JP2005255035A - Behavior control device for vehicle - Google Patents

Behavior control device for vehicle Download PDF

Info

Publication number
JP2005255035A
JP2005255035A JP2004070902A JP2004070902A JP2005255035A JP 2005255035 A JP2005255035 A JP 2005255035A JP 2004070902 A JP2004070902 A JP 2004070902A JP 2004070902 A JP2004070902 A JP 2004070902A JP 2005255035 A JP2005255035 A JP 2005255035A
Authority
JP
Japan
Prior art keywords
wheel
steering
vehicle
control
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004070902A
Other languages
Japanese (ja)
Other versions
JP4296970B2 (en
Inventor
Kenji Asano
憲司 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004070902A priority Critical patent/JP4296970B2/en
Publication of JP2005255035A publication Critical patent/JP2005255035A/en
Application granted granted Critical
Publication of JP4296970B2 publication Critical patent/JP4296970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To positively and effectively prevent deflection of a vehicle caused by difference of brake driving force of left and right wheels as compared with conventional one, taking into consideration that responsiveness of steering control is lower than responsiveness of brake force control. <P>SOLUTION: When anti-skid control or traction control is only executed regarding one of the left and right wheels (S40, 50, 70), a behavior control target steering angle Δδct of the front wheel for generating counter yaw moment Mc (=-Mf) for canceling yaw moment Mf by difference of front and rear forces of the left and right wheels is operated (S60, 110, 120). A steering angle of the front wheel is controlled (S130-160) making a value in which the sum of provisional target steering angle δst and a behavior control target steering angle Δδct is subjected to low pass filter processing as a target steering angle δt. Target brake force of left and right opposite wheels is subjected to low pass filter processing by a filter constant in response to the responsiveness of steering by a steering angle variable device 24 (S310, 510) and variation degree of the front and rear forces of the wheel is restricted so as to meet to the responsiveness of steering. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、車輌の挙動制御装置に係り、更に詳細には操舵輪の舵角を制御することにより車輌の挙動を制御する挙動制御装置に係る。   The present invention relates to a vehicle behavior control device, and more particularly to a behavior control device that controls the behavior of a vehicle by controlling the steering angle of a steered wheel.

自動車等の車輌の挙動制御装置の一つとして、例えば下記の特許文献1に記載されている如く、運転者の操舵操作とは独立に操舵輪を転舵可能な転舵装置を備えた車輌に於いて、アンチスキッド制御中の左右輪の制動力差により車輌に作用するヨーモーメントが打ち消されるよう転舵手段により操舵輪を転舵する操舵制御による挙動制御と、左右輪の制動力差が小さくなるよう制動力を制御することによる挙動制御とを行う車輌の挙動制御装置であって、操舵制御による挙動制御が行われているときには制動力の制御による挙動制御を中止し、アンチスキッド制御が行われていない側の車輪の制動力を最大制動力に制御するよう構成された挙動制御装置が既に知られている。   As one of behavior control devices for vehicles such as automobiles, for example, as described in Patent Document 1 below, a vehicle equipped with a steering device that can steer steering wheels independently of a driver's steering operation. In this case, the behavior control by the steering control that steers the steering wheel by the steering means so that the yaw moment acting on the vehicle is canceled by the braking force difference between the left and right wheels during the anti-skid control, and the braking force difference between the left and right wheels is small. A vehicle behavior control device that performs behavior control by controlling the braking force so that when the behavior control by the steering control is being performed, the behavior control by the braking force control is stopped and the anti-skid control is performed. 2. Description of the Related Art A behavior control device configured to control the braking force of a wheel that is not connected to a maximum braking force is already known.

かかる挙動制御装置によれば、例えば左右輪の一方についてアンチスキッド制御が行われることにより左右輪の制動力の差が大きくなり、該制動力差によるヨーモーメントが車輌に作用する場合にも、操舵輪が転舵されることによってヨーモーメントが打ち消されるので、車輌の偏向を防止し車輌の走行安定性を向上させることができると共に、路面の摩擦係数が高い側の車輪の制動力が最大制動力に制御されるので、車輌の減速度を高くして車輌の制動距離を短くすることができる。
特開2002−2474号公報
According to such a behavior control device, for example, when anti-skid control is performed on one of the left and right wheels, the difference in braking force between the left and right wheels becomes large, and the yaw moment caused by the braking force difference also acts on the vehicle. Since the yaw moment is canceled by turning the wheel, the vehicle can be prevented from deflecting and the running stability of the vehicle can be improved, and the braking force of the wheel with the higher friction coefficient on the road surface is the maximum braking force. Therefore, the deceleration of the vehicle can be increased and the braking distance of the vehicle can be shortened.
JP 2002-2474 A

しかし一般に、操舵制御による挙動制御の応答性は制動力制御による挙動制御の応答性よりも低いため、制動力差によるヨーモーメントを操舵輪の転舵によるヨーモーメントによって必ずしも効果的に打ち消すことができず、そのため車輌の偏向を効果的に防止し車輌の走行安定性を効果的に向上させることができないという問題がある。またこの問題を解消すべく、操舵制御による挙動制御の応答性を高くしようとすると、転舵装置の大型化や高性能化に伴う高コスト化が避けられない。   However, in general, the response of the behavior control by the steering control is lower than the response of the behavior control by the braking force control. Therefore, the yaw moment due to the braking force difference cannot always be effectively canceled by the yaw moment by the steering wheel steering. Therefore, there is a problem that it is impossible to effectively prevent the deflection of the vehicle and to effectively improve the running stability of the vehicle. Further, in order to solve this problem, if it is attempted to increase the responsiveness of the behavior control by the steering control, it is inevitable that the cost is increased due to the increase in size and performance of the steering device.

本発明は、左右輪の一方についてアンチスキッド制御が行われる場合には、左右輪の制駆動力差により車輌に作用するヨーモーメントが打ち消されるよう操舵輪を転舵すると共にアンチスキッド制御が行われていない側の車輪の制動力を最大制動力に制御する従来の挙動制御装置に於ける上述の如き問題に鑑みてなされたものであり、本発明の主要な課題は操舵制御による挙動制御の応答性が制動力制御による挙動制御の応答性よりも低いことを考慮することにより、従来に比して左右輪の制駆動力差に起因する車輌の偏向を効果的に防止し車輌の走行安定性を確実に且つ効果的に向上させることである。   In the present invention, when anti-skid control is performed on one of the left and right wheels, the steered wheels are steered and anti-skid control is performed so that the yaw moment acting on the vehicle is canceled by the difference in braking / driving force between the left and right wheels. The present invention has been made in view of the above-described problems in the conventional behavior control device for controlling the braking force of the non-wheeled wheel to the maximum braking force, and the main problem of the present invention is the response of the behavior control by the steering control. By taking into account that the braking performance is lower than the response control of the behavior control by the braking force control, it is possible to effectively prevent the vehicle from being deflected due to the difference in braking / driving force between the left and right wheels as compared with the conventional case. Is to improve reliably and effectively.

上述の主要な課題は、本発明によれば、請求項1の構成、即ち運転者の操舵操作とは独立に操舵輪を転舵可能な転舵手段と、運転者の加減速操作に応じて各車輪の前後力を制御する前後力制御手段と、車輪のスリップが過大であるときには前記前後力制御手段によって当該車輪の前後力を制御することによりスリップ抑制制御を行うスリップ制御手段と、各車輪の前後力を推定する手段と、左右輪の前後力差により車輌に作用する前後力差起因ヨーモーメントを演算する手段と、前記前後力差起因ヨーモーメントとは逆方向のヨーモーメントを発生して車輌に作用するヨーモーメントを低減するための操舵輪の挙動制御目標舵角を演算する手段と、操舵輪の舵角が前記挙動制御目標舵角になるよう前記転舵手段により操舵輪を転舵する転舵制御手段とを有し、前記スリップ制御手段は車輌が左右の路面の摩擦係数が異なる走行路を走行中であるか否かを判定し、車輌が左右の路面の摩擦係数が異なる走行路を走行中であると判定したときには、路面の摩擦係数が高い側の車輪の前後力の変化度合を前記転舵手段による操舵輪の転舵の応答性に合せて制限することを特徴とする車輌の挙動制御装置によって達成される。   According to the present invention, the main problem described above is according to the configuration of claim 1, that is, according to the steering means that can steer the steered wheels independently of the driver's steering operation, and the driver's acceleration / deceleration operation. Longitudinal force control means for controlling the longitudinal force of each wheel, slip control means for performing slip suppression control by controlling the longitudinal force of the wheel by the longitudinal force control means when the slip of the wheel is excessive, and each wheel Means for estimating the longitudinal force of the vehicle, means for calculating the longitudinal force difference-induced yaw moment acting on the vehicle based on the longitudinal force difference between the left and right wheels, and generating a yaw moment in a direction opposite to the longitudinal force difference-induced yaw moment. Steering wheels are steered by means of computing steering wheel behavior control target rudder angle to reduce yaw moment acting on the vehicle, and steering means so that steering wheel steering angle becomes the behavior control target rudder angle Steering system The slip control means determines whether or not the vehicle is traveling on a traveling road with different friction coefficients on the left and right road surfaces, and the vehicle is traveling on a traveling road with different friction coefficients on the left and right road surfaces. Vehicle behavior control characterized by limiting the degree of change in the longitudinal force of the wheel on the side with the higher friction coefficient of the road surface in accordance with the response of the steering wheel turning by the turning means. Achieved by the device.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1の構成に於いて、前記前後力制御手段は運転者の制動操作に応じた目標制動力になるよう各車輪の制動力を制御し、前記スリップ制御手段は前記路面の摩擦係数が高い側の車輪の目標制動力を前記転舵手段による操舵輪の転舵の応答性に応じた制動力制御用のフィルタ定数にてローパスフィルタ処理することにより前記路面の摩擦係数が高い側の車輪の目標制動力の変化度合を制限するよう構成される(請求項2の構成)。   According to the present invention, in order to effectively achieve the main problems described above, in the configuration of claim 1, the longitudinal force control means has a target braking force according to the braking operation of the driver. The slip control means controls the braking force of each wheel, and the slip control means is used to control the target braking force of the wheel having the higher friction coefficient on the road surface according to the response of turning of the steered wheels by the turning means. By performing low-pass filtering with a filter constant, the degree of change in the target braking force of the wheel having the higher friction coefficient on the road surface is limited (configuration according to claim 2).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1又は2の構成に於いて、前記スリップ制御手段は左右輪の一方についてのみ前記スリップ制御を行うときに車輌が左右の路面の摩擦係数が異なる走行路を走行中であると判定し、前記スリップ制御を行う車輪とは左右反対側の車輪を路面の摩擦係数が高い側の車輪と判定するよう構成される(請求項3の構成)。   According to the present invention, in order to effectively achieve the main problem described above, in the configuration of claim 1 or 2, when the slip control means performs the slip control only on one of the left and right wheels. It is determined that the vehicle is traveling on a road having different friction coefficients on the left and right road surfaces, and a wheel on the opposite side to the wheel performing the slip control is determined to be a wheel having a higher road surface friction coefficient. (Structure of claim 3).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1又は2の構成に於いて、前記スリップ制御手段は左右輪の前後力差の大きさが基準値以上であるときに車輌が左右の路面の摩擦係数が異なる走行路を走行中であると判定し、前記左右輪の前後力の方向及び大きさに基づき路面の摩擦係数が高い側の車輪を判定するよう構成される(請求項4の構成)。   According to the present invention, in order to effectively achieve the main problems described above, in the configuration of claim 1 or 2, the slip control means has a magnitude of a difference in front-rear force between the left and right wheels that exceeds a reference value. When the vehicle is, it is determined that the vehicle is traveling on a road where the left and right road surfaces have different friction coefficients, and the wheel having the higher road surface friction coefficient is determined based on the direction and magnitude of the longitudinal force of the left and right wheels. (Structure of claim 4).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至4の構成に於いて、前記転舵制御手段は前記挙動制御目標舵角を前記転舵手段による操舵輪の転舵の応答性に応じた舵角制御用のフィルタ定数にてローパスフィルタ処理し、操舵輪の舵角がローパスフィルタ処理後の挙動制御目標舵角になるよう前記転舵手段により操舵輪を転舵するよう構成される(請求項5の構成)。   According to the present invention, in order to effectively achieve the main problems described above, in the configuration of claims 1 to 4, the steering control means sets the behavior control target steering angle to the steering means. Low-pass filter processing is performed with a filter constant for steering angle control corresponding to the steering wheel steering response, and the steering means steers the steering wheel so that the steering angle of the steering wheel becomes the behavior control target steering angle after the low-pass filter processing. It is comprised so that a wheel may be steered (structure of Claim 5).

上記請求項1の構成によれば、各車輪の前後力が推定され、左右輪の前後力差により車輌に作用する前後力差起因ヨーモーメントが演算され、前後力差起因ヨーモーメントとは逆方向のヨーモーメントを発生して車輌に作用するヨーモーメントを低減するための操舵輪の挙動制御目標舵角が演算され、操舵輪の舵角が挙動制御目標舵角になるよう転舵手段により操舵輪が転舵され、車輌が左右の路面の摩擦係数が異なる走行路を走行中であると判定されたときには、路面の摩擦係数が高い側の車輪の前後力の変化度合が転舵手段による操舵輪の転舵の応答性に合せて制限されるので、前後力差起因ヨーモーメントが急激に増大することを防止し、これにより操舵輪の転舵によるヨーモーメントによって応答遅れなく前後力差起因ヨーモーメントを確実に且つ効果的に相殺し、車輌に作用するヨーモーメントを確実に且つ効果的に低減することができる。   According to the configuration of the first aspect, the longitudinal force of each wheel is estimated, the longitudinal force difference-induced yaw moment acting on the vehicle is calculated from the longitudinal force difference between the left and right wheels, and the direction opposite to the longitudinal force difference-induced yaw moment is calculated. The steering wheel behavior control target rudder angle for reducing the yaw moment acting on the vehicle by generating the yaw moment is calculated, and the steered means steers the steered wheel so that the rudder angle of the steered wheel becomes the behavior control target rudder angle. Is turned, and it is determined that the vehicle is traveling on a road with different friction coefficients on the left and right road surfaces, the degree of change in the longitudinal force of the wheel on the side with the higher friction coefficient on the road surface is the steering wheel by the steering means. Therefore, the yaw moment due to the difference in the longitudinal force is prevented from increasing suddenly, so that the yaw moment due to the difference in the longitudinal force is not delayed by the yaw moment due to the steering of the steered wheels. The reliably and effectively cancel, it is possible to reliably and effectively reduce the yaw moment acting on the vehicle.

また上記請求項2の構成によれば、運転者の制動操作に応じた目標制動力になるよう各車輪の制動力が制御され、路面の摩擦係数が高い側の車輪の目標制動力が転舵手段による操舵輪の転舵の応答性に応じた制動力制御用のフィルタ定数にてローパスフィルタ処理されることにより路面の摩擦係数が高い側の車輪の目標制動力の変化度合が制限されるので、路面の摩擦係数が高い側の車輪の前後力の変化度合を確実に且つ効果的に制限することができる。   Further, according to the configuration of the second aspect, the braking force of each wheel is controlled so that the target braking force according to the braking operation of the driver is obtained, and the target braking force of the wheel having a higher road friction coefficient is steered. Since the low-pass filter processing is performed with the filter constant for braking force control according to the response of the steering wheel to the steered wheel, the degree of change in the target braking force of the wheel having the higher road friction coefficient is limited. The degree of change in the longitudinal force of the wheel on the side having the higher friction coefficient of the road surface can be reliably and effectively limited.

また上記請求項3の構成によれば、左右輪の一方についてのみスリップ制御が行われるときに車輌が左右の路面の摩擦係数が異なる走行路を走行中であると判定され、スリップ制御が行われる車輪とは左右反対側の車輪が路面の摩擦係数が高い側の車輪と判定されるので、路面の摩擦係数が高い側の車輪を確実に判定することができ、これにより路面の摩擦係数が高い側の車輪の前後力の変化度合を確実に且つ効果的に制限することができる。   According to the third aspect of the present invention, when slip control is performed on only one of the left and right wheels, it is determined that the vehicle is traveling on a traveling road having different friction coefficients on the left and right road surfaces, and slip control is performed. Since the wheel on the opposite side to the wheel is determined to be the wheel with the higher friction coefficient on the road surface, the wheel with the higher friction coefficient on the road surface can be reliably determined, thereby increasing the friction coefficient of the road surface. The degree of change in the longitudinal force of the wheel on the side can be reliably and effectively limited.

また上記請求項4の構成によれば、左右輪の前後力差の大きさが基準値以上であるときに車輌が左右の路面の摩擦係数が異なる走行路を走行中であると判定され、左右輪の前後力の方向及び大きさに基づき路面の摩擦係数が高い側の車輪が判定されるので、路面の摩擦係数が高い側の車輪を確実に判定することができ、これにより路面の摩擦係数が高い側の車輪の前後力の変化度合を確実に且つ効果的に制限することができる。   According to the configuration of claim 4, it is determined that when the magnitude of the difference in the longitudinal force between the left and right wheels is equal to or greater than a reference value, the vehicle is determined to be traveling on a road having different friction coefficients between the left and right road surfaces. Since the wheel with the higher friction coefficient on the road surface is determined based on the direction and magnitude of the front-rear force of the wheel, the wheel with the higher friction coefficient on the road surface can be determined with certainty. It is possible to reliably and effectively limit the degree of change in the longitudinal force of the wheel on the higher side.

また上記請求項5の構成によれば、挙動制御目標舵角が転舵手段による操舵輪の転舵の応答性に応じた舵角制御用のフィルタ定数にてローパスフィルタ処理され、操舵輪の舵角がローパスフィルタ処理後の挙動制御目標舵角になるよう転舵手段により操舵輪が転舵されるので、路面の摩擦係数の変化等に起因して挙動制御目標舵角が急激に変化することを防止し、これにより応答遅れなく確実に且つ効果的に操舵輪の舵角をローパスフィルタ処理後の挙動制御目標舵角に制御することができる。   According to the fifth aspect of the present invention, the behavior control target rudder angle is low-pass filtered with the rudder angle control filter constant corresponding to the steering wheel turning responsiveness of the steered wheel by the steered means, and the steered wheel steer The steering wheel is steered by the steering means so that the angle becomes the behavior control target rudder angle after the low pass filter processing, so that the behavior control target rudder angle suddenly changes due to a change in the friction coefficient of the road surface, etc. Thus, the steering angle of the steered wheel can be controlled to the behavior control target rudder angle after the low-pass filter processing reliably and effectively without a delay in response.

〔課題解決手段の好ましい態様〕
本発明の一つの好ましい態様によれば、上記請求項1乃至5の構成に於いて、転舵手段は運転者により操作される操舵操作子に対し相対的に操舵輪を転舵駆動することにより、運転者の操舵操作とは独立に操舵輪を転舵駆動するよう構成される(好ましい態様1)。
[Preferred embodiment of problem solving means]
According to one preferable aspect of the present invention, in the configuration of the first to fifth aspects, the steering means steers the steering wheel relative to the steering operator operated by the driver. The steering wheel is configured to be steered and driven independently of the driver's steering operation (preferred aspect 1).

本発明の他の一つの好ましい態様によれば、上記請求項1乃至5の構成に於いて、転舵制御手段は前後力差起因ヨーモーメントと大きさが同一であり且つ方向が逆のカウンタヨーモーメントを車輌に付与するための舵角として挙動制御目標舵角を演算するよう構成される(好ましい態様2)。   According to another preferred aspect of the present invention, in the configuration according to any one of claims 1 to 5, the turning control means is a counter yaw having the same magnitude as the longitudinal force difference-induced yaw moment and having a reverse direction. A behavior control target rudder angle is calculated as a rudder angle for applying a moment to the vehicle (preferred aspect 2).

本発明の他の一つの好ましい態様によれば、上記請求項1乃至5の構成に於いて、各車輪の前後力を推定する手段は各車輪の駆動力を推定すると共に各車輪の制動力を推定し、駆動力と制動力との和として各車輪の前後力を推定するよう構成される(好ましい態様3)。   According to another preferred aspect of the present invention, in the configuration of the first to fifth aspects, the means for estimating the longitudinal force of each wheel estimates the driving force of each wheel and determines the braking force of each wheel. It is configured to estimate and to estimate the longitudinal force of each wheel as the sum of the driving force and the braking force (preferred aspect 3).

本発明の他の一つの好ましい態様によれば、上記請求項1乃至5の構成に於いて、転舵制御手段は運転者の操舵操作量及び所定の操舵特性に基づき操舵輪の暫定目標舵角を演算し、スリップ制御手段が作動していないときには、暫定目標舵角に基づき転舵手段により操舵輪の舵角を制御するよう構成される(好ましい態様4)。   According to another preferred aspect of the present invention, in the above-described configuration of the first to fifth aspects, the steering control means is configured to determine the provisional target steering angle of the steered wheels based on the driver's steering operation amount and predetermined steering characteristics. When the slip control means is not operating, the steering angle of the steered wheels is controlled by the turning means based on the provisional target steering angle (preferred aspect 4).

本発明の他の一つの好ましい態様によれば、上記請求項1乃至5の構成に於いて、車輌は車輌の挙動が悪化しているときには各車輪の制駆動力を制御することにより車輌の挙動を安定化させる制駆動力の制御による挙動制御手段を有し、挙動制御目標舵角を演算する手段は挙動制御手段が作動していないときに挙動制御目標舵角を演算するよう構成される(好ましい態様5)。   According to another preferred embodiment of the present invention, in the configuration of the first to fifth aspects of the present invention, the vehicle behavior is controlled by controlling the braking / driving force of each wheel when the behavior of the vehicle is deteriorated. The behavior control means by controlling the braking / driving force to stabilize the behavior control means, and the means for calculating the behavior control target rudder angle is configured to calculate the behavior control target rudder angle when the behavior control means is not operating ( Preferred embodiment 5).

本発明の他の一つの好ましい態様によれば、上記請求項1乃至5の構成に於いて、車輌は車輌の旋回加減速時に車輪の制駆動力の配分を制御する制駆動力配分制御手段を有し、挙動制御目標舵角を演算する手段は制駆動力配分制御手段が作動していないときに挙動制御目標舵角を演算するよう構成される(好ましい態様6)。   According to another preferred aspect of the present invention, in the configuration of the first to fifth aspects, the vehicle further includes braking / driving force distribution control means for controlling the distribution of braking / driving force of the wheels when the vehicle is turning accelerated / decelerated. And the means for calculating the behavior control target rudder angle is configured to calculate the behavior control target rudder angle when the braking / driving force distribution control means is not operating (preferred aspect 6).

本発明の他の一つの好ましい態様によれば、上記請求項2の構成に於いて、スリップ制御手段は車輪のスリップが過大であるときには当該車輪の制動力を制御することによりスリップを低減するよう構成される(好ましい態様7)。   According to another preferred aspect of the present invention, in the configuration of claim 2, the slip control means reduces the slip by controlling the braking force of the wheel when the slip of the wheel is excessive. Constructed (preferred embodiment 7).

本発明の他の一つの好ましい態様によれば、上記好ましい態様7の構成に於いて、スリップ制御手段は車輪のスリップが過大であるときには当該車輪のスリップを所定の範囲にするための目標制動力を演算し、当該車輪の制動力を目標制動力に制御することによりスリップを低減するよう構成される(好ましい態様8)。   According to another preferred embodiment of the present invention, in the configuration of the preferred embodiment 7, when the slip of the wheel is excessive, the target braking force for bringing the slip of the wheel into a predetermined range is provided. Is calculated and slip is reduced by controlling the braking force of the wheel to the target braking force (preferred aspect 8).

本発明の他の一つの好ましい態様によれば、上記請求項2の構成に於いて、目標制動力用のフィルタ定数は路面の摩擦係数が高い側の車輪の制動力がローパスフィルタ処理後の目標制動力になるよう制御された場合に、左右輪の前後力差により車輌に作用する前後力差起因ヨーモーメントとは逆方向のヨーモーメントを転舵手段による操舵輪の転舵により応答遅れなく発生させることを可能にする値であるよう構成される(好ましい態様9)。   According to another preferred aspect of the present invention, in the configuration of claim 2, the filter constant for the target braking force is the target after the low-pass filtering of the braking force of the wheel having the higher friction coefficient on the road surface. When the braking force is controlled, the yaw moment caused by the difference in the longitudinal force acting on the vehicle due to the difference in the longitudinal force between the left and right wheels is generated without the response delay by the steering wheel turning by the steering means. It is comprised so that it may be a value which enables it to make it (preferable aspect 9).

本発明の他の一つの好ましい態様によれば、上記請求項4の構成に於いて、スリップ制御手段は車輌の制動時には左右輪の制動力差の大きさが基準値以上であるときに車輌が左右の路面の摩擦係数が異なる走行路を走行中であると判定し、当該左右輪のうち制動力が大きい側の車輪を路面の摩擦係数が高い側の車輪と判定するよう構成される(好ましい態様10)。   According to another preferred aspect of the present invention, in the configuration of claim 4, the slip control means is configured such that when the vehicle is braked, the vehicle is in a state where the magnitude of the braking force difference between the left and right wheels is greater than or equal to a reference value. It is determined that the vehicle is traveling on roads having different friction coefficients on the left and right road surfaces, and the wheel having the higher braking force among the left and right wheels is determined to be the wheel having the higher friction coefficient on the road surface (preferably Aspect 10).

本発明の他の一つの好ましい態様によれば、上記請求項4の構成に於いて、スリップ制御手段は車輌の駆動時には左右輪の駆動力差の大きさが基準値以上であるときに車輌が左右の路面の摩擦係数が異なる走行路を走行中であると判定し、当該左右輪のうち駆動力が大きい側の車輪を路面の摩擦係数が高い側の車輪と判定するよう構成される(好ましい態様11)。   According to another preferred aspect of the present invention, in the configuration of claim 4, when the vehicle is driven, the slip control means is operated when the difference in the driving force difference between the left and right wheels is greater than or equal to a reference value. It is determined that the vehicle is traveling on roads having different friction coefficients on the left and right road surfaces, and the wheel having the higher driving force among the left and right wheels is determined to be the wheel having the higher friction coefficient on the road surface (preferably Aspect 11).

一般に、車速をVとし、車輌のヨーレートをγとし、車輌のスリップ角をβとし、前輪の舵角をδfとし、車輌の重量をMとし、車輌のヨー慣性モーメントをIzとし、前輪のコーナリングパワーをCpfとし、後輪のコーナリングパワーをCprとし、車輌の重心と前輪車軸との間の車輌前後方向の距離をLfとし、車輌の重心と後輪車軸との間の車輌前後方向の距離をLrとし、左右輪の前後力差によるヨーモーメントをMfとし、車輌のヨーレートγの変化率をγdとし、車輌のスリップ角βの変化率をβdとし、a11、a12、a21、a22、b1、b2、c2をそれぞれ下記の式2〜8にて表される値とすると、下記の式1が成立する。   In general, the vehicle speed is V, the vehicle yaw rate is γ, the vehicle slip angle is β, the front wheel rudder angle is δf, the vehicle weight is M, the vehicle yaw moment of inertia is Iz, and the front wheel cornering power is Is Cpf, the cornering power of the rear wheel is Cpr, the distance in the vehicle front-rear direction between the center of gravity of the vehicle and the front wheel axle is Lf, and the distance in the vehicle front-rear direction between the center of gravity of the vehicle and the rear wheel axle is Lr. , Mf is the yaw moment due to the difference in the longitudinal force between the left and right wheels, γd is the rate of change of the yaw rate γ of the vehicle, βd is the rate of change of the slip angle β of the vehicle, and a11, a12, a21, a22, b1, b2, When c2 is a value represented by the following formulas 2 to 8, the following formula 1 is established.

Figure 2005255035
Figure 2005255035

またラプラス演算子をsとして、車輌のヨーレートγ(s)に対する前輪舵角δf(s)の伝達関数Hγδは及び車輌のヨーレートγ(s)に対する左右輪の前後力差によるヨーモーメントMf(s)の伝達関数HγMはそれぞれ下記の式9及び10にて表される。 Further, assuming that the Laplace operator is s, the transfer function H γδ of the front wheel steering angle δf (s) with respect to the vehicle yaw rate γ (s) and the yaw moment Mf (s ) Transfer function H γM is expressed by the following equations 9 and 10, respectively.

Figure 2005255035
Figure 2005255035

上記式9及び10より下記の式11が成立するので、下記の式11より左右輪の前後力差によるヨーモーメントMf(s)を打ち消すための操舵輪としての前輪の舵角δf(s)を下記の式12により求めることができることが解る。   Since the following formula 11 is established from the above formulas 9 and 10, the steering angle δf (s) of the front wheel as the steered wheel for canceling the yaw moment Mf (s) due to the difference in the longitudinal force between the left and right wheels is calculated from the following formula 11. It can be seen that the following equation 12 can be obtained.

Figure 2005255035
Figure 2005255035

また上記式12より、左右輪の前後力差によるヨーモーメントMfを打ち消すための操舵輪としての前輪のδfを簡易的には過渡応答を考慮せずに静的に下記の式13により求めることができることが解る。   Further, from the above equation 12, the δf of the front wheel as a steered wheel for canceling the yaw moment Mf due to the difference between the front and rear force of the left and right wheels can be simply obtained statically by the following equation 13 without considering the transient response. I understand what I can do.

Figure 2005255035
Figure 2005255035

従って本発明の他の一つの好ましい態様によれば、上記請求項1乃至5の構成に於いて、挙動制御目標舵角を演算する手段は上記式12又は13に従って挙動制御目標舵角を演算するよう構成される(好ましい態様12)。   Therefore, according to another preferred aspect of the present invention, in the configuration of the first to fifth aspects, the means for calculating the behavior control target rudder angle calculates the behavior control target rudder angle according to the equation 12 or 13. (Preferred embodiment 12).

以下に添付の図を参照しつつ、本発明を好ましい実施例について詳細に説明する。   The present invention will now be described in detail with reference to the accompanying drawings.

図1は自動転舵装置として機能する転舵角可変装置を備えたセミステアバイワイヤ式の後輪駆動車に適用された本発明による車輌の挙動制御装置の一つの実施例を示す概略構成図である。   FIG. 1 is a schematic configuration diagram showing one embodiment of a vehicle behavior control device according to the present invention applied to a semi-steer-by-wire rear wheel drive vehicle equipped with a turning angle varying device functioning as an automatic turning device. is there.

図1に於いて、10FL及び10FRはそれぞれ車輌12の従動操舵輪としての左右の前輪を示し、10RL及び10RRはそれぞれ車輌の駆動輪としての左右の後輪を示している。操舵輪である左右の前輪10FL及び10FRは運転者によるステアリングホイール14の操作に応答して駆動されるラック・アンド・ピニオン型のパワーステアリング装置16によりラックバー18及びタイロッド20L及び20Rを介して転舵される。   In FIG. 1, 10FL and 10FR respectively indicate left and right front wheels as driven steering wheels of the vehicle 12, and 10RL and 10RR respectively indicate left and right rear wheels as drive wheels of the vehicle. The left and right front wheels 10FL and 10FR, which are steering wheels, are rotated via a rack bar 18 and tie rods 20L and 20R by a rack-and-pinion type power steering device 16 driven in response to an operation of the steering wheel 14 by a driver. Steered.

ステアリングホイール14は第一のステアリングシャフトとしてのアッパステアリングシャフト22、転舵角可変装置24、第二のステアリングシャフトとしてのロアステアリングシャフト26、ユニバーサルジョイント28を介してパワーステアリング装置16のピニオンシャフト30に駆動接続されている。図示の実施例に於いては、転舵角可変装置24はハウジング24Aの側にてアッパステアリングシャフト22の下端に連結され、回転子24Bの側にてロアステアリングシャフト26の上端に連結された補助転舵駆動用の電動機32を含んでいる。   The steering wheel 14 is connected to a pinion shaft 30 of the power steering device 16 via an upper steering shaft 22 as a first steering shaft, a turning angle varying device 24, a lower steering shaft 26 as a second steering shaft, and a universal joint 28. Drive connected. In the illustrated embodiment, the turning angle varying device 24 is connected to the lower end of the upper steering shaft 22 on the housing 24A side, and is connected to the upper end of the lower steering shaft 26 on the rotor 24B side. An electric motor 32 for turning driving is included.

かくして転舵角可変装置24はアッパステアリングシャフト22に対し相対的にロアステアリングシャフト26を回転駆動することにより、ステアリングホイール14の回転角度に対する操舵輪である左右の前輪10FL及び10FRの舵角の比、即ちステアリングギヤ比を変化させるステアリングギヤ比可変装置として機能すると共に、挙動制御の目的で左右の前輪10FL及び10FRをステアリングホイール14に対し相対的に補助転舵駆動する自動転舵装置としても機能し、電子制御装置34の転舵制御部により制御される。   Thus, the steering angle varying device 24 drives the lower steering shaft 26 to rotate relative to the upper steering shaft 22, so that the ratio of the steering angles of the left and right front wheels 10 FL and 10 FR, which are the steering wheels, with respect to the rotation angle of the steering wheel 14. In other words, it functions as a steering gear ratio variable device that changes the steering gear ratio, and also functions as an automatic steering device that drives the left and right front wheels 10FL and 10FR relative to the steering wheel 14 for the purpose of behavior control. Then, it is controlled by the steering control unit of the electronic control unit 34.

特に転舵角可変装置24は、通常時にはステアリングギヤ比が所定の操舵特性を達成するギヤ比になるよう電動機32によりアッパステアリングシャフト22に対し相対的にロアステアリングシャフト26を回転させ、挙動制御による補助転舵駆動時には電動機32によりアッパステアリングシャフト22に対し相対的にロアステアリングシャフト26を積極的に回転させ、これにより運転者の操舵操作に依存せずに左右の前輪10FL及び10FRを自動的に転舵する。   In particular, the turning angle variable device 24 rotates the lower steering shaft 26 relative to the upper steering shaft 22 by the electric motor 32 so that the steering gear ratio becomes a gear ratio that achieves a predetermined steering characteristic in a normal state. At the time of auxiliary steering driving, the lower steering shaft 26 is actively rotated relative to the upper steering shaft 22 by the electric motor 32, so that the left and right front wheels 10FL and 10FR are automatically turned on without depending on the driver's steering operation. Steer.

尚アッパステアリングシャフト22に対し相対的にロアステアリングシャフト26を回転駆動することができない異常が転舵角可変装置24に発生すると、図1には示されていないロック装置が作動し、アッパステアリングシャフト22に対するロアステアリングシャフト26の相対回転角度が変化しないよう、ハウジング24A及び回転子24Bの相対回転が機械的に阻止される。   If an abnormality in which the lower steering shaft 26 cannot be driven to rotate relative to the upper steering shaft 22 occurs in the turning angle varying device 24, a lock device not shown in FIG. The relative rotation of the housing 24A and the rotor 24B is mechanically prevented so that the relative rotation angle of the lower steering shaft 26 with respect to 22 does not change.

またパワーステアリング装置16は油圧式パワーステアリング装置及び電動式パワーステアリング装置の何れであってもよいが、転舵角可変装置24による前輪の補助転舵駆動により発生されステアリングホイール14に伝達される反力トルクを低減する補助操舵トルクが発生されるよう、例えば電動機と、電動機の回転トルクをラックバー18の往復動方向の力に変換するボールねじ式の如き変換機構とを有するラック同軸型の電動式パワーステアリング装置であることが好ましい。   The power steering device 16 may be either a hydraulic power steering device or an electric power steering device. However, the power steering device 16 is generated by the auxiliary steering driving of the front wheels by the steering angle varying device 24 and transmitted to the steering wheel 14. A rack coaxial type electric motor having, for example, an electric motor and a conversion mechanism such as a ball screw type that converts the rotational torque of the electric motor into a reciprocating force of the rack bar 18 so that an auxiliary steering torque for reducing the force torque is generated. A power steering apparatus is preferable.

各車輪の制動力は制動装置36の油圧回路38によりホイールシリンダ40FL、40FR、40RL、40RR内の圧力Pi(i=fl、fr、rl、rr)、即ち制動圧が制御されることによって制御されるようになっている。図には示されていないが、油圧回路38はオイルリザーバ、オイルポンプ、種々の弁装置等を含み、各ホイールシリンダの制動圧は通常時には運転者によるブレーキペダル42の踏み込み操作に応じて駆動されるマスタシリンダ44により制御され、また必要に応じて後に詳細に説明する如く電子制御装置34により個別に制御される。   The braking force of each wheel is controlled by controlling the pressure Pi (i = fl, fr, rl, rr) in the wheel cylinders 40FL, 40FR, 40RL, 40RR, that is, the braking pressure, by the hydraulic circuit 38 of the braking device 36. It has become so. Although not shown in the drawing, the hydraulic circuit 38 includes an oil reservoir, an oil pump, various valve devices, and the like, and the braking pressure of each wheel cylinder is normally driven in response to the depression operation of the brake pedal 42 by the driver. It is controlled by the master cylinder 44 and individually controlled by the electronic control unit 34 as will be described in detail later if necessary.

図示の実施例に於いては、アッパステアリングシャフト22には該アッパステアリングシャフトの回転角度を操舵角θとして検出する操舵角センサ50が設けられており、転舵角可変装置24にはハウジング24A及び回転子24Bの相対回転角度をアッパステアリングシャフト22に対するロアステアリングシャフト26の相対回転角度θreとして検出する回転角度センサ52が設けられており、これらのセンサの出力は電子制御装置34へ供給される。   In the illustrated embodiment, the upper steering shaft 22 is provided with a steering angle sensor 50 for detecting the rotation angle of the upper steering shaft as a steering angle θ. The steering angle variable device 24 includes a housing 24A and A rotation angle sensor 52 that detects the relative rotation angle of the rotor 24B as the relative rotation angle θre of the lower steering shaft 26 with respect to the upper steering shaft 22 is provided, and the output of these sensors is supplied to the electronic control unit 34.

また電子制御装置34には前後加速度センサ54により検出された車輌の前後加速度Gxを示す信号、横加速度センサ56により検出された車輌の横加速度Gyを示す信号、車輪速度センサ58FL〜58RRにより検出された各車輪の車輪速度Vwi(i=fl、fr、rl、rr)を示す信号、圧力センサ60FL〜60RRにより検出された各車輪の制動圧Piを示す信号、圧力センサ62により検出されたマスタシリンダ圧力Pmを示す信号、エンジン制御装置64よりスロットル開度φ及びエンジン回転数Neを示す信号等が入力される。   Further, the electronic control unit 34 detects the vehicle longitudinal acceleration Gx detected by the longitudinal acceleration sensor 54, the vehicle lateral acceleration Gy detected by the lateral acceleration sensor 56, and the wheel speed sensors 58FL to 58RR. Further, a signal indicating the wheel speed Vwi (i = fl, fr, rl, rr) of each wheel, a signal indicating the braking pressure Pi of each wheel detected by the pressure sensors 60FL-60RR, and a master cylinder detected by the pressure sensor 62 A signal indicating the pressure Pm, a signal indicating the throttle opening φ and the engine speed Ne, and the like are input from the engine control device 64.

尚図1には詳細に示されていないが、電子制御装置34は転舵角可変装置24を制御する転舵制御部と、各車輪の制動力を制御する制動力制御部と、車輌の挙動を制御する挙動制御部とよりなり、各制御部はそれぞれCPUとROMとRAMと入出力ポート装置とを有し、これらが双方向性のコモンバスにより互いに接続されたマイクロコンピュータを含むものであってよい。また操舵角センサ50、回転角度センサ52、横加速度センサ54、ヨーレートセンサ56はそれぞれ車輌の左旋回方向への操舵又は転舵又は旋回の場合を正として操舵角θ、相対回転角度θre、横加速度Gy、ヨーレートγを検出する。   Although not shown in detail in FIG. 1, the electronic control unit 34 is a steering control unit that controls the steering angle varying device 24, a braking force control unit that controls the braking force of each wheel, and the behavior of the vehicle. Each control unit includes a CPU, a ROM, a RAM, and an input / output port device, which include a microcomputer connected to each other via a bidirectional common bus. Good. Further, the steering angle sensor 50, the rotation angle sensor 52, the lateral acceleration sensor 54, and the yaw rate sensor 56 are respectively set to the steering angle θ, the relative rotation angle θre, and the lateral acceleration when the vehicle is steered, steered, or turned in the left turn direction. Gy and yaw rate γ are detected.

後述の如く、電子制御装置34は通常時には各車輪の車輪速度Vwiに基づき車速Vを推定し、車速Vに基づき所定の操舵特性を達成するためのステアリングギヤ比Rgを演算し、運転者の操舵操作量を示す操舵角θ及びステアリングギヤ比Rgに基づき暫定目標舵角δstを演算し、左右前輪の舵角が暫定目標舵角δstになるよう転舵角可変装置24を制御し、これにより運転者の操舵操作に応じて所定の操舵特性にて左右の前輪10FL及び10FRを転舵する。   As will be described later, the electronic control unit 34 normally estimates the vehicle speed V based on the wheel speed Vwi of each wheel, calculates a steering gear ratio Rg for achieving a predetermined steering characteristic based on the vehicle speed V, and steers the driver. The provisional target rudder angle δst is calculated based on the steering angle θ indicating the operation amount and the steering gear ratio Rg, and the steered angle varying device 24 is controlled so that the rudder angle of the left and right front wheels becomes the provisional target rudder angle δst. The left and right front wheels 10FL and 10FR are steered with predetermined steering characteristics in accordance with the steering operation of the person.

また電子制御装置34は通常の制動時にはマスタシリンダ圧力Pmに所定の増圧係数Ki(i=fl、fr、rl、rr)を乗算した値を各車輪の目標制動圧Pti(i=fl、fr、rl、rr)として演算し、制動圧Piが目標制動圧Ptiになるよう制御するが、後述のアンチスキッド制御(ABS制御)又はトラクション制御(TRC制御)又は制動力の制御による挙動制御による目標制動圧Ptiが演算されたときには、当該車輪の制動圧を各制御の目標制動圧Ptiになるよう制御する。   The electronic control unit 34 also obtains a target braking pressure Pti (i = fl, fr) for each wheel by multiplying the master cylinder pressure Pm by a predetermined pressure increase coefficient Ki (i = fl, fr, rl, rr) during normal braking. , Rl, rr), and the control is performed so that the braking pressure Pi becomes the target braking pressure Pti, but the target by the behavior control by the anti-skid control (ABS control) or the traction control (TRC control) or the braking force control described later. When the braking pressure Pti is calculated, control is performed so that the braking pressure of the wheel becomes the target braking pressure Pti of each control.

また電子制御装置34は各車輪の車輪速度Vwiに基づき当技術分野に於いて公知の要領にて車体速度Vb及び各車輪の制動スリップ量SBi(i=fl、fr、rl、rr)を演算し、制動スリップ量SBiがアンチスキッド制御開始の基準値よりも大きくなり、アンチスキッド制御の開始条件が成立すると、アンチスキッド制御の終了条件が成立するまで、当該車輪の制動スリップ量を所定の範囲内にするための当該車輪の目標制動圧Pti(i=fl、fr、rl、rr)を演算し、制動圧Piが目標制動圧Ptiになるよう制御することによってアンチスキッド制御を行う。   The electronic control unit 34 calculates the vehicle body speed Vb and the braking slip amount SBi (i = fl, fr, rl, rr) of each wheel based on the wheel speed Vwi of each wheel in a manner known in the art. When the braking slip amount SBi becomes larger than the reference value for starting the anti-skid control and the anti-skid control start condition is satisfied, the braking slip amount of the wheel falls within the predetermined range until the anti-skid control end condition is satisfied. The anti-skid control is performed by calculating the target braking pressure Pti (i = fl, fr, rl, rr) of the wheel in order to achieve the target braking pressure Pti to be the target braking pressure Pti.

尚電子制御装置34は左右輪の一方についてのみアンチスキッド制御を行う場合に、当該車輪とは左右反対側の車輪の制動力をアンチスキッド制御を行う側の車輪の制動力に合せることにより左右輪の制動力差が過大になることを防止する所謂ローセレクト制御は行わない。   When the electronic control unit 34 performs anti-skid control for only one of the left and right wheels, the left and right wheels are adjusted by matching the braking force of the wheel on the opposite side to the wheel with the braking force of the wheel on the anti-skid control side. No so-called low select control is performed to prevent the braking force difference between the two from becoming excessive.

また電子制御装置34は各車輪の車輪速度Vwiに基づき当技術分野に於いて公知の要領にて車体速度Vb及び各車輪の加速スリップ量SAi(i=fl、fr、rl、rr)を演算し、加速スリップ量SAiがトラクション制御開始の基準値よりも大きくなり、トラクション制御の開始条件が成立すると、トラクション制御の終了条件が成立するまで、当該車輪の加速スリップ量を所定の範囲内にするための当該車輪の目標制動圧Pti(i=fl、fr、rl、rr)を演算し、制動圧Piが目標制動圧Ptiになるよう制御することによってトラクション制御を行う。   The electronic control unit 34 calculates the vehicle body speed Vb and the acceleration slip amount SAi (i = fl, fr, rl, rr) of each wheel based on the wheel speed Vwi of each wheel in a manner known in the art. When the acceleration slip amount SAi becomes larger than the traction control start reference value and the traction control start condition is satisfied, the acceleration slip amount of the wheel is set within a predetermined range until the traction control end condition is satisfied. Traction control is performed by calculating a target braking pressure Pti (i = fl, fr, rl, rr) of the wheel and controlling the braking pressure Pi to be the target braking pressure Pti.

尚電子制御装置34は左右輪の一方についてのみトラクション制御を行う場合に、当該車輪とは左右反対側の車輪の駆動力をトラクション制御を行う側の車輪の制動力に合せることにより左右輪の制動力差が過大になることを防止する所謂ローセレクト制御は行わない。   When the electronic control unit 34 performs traction control only for one of the left and right wheels, the left and right wheels are controlled by matching the driving force of the wheel on the opposite side to the wheel with the braking force of the wheel on the traction control side. So-called low select control for preventing the power difference from becoming excessive is not performed.

また電子制御装置34は車輌の走行に伴い変化する車輌の横加速度Gyの如き車輌状態量に基づき車輌のスピンの程度を示すスピン状態量SS及び車輌のドリフトアウトの程度を示すドリフトアウト状態量DSを演算し、スピン状態量SS及びドリフトアウト状態量DSに基づき車輌の挙動を安定化させるための各車輪の目標制動圧Pti(i=fl、fr、rl、rr)を演算し、各車輪の制動圧Piが目標制動圧Ptiになるよう制御することによって車輌の挙動を安定化させる制動力の制御による挙動制御を行う。   The electronic control unit 34 also includes a spin state quantity SS indicating the degree of vehicle spin and a drift-out state quantity DS indicating the degree of vehicle drift-out based on the vehicle state quantity such as the lateral acceleration Gy of the vehicle that changes as the vehicle travels. And the target braking pressure Pti (i = fl, fr, rl, rr) for each wheel for stabilizing the behavior of the vehicle based on the spin state amount SS and the drift-out state amount DS is calculated. By controlling the braking pressure Pi to be equal to the target braking pressure Pti, behavior control is performed by controlling the braking force that stabilizes the behavior of the vehicle.

尚、上述のアンチスキッド制御、トラクション制御、制動力の制御による挙動制御自体は本発明の要旨をなすものではなく、これらの制御は当技術分野に於いて公知の任意の要領にて実行されてよい。   The above-described behavior control by the anti-skid control, the traction control, and the braking force control itself does not form the gist of the present invention, and these controls are executed in any manner known in the art. Good.

更に電子制御装置34は制動力の制御による挙動制御が実行されておらず且つアンチスキッド制御又はトラクション制御が実行されているときには、各車輪の前後力Fxiを推定により演算し、左右輪の前後力差ΔFxが基準値Fxo(正の定数)以上であるときには、即ち車輌が左右の路面の摩擦係数が異なる走行路を走行し、左右輪の一方についてアンチスキッド制御又はトラクション制御が実行されているときには、左右輪の前後力差により車輌に作用する前後力差起因ヨーモーメントMfを演算し、前後力差起因ヨーモーメントを相殺するカウンタヨーモーメントMcを車輌に付与するための左右前輪の挙動制御目標転舵角Δδctを演算する。   Further, when the behavior control by the braking force control is not executed and the anti-skid control or the traction control is executed, the electronic control unit 34 calculates the front / rear force Fxi of each wheel by estimation and calculates the front / rear force of the left / right wheel. When the difference ΔFx is greater than or equal to the reference value Fxo (a positive constant), that is, when the vehicle is traveling on a road with different friction coefficients on the left and right road surfaces, and anti-skid control or traction control is being performed on one of the left and right wheels. Then, the yaw moment Mf due to the longitudinal force difference acting on the vehicle is calculated based on the difference in the longitudinal force between the left and right wheels, and the behavior control target rotation of the left and right front wheels for applying to the vehicle a counter yaw moment Mc that cancels the yaw moment due to the longitudinal force difference. The steering angle Δδct is calculated.

また電子制御装置34は左右輪の前後力差ΔFxが基準値Fxo(正の定数)以上であり左右輪の一方についてアンチスキッド制御又はトラクション制御が実行されているときには、アンチスキッド制御又はトラクション制御が実行されている車輪とは左右反対側の車輪の前後力の変化率を転舵角可変装置24による左右前輪の舵角制御の応答性に応じて制限し、これにより前後力差起因ヨーモーメントMfが急激に増大してカウンタヨーモーメントMcがこれに追従できなくなることを防止する。   Further, when the electronic control device 34 has the front-rear force difference ΔFx between the left and right wheels equal to or greater than a reference value Fxo (a positive constant) and the anti-skid control or traction control is being executed for one of the left and right wheels, The rate of change in the longitudinal force of the wheel on the opposite side to the wheel being executed is limited in accordance with the response of the steering angle control of the left and right front wheels by the steering angle varying device 24, and thereby the longitudinal force difference-induced yaw moment Mf Prevents the counter yaw moment Mc from following this.

次に図2に示されたフローチャートを参照して図示の実施例に於いて電子制御装置34により達成される左右前輪の舵角制御による車輌の挙動制御ルーチンについて説明する。尚図2に示されたフローチャートによる制御は図には示されていないイグニッションスイッチの閉成により開始され、所定の時間毎に繰返し実行される。   Next, a vehicle behavior control routine based on the steering angle control of the left and right front wheels achieved by the electronic control unit 34 in the illustrated embodiment will be described with reference to the flowchart shown in FIG. The control according to the flowchart shown in FIG. 2 is started by closing an ignition switch not shown in the figure, and is repeatedly executed at predetermined time intervals.

まずステップ10に於いては操舵角θを示す信号等の読み込みが行われ、ステップ20に於いては各車輪の車輪速度Vwiに基づき当技術分野に於いて公知の要領にて車速Vが推定され、車速Vに基づき図3に示されたグラフに対応するマップよりステアリングギヤ比Rgが演算され、下記の式14に従って所定の操舵特性を達成するための左右前輪の暫定目標舵角δstが演算される。
δst=θ/Rg ……(14)
First, at step 10, a signal indicating the steering angle .theta. Is read, and at step 20, the vehicle speed V is estimated in a manner known in the art based on the wheel speed Vwi of each wheel. The steering gear ratio Rg is calculated from the map corresponding to the graph shown in FIG. 3 based on the vehicle speed V, and the provisional target rudder angle δst of the left and right front wheels for achieving a predetermined steering characteristic according to the following equation 14 is calculated. The
δst = θ / Rg (14)

尚暫定目標舵角δstは運転者の操舵操作に対応する舵角δw(=θ/Rgo)と所定の操舵特性を達成するための制御転舵角δcとの和である。また操舵特性自体は本発明の要旨をなすものではなく、ステアリングギヤ比Rgは当技術分野に於いて公知の任意の要領にて演算されてよく、例えば操舵に対する車輌の過渡応答性を向上させるべく操舵速度によっても変化されてよい。   The provisional target rudder angle δst is the sum of the rudder angle δw (= θ / Rgo) corresponding to the driver's steering operation and the control turning angle δc for achieving a predetermined steering characteristic. Further, the steering characteristic itself does not form the gist of the present invention, and the steering gear ratio Rg may be calculated in an arbitrary manner known in the art, for example, to improve the transient response of the vehicle to the steering. It may be changed by the steering speed.

ステップ30に於いては制動力の制御による挙動制御、即ちスピン抑制制御又はドリフトアウト抑制制御が実行されているか否かの判別が行われ、肯定判別が行われたときにはステップ80へ進み、否定判別が行われたときにはステップ40へ進む。   In step 30, it is determined whether or not behavior control based on braking force control, that is, whether spin suppression control or drift-out suppression control is being executed. If an affirmative determination is made, the process proceeds to step 80, and a negative determination is made. When the operation is performed, the process proceeds to step 40.

ステップ40に於いては何れかの車輪についてアンチスキッド制御が実行されているか否かの判別が行われ、肯定判別が行われたときにはステップ60へ進み、否定判別が行われたときにはステップ50へ進む。   In step 40, it is determined whether or not anti-skid control is being performed for any of the wheels. If an affirmative determination is made, the process proceeds to step 60. If a negative determination is made, the process proceeds to step 50. .

ステップ50に於いては駆動輪である左後輪若しくは右後輪についてトラクション制御が実行されているか否かの判別が行われ、否定判別が行われたときにはステップ80へ進み、肯定判別が行われたときにはステップ60へ進む。   In step 50, it is determined whether or not the traction control is being executed for the left rear wheel or the right rear wheel that is the driving wheel. If a negative determination is made, the process proceeds to step 80, where an affirmative determination is made. If yes, go to Step 60.

ステップ60に於いてはJiを車輪の慣性モーメントとし、Vwdiを車輪の回転角速度とし、Rを車輪の有効半径とし、Txiを車輪の制動トルクTbi(負の値)と駆動トルクTdi(正の値)との和として、下記の式15に従って各車輪の前後力(制駆動力)Fxi(i=fl、fr、rl、rr)が演算される。
Ji・Vwdi=R・Fxi+Txi
Fxi=(Ji・Vwdi−Txi)/R ……(15)
In step 60, Ji is the wheel inertia moment, Vwdi is the wheel rotational angular velocity, R is the wheel effective radius, Txi is the wheel braking torque Tbi (negative value) and drive torque Tdi (positive value). ), The longitudinal force (braking / driving force) Fxi (i = fl, fr, rl, rr) of each wheel is calculated according to the following formula 15.
Ji ・ Vwdi = R ・ Fxi + Txi
Fxi = (Ji · Vwdi−Txi) / R (15)

尚車輪の回転角速度Vwiは車輪速度Vwiの微分値として演算される。また制動トルクTbiは図には示されていない圧力センサにより検出されるマスタシリンダ圧力Pm及び制動装置36の諸元により定まる圧力−制動トルク変換係数に基づいて演算される。更に駆動トルクTdiはエンジン制御装置62より入力されるスロットル開度φ及びエンジン回転数Neに基づきエンジンの駆動トルクTeが演算され、エンジントルクTe及び駆動系の諸元により決定される定数に基づいて演算される。また制動トルクTbi及び駆動トルクTdiは例えば力センサ等により直接検出されてもよい。   The rotational angular velocity Vwi of the wheel is calculated as a differential value of the wheel velocity Vwi. The braking torque Tbi is calculated based on a master cylinder pressure Pm detected by a pressure sensor (not shown) and a pressure-braking torque conversion coefficient determined by the specifications of the braking device 36. Further, the drive torque Tdi is calculated based on the throttle opening φ and the engine speed Ne inputted from the engine control device 62, and based on the engine torque Te and a constant determined by the specifications of the drive system. Calculated. Further, the braking torque Tbi and the driving torque Tdi may be directly detected by, for example, a force sensor.

ステップ70に於いては各車輪の前後力Fxiに基づき下記の式16に従って左右輪の前後力差ΔFxが演算されると共に、左右輪の前後力差ΔFxの絶対値が基準値Fxo(正の定数)以上であるか否かの判別が行われ、否定判別が行われたときにはステップ80に於いてフラグFcが0にリセットされ、ステップ90に於いて左右前輪の目標舵角δtが暫定目標舵角δstに設定された後ステップ150へ進み、肯定判別が行われたときにはステップ100に於いてフラグFcが1にセットされる。
ΔFx=(Fxfr+Fxrr)−(Fxfl+Fxrl) ……(16)
In step 70, the front-rear force difference ΔFx between the left and right wheels is calculated according to the following formula 16 based on the front-rear force Fxi of each wheel, and the absolute value of the front-rear force difference ΔFx between the left and right wheels is a reference value Fxo (a positive constant). ) When the above determination is made and a negative determination is made, the flag Fc is reset to 0 in step 80, and the target steering angle δt of the left and right front wheels is set to the provisional target steering angle in step 90. After setting to δst, the routine proceeds to step 150, and when an affirmative determination is made, the flag Fc is set to 1 at step 100.
ΔFx = (Fxfr + Fxrr) − (Fxfl + Fxrl) (16)

ステップ110に於いてはTを車輌のトレッドとして左右輪の前後力差ΔFxに基づき下記の式17に従って左右輪の前後力差に起因して車輌に作用する前後力差起因ヨーモーメントMfが演算される。
Mf=ΔFx・T/2 ……(17)
In step 110, the yaw moment Mf due to the longitudinal force difference acting on the vehicle due to the longitudinal force difference between the left and right wheels is calculated according to the following equation 17 based on the longitudinal force difference ΔFx between the left and right wheels with T as the tread of the vehicle. The
Mf = ΔFx · T / 2 (17)

ステップ120に於いては前後力差起因ヨーモーメントMfを相殺するためのカウンタヨーモーメントをMc(=−Mf)とすると、左右前輪の転舵によりカウンタヨーモーメントMcを車輌に付与するための左右前輪の挙動制御目標転舵角Δδctが上記式13に対応する下記の式18に従って演算される。尚この場合挙動制御目標転舵角Δδctは上記式12に対応する式に従って演算されてもよい。また下記の式18又は上記式12に対応する式に従って挙動制御目標転舵角Δδctが演算される際の前輪のコーナリングパワーCpf及び後輪のコーナリングパワーCprは、そのときの各車輪のスリップ率に応じて補正された値が使用される。   In step 120, if the counter yaw moment for canceling the longitudinal force difference-induced yaw moment Mf is Mc (= -Mf), the left and right front wheels for applying the counter yaw moment Mc to the vehicle by turning the left and right front wheels. The behavior control target turning angle Δδct is calculated according to the following equation 18 corresponding to the above equation 13. In this case, the behavior control target turning angle Δδct may be calculated according to an equation corresponding to the above equation 12. Further, the cornering power Cpf of the front wheels and the cornering power Cpr of the rear wheels when the behavior control target turning angle Δδct is calculated according to the following equation 18 or the equation corresponding to the above equation 12 are the slip ratio of each wheel at that time. The corrected value is used accordingly.

Figure 2005255035
Figure 2005255035

ステップ130に於いては左右前輪の目標舵角δtが暫定目標舵角δstと挙動制御目標転舵角Δδctとの和に設定され、ステップ140に於いては現在及び前回の左右前輪の目標舵角δtをそれぞれδtai、δtfiとし、舵角制御用のフィルタ定数をRs(0<Rs<1)として、下記の式19に従って左右前輪の目標舵角δtのローパスフィルタ処理が行われ、ステップ150に於いては左右前輪の舵角がローパスフィルタ処理後の目標舵角δtになるよう転舵角可変装置24が制御されることによって左右前輪の舵角が制御される。尚フィルタ定数Rsはローパスフィルタ処理後の目標舵角δtに車輌のヨー共振周波数以上の成分が含まれないようにする値に設定される。
δt=Rsδta+(1−Rs)δtf ……(19)
In step 130, the target rudder angle δt of the left and right front wheels is set to the sum of the provisional target rudder angle δst and the behavior control target turning angle Δδct. In step 140, the current and previous target rudder angles of the left and right front wheels are set. δt is δtai and δtfi, respectively, and the filter constant for steering angle control is Rs (0 <Rs <1), and the low-pass filter processing of the target steering angle δt of the left and right front wheels is performed according to the following equation 19; In this case, the steering angle varying device 24 is controlled so that the steering angle of the left and right front wheels becomes the target steering angle δt after the low-pass filter process, whereby the steering angle of the left and right front wheels is controlled. The filter constant Rs is set to a value that prevents the target rudder angle δt after the low-pass filter processing from including a component higher than the yaw resonance frequency of the vehicle.
δt = Rsδta + (1-Rs) δtf (19)

次に図3に示されたフローチャートを参照して図示の実施例に於けるアンチスキッド制御について説明する。尚図3に示されたフローチャートによるアンチスキッド制御は、例えば左前輪、右前輪、左後輪、右後輪の順に各車輪について実行される。   Next, the anti-skid control in the illustrated embodiment will be described with reference to the flowchart shown in FIG. Note that the anti-skid control according to the flowchart shown in FIG. 3 is executed for each wheel in the order of the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel, for example.

まずステップ210に於いては車輪速度Vwiを示す信号等の読み込みが行われ、ステップ220に於いては車輪速度Vwiに基づき当技術分野に於いて公知の要領にて推定車体速度Vbが演算され、ステップ230に於いては各車輪について推定車体速度Vb及び各車輪の車輪速度Vwiに基づきこれらの偏差を推定車体速度Vwbにて除算した値として制動スリップ率SBi(i=fl、fr、rl、rr)が演算される。   First, in step 210, a signal indicating the wheel speed Vwi is read, and in step 220, an estimated vehicle speed Vb is calculated based on the wheel speed Vwi in a manner known in the art, In step 230, the braking slip ratio SBi (i = fl, fr, rl, rr) is obtained by dividing these deviations by the estimated vehicle speed Vwb based on the estimated vehicle speed Vb and the wheel speed Vwi of each wheel. ) Is calculated.

ステップ240に於いては当該車輪についてアンチスキッド制御による制動力の制御が行われているか否かの判別が行われ、肯定判別が行われたときにはステップ260へ進み、否定判別が行われたときにはステップ250へ進む。   In step 240, it is determined whether or not the braking force is controlled by the anti-skid control for the wheel. If an affirmative determination is made, the process proceeds to step 260. If a negative determination is made, the process proceeds to step 260. Proceed to 250.

ステップ250に於いては例えば推定車体速度Vbが制御開始基準値Vbs(正の定数)以上であり且つ当該車輪の制動スリップ率SBiが基準値SLo(正の定数)以上であるか否かの判別により、当該車輪についてアンチスキッド制御の開始条件が成立しているか否かの判別が行われ、否定判別が行われたときにはステップ280へ進み、肯定判別が行われたときにはステップ270へ進む。   In step 250, for example, it is determined whether or not the estimated vehicle speed Vb is equal to or higher than the control start reference value Vbs (positive constant) and the braking slip ratio SBi of the wheel is equal to or higher than the reference value SLo (positive constant). Thus, it is determined whether or not the anti-skid control start condition is satisfied for the wheel. If a negative determination is made, the process proceeds to step 280. If an affirmative determination is made, the process proceeds to step 270.

ステップ260に於いては当該車輪についてアンチスキッド制御の終了条件が成立しているか否かの判別が行われ、肯定判別が行われたときにはそのまま図3に示された制御ルーチンを一旦終了し、否定判別が行われたときにはステップ270へ進む。   In step 260, it is determined whether or not the anti-skid control termination condition is satisfied for the wheel, and if an affirmative determination is made, the control routine shown in FIG. When the determination is made, the process proceeds to step 270.

ステップ270に於いては例えば車輪速度Vwiの時間微分値として演算される車輪加速度、前後加速度センサ54により検出された車輌の前後加速度Gxに基づき演算される車輌の減速度Gxb、車輪の制動スリップ率SBiに基づき当該車輪の制動スリップ率SBiを所定の範囲内にするための目標制動圧Pti(i=fl、fr、rl、rr)が当技術分野に於いて公知の要領にて演算される。   In step 270, for example, the wheel acceleration calculated as a time differential value of the wheel speed Vwi, the vehicle deceleration Gxb calculated based on the vehicle longitudinal acceleration Gx detected by the longitudinal acceleration sensor 54, and the wheel braking slip ratio. Based on SBi, a target braking pressure Pti (i = fl, fr, rl, rr) for making the braking slip ratio SBi of the wheel within a predetermined range is calculated in a manner known in the art.

ステップ280に於いてはフラグFcが1であるか否かの判別が行われ、否定判別が行われたときにはそのまま図3に示された制御ルーチンを一旦終了し、肯定判別が行われたときにはステップ290へ進む。   In step 280, it is determined whether or not the flag Fc is 1. When a negative determination is made, the control routine shown in FIG. Proceed to 290.

ステップ290に於いてはフラグFcが0より1へ変化した直後であるか否かの判別が行われ、否定判別が行われたときにはそのままステップ310へ進み、肯定判別が行われたときにはステップ300に於いて当該車輪の前回の目標制動圧Ptfiが当該車輪とは左右反対側の車輪の制動圧Popに設定される。   In step 290, it is determined whether or not the flag Fc has just changed from 0 to 1. If a negative determination is made, the process proceeds to step 310. If an affirmative determination is made, the process proceeds to step 300. Thus, the previous target braking pressure Ptfi of the wheel is set to the braking pressure Pop of the wheel on the opposite side to the wheel.

ステップ310に於いてはマスタシリンダ圧力に基づく当該車輪の目標制動圧Pti(=KiPm)をPtaiとし、アンチスキッド制御による制動力制御用のフィルタ定数をRb1(0<Rb1<1)として、下記の式20に従って当該車輪の目標制動圧Ptiのローパスフィルタ処理が行われることにより、当該車輪のローパスフィルタ処理後の目標制動圧Ptiが演算される。
Pti=Rb1Ptai+(1−Rb1)Ptfi ……(20)
In step 310, the target braking pressure Pti (= KiPm) of the wheel based on the master cylinder pressure is set as Ptai, and the filter constant for braking force control by anti-skid control is set as Rb1 (0 <Rb1 <1). By performing low-pass filter processing of the target braking pressure Pti of the wheel according to Equation 20, the target braking pressure Pti after the low-pass filter processing of the wheel is calculated.
Pti = Rb1Ptai + (1-Rb1) Ptfi (20)

尚フィルタ定数Rb1はアンチスキッド制御による制動力の制御が行われていない側、即ち路面の摩擦係数が高い側の車輪の制動力がローパスフィルタ処理後の目標制動力になるよう制御された場合に、左右輪の前後力差(制動力差)により車輌に作用する前後力差起因ヨーモーメントとは逆方向のヨーモーメントを転舵手段による操舵輪の転舵により応答遅れなく発生させることを可能にする値に設定される。   The filter constant Rb1 is set so that the braking force of the wheel on the side where the braking force is not controlled by the anti-skid control, that is, the wheel having the higher friction coefficient of the road surface, becomes the target braking force after the low-pass filter process. , It is possible to generate yaw moments in the opposite direction to the front / rear force difference acting on the vehicle due to the front / rear force difference (braking force difference) between the left and right wheels by turning the steered wheels by the steering means without delay in response. Is set to the value to be

次に図4に示されたフローチャートを参照して図示の実施例に於けるトラクション制御について説明する。尚図4に示されたフローチャートによるトラクション制御は駆動輪である左右後輪の各々について実行される。   Next, traction control in the illustrated embodiment will be described with reference to the flowchart shown in FIG. Note that the traction control according to the flowchart shown in FIG. 4 is executed for each of the left and right rear wheels as drive wheels.

まずステップ410に於いては車輪速度Vwiを示す信号等の読み込みが行われ、ステップ420に於いては車輪速度Vwiに基づき当技術分野に於いて公知の要領にて推定車体速度Vbが演算され、ステップ430に於いては各車輪について推定車体速度Vb及び各車輪の車輪速度Vwiに基づきこれらの偏差を推定車体速度Vbにて除算した値として加速スリップ率SAi(i=fl、fr、rl、rr)が演算される。   First, at step 410, a signal indicating the wheel speed Vwi is read, and at step 420, an estimated vehicle speed Vb is calculated based on the wheel speed Vwi in a manner known in the art, In step 430, the acceleration slip ratio SAi (i = fl, fr, rl, rr) is obtained by dividing these deviations by the estimated vehicle speed Vb based on the estimated vehicle speed Vb and the wheel speed Vwi of each wheel. ) Is calculated.

ステップ440に於いては当該車輪についてトラクション制御による制動力の制御が行われているか否かの判別が行われ、肯定判別が行われたときにはステップ460へ進み、否定判別が行われたときにはステップ450へ進む。   In step 440, it is determined whether or not the braking force is controlled by traction control for the wheel. If an affirmative determination is made, the process proceeds to step 460. If a negative determination is made, step 450 is performed. Proceed to

ステップ450に於いては例えば推定車体速度Vbが制御開始基準値Vbs(正の定数)以上であり且つ当該車輪の加速スリップ率SAiが基準値SAo(正の定数)以上であるか否かの判別により、当該車輪についてトラクション制御の開始条件が成立しているか否かの判別が行われ、否定判別が行われたときにはステップ480へ進み、肯定判別が行われたときにはステップ470へ進む。   In step 450, for example, it is determined whether or not the estimated vehicle speed Vb is equal to or higher than the control start reference value Vbs (positive constant) and the acceleration slip ratio SAi of the wheel is equal to or higher than the reference value SAo (positive constant). Thus, it is determined whether or not the traction control start condition is satisfied for the wheel. If a negative determination is made, the process proceeds to step 480. If an affirmative determination is made, the process proceeds to step 470.

ステップ460に於いては当該車輪についてトラクション制御の終了条件が成立しているか否かの判別が行われ、肯定判別が行われたときにはそのまま図4に示された制御ルーチンを一旦終了し、否定判別が行われたときにはステップ470へ進む。   In step 460, it is determined whether or not the traction control end condition is satisfied for the wheel. When an affirmative determination is made, the control routine shown in FIG. When the operation is performed, the process proceeds to step 470.

ステップ470に於いては例えば車輪速度Vwiの時間微分値として演算される車輪加速度、前後加速度センサ54により検出された車輌の前後加速度Gxに基づき演算される車輌の加速度Gxa、車輪の加速スリップ率SAiに基づき当該車輪の加速スリップ率SAiを所定の範囲内にするための目標制動圧Pti(i=fl、fr、rl、rr)が当技術分野に於いて公知の要領にて演算される。   In step 470, for example, the wheel acceleration calculated as a time differential value of the wheel speed Vwi, the vehicle acceleration Gxa calculated based on the vehicle longitudinal acceleration Gx detected by the longitudinal acceleration sensor 54, and the wheel acceleration slip ratio SAi. Based on the above, the target braking pressure Pti (i = fl, fr, rl, rr) for making the acceleration slip ratio SAi of the wheel within a predetermined range is calculated in a manner known in the art.

ステップ480に於いてはフラグFcが1であるか否かの判別が行われ、否定判別が行われたときにはそのまま図4に示された制御ルーチンを一旦終了し、肯定判別が行われたときにはステップ490へ進む。   In step 480, it is determined whether or not the flag Fc is 1. When a negative determination is made, the control routine shown in FIG. Proceed to 490.

ステップ490に於いてはフラグFcが0より1へ変化した直後であるか否かの判別が行われ、否定判別が行われたときにはそのままステップ510へ進み、肯定判別が行われたときにはステップ500に於いて当該車輪の前回の目標制動圧Ptfiが当該車輪とは左右反対側の車輪の制動圧Popに設定される。   In step 490, it is determined whether or not the flag Fc has just changed from 0 to 1. If a negative determination is made, the process proceeds to step 510, and if an affirmative determination is made, the process proceeds to step 500. Thus, the previous target braking pressure Ptfi of the wheel is set to the braking pressure Pop of the wheel on the opposite side to the wheel.

ステップ510に於いてはマスタシリンダ圧力に基づく当該車輪の目標制動圧Pti(=KiPm=0)をPtaiとし、トラクション制御による制動力制御用のフィルタ定数をRb2(0<Rb2<1)として、下記の式21に従って当該車輪の目標制動圧Ptiのローパスフィルタ処理が行われることにより、当該車輪の目標制動圧Ptiが演算される。
Pti=Rb2Ptai+(1−Rb2)Ptfi ……(21)
In step 510, the target braking pressure Pti (= KiPm = 0) of the wheel based on the master cylinder pressure is set as Ptai, and the filter constant for braking force control by traction control is set as Rb2 (0 <Rb2 <1). The target braking pressure Pti of the wheel is calculated by performing the low-pass filter processing of the target braking pressure Pti of the wheel according to the following equation (21).
Pti = Rb2Ptai + (1-Rb2) Ptfi (21)

尚フィルタ定数Rb2はトラクション制御による制動力の制御が行われていない側、即ち路面の摩擦係数が高い側の車輪の制動力がローパスフィルタ処理後の目標制動力になるよう制御された場合に、左右輪の前後力差(駆動力差)により車輌に作用する前後力差起因ヨーモーメントとは逆方向のヨーモーメントを転舵手段による操舵輪の転舵により応答遅れなく発生させることを可能にする値に設定される。   The filter constant Rb2 is controlled so that the braking force of the wheel on the side where the braking force is not controlled by the traction control, that is, the wheel having the higher friction coefficient on the road surface becomes the target braking force after the low-pass filter processing. It is possible to generate a yaw moment in the opposite direction to the yaw moment caused by the difference in the longitudinal force acting on the vehicle due to the difference in the longitudinal force between the left and right wheels (drive force difference) by turning the steered wheels by the steering means without response delay. Set to a value.

かくして図示の実施例によれば、ステップ20に於いて車速Vに基づき所定の操舵特性を達成するためのステアリングギヤ比Rgが演算されると共に、運転者の操舵操作量を示す操舵角θ及びステアリングギヤ比Rgに基づき暫定目標舵角δstが演算され、通常時にはステップ90及び150に於いて左右前輪の舵角が暫定目標舵角δstと同一の目標舵角δtになるよう転舵角可変装置24が制御され、これにより運転者の操舵操作に応じて所定の操舵特性にて左右の前輪10FL及び10FRが転舵される。   Thus, according to the illustrated embodiment, in step 20, the steering gear ratio Rg for achieving a predetermined steering characteristic is calculated based on the vehicle speed V, and the steering angle .theta. Based on the gear ratio Rg, the provisional target rudder angle δst is calculated. In normal times, in steps 90 and 150, the turning angle variable device 24 is set so that the rudder angle of the left and right front wheels becomes the same target rudder angle δt as the provisional target rudder angle δst. Thus, the left and right front wheels 10FL and 10FR are steered with predetermined steering characteristics in accordance with the driver's steering operation.

これに対し制動力の制御による挙動制御が実行されておらず且つアンチスキッド制御又はトラクション制御が実行されているときには、ステップ30に於いて否定判別が行われ、ステップ40又は50に於いて肯定判別が行われ、ステップ60に於いて各車輪の前後力Fxiが推定により演算され、左右輪の前後力差ΔFxの絶対値が基準値Fxo以上であるときにはステップ70に於いて肯定判別が行われ、ステップ100に於いてフラグFcが1にセットされ、ステップ110に於いて左右輪の前後力差により車輌に作用する前後力差起因ヨーモーメントMfが演算される。   On the other hand, when the behavior control by the braking force control is not executed and the anti-skid control or the traction control is executed, a negative determination is made in step 30 and an affirmative determination is made in step 40 or 50. In step 60, the longitudinal force Fxi of each wheel is calculated by estimation. When the absolute value of the longitudinal force difference ΔFx between the left and right wheels is greater than or equal to the reference value Fxo, an affirmative determination is made in step 70. In step 100, the flag Fc is set to 1, and in step 110, the front-rear force difference-induced yaw moment Mf acting on the vehicle is calculated based on the front-rear force difference between the left and right wheels.

そしてステップ120に於いて前後力差起因ヨーモーメントMfを相殺するためのカウンタヨーモーメントMcを車輌に付与するための左右前輪の挙動制御目標転舵角Δδctが演算され、ステップ130に於いて左右前輪の目標舵角δtが暫定目標舵角δstと挙動制御目標転舵角Δδctとの和に設定され、ステップ140に於いて左右前輪の目標舵角δtのローパスフィルタ処理が行われ、ステップ150に於いて左右前輪の舵角がローパスフィルタ処理後の目標舵角δtになるよう転舵角可変装置24が制御されることによって左右前輪の舵角が制御される。   In step 120, the left and right front wheel behavior control target turning angle Δδct for applying the counter yaw moment Mc for canceling the longitudinal force difference-induced yaw moment Mf to the vehicle is calculated. In step 130, the left and right front wheels are calculated. Is set to the sum of the provisional target steering angle δst and the behavior control target steering angle Δδct. In step 140, the target steering angle δt of the left and right front wheels is subjected to low-pass filter processing. Then, the steering angle varying device 24 is controlled so that the steering angle of the left and right front wheels becomes the target steering angle δt after the low-pass filter process, whereby the steering angle of the left and right front wheels is controlled.

従って図示の実施例によれば、制動力の制御による挙動制御が実行されておらず且つアンチスキッド制御又はトラクション制御が実行されているときには、前後力差起因ヨーモーメントMfを相殺するためのカウンタヨーモーメントを車輌に付与し、左右輪の制駆動力差に起因する車輌の偏向を効果的に防止して車輌の走行安定性を確実に向上させることができると共に、左右輪の一方についてのみアンチスキッド制御又はトラクション制御が実行され、左右輪の前後力差ΔFxの大きさが大きいときには、アンチスキッド制御又はトラクション制御が実行されている車輪とは左右反対側の車輪のマスタシリンダ圧力に基づく目標制動圧Ptiがローパスフィルタ処理されることにより、当該車輪の制動力の変化度合が低減されるので、前後力差起因ヨーモーメントMfを左右前輪の転舵によるカウンタヨーモーメントにより応答遅れなく効果的に且つ確実に相殺することができる。   Therefore, according to the illustrated embodiment, when the behavior control based on the braking force control is not executed and the anti-skid control or the traction control is executed, the counter yaw moment Mf for canceling the yaw moment Mf caused by the longitudinal force difference is canceled. Moment can be applied to the vehicle to effectively prevent the vehicle from deflecting due to the difference in braking / driving force between the left and right wheels, thereby reliably improving the running stability of the vehicle and anti-skid only on one of the left and right wheels. When the control or traction control is executed and the front / rear force difference ΔFx between the left and right wheels is large, the target braking pressure based on the master cylinder pressure of the wheel on the opposite side to the wheel on which the anti-skid control or traction control is executed Since Pti is subjected to low-pass filter processing, the degree of change in braking force of the wheel is reduced. Yaw moment Mf to be able to effectively and reliably canceled without a delay in response by the counter yaw moment due to the left and right front wheels steered.

図6は上記式12に対応する下記の式22、即ち前後力差起因ヨーモーメントMf(s)に対する左右前輪の舵角δf(s)の伝達関数の周波数応答特性の一例を示している。図6より、左右前輪の転舵により前後力差起因ヨーモーメントMf(s)を効果的に相殺するカウンタヨーモーメントを発生させるためには、左右前輪の転舵系の応答性が制動系の応答性と同等でなければならないことが解る。   FIG. 6 shows an example of the frequency response characteristic of the transfer function of the steering angle δf (s) of the left and right front wheels with respect to the following expression 22 corresponding to the above expression 12, that is, the front-rear force difference-induced yaw moment Mf (s). From FIG. 6, in order to generate a counter yaw moment that effectively cancels the front-rear force difference yaw moment Mf (s) by turning the left and right front wheels, the response of the steering system of the left and right front wheels is the response of the braking system. It turns out that it must be equivalent to sex.

Figure 2005255035
Figure 2005255035

図示の実施例によれば、フィルタ定数Rb1はアンチスキッド制御による制動力の制御が行われていない側、即ち路面の摩擦係数が高い側の車輪の制動力がローパスフィルタ処理後の目標制動力になるよう制御された場合に、左右輪の前後力差(制動力差)により車輌に作用する前後力差起因ヨーモーメントとは逆方向のヨーモーメントを転舵手段による操舵輪の転舵により応答遅れなく発生させることを可能にする値に設定され、フィルタ定数Rb2はトラクション制御による制動力の制御が行われていない側、即ち路面の摩擦係数が高い側の車輪の制動力がローパスフィルタ処理後の目標制動力になるよう制御された場合に、左右輪の前後力差(駆動力差)により車輌に作用する前後力差起因ヨーモーメントとは逆方向のヨーモーメントを転舵手段による操舵輪の転舵により応答遅れなく発生させることを可能にする値に設定されるので、左右前輪の転舵によるカウンタヨーモーメントにより前後力差起因ヨーモーメントMf(s)を応答遅れなく効果的に且つ確実に相殺することができる。   According to the illustrated embodiment, the filter constant Rb1 is set so that the braking force of the wheel on which the braking force is not controlled by the anti-skid control, that is, the wheel having the higher friction coefficient on the road surface is the target braking force after the low-pass filter processing. When controlled, the yaw moment in the direction opposite to the front / rear force difference acting on the vehicle due to the front / rear force difference (braking force difference) between the left and right wheels is delayed by the steering wheel turning by the steering means. The filter constant Rb2 is set to a value that allows the wheel to be generated without any loss, and the braking force of the wheel on the side where the braking force is not controlled by the traction control, that is, the side with the higher friction coefficient of the road surface, is subjected to the low-pass filter processing. When controlled to achieve the target braking force, the yaw moment in the direction opposite to the yaw moment caused by the difference in the longitudinal force acting on the vehicle due to the difference in the longitudinal force between the left and right wheels (drive force difference) is steered. Because it is set to a value that enables the steering wheel to be generated without response delay by means of steering by means, the counter yaw moment due to the steering of the left and right front wheels is effective for the yaw moment Mf (s) due to the longitudinal force difference without response delay. And surely cancel.

また図7は上記式9、即ち左右前輪の舵角δf(s)に対する車輌のヨーレートγ(s)の伝達関数のボード線図の一例を示している。図7より、ゲインは車速により変化するが、高車速域に於いては周波数が2Hz以上になるとゲインが小さくなり、制御が振動的になることが解る。左右前輪の転舵により車輌のヨー運動を制御する場合に、左右前輪の転舵の周波数を高くすると、制御効果が低下するだけでなく、転舵角可変装置24の大型化や高性能化に伴う高コスト化がさけられず、更には転舵角可変装置24による左右前輪の転舵により急激に変化する反力がステアリングホイール14に伝達され、運転者が異和感を覚える。   FIG. 7 shows an example of a Bode diagram of the transfer function of the vehicle yaw rate γ (s) with respect to the above formula 9, that is, the steering angle δf (s) of the left and right front wheels. FIG. 7 shows that the gain varies depending on the vehicle speed, but in the high vehicle speed range, when the frequency becomes 2 Hz or more, the gain decreases and the control becomes oscillating. When controlling the yaw motion of the vehicle by turning the left and right front wheels, increasing the steering frequency of the left and right front wheels not only reduces the control effect, but also increases the size and performance of the turning angle varying device 24. The accompanying increase in cost is not avoided, and furthermore, the reaction force that changes suddenly by turning the left and right front wheels by the turning angle varying device 24 is transmitted to the steering wheel 14 and the driver feels strange.

図示の実施例によれば、左右輪の一方についてのみアンチスキッド制御又はトラクション制御が実行され、左右輪の前後力差ΔFxの大きさが大きいときには、前後力差起因ヨーモーメントMfを相殺するためのカウンタヨーモーメントMcを車輌に付与するための左右前輪の挙動制御目標転舵角Δδctが演算され、ステップ130に於いて左右前輪の目標舵角δtが暫定目標舵角δstと挙動制御目標転舵角Δδctとの和に設定され、ステップ140に於いて左右前輪の目標舵角δtのローパスフィルタ処理が行われ、ステップ150に於いて左右前輪の舵角がローパスフィルタ処理後の目標舵角δtになるよう転舵角可変装置24が制御されるので、目標舵角δtに高周波成分が含まれることを確実に防止することができ、従って転舵角可変装置24の大型化や高性能化に伴う高コスト化を確実に回避することができ、急激に変化する反力がステアリングホイール14に伝達され運転者が異和感を覚えることを確実に回避することができる。   According to the illustrated embodiment, the anti-skid control or the traction control is executed for only one of the left and right wheels, and when the magnitude of the front / rear force difference ΔFx between the left and right wheels is large, The left and right front wheel behavior control target turning angle Δδct for applying the counter yaw moment Mc to the vehicle is calculated. In step 130, the target steering angle δt of the left and right front wheels is set to the provisional target steering angle δst and the behavior control target turning angle. In step 140, a low-pass filter process is performed on the target steering angle δt of the left and right front wheels, and in step 150, the steering angle of the left and right front wheels becomes the target steering angle δt after the low-pass filter process. Since the turning angle varying device 24 is controlled as described above, it is possible to reliably prevent the target rudder angle δt from containing a high-frequency component. It is possible to reliably avoid high cost associated with high performance, a reaction force which changes rapidly can the driver is transmitted to the steering wheel 14 is reliably avoided to remember a sense of incongruity.

また図示の実施例によれば、制動力の制御による挙動制御が実行されているときには、ステップ30に於いて肯定判別が行われ、ステップ40〜140は実行されないので、車輌の挙動を安定化させるべく各車輪の制動力が積極的に制御されている状況に於いて、挙動制御による左右輪の前後力差に基づいて不必要な前後力差起因ヨーモーメントMfが演算され、左右の前輪10FL及び10FRが不必要に転舵されること、及びこれに起因して車輌挙動の安定化が阻害されることを確実に防止することができる。   Further, according to the illustrated embodiment, when the behavior control by the control of the braking force is being executed, an affirmative determination is made in step 30 and steps 40 to 140 are not executed, so that the behavior of the vehicle is stabilized. Therefore, in a situation where the braking force of each wheel is actively controlled, an unnecessary front / rear force difference-induced yaw moment Mf is calculated based on the front / rear force difference between the left and right wheels by behavior control, and the left and right front wheels 10FL and It is possible to reliably prevent the 10FR from being turned unnecessarily and the resulting stabilization of the vehicle behavior from being hindered.

また図示の実施例によれば、ステップ40又は50に於いてそれぞれアンチスキッド制御又はトラクション制御が実行されていると判別され、ステップ70に於いて左右輪の前後力差ΔFxの絶対値が基準値Fxo以上であると判別された場合にステップ100〜140が実行されるので、ステップ40及び50の判別が行われない場合に比して、不必要なカウンタヨーモーメントが車輌に付与される虞れを低減することができる。   Further, according to the illustrated embodiment, it is determined that the anti-skid control or the traction control is executed in step 40 or 50, respectively. In step 70, the absolute value of the front-rear force difference ΔFx between the left and right wheels is the reference value. Since steps 100 to 140 are executed when it is determined that the vehicle is greater than or equal to Fxo, there is a possibility that unnecessary counter yaw moment may be applied to the vehicle as compared with the case where the determination of steps 40 and 50 is not performed. Can be reduced.

また図示の実施例によれば、ステップ20に於いて所定の操舵特性を達成するためのステアリングギヤ比Rgが演算されると共に、運転者の操舵操作量を示す操舵角θ及びステアリングギヤ比Rgに基づき暫定目標舵角δstが演算され、車輌に前後力差起因ヨーモーメントMfが作用しない通常時にはステップ90に於いて左右前輪の目標舵角δtが暫定目標舵角δstに設定されるので、通常時には所定の操舵特性を確実に達成することができる。   Further, according to the illustrated embodiment, the steering gear ratio Rg for achieving a predetermined steering characteristic is calculated in step 20, and the steering angle θ and the steering gear ratio Rg indicating the steering operation amount of the driver are calculated. Based on this, the provisional target rudder angle δst is calculated, and the normal rudder difference yaw moment Mf does not act on the vehicle. In normal times, the target rudder angle δt of the left and right front wheels is set to the provisional target rudder angle δst in step 90. A predetermined steering characteristic can be reliably achieved.

以上に於いては本発明を特定の実施例について詳細に説明したが、本発明は上述の実施例に限定されるものではなく、本発明の範囲内にて他の種々の実施例が可能であることは当業者にとって明らかであろう。   Although the present invention has been described in detail with reference to specific embodiments, the present invention is not limited to the above-described embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art.

例えば上述の実施例に於いては、転舵手段としての転舵角可変装置24はアッパステアリングシャフト22に対し相対的にロアステアリングシャフト26を回転させることにより運転者の操舵操作に依存せずに左右の前輪10FL及び10FRを自動的に転舵するようになっているが、転舵手段は運転者の操舵操作とは独立に操舵輪を操舵し得る限り、例えばタイロッド20L及び20Rを伸縮させる型式の転舵角可変装置やステアバイワイヤ式の転舵装置の如く当技術分野に於いて公知の任意の構成のものであってよく、転舵手段は補助操舵輪としての後輪を転舵するものであってもよい。   For example, in the above-described embodiment, the turning angle varying device 24 as the turning means does not depend on the driver's steering operation by rotating the lower steering shaft 26 relative to the upper steering shaft 22. The left and right front wheels 10FL and 10FR are automatically steered. However, as long as the steerable means can steer the steered wheels independently of the driver's steering operation, for example, a type that expands and contracts the tie rods 20L and 20R. The steering angle variable device and the steer-by-wire type steering device may be of any configuration known in the art, and the steering means steers the rear wheels as auxiliary steering wheels. It may be.

また上述の実施例に於いては、前後力差起因ヨーモーメントを相殺するために車輌に付与されるカウンタヨーモーメントMcは−Mf、即ち前後力差起因ヨーモーメントMfと大きさが同一であり且つ方向が逆のヨーモーメントであるが、カウンタヨーモーメントMcの大きさは前後力差起因ヨーモーメントMfの大きさより小さくてもよい。   In the above embodiment, the counter yaw moment Mc applied to the vehicle to cancel the longitudinal force difference-induced yaw moment is -Mf, that is, the magnitude of the longitudinal force difference-induced yaw moment Mf is the same. Although the yaw moment is the reverse direction, the magnitude of the counter yaw moment Mc may be smaller than the magnitude of the yaw moment Mf resulting from the longitudinal force difference.

また上述の実施例に於いては、アンチスキッド制御又はトラクション制御が実行されていても、制動力の制御による挙動制御が実行されているときには、ステップ40〜140が実行されないようになっているが、車輌の旋回加減速時に少なくとも左右輪間にて制駆動力の配分を制御する制駆動力配分制御が行われる車輌の場合には、制駆動力配分制御が実行されているときにもステップ40〜140が実行されないよう構成されることが好ましい。   Further, in the above-described embodiment, even if the anti-skid control or the traction control is executed, when the behavior control by the control of the braking force is executed, the steps 40 to 140 are not executed. In the case of a vehicle in which braking / driving force distribution control for controlling the distribution of braking / driving force is performed at least between the left and right wheels during turning acceleration / deceleration of the vehicle, step 40 is also performed when the braking / driving force distribution control is being executed. It is preferable that ~ 140 is not executed.

また上述の実施例に於いては、制動力の制御による挙動制御が実行されているときには、ステップ40〜140が実行されないようになっているが、制動力の制御による挙動制御又は制駆動力配分制御が実行されているときには、それらの制御により発生されるヨーモーメントに基づいてカウンタヨーモーメントMcが補正されるよう修正されてもよい。   Further, in the above-described embodiment, when the behavior control by the braking force control is executed, the steps 40 to 140 are not executed, but the behavior control by the braking force control or the braking / driving force distribution is performed. When the control is being executed, the counter yaw moment Mc may be corrected so as to be corrected based on the yaw moment generated by the control.

また上述の実施例に於いては、車速Vに基づき所定の操舵特性を達成するためのステアリングギヤ比Rgが演算され、運転者の操舵操作量を示す操舵角θ及びステアリングギヤ比Rgに基づき暫定目標舵角δstが演算され、通常時には左右前輪の舵角が暫定目標舵角δstになるよう制御されるようになっているが、所定の操舵特性を達成するためのステアリングギヤ比Rgの可変制御は省略されてもよい。   In the above-described embodiment, the steering gear ratio Rg for achieving a predetermined steering characteristic is calculated based on the vehicle speed V, and provisional based on the steering angle θ indicating the driver's steering operation amount and the steering gear ratio Rg. The target rudder angle δst is calculated, and normally, the rudder angle of the left and right front wheels is controlled to become the provisional target rudder angle δst, but the steering gear ratio Rg is controlled to achieve a predetermined steering characteristic. May be omitted.

また上述の実施例に於いては、挙動制御は各車輪の制動力が制御され車輌に所要のヨーモーメントが付与されることにより車輌の挙動を制御するようになっているが、挙動制御は各車輪の制動力及び駆動力が制御されることにより行われるものであってもよい。   In the above-described embodiment, the behavior control is such that the braking force of each wheel is controlled and the vehicle's behavior is controlled by applying a required yaw moment to the vehicle. It may be performed by controlling the braking force and driving force of the wheels.

更に上述の実施例に於いては、車輌はエンジンにより後輪が駆動される後輪駆動車であるが、本発明は前輪駆動車や四輪駆動車に適用されてもよく、また例えばホイールインモータ式の車輌の如く、駆動輪がそれぞれ対応する駆動装置により駆動される車輌に適用されてもよい。   Further, in the above-described embodiment, the vehicle is a rear wheel drive vehicle in which the rear wheels are driven by an engine. However, the present invention may be applied to a front wheel drive vehicle or a four wheel drive vehicle. The present invention may be applied to a vehicle in which driving wheels are driven by corresponding driving devices, such as a motor type vehicle.

特にホイールインモータ式の車輌の如く、各車輪の制駆動力を相互に独立に制御可能な車輌の場合には、運転者の加減速操作に応じた目標前後力になるよう各車輪の前後力が制御され、路面の摩擦係数が高い側の車輪の目標前後力が転舵手段による操舵輪の転舵の応答性に応じた前後力制御用のフィルタ定数にてローパスフィルタ処理されることにより、路面の摩擦係数が高い側の車輪の目標前後力の変化度合が制限されるよう構成させることが好ましい。   Especially in the case of a vehicle in which the braking / driving force of each wheel can be controlled independently of each other, such as a wheel-in-motor type vehicle, the longitudinal force of each wheel is adjusted so as to achieve the target longitudinal force according to the driver's acceleration / deceleration operation. Is controlled, and the target longitudinal force of the wheel with the higher friction coefficient on the road surface is low-pass filtered with the longitudinal force control filter constant corresponding to the steering wheel steering response by the steering means, It is preferable that the degree of change in the target longitudinal force of the wheel on the side with the higher friction coefficient of the road surface is limited.

自動転舵装置として機能する転舵角可変装置を備えたセミステアバイワイヤ式の後輪駆動車に適用された本発明による車輌の挙動制御装置の一つの実施例を示す概略構成図である。It is a schematic block diagram which shows one Example of the vehicle behavior control apparatus by this invention applied to the semi steer-by-wire type rear-wheel drive vehicle provided with the turning angle variable apparatus which functions as an automatic turning apparatus. 実施例に於ける左右前輪の舵角制御ルーチンを示すフローチャートである。It is a flowchart which shows the steering angle control routine of the left-right front wheel in an Example. 車速Vとステアリングギヤ比Rgとの間の関係を示すグラフである。It is a graph which shows the relationship between the vehicle speed V and steering gear ratio Rg. 図示の実施例に於けるアンチスキッド制御ルーチンを示すフローチャートである。4 is a flowchart showing an anti-skid control routine in the illustrated embodiment. 図示の実施例に於けるトラクション制御ルーチンを示すフローチャートである。It is a flowchart which shows the traction control routine in the example of illustration. 前後力差起因ヨーモーメントMf(s)に対する左右前輪の舵角δf(s)の伝達関数の周波数応答特性の一例を示すグラフである。It is a graph which shows an example of the frequency response characteristic of the transfer function of the steering angle δf (s) of the left and right front wheels with respect to the yaw moment Mf (s) due to the longitudinal force difference. 左右前輪の舵角δf(s)に対する車輌のヨーレートγ(s)の伝達関数のボード線図の一例を示すグラフである。6 is a graph showing an example of a Bode diagram of a transfer function of a vehicle yaw rate γ (s) with respect to a steering angle Δf (s) of left and right front wheels.

符号の説明Explanation of symbols

16 パワーステアリング装置
14 ステアリングホイール
24 転舵角可変装置
34 電子制御装置
36 制動装置
44 マスタシリンダ
50 操舵角センサ
52 回転角センサ
54 前後加速度センサ
56 横加速度センサ
58FL〜58RR 車輪速度センサ
60FL〜60RR 圧力センサ
62 圧力センサ
64 エンジン制御装置
DESCRIPTION OF SYMBOLS 16 Power steering apparatus 14 Steering wheel 24 Steering angle variable apparatus 34 Electronic controller 36 Braking apparatus 44 Master cylinder 50 Steering angle sensor 52 Rotation angle sensor 54 Longitudinal acceleration sensor 56 Lateral acceleration sensor 58FL-58RR Wheel speed sensor 60FL-60RR Pressure sensor 62 Pressure sensor 64 Engine control device

Claims (5)

運転者の操舵操作とは独立に操舵輪を転舵可能な転舵手段と、運転者の加減速操作に応じて各車輪の前後力を制御する前後力制御手段と、車輪のスリップが過大であるときには前記前後力制御手段によって当該車輪の前後力を制御することによりスリップ抑制制御を行うスリップ制御手段と、各車輪の前後力を推定する手段と、左右輪の前後力差により車輌に作用する前後力差起因ヨーモーメントを演算する手段と、前記前後力差起因ヨーモーメントとは逆方向のヨーモーメントを発生して車輌に作用するヨーモーメントを低減するための操舵輪の挙動制御目標舵角を演算する手段と、操舵輪の舵角が前記挙動制御目標舵角になるよう前記転舵手段により操舵輪を転舵する転舵制御手段とを有し、前記スリップ制御手段は車輌が左右の路面の摩擦係数が異なる走行路を走行中であるか否かを判定し、車輌が左右の路面の摩擦係数が異なる走行路を走行中であると判定したときには、路面の摩擦係数が高い側の車輪の前後力の変化度合を前記転舵手段による操舵輪の転舵の応答性に合せて制限することを特徴とする車輌の挙動制御装置。   The steering means that can steer the steered wheels independently of the driver's steering operation, the longitudinal force control means that controls the longitudinal force of each wheel according to the driver's acceleration / deceleration operation, and the wheel slip is excessive. In some cases, the front / rear force control means controls the front / rear force of the wheel to control slip suppression, the front / rear force of each wheel is estimated, and the left / right front / rear force difference acts on the vehicle. A means for calculating a yaw moment due to the longitudinal force difference, and a steered wheel behavior control target rudder angle for reducing the yaw moment acting on the vehicle by generating a yaw moment in a direction opposite to the yaw moment due to the longitudinal force difference. Means for calculating, and steering control means for steering the steered wheels by the steered means so that the steered angle of the steered wheels becomes the behavior control target steered angle. of When it is determined whether the vehicle is traveling on roads with different friction coefficients, and when the vehicle is determined to be traveling on roads with different friction coefficients on the left and right road surfaces, A vehicle behavior control device characterized in that the degree of change in longitudinal force is limited in accordance with the response of steering of the steered wheels by the steering means. 前記前後力制御手段は運転者の制動操作に応じた目標制動力になるよう各車輪の制動力を制御し、前記スリップ制御手段は前記路面の摩擦係数が高い側の車輪の目標制動力を前記転舵手段による操舵輪の転舵の応答性に応じた制動力制御用のフィルタ定数にてローパスフィルタ処理することにより前記路面の摩擦係数が高い側の車輪の目標制動力の変化度合を制限することを特徴とする請求項1に記載の車輌の挙動制御装置。   The front / rear force control means controls the braking force of each wheel so as to obtain a target braking force according to a driver's braking operation, and the slip control means determines the target braking force of a wheel having a higher friction coefficient on the road surface. Low-pass filter processing is performed with a filter constant for braking force control according to the steering response of the steered wheels by the steering means, thereby limiting the degree of change in the target braking force of the wheel having the higher friction coefficient on the road surface. The vehicle behavior control device according to claim 1. 前記スリップ制御手段は左右輪の一方についてのみ前記スリップ制御を行うときに車輌が左右の路面の摩擦係数が異なる走行路を走行中であると判定し、前記スリップ制御を行う車輪とは左右反対側の車輪を路面の摩擦係数が高い側の車輪と判定することを特徴とする請求項1又は2に記載の車輌の挙動制御装置。   When the slip control means performs the slip control for only one of the left and right wheels, it is determined that the vehicle is traveling on a road having different friction coefficients on the left and right road surfaces, and the left and right wheels are opposite to the wheel performing the slip control. The vehicle behavior control device according to claim 1, wherein the wheel is determined to be a wheel having a higher friction coefficient on the road surface. 前記スリップ制御手段は左右輪の前後力差の大きさが基準値以上であるときに車輌が左右の路面の摩擦係数が異なる走行路を走行中であると判定し、前記左右輪の前後力の方向及び大きさに基づき路面の摩擦係数が高い側の車輪を判定することを特徴とする請求項1又は2に記載の車輌の挙動制御装置。   The slip control means determines that the vehicle is traveling on a road having different friction coefficients between the left and right road surfaces when the magnitude of the difference between the left and right wheels is greater than or equal to a reference value. The vehicle behavior control apparatus according to claim 1 or 2, wherein a wheel having a higher road surface friction coefficient is determined based on a direction and a size. 前記転舵制御手段は前記挙動制御目標舵角を前記転舵手段による操舵輪の転舵の応答性に応じた舵角制御用のフィルタ定数にてローパスフィルタ処理し、操舵輪の舵角がローパスフィルタ処理後の挙動制御目標舵角になるよう前記転舵手段により操舵輪を転舵することを特徴とする請求項1乃至4に記載の車輌の挙動制御装置。
The steering control means low-pass-filters the behavior control target steering angle with a filter constant for steering angle control according to the response of steering of the steering wheel by the steering means, and the steering angle of the steering wheel is low-pass. The vehicle behavior control device according to any one of claims 1 to 4, wherein a steered wheel is steered by the steering means so as to have a behavior control target rudder angle after filtering.
JP2004070902A 2004-03-12 2004-03-12 Vehicle behavior control device Expired - Fee Related JP4296970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004070902A JP4296970B2 (en) 2004-03-12 2004-03-12 Vehicle behavior control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004070902A JP4296970B2 (en) 2004-03-12 2004-03-12 Vehicle behavior control device

Publications (2)

Publication Number Publication Date
JP2005255035A true JP2005255035A (en) 2005-09-22
JP4296970B2 JP4296970B2 (en) 2009-07-15

Family

ID=35081187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004070902A Expired - Fee Related JP4296970B2 (en) 2004-03-12 2004-03-12 Vehicle behavior control device

Country Status (1)

Country Link
JP (1) JP4296970B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237839A (en) * 2006-03-07 2007-09-20 Nissan Motor Co Ltd Steering controlling device, automobile, and steering controlling method
JP2007331704A (en) * 2006-06-19 2007-12-27 Jtekt Corp Vehicle steering device
JP2007331498A (en) * 2006-06-13 2007-12-27 Fuji Heavy Ind Ltd Steering control device of vehicle
JP2008126891A (en) * 2006-11-22 2008-06-05 Advics:Kk Vehicle steering control device
JP2009208492A (en) * 2008-02-29 2009-09-17 Nissan Motor Co Ltd Travelling posture control device and travelling posture control method of vehicle
WO2011096072A1 (en) * 2010-02-02 2011-08-11 トヨタ自動車株式会社 Vehicle action control device
KR20190069971A (en) * 2017-12-12 2019-06-20 주식회사 만도 Vehicle control apparatus and vehicle control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156176A (en) * 1987-12-15 1989-06-19 Nippon Denso Co Ltd Auxiliary steering device for car
JPH06153316A (en) * 1992-11-13 1994-05-31 Honda Motor Co Ltd Brake system for motor vehicle
JPH09109866A (en) * 1995-10-19 1997-04-28 Fuji Heavy Ind Ltd Vehicle motion control device
JP2002356155A (en) * 2001-05-30 2002-12-10 Toyota Motor Corp Vehicular anti-skid controller
JP2003165400A (en) * 2001-09-18 2003-06-10 Toyota Motor Corp Slip state related amount acquisition device and longitudinal force control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156176A (en) * 1987-12-15 1989-06-19 Nippon Denso Co Ltd Auxiliary steering device for car
JPH06153316A (en) * 1992-11-13 1994-05-31 Honda Motor Co Ltd Brake system for motor vehicle
JPH09109866A (en) * 1995-10-19 1997-04-28 Fuji Heavy Ind Ltd Vehicle motion control device
JP2002356155A (en) * 2001-05-30 2002-12-10 Toyota Motor Corp Vehicular anti-skid controller
JP2003165400A (en) * 2001-09-18 2003-06-10 Toyota Motor Corp Slip state related amount acquisition device and longitudinal force control device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237839A (en) * 2006-03-07 2007-09-20 Nissan Motor Co Ltd Steering controlling device, automobile, and steering controlling method
JP2007331498A (en) * 2006-06-13 2007-12-27 Fuji Heavy Ind Ltd Steering control device of vehicle
JP2007331704A (en) * 2006-06-19 2007-12-27 Jtekt Corp Vehicle steering device
JP4582057B2 (en) * 2006-06-19 2010-11-17 株式会社ジェイテクト Vehicle steering system
JP2008126891A (en) * 2006-11-22 2008-06-05 Advics:Kk Vehicle steering control device
JP2009208492A (en) * 2008-02-29 2009-09-17 Nissan Motor Co Ltd Travelling posture control device and travelling posture control method of vehicle
WO2011096072A1 (en) * 2010-02-02 2011-08-11 トヨタ自動車株式会社 Vehicle action control device
US8392068B2 (en) 2010-02-02 2013-03-05 Toyota Jidosha Kabushiki Kaisha Vehicle behavior control device
JP5273416B2 (en) * 2010-02-02 2013-08-28 トヨタ自動車株式会社 Vehicle behavior control device
KR20190069971A (en) * 2017-12-12 2019-06-20 주식회사 만도 Vehicle control apparatus and vehicle control method
KR102079730B1 (en) 2017-12-12 2020-02-20 주식회사 만도 Vehicle control apparatus and vehicle control method

Also Published As

Publication number Publication date
JP4296970B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
JP4029856B2 (en) Vehicle behavior control device
JP3972913B2 (en) Vehicle travel control device
KR100852370B1 (en) Vehicle stability control device
EP1595768B1 (en) Vehicle running control device
US6895318B1 (en) Oversteer steering assistance controller
US8886410B2 (en) Methods of controlling four-wheel steered vehicles
US7295906B2 (en) Vehicle stability control device
JP4137041B2 (en) Vehicle control device
JP4172361B2 (en) Control device for electric power steering device
JP4140611B2 (en) Vehicle behavior control device
JP4296970B2 (en) Vehicle behavior control device
EP1370456B1 (en) A vehicle steering system having oversteer assistance
JP4107162B2 (en) Vehicle travel control device
JP5035538B2 (en) Steering force control device
JP4635578B2 (en) Vehicle behavior control device
JP4137086B2 (en) Vehicle travel control device
JP2008081115A (en) Control device of vehicle
JP4685407B2 (en) Vehicle behavior control device
JP2009113661A (en) Vehicle behavior control device
JP5167086B2 (en) Electric power steering device
JP2006131023A (en) Vehicle cruise controller
JP4638703B2 (en) Steering control device for vehicle
JP5333801B2 (en) Steering force control device
JP5333802B2 (en) Steering force control device
JP2006159991A (en) Steering control device for vehicle

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

R151 Written notification of patent or utility model registration

Ref document number: 4296970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees