が増加し、下側歪ゲージ4dは圧縮応力に応じて抵抗が減少する。
従って、触覚センサ起歪体にX方向の力Fxが加えられると、端子O3とO4との間に出力電圧が発生する。
この電圧の検出により、X方向の力Fxを検出できる。この力による出力電圧は第1の起歪部1の弾性限界内ではFxによく比例する。この説明は、Y方向の力Fyが加えられた場合についても同様である。
On the other hand, when a force Fx in the X direction is applied to the tactile sensor strain generating body, the resistance of the upper strain gauge 4a of the second strain generating portion 2a decreases according to the compressive stress, and the lower strain gauge 4b responds to the tensile stress. Resistance increases. The resistance of the upper strain gauge 4c of the third strain generating portion 2b increases according to the tensile stress, and the resistance of the lower strain gauge 4d decreases according to the compressive stress.
Therefore, when the force Fx in the X direction is applied to the tactile sensor strain generating body, an output voltage is generated between the terminals O3 and O4.
By detecting this voltage, the force Fx in the X direction can be detected. The output voltage due to this force is well proportional to Fx within the elastic limit of the first strain generating portion 1. The same applies to the case where the force Fy in the Y direction is applied.

次に、相互干渉について説明する。いま、起歪体にZ方向の力Fzが加えられると、歪ゲージ4a,4b,4c,4dが設けられている第2、第3の起歪部2a,2bにも歪が発生する。この歪は、図5に示すように、上側歪ゲージ4a,4cは圧縮、下側歪ゲージ4b,4dは引っ張りによる応力を受ける。ここで、歪ゲージ4a,4b,4c,4dは図4に示すブリッジを構成している。   Next, mutual interference will be described. Now, when a force Fz in the Z direction is applied to the strain generating body, strain is also generated in the second and third strain generating portions 2a and 2b provided with the strain gauges 4a, 4b, 4c and 4d. As shown in FIG. 5, the upper strain gauges 4a and 4c are subjected to compression, and the lower strain gauges 4b and 4d are subjected to tensile stress. Here, the strain gauges 4a, 4b, 4c, and 4d constitute a bridge shown in FIG.

従って、歪ゲージ4a,4cの抵抗が低下、4b,4dの抵抗が増加することとなり、ブリッジの平衡条件は保持されたままになる。この意味で、Fz検知からFx検知(またはFy検知)への干渉が大きく軽減される。これは、本発明の大きな利点である。   Therefore, the resistances of the strain gauges 4a and 4c are lowered, and the resistances of 4b and 4d are increased, and the equilibrium condition of the bridge is maintained. In this sense, interference from Fz detection to Fx detection (or Fy detection) is greatly reduced. This is a great advantage of the present invention.

一方、X方向の力Fxが印加されたときに生じる、Z方向の力を検出するための歪ゲージ8a,8b,8c,8dの変化を説明する図を、図6に示す。図6に示すように、歪ゲージ8a,8b,8c,8dが設けられている第1の起歪部1については、歪は殆ど発生しない。従って、歪ゲージ8a,8b,8c,8dに抵抗変化が殆ど発生しないため、ブリッジの平衡は保たれる。すなわち、Fx検知からFz検知(またはFy検知からFz検知)への干渉は殆どないことになる。   On the other hand, FIG. 6 is a diagram for explaining changes in the strain gauges 8a, 8b, 8c, and 8d for detecting the Z-direction force generated when the X-direction force Fx is applied. As shown in FIG. 6, almost no strain is generated in the first strain generating portion 1 provided with the strain gauges 8a, 8b, 8c, and 8d. Accordingly, since the resistance change hardly occurs in the strain gauges 8a, 8b, 8c, and 8d, the bridge is kept in balance. That is, there is almost no interference from Fx detection to Fz detection (or Fy detection to Fz detection).

以上のように、この実施の形態では、第1の起歪部1の下面にダイアフラム状の歪ゲージ8a,8b,8c,8dが形成され、第2ないし第5の起歪部2a,2b,3a,3b,の内側面に、一面あたり単軸の歪ゲージが上下に二つずつ形成されている。そして、これらの歪ゲージでX方向の力を検出するためのブリッジ回路、Y方向の力を検出するためのブリッジ回路、Z方向の力を検出するためのブリッジ回路を構成する。
これにより、方向が異なる応力の相互干渉を軽減して、精度よく小さな力から3分力(X方向、Y方向、Z方向)を検知することができる。
As described above, in this embodiment, the diaphragm-shaped strain gauges 8a, 8b, 8c, and 8d are formed on the lower surface of the first strain generating portion 1, and the second to fifth strain generating portions 2a, 2b, Two uniaxial strain gauges are formed on the inner side surfaces of 3a and 3b. These strain gauges constitute a bridge circuit for detecting force in the X direction, a bridge circuit for detecting force in the Y direction, and a bridge circuit for detecting force in the Z direction.
Thereby, mutual interference of stresses in different directions can be reduced, and a three-component force (X direction, Y direction, Z direction) can be accurately detected from a small force.

以下、実施例について、説明する。
板圧が0、1mmのばね用リン青銅板を、図7に示すように、十字形にプレスで打ち抜き、中央平面部を残したまま折り曲げ加工して、図3に示すような起歪体を作った。起歪体の高さは1.0mmとした。歪ゲージは、厚さが12.5μmのポリイミドフィルム上に厚さ2.5μmのNi‐Cr抵抗箔を接着し、フォトリソグラフィーで、図2に示す歪ゲージパターンを形成した。
Examples will be described below.
As shown in FIG. 7, a phosphor bronze plate for springs with a plate pressure of 0, 1 mm is punched into a cross shape with a press and bent while leaving the central plane portion, so that a strain generating body as shown in FIG. 3 is obtained. Had made. The height of the strain body was 1.0 mm. The strain gauge was formed by bonding a 2.5 μm thick Ni—Cr resistance foil onto a 12.5 μm thick polyimide film and forming the strain gauge pattern shown in FIG. 2 by photolithography.

歪ゲージそれぞれの名目抵抗値は120Ωである。この歪ゲージパターンをプレスで打ち抜き、接着剤で起歪体に貼り付け、リード線を引き出し、ブリッジ回路を構成した。このようにして作った触覚センサの足部底面を評価用金属板に固定し、X方向にFx=500gの力を加えて、評価を行った。評価項目は、出力電圧、検知の非直線性、干渉である。
この結果、ブリッジ入力電圧が5Vで、出力電圧は1.3mVないし1.5mV、非直線性は±4%以内、Fx検知とFy検知との干渉は15%以内であった。
The nominal resistance value of each strain gauge is 120Ω. This strain gauge pattern was punched with a press, adhered to a strain generating body with an adhesive, and lead wires were drawn out to constitute a bridge circuit. The foot bottom surface of the tactile sensor thus made was fixed to the metal plate for evaluation, and evaluation was performed by applying a force of Fx = 500 g in the X direction. Evaluation items are output voltage, detection nonlinearity, and interference.
As a result, the bridge input voltage was 5 V, the output voltage was 1.3 mV to 1.5 mV, the non-linearity was within ± 4%, and the interference between Fx detection and Fy detection was within 15%.

次に、本発明のさらに別の形態に係る触覚センサについて、図8を参照して説明する。この実施の形態に係る触覚センサは、図1および図2に示した触覚センサSを回路基板P上に複数配列し、装着面上の3分力の分布を検知可能にする多点型触覚センサである。
例えば、この回路基板Pを指先や手のひらに装着して、これらの面に加わる3分力を分力ごとに積算して、全3分力を求めることができる。図8の場合、5個の触覚センサSからなっているが、これを最小単位としてひずみセンサをより多く装着させることもできる。
Next, a tactile sensor according to still another embodiment of the present invention will be described with reference to FIG. The tactile sensor according to this embodiment is a multipoint tactile sensor in which a plurality of tactile sensors S shown in FIGS. 1 and 2 are arranged on a circuit board P, and the distribution of three component forces on the mounting surface can be detected. It is.
For example, the circuit board P is mounted on a fingertip or palm, and the three component forces applied to these surfaces are integrated for each component force to obtain a total of three component forces. In the case of FIG. 8, the tactile sensor S includes five tactile sensors S, but more strain sensors can be mounted with this as a minimum unit.

各触覚センサSの下側には、歪ゲージを互いに接続してブリッジ回路を構成し、電力供給と出力電圧の取り出しを行う配線基板が伴われている。   Under each touch sensor S, a strain gauge is connected to each other to form a bridge circuit, and a wiring board for supplying power and extracting output voltage is accompanied.

また、図8の多点型触覚センサ全体を低弾性の樹脂でモールドしてもよい。図8に示すように、回路基板Pの上に、触覚センサS,…が複数個搭載されている。このモールド用の樹脂として、硬化後の縦弾性係数が0.5MPaとなるウレタン樹脂を使用し、厚さ1.5mmになるように注型する。
モールド後の特性は、モールド前の特性に比べて、出力電圧はおよそ15%低下したが、非直線性が±5%、相互干渉は20%以内という結果で、モールドによる性能面への影響は、少なかった。
Further, the entire multipoint tactile sensor of FIG. 8 may be molded with a low elasticity resin. As shown in FIG. 8, on the circuit board P, a plurality of tactile sensors S,. As the molding resin, a urethane resin having a longitudinal elastic modulus after curing of 0.5 MPa is used and cast so as to have a thickness of 1.5 mm.
As for the characteristics after molding, the output voltage was reduced by about 15% compared to the characteristics before molding, but the nonlinearity was within ± 5% and the mutual interference was within 20%. There was little.

このように、本発明では、歪ゲージを起歪体の片面のみに設けることで、性能を劣化させずに、シンプルな配線構造にて3分力センサを構成できる。また、歪ゲージの片面配置により、歪ゲージと配線基板との間の配線接続を面実装にて実現できる。このため、配線が容易となり、配線接続部の耐久性、信頼性の向上を図ることができる。   Thus, in the present invention, by providing the strain gauge only on one side of the strain generating body, the three component force sensor can be configured with a simple wiring structure without degrading the performance. Moreover, the wiring connection between the strain gauge and the wiring board can be realized by surface mounting by arranging the strain gauge on one side. For this reason, wiring becomes easy and the durability and reliability of the wiring connection portion can be improved.

(a)は本発明の実施の形態に係る触覚センサの模式的な構造を示す断面図、(b)は(a)に示す触覚センサの下面図。(A) is sectional drawing which shows the typical structure of the tactile sensor which concerns on embodiment of this invention, (b) is a bottom view of the tactile sensor shown to (a). 起歪体に着設する歪ゲージの模式図。The schematic diagram of the strain gauge attached to a strain body. 本発明の実施の形態に係る触覚センサの模式的な構造を示す断面図。Sectional drawing which shows the typical structure of the tactile sensor which concerns on embodiment of this invention. 図1に示した歪ゲージからなるブリッジ回路を示す回路図。The circuit diagram which shows the bridge circuit which consists of a strain gauge shown in FIG. 図1に示した起歪体のZ方向の力による変形状態を示す説明図。Explanatory drawing which shows the deformation | transformation state by the force of the Z direction of the strain body shown in FIG. 図1に示した起歪体のX方向の力による変形状態を示す説明図。Explanatory drawing which shows the deformation | transformation state by the force of the X direction of the strain body shown in FIG. 本発明における別の起歪体の折り曲げ前の形状を示す平面図。The top view which shows the shape before the bending of another strain body in this invention. 本発明の他の実施形態による多点型触覚センサを示す斜視図。The perspective view which shows the multipoint type touch sensor by other embodiment of this invention.

符号の説明Explanation of symbols

1…第1の起歪部、2a…第2の起歪部、2b…第3の起歪部、3a…第4の起歪部、3b…第5の起歪部、4a,4b,4c,4d,5a…歪ゲージ、8a,8b,8c,8d…歪ゲージ、12a,12b,13a,13b…足部   DESCRIPTION OF SYMBOLS 1 ... 1st strain part, 2a ... 2nd strain part, 2b ... 3rd strain part, 3a ... 4th strain part, 3b ... 5th strain part, 4a, 4b, 4c , 4d, 5a ... strain gauge, 8a, 8b, 8c, 8d ... strain gauge, 12a, 12b, 13a, 13b ... foot

Claims (5)

円板状の第1の起歪部と、
前記第1の起歪部の周縁をほぼ等角度で4分割する位置より板状に延設され、前記第1の起歪部の脚となって前記第1の起歪部を支持するとともに、第1の起歪部に対し90度ないし130度をなす構造の第2ないし第5の起歪部と、
前記第2ないし第5の起歪部のそれぞれより前記第1の起歪部とは異なる側に延設された第1ないし第4の足部と、
前記第1の起歪部の円板面上に配設されたダイアフラム状の歪ゲージと、
前記第2ないし第5の起歪部の板面上にそれぞれ配設された歪ゲージと、
前記第1ないし第4の足部に配設されたゲージ端子とを具備する触覚センサであって、
前記第2ないし第5の起歪部の片面に2個ずつの前記歪ゲージを配設し、第2ないし第5の起歪部上に歪ゲージを配設する面と、第1ないし第4の足部にゲージ端子を配設する面は、第1の起歪部にダイアフラム状の歪ゲージを配設する面に対し、それぞれ同じ側の面であることを特徴とする触覚センサ。
A disk-shaped first strain generating portion;
The peripheral edge of the first strain generation portion is extended in a plate shape from a position that is divided into four at substantially equal angles, and serves as a leg of the first strain generation portion to support the first strain generation portion, Second to fifth strain generating portions having a structure of 90 to 130 degrees with respect to the first strain generating portion;
First to fourth legs extending from the second to fifth strain-generating portions to a different side from the first strain-generating portion;
A diaphragm-like strain gauge disposed on the disk surface of the first strain-generating portion;
Strain gauges respectively disposed on the plate surfaces of the second to fifth strain generating portions;
A tactile sensor comprising gauge terminals disposed on the first to fourth feet,
Two strain gauges are disposed on one side of the second to fifth strain generating portions, a surface on which strain gauges are disposed on the second to fifth strain generating portions, and first to fourth. The tactile sensor is characterized in that the surface on which the gauge terminal is disposed on the foot is a surface on the same side as the surface on which the diaphragm-shaped strain gauge is disposed on the first strain-generating portion.
前記第1の起歪部の円板面上に配設されたダイアフラム状の歪ゲージと、前記第2ないし第5の起歪部の片面に2個ずつ配設された歪ゲージと、前記第1ないし第4の足部に配設されたゲージ端子とは、同一抵抗体により一括形成されていることを特徴とする請求項1記載の触覚センサ。   Diaphragm-shaped strain gauges disposed on the disk surface of the first strain generating portion, two strain gauges disposed on each side of the second to fifth strain generating portions, and the first The tactile sensor according to claim 1, wherein the gauge terminals disposed on the first to fourth legs are collectively formed of the same resistor. 歪ゲージが配設された起歪体全体が、縦弾性係数が0.2〜4.0MPaの樹脂によって覆われていることを特徴とする請求項1または請求項2記載の触覚センサ。   The tactile sensor according to claim 1 or 2, wherein the entire strain generating body provided with the strain gauge is covered with a resin having a longitudinal elastic modulus of 0.2 to 4.0 MPa. 請求項1記載の触覚センサを、回路基板上に複数配列し、前記第1ないし第4の足部に配設されたゲージ端子と回路基板上に設置した配線ランドとをはんだ接続し、前記足部と回路基板との接続部周辺を接着剤で固定したことを特徴とする多点型触覚センサ。   A plurality of tactile sensors according to claim 1 are arranged on a circuit board, and gauge terminals arranged on the first to fourth legs are connected to wiring lands installed on the circuit board by soldering. A multi-point tactile sensor characterized in that the periphery of the connection portion between the circuit portion and the circuit board is fixed with an adhesive. 請求項1記載の触覚センサを、回路基板上に複数配列し、前記第1ないし第4の足部に配設されたゲージ端子と回路基板上に設置した配線ランドとを導電性樹脂で接合し、前記足部と回路基板との接続部周辺を接着剤で固定したことを特徴とする多点型触覚センサ。   A plurality of tactile sensors according to claim 1 are arranged on a circuit board, and gauge terminals arranged on the first to fourth feet and wiring lands installed on the circuit board are joined with a conductive resin. A multi-point tactile sensor characterized in that the periphery of the connecting portion between the foot and the circuit board is fixed with an adhesive.
JP2004067992A 2004-03-10 2004-03-10 Tactile sensor and multi-point tactile sensor Expired - Fee Related JP4399545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004067992A JP4399545B2 (en) 2004-03-10 2004-03-10 Tactile sensor and multi-point tactile sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004067992A JP4399545B2 (en) 2004-03-10 2004-03-10 Tactile sensor and multi-point tactile sensor

Publications (2)

Publication Number Publication Date
JP2005257412A true JP2005257412A (en) 2005-09-22
JP4399545B2 JP4399545B2 (en) 2010-01-20

Family

ID=35083281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004067992A Expired - Fee Related JP4399545B2 (en) 2004-03-10 2004-03-10 Tactile sensor and multi-point tactile sensor

Country Status (1)

Country Link
JP (1) JP4399545B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045685A1 (en) * 2012-09-21 2014-03-27 株式会社安川電機 Force sensor and robot having force sensor
WO2022195919A1 (en) * 2021-03-16 2022-09-22 日立Astemo株式会社 Strain amount detection device, and tire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045685A1 (en) * 2012-09-21 2014-03-27 株式会社安川電機 Force sensor and robot having force sensor
US9671298B2 (en) 2012-09-21 2017-06-06 Kabushiki Kaisha Yaskawa Denki Force sensor and robot having force sensor
WO2022195919A1 (en) * 2021-03-16 2022-09-22 日立Astemo株式会社 Strain amount detection device, and tire
JP7535650B2 (en) 2021-03-16 2024-08-16 日立Astemo株式会社 Distortion detector, tire

Also Published As

Publication number Publication date
JP4399545B2 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
US6886415B1 (en) Tactile sensor and gripping robot using the same
JP6869710B2 (en) A strain-causing body and a force sensor equipped with the strain-causing body
JP5008188B2 (en) Triaxial force sensor and triaxial force detection method
JP2584201B2 (en) Power transducer, computer system and keyboard
KR101115418B1 (en) 6-axis sensor structure using force sensor and method of measuring force and moment therewith
JP4958501B2 (en) Force sensor chip and external force transmission mechanism
US7942072B2 (en) Flexible force sensor with coupling type and multi-directional recognitions
JP6776152B2 (en) A strain-causing body and a force sensor equipped with the strain-causing body
US11293818B2 (en) Strain gauge and multi-axis force sensor
US20150027231A1 (en) Mechanical Quantity Measuring Device
US10948367B2 (en) Input interface device with semiconductor strain gage
WO2013175636A1 (en) Mechanical-quantity measuring device
JP6293982B2 (en) Mechanical quantity measuring device
JP2007010383A (en) Flexible tactile sensor and its manufacturing method
JP6776151B2 (en) A strain-causing body and a force sensor equipped with the strain-causing body
JP4399545B2 (en) Tactile sensor and multi-point tactile sensor
JP4230241B2 (en) Touch sensor, gripping robot
KR101573367B1 (en) Piezoresistive typed ceramic pressure sensor
CN113447170A (en) Force detection device
JP4703232B2 (en) Concave forming member for sensor mounting
JP6794293B2 (en) A strain-causing body and a force sensor equipped with the strain-causing body
WO2018179911A1 (en) Force sensor
JP4793461B2 (en) Method for manufacturing load detection device
JPH03249530A (en) Distribution type tactile sensor
JP2020122768A (en) Force sensor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090916

R150 Certificate of patent or registration of utility model

Ref document number: 4399545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees