JP2005256064A - Surface pretreatment method for magnesium alloy member - Google Patents

Surface pretreatment method for magnesium alloy member Download PDF

Info

Publication number
JP2005256064A
JP2005256064A JP2004067993A JP2004067993A JP2005256064A JP 2005256064 A JP2005256064 A JP 2005256064A JP 2004067993 A JP2004067993 A JP 2004067993A JP 2004067993 A JP2004067993 A JP 2004067993A JP 2005256064 A JP2005256064 A JP 2005256064A
Authority
JP
Japan
Prior art keywords
magnesium alloy
alloy member
cleaning
solution
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004067993A
Other languages
Japanese (ja)
Other versions
JP4451170B2 (en
Inventor
Yasumasa Chino
千野  靖正
Mamoru Mabuchi
馬渕  守
Naoyuki Suketa
直之 助田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENSHO KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
DENSHO KK
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENSHO KK, National Institute of Advanced Industrial Science and Technology AIST filed Critical DENSHO KK
Priority to JP2004067993A priority Critical patent/JP4451170B2/en
Publication of JP2005256064A publication Critical patent/JP2005256064A/en
Application granted granted Critical
Publication of JP4451170B2 publication Critical patent/JP4451170B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To perform surface pretreatment to a magnesium alloy base metal by a relatively simple means harmless for the environment, even though the conventional surface pretreatment for a magnesium alloy uses a solvent high in environmental load and needs the severe control of the composition of the solution. <P>SOLUTION: A magnesium alloy test piece is subjected to mechanical polishing, and thereafter subjected to ultrasonic cleaning in a neutral washing solution containing ammonium dihydrogen citrate, 3-methyl-3-methoxy butanol, and polyoxyethylene (10) nonylphenyl ether. Thus, not only the simplification of the pretreatment process can be attained but also the construction of the low environmental load type process is made possible because of the utilization of the neutral detergent. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、マグネシウム合金部材の表面処理方法及び表面処理をしたマグネシウム合金部材に関するものであり、更に詳しくは、宇宙・航空材料・電子機器材料、自動車部材等幅広い分野で利用することが可能な、マグネシウム合金部材の表面処理方法における、マグネシウム合金部材表面の前処理方法及びこの前処理方法で処理された表面処理マグネシウム合金部材に関するものである。本発明は、マグネシウム合金の表面処理の分野において、従来方法では、多段の表面処理が必要とされていたこと、また、脱脂浴やエッチング浴の組成について厳重な管理が必要であったこと、更に、廃液処理等の問題があったこと、などを踏まえて、これらの諸問題を抜本的に解決することを可能とする、新しいマグネシウム合金部材の表面処理方法を提供するものである。   The present invention relates to a surface treatment method of a magnesium alloy member and a surface-treated magnesium alloy member. More specifically, the present invention can be used in a wide range of fields such as space / aviation materials / electronic equipment materials, automobile members, The present invention relates to a magnesium alloy member surface pretreatment method and a surface treated magnesium alloy member treated by this pretreatment method in a magnesium alloy member surface treatment method. In the field of the surface treatment of magnesium alloy, the present invention required a multi-stage surface treatment in the conventional method, and strictly controlled the composition of the degreasing bath and the etching bath. The present invention provides a new surface treatment method for a magnesium alloy member that makes it possible to drastically solve these problems in light of the problems such as waste liquid treatment.

マグネシウム合金は、実用金属中最も密度が小さく、比強度及び比剛性特性に優れている。そのため、排出二酸化炭素量の削減が緊急の課題となっている自動車産業では、ドアフレーム、エンジンハウジング、ステアリング、ボデー等多くの部品を、マグネシウム合金により製作し、車両重量の軽量化を図ること、それにより、自動車の燃料消費、及び二酸化炭素排出を少なくすることの試みが、近年活発に行われている。また、家電産業では、パソコン、携帯電話等の電子機器の筐体を、リサイクルが困難な樹脂材料から、リサイクルが比較的容易なマグネシウム合金に変更する試みが活発に行われている。   Magnesium alloys have the lowest density among practical metals and are excellent in specific strength and specific rigidity characteristics. Therefore, in the automotive industry, where the reduction of carbon dioxide emissions is an urgent issue, many parts such as door frames, engine housings, steering, and bodies are made of magnesium alloy to reduce vehicle weight. As a result, attempts have been actively made in recent years to reduce automobile fuel consumption and carbon dioxide emissions. In the home appliance industry, attempts are being actively made to change the housing of electronic devices such as personal computers and mobile phones from resin materials that are difficult to recycle to magnesium alloys that are relatively easy to recycle.

一方、マグネシウムは、実用金属の中で電気的に最も卑であるため、空気中においても化学的腐食を受け易いという問題がある。そのため、自動車部材、家電部材などにマグネシウム合金を利用するためには、防食を目的とした表面処理が必要である。   On the other hand, magnesium has the problem that it is susceptible to chemical corrosion even in the air because it is electrically the most basic among practical metals. Therefore, in order to use a magnesium alloy for an automobile member, a household appliance member, etc., surface treatment for the purpose of corrosion prevention is required.

従来、マグネシウム合金の表面処理としては、化成処理(例えば、特許文献1、非特許文献1参照)、陽極酸化処理(例えば、特許文献2参照)、塗装処理(例えば、特許文献3、特許文献4参照)、蒸着処理(例えば、特許文献5参照)等が、提案乃至は実施されている。ここで、化成処理は、化学反応により、また、陽極酸化処理は、電気化学反応により、処理液と母材との間に反応膜を生成させる処方であり、塗装処理及び蒸着処理は、マグネシウム合金表面、又は化成処理若しくは陽極酸化処理が施されたマグネシウム合金表面に、被膜を物理(一部化学的)的に積層するものである。   Conventionally, as the surface treatment of a magnesium alloy, chemical conversion treatment (for example, see Patent Document 1 and Non-Patent Document 1), anodizing treatment (for example, see Patent Document 2), and coating treatment (for example, Patent Document 3 and Patent Document 4). Reference), vapor deposition (see, for example, Patent Document 5) and the like have been proposed or implemented. Here, the chemical conversion treatment is a chemical reaction, and the anodic oxidation treatment is an electrochemical reaction to form a reaction film between the treatment liquid and the base material. The coating treatment and the vapor deposition treatment are magnesium alloys. A film is physically (partially chemically) laminated on the surface or the surface of the magnesium alloy that has been subjected to chemical conversion treatment or anodizing treatment.

いずれの表面処理を施す場合においても、マグネシウム合金母材表面が、均一な表面を有し、酸化物、油脂分等の不純物が存在しない状態で、その表面処理を行うことが望ましい。マグネシウム合金母材の表面に、油脂分、酸化物等の不純物が存在する場合には、その不純物による凹凸部分を起点として、剥離が生じてしまい、マグネシウム合金母材の表面に、密着性の優れた表面処理膜を形成させることが困難である。   In any surface treatment, it is desirable to perform the surface treatment in a state where the surface of the magnesium alloy base material has a uniform surface and is free of impurities such as oxides and fats and oils. When impurities such as fats and oils, oxides, etc. are present on the surface of the magnesium alloy base material, peeling occurs starting from the uneven portions due to the impurities, and excellent adhesion to the surface of the magnesium alloy base material It is difficult to form a surface treatment film.

従来から、マグネシウム合金母材表面の不純物を除去するために、種々の前処理が行われてきている。前処理は、主に、機械的前処理と化学的前処理に分類される。機械的前処理では、機械的研磨が、化学的前処理では、主に、脱脂処理、活性化処理等が行われる。機械的研磨は、マグネシウム合金表面上の比較的大きな不純物を物理的に除去するものであり、例えば、バレル研磨、バフ研磨、ショットブラスト、エメリー紙研磨等が利用されている。脱脂処理は、マグネシウム合金表面に付着している油脂分を除去するための処理であり、例えば、水酸化ナトリウム等のアルカリ溶液を利用した脱脂法、アセトン等の有機溶剤を利用した脱脂法が利用される。活性化処理は、マグネシウム合金母材表面に付着している酸化物を、酸、アルカリ等の溶剤によりエッチングする処理であり、例えば、カルボン酸等による酸洗い、高pH値(11以上)のアルカリ溶液中に浸漬するアルカリエッチング等が行われる。   Conventionally, various pretreatments have been performed in order to remove impurities on the surface of the magnesium alloy base material. Pretreatment is mainly classified into mechanical pretreatment and chemical pretreatment. In mechanical pretreatment, mechanical polishing is performed, and in chemical pretreatment, degreasing treatment, activation treatment, and the like are mainly performed. The mechanical polishing is for physically removing relatively large impurities on the surface of the magnesium alloy. For example, barrel polishing, buff polishing, shot blasting, emery paper polishing, and the like are used. The degreasing process is a process for removing oils and fats adhering to the magnesium alloy surface. For example, a degreasing method using an alkali solution such as sodium hydroxide or a degreasing method using an organic solvent such as acetone is used. Is done. The activation treatment is a treatment for etching the oxide adhering to the surface of the magnesium alloy base material with a solvent such as an acid or an alkali. For example, pickling with a carboxylic acid or the like, an alkali having a high pH value (11 or more). Alkaline etching or the like immersed in the solution is performed.

従来の前処理技術では、良好な前処理を達成するためには、少なくとも上記の機械的研磨、脱脂処理及び活性化処理という、3つの前処理を行う必要がある。また、脱脂浴、エッチング浴の組成(pH)に関して、厳重な管理が必要である。更に、酸、アルカリ溶液を利用することから、廃液処理等の問題も抱えている。これらの問題は、マグネシウム合金の表面処理のコストを引き上げる大きな要因となっている。   In the conventional pretreatment technique, in order to achieve good pretreatment, it is necessary to perform at least three pretreatments such as mechanical polishing, degreasing treatment and activation treatment. In addition, strict management is required regarding the composition (pH) of the degreasing bath and the etching bath. Furthermore, since acid and alkali solutions are used, there are problems such as waste liquid treatment. These problems are a major factor that increases the cost of surface treatment of magnesium alloys.

特開平4−311575号公報Japanese Patent Laid-Open No. 4-31575 JIS H8651JIS H8651 特開平7−109598号公報JP-A-7-109598 特開昭63−250498号公報JP 63-250498 A 特開平7−204577号公報Japanese Patent Laid-Open No. 7-204577 特開2001−73165号公報JP 2001-73165 A

このような状況の中で、本発明者らは、上記従来技術における、以上で述べた、化学的前処理における問題点、特に、環境負荷の高い溶剤を用いる点、液組成の厳重な管理を必要としていて煩雑である点に鑑みて、それらの諸問題を抜本的に解決することが可能な新しい方法を開発することを目標として鋭意研究を重ねた結果、半導体・液晶等の精密洗浄に利用されている超音波洗浄が、マグネシウム合金部材表面の前処理に適用できることを見出し、本発明を完成するに至った。本発明の目的は、比較的簡便かつ環境に優しい手法により、マグネシウム合金母材表面の前処理を行うための手法を開発することにある。更に、本発明の目的は、機械的前処理及び中性洗浄液処理を利用した超音波洗浄のみにより、マグネシウム合金母材の表面前処理を行うことであり、マグネシウム合金表面処理を、簡便かつ安価に行うことを可能にするマグネシウム合金部材の表面前処理方法を提供することにある。   In such a situation, the present inventors have the above-mentioned problems in the chemical pretreatment in the prior art, particularly the point of using a solvent with a high environmental load, and strict management of the liquid composition. In light of the necessity and complexity, we have conducted extensive research aimed at developing new methods that can drastically solve these problems, and are used for precision cleaning of semiconductors and liquid crystals. It has been found that the ultrasonic cleaning that has been applied can be applied to the pretreatment of the surface of the magnesium alloy member, and the present invention has been completed. An object of the present invention is to develop a method for pretreating the surface of a magnesium alloy base material by a relatively simple and environmentally friendly method. Furthermore, an object of the present invention is to perform surface pretreatment of the magnesium alloy base material only by ultrasonic cleaning using mechanical pretreatment and neutral cleaning liquid treatment, and the magnesium alloy surface treatment can be performed easily and inexpensively. It is an object of the present invention to provide a surface pretreatment method for a magnesium alloy member that can be performed.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)マグネシウム合金部材を、クエン酸水素2アンモニウム、3−メチル−3−メトキシブタノール、ポリオキシエチレン(10)ノニルフェニルエーテル及び水を主成分とする洗浄原液又はその希釈液である洗浄液の中で、超音波を付加して洗浄することを特徴とする、マグネシウム合金部材の表面前処理方法。
(2)洗浄液が、14〜19容量%のクエン酸水素2アンモニウム、13〜20容量%の3−メチル−3−メトキシブタノール、7〜13容量%のポリオキシエチレン(10)ノニルフェニルエーテル、残部のアルカリ性溶液、水及び不可避に混入する不純物からなる洗浄原液又はこの洗浄原液を20〜100容量%の範囲において水で希釈した希釈液であることを特徴とする、前記(1)に記載のマグネシウム合金部材の表面前処理方法。
(3)洗浄原液のpHが、6.5〜7.5であることを特徴とする、前記(1)に記載のマグネシウム合金部材の表面前処理方法。
(4)超音波の印加周波数を、1〜100kHz、印加強度を0.1〜50W/cmとすることを特徴とする、前記(1)に記載のマグネシウム合金部材の表面前処理方法。
(5)洗浄温度を常温から50℃、洗浄時間を3〜15分とすることを特徴とする、前記(1)に記載のマグネシウム合金部材の表面前処理方法。
(6)マグネシウム合金部材表面に機械的研磨を施した後に洗浄することを特徴とする、前記(1)に記載のマグネシウム合金部材の表面前処理方法。
(7)機械的研磨が、バレル研磨、バフ研磨、ショットブラスト又はエメリー紙研磨であることを特徴とする、前記(6)に記載のマグネシウム合金部材の表面前処理方法。
(8)請求項1から7のいずれかに記載の表面前処理方法により前処理されたことを特徴とする表面処理マグネシウム合金部材。
The present invention for solving the above-described problems comprises the following technical means.
(1) A magnesium alloy member is washed in a washing stock solution or a diluting solution containing diammonium hydrogen citrate, 3-methyl-3-methoxybutanol, polyoxyethylene (10) nonylphenyl ether and water as main components. A method for pre-treating a surface of a magnesium alloy member, comprising washing with ultrasonic waves.
(2) The cleaning solution was 14-19% by volume diammonium hydrogen citrate, 13-20% by volume 3-methyl-3-methoxybutanol, 7-13% by volume polyoxyethylene (10) nonylphenyl ether, the balance The magnesium according to (1) above, which is a washing stock solution comprising an alkaline solution, water and impurities inevitably mixed, or a diluted solution obtained by diluting this washing stock solution with water in the range of 20 to 100% by volume. A surface pretreatment method for an alloy member.
(3) The surface pretreatment method for a magnesium alloy member according to (1) above, wherein the pH of the cleaning stock solution is 6.5 to 7.5.
(4) The surface pretreatment method for a magnesium alloy member according to (1) above, wherein an applied frequency of ultrasonic waves is 1 to 100 kHz and an applied intensity is 0.1 to 50 W / cm 2 .
(5) The surface pretreatment method for a magnesium alloy member according to (1) above, wherein the cleaning temperature is from room temperature to 50 ° C. and the cleaning time is 3 to 15 minutes.
(6) The surface pretreatment method for a magnesium alloy member according to (1), wherein the surface is washed after mechanical polishing is performed on the surface of the magnesium alloy member.
(7) The surface pretreatment method for a magnesium alloy member according to (6) above, wherein the mechanical polishing is barrel polishing, buff polishing, shot blasting or emery paper polishing.
(8) A surface-treated magnesium alloy member pretreated by the surface pretreatment method according to any one of claims 1 to 7.

次に、本発明について、更に詳細に説明する。
図1は、マグネシウム合金部材の表面前処理方法を説明するためのもので、図1の(a)
は、本発明に係る前処理を経る場合の、マグネシウム合金表面処理の流れ図であり、図1の(b)は、従来の前処理を経る、マグネシウム合金表面処理法の流れ図である。各図で、太線内部が、表面前処理に相当する。図1(b)で示したように、前述した従来のマグネシウム合金表面処理方法では、部材表面上の酸化物等を、バレル研磨、バフ研磨、ショットブラスト、エメリー紙研磨等の機械的研磨方法により、大まかに除去した後、脱脂処理、酸洗い処理及び活性化処理を行う必要があるとともに、処理液のpH等を厳重に管理する必要があった。本発明者らは、従来の前処理方法を簡略化するための手法として、半導体・液晶等の精密洗浄に利用される超音波洗浄に注目した。
Next, the present invention will be described in more detail.
FIG. 1 is a view for explaining a surface pretreatment method of a magnesium alloy member, and FIG.
These are the flowcharts of the magnesium alloy surface treatment in the case of undergoing the pretreatment according to the present invention, and FIG. 1B is the flowchart of the magnesium alloy surface treatment method through the conventional pretreatment. In each figure, the inside of the thick line corresponds to the surface pretreatment. As shown in FIG. 1B, in the conventional magnesium alloy surface treatment method described above, oxides on the surface of the member are removed by mechanical polishing methods such as barrel polishing, buff polishing, shot blasting, and emery paper polishing. After the rough removal, it was necessary to perform a degreasing treatment, a pickling treatment and an activation treatment, and it was necessary to strictly control the pH of the treatment liquid. The present inventors paid attention to ultrasonic cleaning used for precision cleaning of semiconductors and liquid crystals as a method for simplifying the conventional pretreatment method.

超音波洗浄とは、溶液中に超音波を印加した際に起こるキャビテーション現象に依る作用を主に利用したものである。溶液中にkHz帯の超音波を印加すると、溶液中には過圧と負圧が生じる。キャビテーションとは、負圧が溶液に印加された際に、溶液が引き裂かれ、空洞ができる現象を指す。この空洞は、正の半サイクル時に、液圧で押しつぶされるため、瞬時に壊滅するが、その際に、液体分子が衝突し合うことにより、衝撃波が局所的に発生する。超音波洗浄とは、超音波印加に伴い生ずる衝撃波を母材表面にて発生させ、局所的に母材に付着する不純物を除去するものである。   The ultrasonic cleaning mainly uses an action due to a cavitation phenomenon that occurs when an ultrasonic wave is applied to a solution. When ultrasonic waves in the kHz band are applied to the solution, overpressure and negative pressure are generated in the solution. Cavitation refers to a phenomenon in which when a negative pressure is applied to a solution, the solution is torn and a cavity is formed. Since this cavity is crushed by the hydraulic pressure during the positive half cycle, the cavity is destroyed instantly. At that time, a shock wave is locally generated by collision of liquid molecules. In the ultrasonic cleaning, a shock wave generated by applying an ultrasonic wave is generated on the surface of the base material to remove impurities locally attached to the base material.

キャビテーションを発生させるためには、溶液中に、一定レベル以上の音圧強度で超音波を印加しなければならず、その条件は、主に印加周波数、溶液の粘性及び溶液の蒸気圧により変化する。飽和水及び脱気水中でキャビテーションを生成させるための、印加周波数と音圧強度の関係を、図2に示す(安井享,超音波 TECHNO, 1999年7月, p.46参照)。本発明で用いる洗浄液(後記実施例参照)の特性は、水のそれとほぼ同じである。図2からは、印加周波数が100kHzを越えると、キャビテーションを生成させるための音圧強度は、急激に上昇する。そのため、印加周波数は100kHz以下にするべきである。一方、印加周波数が100kHz以下の場合、飽和液では、少なくとも0.1W/cm以上の音圧強度が、脱気水であれば、少なくとも1W/cm以上の音圧強度が必要である。なお、本明細書で定義するキャビテーションとは、脱気水のみに発生する気体性キャビテーションだけでなく、飽和水においても発生する蒸気性キャビテーションも含む。 In order to generate cavitation, an ultrasonic wave must be applied to the solution at a sound pressure intensity higher than a certain level, and the conditions mainly vary depending on the applied frequency, the viscosity of the solution, and the vapor pressure of the solution. . The relationship between applied frequency and sound pressure intensity for generating cavitation in saturated water and deaerated water is shown in FIG. 2 (see Yasui, Ultrasonic TECHNO, July 1999, p. 46). The characteristics of the cleaning liquid used in the present invention (see Examples below) are almost the same as those of water. From FIG. 2, when the applied frequency exceeds 100 kHz, the sound pressure intensity for generating cavitation increases rapidly. Therefore, the applied frequency should be 100 kHz or less. On the other hand, when the applied frequency is 100 kHz or less, the sound pressure strength of at least 0.1 W / cm 2 or more is necessary for the saturated liquid, and the sound pressure strength of 1 W / cm 2 or more is necessary for deaerated water. The cavitation defined in this specification includes not only gaseous cavitation that occurs only in deaerated water, but also vapor cavitation that occurs in saturated water.

一方、超音波を溶液又は被洗浄物に印加しただけでは、化学反応(脱脂等)は起こらない。そのため、単に、マグネシウム合金母材を水に浸漬した後に超音波を印加するだけでは、被洗浄物表面の不純物、特に、マグネシウム合金母材表面に付着する油分、を有効に除去することは、困難である。本発明者等は、酸化膜及び油分を均一に除去するための手法として、洗浄液の組成に着目し、不純物を除去するために最も高効率を生み出す洗浄液の研究・開発を行った。そして、環境面への負荷を考慮し、中性(pH6.5〜7.5)で良好な洗浄能力を発揮する洗浄液を選定した。   On the other hand, a chemical reaction (such as degreasing) does not occur only by applying ultrasonic waves to a solution or an object to be cleaned. Therefore, it is difficult to effectively remove impurities on the surface of the object to be cleaned, especially oil adhering to the surface of the magnesium alloy base material, simply by applying ultrasonic waves after immersing the magnesium alloy base material in water. It is. The present inventors have focused on the composition of the cleaning solution as a method for uniformly removing the oxide film and oil, and researched and developed a cleaning solution that produces the highest efficiency in order to remove impurities. Then, in consideration of the environmental load, a cleaning liquid that is neutral (pH 6.5 to 7.5) and exhibits good cleaning performance was selected.

一連の研究・開発の結果、14容量%以上で19容量%以下のクエン酸水素2アンモニウム、13容量%以上で20容量%以下の3−メチル−3−メトキシブタノール、7容量%以上で13容量%以下のポリオキシエチレン(10)ノニルフェニルエーテル、並びに残部のアルカリ性溶液及び水によりpH6.5〜7.5に調整した水溶液を、洗浄原液として利用することにより、機械的研磨を施したマグネシウム合金部材に対して、良好な洗浄特性が得られることを見出した。更に、上記洗浄原液は、それの容量%が20容量%になるまで希釈しても、洗浄特性が劣化しないことを確認した。   As a result of a series of research and development, 14% by volume to 19% by volume diammonium hydrogen citrate, 13% by volume to 20% by volume 3-methyl-3-methoxybutanol, 7% by volume to 13% by volume % Or less of polyoxyethylene (10) nonylphenyl ether and the remaining alkaline solution and an aqueous solution adjusted to pH 6.5 to 7.5 with water as a stock solution for cleaning, a magnesium alloy subjected to mechanical polishing It has been found that good cleaning properties can be obtained for the member. Furthermore, it was confirmed that the cleaning properties did not deteriorate even when the washing stock solution was diluted until the volume% thereof reached 20 volume%.

以上述べたように、本発明は、洗浄を効率良く実施することを可能とする洗浄液を利用して、マグネシウム合金部材を超音波洗浄することを特徴としている。本発明に係る表面前処理では、機械的研磨を行ったマグネシウム合金部材を、中性洗剤中での超音波洗浄に供することにより、前処理が完了するため、本発明により、マグネシウム合金部材の表面前処理プロセスの単純化を図ることが可能となるだけではなく、低環境負荷型のプロセスを構築することが可能となる。   As described above, the present invention is characterized in that the magnesium alloy member is ultrasonically cleaned using the cleaning liquid that enables efficient cleaning. In the surface pretreatment according to the present invention, the magnesium alloy member subjected to mechanical polishing is subjected to ultrasonic cleaning in a neutral detergent, whereby the pretreatment is completed. Not only can the pretreatment process be simplified, but also a low environmental load type process can be constructed.

次に、本発明に係る方法を実施するための、マグネシウム合金部材表面前処理装置の一例について、図3を示して説明する。
図3は、本発明に係る、マグネシウム合金部材の超音波洗浄による表面前処理を実施するために用いた装置の構成を示す。この図3で示した装置は、超音波振動子を、下方に設置した場合の一例である。図中、1は洗浄槽、2は洗浄液、3は超音波振動子、4はマグネシウム合金部材、5は温度計、6はpHメータ、7は超音波増幅器、8は超音波発信器を表している。
Next, an example of a magnesium alloy member surface pretreatment apparatus for carrying out the method according to the present invention will be described with reference to FIG.
FIG. 3 shows the configuration of an apparatus used for carrying out surface pretreatment by ultrasonic cleaning of a magnesium alloy member according to the present invention. The apparatus shown in FIG. 3 is an example in which an ultrasonic transducer is installed below. In the figure, 1 is a cleaning tank, 2 is a cleaning liquid, 3 is an ultrasonic vibrator, 4 is a magnesium alloy member, 5 is a thermometer, 6 is a pH meter, 7 is an ultrasonic amplifier, and 8 is an ultrasonic transmitter. Yes.

図3で示したマグネシウム合金部材表面前処理装置において、14容量%以上で19容量%以下のクエン酸水素2アンモニウム、13容量%以上で20容量%以下の3−メチル−3−メトキシブタノール、7容量%以上で13容量%以下のポリオキシエチレン(10)ノニルフェニルエーテル、及び残部のアルカリ性溶液(例えば、水酸化ナトリウム水溶液、アンモニア水等)と蒸留水により、pH6.5〜7.5に調整した水溶液である洗浄原液を、そのまま又はその容量%が、20容量%以上となる範囲で希釈して洗浄液2とし、この洗浄液2を、超音波振動子3、超音波増幅器7及び超音波発信器8が配された洗浄槽1に注入する。次いで、あらかじめ、バレル研磨、バフ研磨、ショットブラスト、エメリー紙研磨等の機械的研磨を施したマグネシウム合金部材4を、洗浄液2内に挿入する。超音波発信器8により、所定の強度・周波数の超音波を、洗浄液2及びマグネシウム合金部材4に印加することにより、マグネシウム合金部材4表面の表面前処理が実施される。   In the magnesium alloy member surface pretreatment apparatus shown in FIG. 3, 14% by volume or more and 19% by volume or less of diammonium hydrogen citrate, 13% by volume or more and 20% by volume or less of 3-methyl-3-methoxybutanol, 7 Adjusted to pH 6.5 to 7.5 with polyoxyethylene (10) nonylphenyl ether of not less than 13% by volume and the remaining alkaline solution (for example, sodium hydroxide aqueous solution, aqueous ammonia) and distilled water. The cleaning stock solution, which is an aqueous solution, is diluted as it is or in a range where the volume% thereof is 20 volume% or more to obtain the cleaning liquid 2, and this cleaning liquid 2 is used as the ultrasonic vibrator 3, the ultrasonic amplifier 7, and the ultrasonic transmitter. It inject | pours into the washing tank 1 where 8 was arrange | positioned. Next, a magnesium alloy member 4 that has been subjected to mechanical polishing such as barrel polishing, buff polishing, shot blasting, emery paper polishing, etc. is inserted into the cleaning liquid 2 in advance. By applying ultrasonic waves of predetermined intensity and frequency to the cleaning liquid 2 and the magnesium alloy member 4 by the ultrasonic transmitter 8, surface pretreatment of the surface of the magnesium alloy member 4 is performed.

前述のように、洗浄液2中の超音波特性は、水中の超音波特性と、ほぼ同じであるから、超音波の周波数は100kHz以下にすること、及び超音波の強度は0.1W/cm以上にすることにより、飽和水でも、洗浄液2内部にキャビテーション現象が生じる。また、洗浄液2を、洗浄原液そのまま又は洗浄原液の容量%が20容量%以上の範囲内で希釈したものとすること、洗浄時間は3分以上に設定すること、及び洗浄液の温度を常温以上50℃以下に調整することという条件により、良好な表面前処理が可能である。このようなことから、本発明では、超音波の印加周波数は、1〜100kHz、印加強度は0.1〜50W/cmが好ましく、また、洗浄液の温度を10〜50℃、洗浄時間は3〜15分とすることが好ましい。なお、超音波の周波数を1kHz以下にすると、超音波を付加する効果が低くなり過ぎ、超音波の強度を50W/cm以上にしても、エネルギー効率が低下するだけであり、また、洗浄液の温度を10℃よりも低くすることは、前処理に要する時間が長くなるとともに、冷却手段が必要になり、それに要するエネルギーも無駄になるので、敢えてそうする必要が無く、洗浄時間を15分以上としても、エネルギー効率が低下するだけである。 As described above, since the ultrasonic characteristics in the cleaning liquid 2 are substantially the same as the ultrasonic characteristics in water, the frequency of the ultrasonic waves is set to 100 kHz or less, and the ultrasonic intensity is 0.1 W / cm 2. By doing so, a cavitation phenomenon occurs in the cleaning liquid 2 even with saturated water. In addition, the cleaning solution 2 should be diluted as it is, or the volume percent of the cleaning solution is within a range of 20% by volume or more, the cleaning time is set to 3 minutes or more, and the temperature of the cleaning solution is at room temperature or more 50 Good surface pretreatment is possible under the condition that the temperature is adjusted to below ℃. For this reason, in the present invention, the applied frequency of ultrasonic waves is preferably 1 to 100 kHz, the applied intensity is preferably 0.1 to 50 W / cm 2 , the temperature of the cleaning liquid is 10 to 50 ° C., and the cleaning time is 3 It is preferable to set it to -15 minutes. If the frequency of the ultrasonic wave is 1 kHz or less, the effect of applying the ultrasonic wave is too low, and even if the ultrasonic wave intensity is 50 W / cm 2 or more, the energy efficiency is only lowered. When the temperature is lower than 10 ° C., the time required for the pretreatment becomes longer and a cooling means is required, and the energy required for that is also wasted, so there is no need to do so, and the cleaning time is 15 minutes or more. Even so, energy efficiency is only reduced.

本発明の表面前処理方法は、任意形状を有するマグネシウム合金部材に適用可能である。また、本発明の表面前処理方法は、種々の組成のマグネシウム合金に適用可能である。本発明が適用可能なマグネシウム合金は、マグネシウムを主成分とする限りは、その組成を限定するものではない。   The surface pretreatment method of the present invention can be applied to a magnesium alloy member having an arbitrary shape. Further, the surface pretreatment method of the present invention can be applied to magnesium alloys having various compositions. The composition of the magnesium alloy to which the present invention is applicable is not limited as long as magnesium is the main component.

以上説明したように、本発明のマグネシウム合金部材の表面前処理方法は、マグネシウム合金試験片に機械的研磨を施した後に、クエン酸水素2アンモニウム、3−メチル−3−メトキシブタノール、ポリオキシエチレン(10)ノニルフェニルエーテルを含有する中性洗浄液中で、超音波洗浄を行うだけであるから、本発明により、(1)前処理プロセスの簡略化を図ることができる、(2)中性洗剤を用いているので、低環境負荷型のプロセスの構築が可能である、という効果が奏される。   As described above, the surface pretreatment method for a magnesium alloy member according to the present invention is obtained by mechanically polishing a magnesium alloy test piece, followed by diammonium hydrogen citrate, 3-methyl-3-methoxybutanol, polyoxyethylene. (10) Since only ultrasonic cleaning is performed in a neutral cleaning liquid containing nonylphenyl ether, (1) the pretreatment process can be simplified according to the present invention. (2) neutral detergent As a result, it is possible to construct a low environmental load type process.

次に、本発明を実施例に基づいて具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by these Examples.

(洗浄液の調製)
17容量%のクエン酸水素2アンモニウム、17容量%の3−メチル−3−メトキシブタノール、11容量%のポリオキシエチレン(10)ノニルフェニルエーテル、8容量%のアンモニア、47容量%の脱気水により構成される洗浄原液を、50容量%及び20容量%に、脱気水で希釈して、それぞれ洗浄液とした。
(Preparation of cleaning solution)
17% by volume diammonium hydrogen citrate, 17% by volume 3-methyl-3-methoxybutanol, 11% by volume polyoxyethylene (10) nonylphenyl ether, 8% by volume ammonia, 47% by volume degassed water The stock solution for washing was diluted to 50% by volume and 20% by volume with degassed water, and each was used as a washing solution.

(測定方法)
底部に超音波振動子を接続可能なφ120mm×180mmの円筒状アクリル容器に、前記洗浄液を、160mmの深さになるまで注入した。液温は、29℃であった。種々の超音波発信器及び超音波振動子を使用して、超音波の周波数を50kHz、100kH及び200kHz、超音波の出力を50W、100W及び150Wと変化させ、キャビテーションが生成する条件を調査した。
(Measuring method)
The cleaning liquid was poured into a cylindrical acrylic container having a diameter of 120 mm × 180 mm, to which an ultrasonic vibrator could be connected at the bottom, to a depth of 160 mm. The liquid temperature was 29 ° C. Using various ultrasonic transmitters and ultrasonic transducers, the ultrasonic frequency was changed to 50 kHz, 100 kH and 200 kHz, the ultrasonic output was changed to 50 W, 100 W and 150 W, and the conditions under which cavitation was generated were investigated.

(測定結果)
洗浄原液が50容量%になるように希釈した洗浄液での結果を、図2上にプッロットして、図4として示す。印加周波数が50kHzで、かつ、出力が100W及び150Wであるときのみ、キャビテーションが目視で観察された。この条件は、脱気水内にキャビテーションが発生する条件と、ほぼ一致する。なお、洗浄原液が20容量%になるように希釈した溶液においても、同様の傾向が現れた。
(Measurement result)
The result of the cleaning solution diluted so that the cleaning stock solution is 50% by volume is plotted on FIG. 2 and shown in FIG. Cavitation was visually observed only when the applied frequency was 50 kHz and the output was 100 W and 150 W. This condition almost coincides with the condition in which cavitation occurs in the deaerated water. In addition, the same tendency appeared also in the solution diluted so that the washing | cleaning stock solution might be 20 volume%.

(マグネシウム合金供試材の調製)
代表的なマグネシウム合金鋳造材である、AZ91D平板の試験片(69mm×74mm×3mm)を作製し、600番のエメリー紙で、機械的研磨を行った試料を供試材とした。
(Preparation of magnesium alloy specimens)
A test piece (69 mm × 74 mm × 3 mm) of AZ91D flat plate, which is a typical magnesium alloy cast material, was prepared, and a sample subjected to mechanical polishing with No. 600 emery paper was used as a test material.

(前処理方法)
底部に超音波振動子を接続可能なφ120mm×180mmの円筒状アクリル容器に、実施例1で調製した洗浄原液を50容量%まで希釈した洗浄液(29℃)を、160mmの深さになるまで注入し、上記試験片を、洗浄液内に浸漬して、周波数50kHz、出力100Wの超音波を、試料に5分間印加することにより、超音波洗浄を施して前処理を行った。また、比較例として、前記洗浄液に代えて、蒸留水(29℃)を用いて、実施例2と同様に超音波洗浄を施して前処理を行い、また、前記供試材にアセトン脱脂を行ってから、前記洗浄液に代えて、アルカリ溶液(苛性ソーダが20g/L、リン酸ソーダが10g/L及び 界面活性剤が0.8g/Lである水溶液、90℃)を用いて、実施例2と同様に超音波洗浄を施して前処理を行った。
(Pretreatment method)
Into a cylindrical acrylic container of φ120 mm × 180 mm to which an ultrasonic vibrator can be connected to the bottom, a cleaning liquid (29 ° C.) diluted with 50% by volume of the cleaning stock solution prepared in Example 1 was poured to a depth of 160 mm. Then, the test piece was immersed in a cleaning solution, and an ultrasonic wave having a frequency of 50 kHz and an output of 100 W was applied to the sample for 5 minutes to perform ultrasonic cleaning and pretreatment was performed. In addition, as a comparative example, in place of the cleaning solution, distilled water (29 ° C.) is used, and ultrasonic cleaning is performed in the same manner as in Example 2, and pretreatment is performed on the test material. Then, in place of the cleaning solution, an alkaline solution (aqueous solution in which caustic soda is 20 g / L, sodium phosphate is 10 g / L, and surfactant is 0.8 g / L, 90 ° C.) is used. Similarly, ultrasonic cleaning was performed and pretreatment was performed.

(塗装処理試験)
前処理を終えた、本実施例及び比較例の各試験片表面に、変性エポキシ樹脂を主成分とするエポキシ樹脂塗料を塗布した後、80℃、30分にて焼き付けを実施した。更に、アクリル樹脂を主成分とする焼付型アクリル樹脂塗料を塗布し、120℃、30分にて焼き付けを実施することにより、マグネシウム合金部材の表面処理を完成させた。次に、表面処理を供した各試験片に、幅1mmのクロスカットを、10mm×10mm四方に付けた後、25回のサイクル試験(塩水噴霧(35℃, 98%rh, 2時間)、乾燥(60℃, 25%rh, 4時間)をし、湿潤(50℃, 99%rh, 2時間))に供した。その後のクロスカット付近の表面状態を調査することにより、表面処理膜の密着性を評価した。なお、サイクル試験は、自動車規格(JASO)自動車用材料腐食試験法(M 609−91)に準拠する。
(Painting treatment test)
After the pretreatment was completed, an epoxy resin paint mainly composed of a modified epoxy resin was applied to the surface of each test piece of this example and comparative example, and then baked at 80 ° C. for 30 minutes. Furthermore, the surface treatment of the magnesium alloy member was completed by applying a baking type acrylic resin paint mainly composed of an acrylic resin and baking at 120 ° C. for 30 minutes. Next, a cross-cut with a width of 1 mm was applied to each test piece subjected to surface treatment on a 10 mm × 10 mm square, followed by 25 cycle tests (salt spray (35 ° C., 98% rh, 2 hours), drying) (60 ° C., 25% rh, 4 hours) and wet (50 ° C., 99% rh, 2 hours)). The adhesion of the surface treatment film was evaluated by investigating the surface condition in the vicinity of the subsequent crosscut. The cycle test conforms to the automotive standard (JASO) automotive material corrosion test method (M609-91).

(試験結果)
アルカリ脱脂による前処理を施した比較例試料の表面処理膜の場合には、剥離は殆ど確認されなかった。また、本発明に係る洗浄剤を使用した実施例試料の表面処理膜の場合には、剥離は全く確認できなかった。一方、前処理を、蒸留水により超音波洗浄を行った比較例試料の表面処理膜は、クロスカットを施したほぼすべての領域で、剥離が生じた。サイクル試験を終えた代表的な試料の外観の写真を、図5にまとめて示す。本発明による表面前処理を施した表面処理被膜は、従来公知の前処理(アルカリ洗浄、酸洗)を施した部材と比べて理膜と、より優れた被膜密着性能を有することが確認された。
(Test results)
In the case of the surface-treated film of the comparative example sample subjected to the pretreatment by alkali degreasing, almost no peeling was confirmed. Moreover, in the case of the surface treatment film | membrane of the Example sample using the cleaning agent which concerns on this invention, peeling was not able to be confirmed at all. On the other hand, in the surface-treated film of the comparative example sample which was subjected to ultrasonic cleaning with distilled water as a pretreatment, peeling occurred in almost all the areas subjected to cross-cutting. Photographs of the appearance of representative samples that have completed the cycle test are shown together in FIG. It was confirmed that the surface-treated film subjected to the surface pretreatment according to the present invention has a coating film and excellent film adhesion performance as compared with a member subjected to a conventionally known pretreatment (alkali washing, pickling). .

(洗浄液を構成する薬品の濃度の影響及び洗浄原液の希釈の影響の調査)
ここでは、洗浄液の組成及び濃度以外は、実施例2と同様の洗浄条件で、超音波洗浄を実施した。洗浄液の温度は、29℃と一定とした。また、前処理を施した試験片に、実施例2と同様の表面処理膜を行った。更に、作製した表面処理膜の剥離特性を、実施例2と同様のサイクル試験をし、外観の写真により評価した。調査を実施した際の洗浄液の組成、原液濃度、表面被膜の密着性を、まとめて表1に記す。表1の密着性の欄において、○は、剥離が確認されなかった試料を、△は、一部剥離が確認された試料を、×はクロスカット部全体が剥離した試料を示す。洗浄液の組成を、14〜19容量%のクエン酸水素2アンモニウム、13〜20容量%の3−メチル−3−メトキシブタノール、7〜13容量%のポリオキシエチレン(10)ノニルフェニルエーテル並びに残部のアルカリ性溶液及び水である組成の範囲内にすることにより、密着性に優れた表面皮膜が形成可能であることが確認された。また、原液濃度を、20容量%以上に希釈しても、密着性に優れた表面被膜の形成が可能であった。
(Investigation of influence of concentration of chemicals constituting cleaning liquid and influence of dilution of cleaning stock solution)
Here, ultrasonic cleaning was performed under the same cleaning conditions as in Example 2 except for the composition and concentration of the cleaning liquid. The temperature of the cleaning solution was constant at 29 ° C. Moreover, the surface treatment film | membrane similar to Example 2 was performed to the test piece which gave the pretreatment. Furthermore, the peel characteristics of the produced surface treatment film were subjected to the same cycle test as in Example 2 and evaluated by a photograph of the appearance. Table 1 summarizes the composition of the cleaning liquid, the concentration of the stock solution, and the adhesion of the surface film when the investigation was carried out. In the adhesion column of Table 1, ◯ indicates a sample in which peeling has not been confirmed, Δ indicates a sample in which partial peeling has been confirmed, and x indicates a sample in which the entire cross-cut portion has been peeled off. The composition of the cleaning solution is 14-19% by volume diammonium hydrogen citrate, 13-20% by volume 3-methyl-3-methoxybutanol, 7-13% by volume polyoxyethylene (10) nonylphenyl ether, and the balance. It was confirmed that a surface film having excellent adhesion could be formed by setting the alkaline solution and water within the range of the composition. Moreover, even if the stock solution concentration was diluted to 20% by volume or more, it was possible to form a surface film having excellent adhesion.

(洗浄液温度の影響及び超音波印加時間の影響の調査)
17容量%のクエン酸水素2アンモニウム、17容量%の3−メチル−3−メトキシブタノール、11容量%のポリオキシエチレン(10)ノニルフェニルエーテル、8容量%のアンモニア及び47容量%の蒸留水からなる洗浄原液を、20容量%に蒸留水で希釈した洗浄液中で、実施例2で調製したマグネシウム合金供試材に、試験温度及び超音波印加時間を変えて超音波洗浄を施し、試験温度及び超音波印加時間の影響を調査した。印加時間以外の、超音波の印加条件、試験片の振動条件は、実施例2と同様とした。また、表面前処理を実施した試験片に、実施例2と同様の表面処理を施した後に、実施例2と同様のサイクル試験を実施し、実施例3と同様に、表面被膜の密着性を評価した。その結果を、表2に示す。表2から、洗浄液の温度を50℃以下、洗浄時間を3分以上とすることにより、良好な密着性が得られることが確認された。なお、70℃の洗浄液を使用した際の、密着性が低下した原因としては、試料表面の酸化が進行したためと推測される。
(Investigation of influence of cleaning liquid temperature and ultrasonic application time)
17% by volume diammonium hydrogen citrate, 17% by volume 3-methyl-3-methoxybutanol, 11% by volume polyoxyethylene (10) nonylphenyl ether, 8% by volume ammonia and 47% by volume distilled water In the cleaning solution diluted with distilled water to 20% by volume, the magnesium alloy test material prepared in Example 2 was subjected to ultrasonic cleaning while changing the test temperature and the ultrasonic wave application time. The influence of ultrasonic application time was investigated. The application conditions of the ultrasonic waves and the vibration conditions of the test piece other than the application time were the same as in Example 2. Moreover, after performing the surface treatment similar to Example 2 to the test piece which performed the surface pretreatment, the cycle test similar to Example 2 is implemented, and the adhesiveness of a surface film is implemented like Example 3. evaluated. The results are shown in Table 2. From Table 2, it was confirmed that good adhesion can be obtained by setting the temperature of the cleaning liquid to 50 ° C. or less and the cleaning time to 3 minutes or more. In addition, it is estimated that the cause of the decrease in the adhesion when using the cleaning liquid at 70 ° C. is due to the progress of the oxidation of the sample surface.

以上詳述したように、本発明は、マグネシウム合金部材の表面前処理方法に係るものであり、本発明のマグネシウム合金部材の表面前処理方法は、マグネシウム合金部材を、中性洗浄液中で、超音波洗浄を行うだけであることから、マグネシウム合金部材の表面処理を行う際に、前処理プロセスの簡略化を図ることができる。また、本発明では、洗浄剤として、中性のものを用いることができるので、低環境負荷型のプロセスの構築が可能である。   As described above in detail, the present invention relates to a surface pretreatment method for a magnesium alloy member, and the surface pretreatment method for a magnesium alloy member according to the present invention comprises superposing a magnesium alloy member in a neutral cleaning liquid, Since only the ultrasonic cleaning is performed, the pretreatment process can be simplified when the surface treatment of the magnesium alloy member is performed. In the present invention, since a neutral detergent can be used, a low environmental load type process can be constructed.

マグネシウム合金部材の表面処理方法を説明するチャート図であり、(a)は、本発明に係る表面前処理を利用した表面処理を説明するためのチャート図であり、(b)は、従来の表面前処理を経る表面処理を説明するためのチャート図である。It is a chart figure explaining the surface treatment method of a magnesium alloy member, (a) is a chart figure for explaining surface treatment using surface pretreatment concerning the present invention, and (b) is the conventional surface It is a chart for demonstrating the surface treatment which passes through a pretreatment. 超音波の印加により水中にキャビテーションを発生させるための、音波強度と音波周波数との関係を示す図である。It is a figure which shows the relationship between a sound wave intensity and a sound wave frequency for generating cavitation in water by application of an ultrasonic wave. 本発明に係るマグネシウム合金部材表面前処理装置の一例の模式図である。It is a schematic diagram of an example of the magnesium alloy member surface pretreatment apparatus which concerns on this invention. 本発明で用いる洗浄液中でキャビテーションを発生させるための、音波強度と音波周波数との関係を示す図である。It is a figure which shows the relationship between a sound wave intensity and a sound wave frequency for generating cavitation in the washing | cleaning liquid used by this invention. 25回サイクル試験後の、クロスカットした表面処理被膜の状態を、写真で示した図であり、(1)は、アルカリ溶液による前処理を施した場合の表面処理膜、(2)は、本発明に係る洗浄液による前処理を施した場合の表面処理被膜、(3)は、前処理を施していない場合の表面処理膜である。It is the figure which showed the state of the surface treatment film which carried out the cross cut after a cycle test 25 times, (1) is a surface treatment film at the time of performing pretreatment with an alkaline solution, (2) is this The surface treatment film when the pretreatment with the cleaning liquid according to the invention is performed, (3) is the surface treatment film when the pretreatment is not performed.

Claims (8)

マグネシウム合金部材を、クエン酸水素2アンモニウム、3−メチル−3−メトキシブタノール、ポリオキシエチレン(10)ノニルフェニルエーテル及び水を主成分とする洗浄原液又はその希釈液である洗浄液の中で、超音波を付加して洗浄することを特徴とする、マグネシウム合金部材の表面前処理方法。   A magnesium alloy member is made of a cleaning stock solution or a diluted solution thereof mainly composed of diammonium hydrogen citrate, 3-methyl-3-methoxybutanol, polyoxyethylene (10) nonylphenyl ether and water. A method for pre-treating a surface of a magnesium alloy member, comprising washing by adding a sound wave. 洗浄液が、14〜19容量%のクエン酸水素2アンモニウム、13〜20容量%の3−メチル−3−メトキシブタノール、7〜13容量%のポリオキシエチレン(10)ノニルフェニルエーテル、残部のアルカリ性溶液、水及び不可避に混入する不純物からなる洗浄原液又はこの洗浄原液を20〜100容量%の範囲において水で希釈した希釈液であることを特徴とする、請求項1に記載のマグネシウム合金部材の表面前処理方法。   The cleaning solution is 14-19% by volume diammonium hydrogen citrate, 13-20% by volume 3-methyl-3-methoxybutanol, 7-13% by volume polyoxyethylene (10) nonylphenyl ether, the remaining alkaline solution The surface of a magnesium alloy member according to claim 1, which is a cleaning stock solution comprising water and impurities inevitably mixed, or a diluted solution obtained by diluting the cleaning stock solution with water in a range of 20 to 100% by volume. Pre-processing method. 洗浄原液のpHが、6.5〜7.5であることを特徴とする、請求項1又は2に記載のマグネシウム合金部材の表面前処理方法。   The surface pretreatment method for a magnesium alloy member according to claim 1 or 2, wherein the pH of the cleaning stock solution is 6.5 to 7.5. 超音波の印加周波数を、1〜100kHz、印加強度を0.1〜50W/cmとすることを特徴とする、請求項1に記載のマグネシウム合金部材の表面前処理方法。 2. The surface pretreatment method for a magnesium alloy member according to claim 1, wherein an ultrasonic application frequency is 1 to 100 kHz and an application intensity is 0.1 to 50 W / cm < 2 >. 洗浄温度を常温から50℃、洗浄時間を3〜15分とすることを特徴とする、請求項1に記載のマグネシウム合金部材の表面前処理方法。   The surface pretreatment method for a magnesium alloy member according to claim 1, wherein the cleaning temperature is from room temperature to 50 ° C and the cleaning time is 3 to 15 minutes. マグネシウム合金部材表面に機械的研磨を施した後に洗浄することを特徴とする、請求項1に記載のマグネシウム合金部材の表面前処理方法。   2. The surface pretreatment method for a magnesium alloy member according to claim 1, wherein the surface is washed after mechanically polishing the surface of the magnesium alloy member. 機械的研磨が、バレル研磨、バフ研磨、ショットブラスト又はエメリー紙研磨であることを特徴とする、請求項6に記載のマグネシウム合金部材の表面前処理方法。   The surface pretreatment method for a magnesium alloy member according to claim 6, wherein the mechanical polishing is barrel polishing, buffing, shot blasting or emery paper polishing. 請求項1から7のいずれかに記載の表面前処理方法により前処理されたことを特徴とする表面処理マグネシウム合金部材。
A surface-treated magnesium alloy member pretreated by the surface pretreatment method according to claim 1.
JP2004067993A 2004-03-10 2004-03-10 Surface pretreatment method of magnesium alloy member Expired - Lifetime JP4451170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004067993A JP4451170B2 (en) 2004-03-10 2004-03-10 Surface pretreatment method of magnesium alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004067993A JP4451170B2 (en) 2004-03-10 2004-03-10 Surface pretreatment method of magnesium alloy member

Publications (2)

Publication Number Publication Date
JP2005256064A true JP2005256064A (en) 2005-09-22
JP4451170B2 JP4451170B2 (en) 2010-04-14

Family

ID=35082095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004067993A Expired - Lifetime JP4451170B2 (en) 2004-03-10 2004-03-10 Surface pretreatment method of magnesium alloy member

Country Status (1)

Country Link
JP (1) JP4451170B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089201A (en) * 2007-10-02 2009-04-23 Topre Corp Pure magnesium diaphragm for speaker, and surface treatment method thereof
CN102121110A (en) * 2011-01-31 2011-07-13 黄显扬 Nonionic water base amphiphilic engine cleansing agent
KR101178533B1 (en) 2010-12-28 2012-08-30 재단법인 포항산업과학연구원 Method for treating surface of magnesium alloy board
CN105297046A (en) * 2014-06-16 2016-02-03 上海蓝浦清洗技术有限公司 Environment-friendly neutral cleaning agent
KR20180090267A (en) * 2015-12-14 2018-08-10 바오샨 아이론 앤 스틸 유한공사 (JP) METHOD AND APPARATUS FOR FORMING FILM FOR MAGNETIC ALLOY.

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089201A (en) * 2007-10-02 2009-04-23 Topre Corp Pure magnesium diaphragm for speaker, and surface treatment method thereof
KR101178533B1 (en) 2010-12-28 2012-08-30 재단법인 포항산업과학연구원 Method for treating surface of magnesium alloy board
CN102121110A (en) * 2011-01-31 2011-07-13 黄显扬 Nonionic water base amphiphilic engine cleansing agent
CN105297046A (en) * 2014-06-16 2016-02-03 上海蓝浦清洗技术有限公司 Environment-friendly neutral cleaning agent
KR20180090267A (en) * 2015-12-14 2018-08-10 바오샨 아이론 앤 스틸 유한공사 (JP) METHOD AND APPARATUS FOR FORMING FILM FOR MAGNETIC ALLOY.
KR102107325B1 (en) * 2015-12-14 2020-05-07 바오샨 아이론 앤 스틸 유한공사 Film forming treatment agent and film forming method for composite chemical conversion film for magnesium alloy.
US11286568B2 (en) 2015-12-14 2022-03-29 Baoshan Iron & Steel Co., Ltd. Film forming treatment agent for composite chemical conversion film for magnesium alloy, and film forming process

Also Published As

Publication number Publication date
JP4451170B2 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
CN106086901B (en) A kind of component of machine process of surface treatment
CN105714299A (en) Chemical polishing liquid used for metal and polishing technology
CN104630749A (en) Corrosion-resistant self-assembled doped film layer on aluminum alloy surface and preparation method of corrosion-resistant self-assembled doped film layer
JP2011106024A (en) Method for surface treatment of magnesium or magnesium alloy by anodization
CN111172577A (en) Preparation method of magnesium alloy surface low-porosity micro-arc oxidation film
CN109183126A (en) A kind of preparation method of Mg alloy surface hydrophobic film layer
JP4451170B2 (en) Surface pretreatment method of magnesium alloy member
JP2004003025A (en) Surface treatment imparting corrosion resistance for adhesion of adhesive for structure of metal
CN108327167A (en) The method that metal and plastic cement combine
Wang et al. Corrosion behavior of Hastelloy C22 coating produced by laser cladding in static and cavitation acid solution
CN104213132A (en) Chemical cleaning method of rust-proof aluminum alloy
Moutarlier et al. Use of ultrasound irradiation during acid etching of the 2024 aluminum alloy: Effect on corrosion resistance after anodization
JP2006348368A (en) Method for surface treating aluminum and aluminum alloy
CN105648502A (en) Magnesium alloy-surface hydrophobic composite film and preparation method thereof
WO2000050666A1 (en) Method for treating magnesium-based metal formed article and treating solution therefor
CN1543517A (en) Magnesium anodisation system and methods
Zhang et al. Research on the effect of molten salt ultrasonic composite cleaning for paint removal
CN108277481B (en) Dynamic chemical nickel plating method for combining variable frequency ultrasonic wave field of magnesium and magnesium alloy with workpiece rotation
KR101126530B1 (en) Chemical etching method for magnesium alloy
WO2004070083A1 (en) Method for passivating stainless steel product and method for producing stainless steel separator for fuel cell
CN112805409A (en) Method for manufacturing metal pipe and cleaning method
CN106282977A (en) The method of energy-saving ultrasonic wave added 316L rustless steel chemical plating nickel-phosphorus alloy
JP2008285737A (en) Surface treatment method for aluminum material
KR100489640B1 (en) Electrolyte solution for anodizing and corrosion-resisting coating method of magnesium alloy using the same
CN113755927A (en) Magnesium neodymium alloy part and composite oxidation treatment method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100127

R150 Certificate of patent or registration of utility model

Ref document number: 4451170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250