JP2005254393A - Continuous fiber fullerene thin line and manufacturing method thereof - Google Patents

Continuous fiber fullerene thin line and manufacturing method thereof Download PDF

Info

Publication number
JP2005254393A
JP2005254393A JP2004069597A JP2004069597A JP2005254393A JP 2005254393 A JP2005254393 A JP 2005254393A JP 2004069597 A JP2004069597 A JP 2004069597A JP 2004069597 A JP2004069597 A JP 2004069597A JP 2005254393 A JP2005254393 A JP 2005254393A
Authority
JP
Japan
Prior art keywords
fullerene
solvent
liquid
solution
thin line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004069597A
Other languages
Japanese (ja)
Other versions
JP4035618B2 (en
Inventor
Kunichi Miyazawa
薫一 宮澤
Masahisa Fujino
真久 藤野
Tadatomo Suga
唯知 須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004069597A priority Critical patent/JP4035618B2/en
Publication of JP2005254393A publication Critical patent/JP2005254393A/en
Application granted granted Critical
Publication of JP4035618B2 publication Critical patent/JP4035618B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a producing technology of continuous fiber fullerene thin wire having various uses, such as catalyst/filter/gas adsorption material, lightweight nano wiring material, resin composite materia, ion exchange resin, fullerene shell tube producing material, and heating thin line. <P>SOLUTION: In order to obtain a carbon thin line composed of the fullerene, the manufacturing method of the fullerene thin line includes (1) a step for mixing a solution including a first solvent dissolving the fullerene and a second solvent having smaller dissolving performance of the fullerene than the first solvent; (2) a step for forming a liquid-liquid interface between the solution and the second solvent; (3) a step for depositing the carbon thin line on the liquid-liquid interface. At least one kind selected from a group of alkali metal, alkaline earth metal element, hydroxide of alkali metals or alkaline earth metal element, alkoxide, another organic/inorganic compound is added to the second solvent. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、フラーレン系炭素材料、特に長繊維フラーレン細線及びその製造方法に関す
る。
The present invention relates to a fullerene-based carbon material, in particular, a long fiber fullerene fine wire and a method for producing the same.

フラーレン細線(フラーレンナノウィスカ、フラーレンナノファイバー)は、内外の研
究所、民間企業、大学で最近注目を集めており、開発競争が激化しつつある。
Fullerene fine wires (fullerene nanowhiskers, fullerene nanofibers) have recently attracted attention in domestic and overseas research institutes, private companies, and universities, and development competition is intensifying.


本発明者らは、先に、液−液界面析出法を用いてフラーレン細線を製造する方法を開発
した(特許文献1、非特許文献1、非特許文献2)。

The present inventors have previously developed a method for producing a fullerene fine wire using a liquid-liquid interface precipitation method (Patent Document 1, Non-Patent Document 1, Non-Patent Document 2).

この方法は、 フラーレンを構成要素とする炭素細線を得るにあたり、(1)フラーレ
ンを溶解している第1溶媒を含む溶液と、前記第1溶媒よりもフラーレンの溶解能が小さ
な第2溶媒とを合わせる工程、(2)前記溶液と前記第2溶媒との間に液−液界面を形成
する工程、及び(3)前記液−液界面にて炭素細線を析出させる工程を含む炭素細線の製
造方法である。また、本発明者らは、フラーレン細線の成長中に可視光を照射することに
よって、著しく成長が促進されることを明らかにして来た(非特許文献3)。
In this method, when obtaining a carbon fine wire having fullerene as a constituent element, (1) a solution containing a first solvent in which fullerene is dissolved, and a second solvent having a lower fullerene solubility than the first solvent. A method of producing a carbon fine wire, including a step of combining, (2) a step of forming a liquid-liquid interface between the solution and the second solvent, and (3) a step of depositing a carbon fine wire at the liquid-liquid interface. It is. Moreover, the present inventors have clarified that growth is remarkably promoted by irradiating visible light during the growth of fullerene fine wires (Non-patent Document 3).

特開平2003−1600号公報Japanese Patent Laid-Open No. 2003-1600 K.Miyazawa, Y.Kuwasaki, A.Obayashi and M.Kuwabara, “C60 nanowhiskers formed by the liquid-liquid interfacial precipitation method”, J.Mater.Res.,17[1](2002)83-88K.Miyazawa, Y.Kuwasaki, A.Obayashi and M.Kuwabara, “C60 nanowhiskers formed by the liquid-liquid interfacial precipitation method”, J. Mater. Res., 17 [1] (2002) 83-88 宮澤薫一、“フラーレンナノウィスカ”、工業材料,52[1](2004)24-25Junichi Miyazawa, “Fullerene Nanowhiskers”, Industrial Materials, 52 [1] (2004) 24-25 M. Tachibana, K.Kobayashi, T. Uchida, K. Kojima, M. Tanimura and K.Miyazawa, “Photo-assisted growth and polymerization of C60`nano'whiskers”, Chemical Physics Letters 374 (2003)279-285M. Tachibana, K. Kobayashi, T. Uchida, K. Kojima, M. Tanimura and K. Miyazawa, “Photo-assisted growth and polymerization of C60`nano'whiskers”, Chemical Physics Letters 374 (2003) 279-285

長繊維のフラーレン細線は、触媒・フィルター・ガス吸着材料、軽量ナノ配線材料、樹
脂複合材料、イオン交換樹脂、フラーレンシェルチューブ用作製材料、発熱細線など幅広
い用途がある。本発明は、これらの用途の実用化を加速するために、長繊維フラーレン細
線の作製技術を提供することを課題とする。
Long fiber fullerene thin wires have a wide range of applications such as catalysts, filters, gas adsorbing materials, lightweight nanowiring materials, resin composite materials, ion exchange resins, fullerene shell tube fabrication materials, and exothermic thin wires. An object of the present invention is to provide a technique for producing a long-fiber fullerene fine wire in order to accelerate the practical use of these applications.

本発明者らは、本発明者らが開発した前記の液−液界面析出法を用いてフラーレン細線
を製造する際に、光によって著しくフラーレン細線の成長が促進されることを明らかにし
たが、前記第1溶媒よりもフラーレンの溶解能が小さな第2溶媒に微量なアルカリ金属や
アルカリ土類金属元素の添加も、成長に多大の効果をもたらすことを発見した。
The present inventors have clarified that the growth of fullerene fine lines is significantly promoted by light when producing fullerene fine lines using the liquid-liquid interface precipitation method developed by the present inventors. It has been discovered that the addition of a trace amount of an alkali metal or alkaline earth metal element to the second solvent having a lower ability to dissolve fullerene than the first solvent has a great effect on growth.

すなわち、本発明は、前記第2溶媒に、アルカリ金属元素、アルカリ土類金属元素、ア
ルカリ金属元素又はアルカリ土類金属元素の水酸化物、アルコキシド、その他の有機・無
機化合物からなる群から選ばれる少なくとも1種を溶解したイソプロピルアルコールなど
のアルコール溶液と、C60やC70などのフラーレン分子を溶解したトルエンやメタキシレン
などの有機溶液を用いて、液−液界面析出法により行なうフラーレン細線の製造方法であ
る。
That is, the present invention is selected from the group consisting of alkali metal elements, alkaline earth metal elements, hydroxides of alkali metal elements or alkaline earth metal elements, alkoxides, and other organic / inorganic compounds as the second solvent. Production of fullerene fine wire by liquid-liquid interface deposition method using an alcohol solution such as isopropyl alcohol in which at least one kind is dissolved and an organic solution such as toluene and metaxylene in which fullerene molecules such as C 60 and C 70 are dissolved. Is the method.

アルカリ金属やアルカリ土類金属元素の単体又はそれらを含有する化合物を添加したイ
ソプロピルアルコールなどのアルコール溶液と、C60やC70のトルエンもしくはメタキシレ
ンなどの有機飽和溶液との系における液−液界面析出法によるフラーレン細線の作製方法
は、従来に無い方法である。
An alcohol solution such as isopropyl alcohol was added alone or compounds containing those alkali metal or alkaline earth metal element, the liquid in the system of the organic saturated solution such as toluene or xylene in the C 60 and C 70 - liquid interface A method for producing fullerene fine wires by a precipitation method is an unprecedented method.

前記第2溶媒に、適度な濃度のアルカリ金属やアルカリ土類金属元素を添加すると、著
しくフラーレン細線の成長が促進される理由は以下のように考えられる。C60は高い電子
親和力を持っているので、電子を放出しやすい元素からの電荷移動により、C60の荷電状
態を変化させることができる。C60分子の周りの電子密度の変化は、C60分子間の化学結合
の状態に影響するので、細線の成長機構に影響が生じる。
The reason why the growth of fullerene fine wires is remarkably promoted when an appropriate concentration of alkali metal or alkaline earth metal element is added to the second solvent is considered as follows. C 60 is because it has a high electron affinity, the charge transfer from easily element emits electrons, it is possible to change the charge state of C 60. Change in the electron density around C 60 molecules, will affect the state of the chemical bond between C 60 molecules, it affects the growth mechanism of thin lines occurs.

このようにして、 前記第2溶媒へのアルカリ金属やアルカリ土類金属の添加は、C60
細線の成長に影響を及ぼすものであり、本発明は自然現象の原理にかなうものである。同
様のメカニズムが、C70以上の高次フラーレンの細線の成長にも当てはまる。本発明は、
アルカリ及びアルカリ土類金属元素による電子供与がフラーレン細線の成長機構に強く関
わっていることを示唆するものである。
Thus, the addition of alkali metal or alkaline earth metal to the second solvent is C 60.
This influences the growth of thin wires, and the present invention is based on the principle of natural phenomena. A similar mechanism applies to the growth of higher-order fullerene fine wires of C 70 and higher. The present invention
This suggests that electron donation by alkali and alkaline earth metal elements is strongly related to the growth mechanism of fullerene fine wires.

本発明の方法によって、C60やC70分子等からなる、ミリメートルからセンチメートルオ
ーダーの長さのフラーレン細線を得ることが可能となる。この方法により、従来技術に比
べて、数倍から一桁以上長いフラーレン細線を作製することができる。
By the method of the present invention consists of C 60 and C 70 molecules, etc., it is possible to obtain the length of fullerene thin wires centimeter order of millimeters. By this method, it is possible to produce a fullerene fine line that is several times to one digit longer than that of the prior art.

本発明者らが開発した前記の液−液界面析出法は下記のとおりである。
フラーレンを構成要素とする炭素細線を得るにあたり、(1)フラーレンを溶解している
第1溶媒を含む溶液と、前記第1溶媒よりもフラーレンの溶解能が小さな第2溶媒とを合
わせる工程、(2)前記溶液と前記第2溶媒との間に液−液界面を形成する工程、及び(
3)前記液−液界面にて炭素細線を析出させる工程を含む。
The liquid-liquid interface deposition method developed by the present inventors is as follows.
(1) A step of combining a solution containing a first solvent in which fullerene is dissolved with a second solvent having a lower ability to dissolve fullerene than the first solvent in obtaining a carbon fine wire having fullerene as a constituent element. 2) forming a liquid-liquid interface between the solution and the second solvent;
3) including a step of precipitating carbon fine wires at the liquid-liquid interface.

本発明は、前記第2溶媒に、アルカリ金属元素、アルカリ土類金属元素、水酸化カリウ
ム、水酸化ナトリウムなどのアルカリ金属元素の水酸化物、カリウムメトキシドなどのア
ルカリ金属アルコキシド、水酸化カルシウムなどのアルカリ土類金属水酸化物、アルカリ
土類金属アルコキシド、その他のアルカリ金属元素又はアルカリ土類金属元素の有機・無
機化合物からなる群から選ばれる少なくとも1種を添加することを特徴とする。
In the second solvent, alkali metal element, alkaline earth metal element, hydroxide of alkali metal element such as potassium hydroxide and sodium hydroxide, alkali metal alkoxide such as potassium methoxide, calcium hydroxide, etc. It is characterized by adding at least one selected from the group consisting of alkaline earth metal hydroxides, alkaline earth metal alkoxides, other alkali metal elements or organic / inorganic compounds of alkaline earth metal elements.

好ましい添加濃度は、10−4〜10−7mol/L、好ましい液温は、5℃〜25℃の範
囲、好ましい雰囲気は、大気中もしくは不活性ガス中である。長繊維化の最も好ましい条
件は、液温が15℃〜25℃、アルカリおよびアルカリ土類金属元素の濃度が、1x10
−5mol/L〜1x10−6mol/Lである。前記第2溶媒に、アルカリ金属およびアルカリ土
類金属元素を高濃度に添加すると、C60細線が成長できない。
A preferable addition concentration is 10 −4 to 10 −7 mol / L, a preferable liquid temperature is in the range of 5 ° C. to 25 ° C., and a preferable atmosphere is air or an inert gas. The most preferable conditions for the long fiber are that the liquid temperature is 15 ° C. to 25 ° C., and the concentration of alkali and alkaline earth metal elements is 1 × 10
It is −5 mol / L to 1 × 10 −6 mol / L. When an alkali metal and an alkaline earth metal element are added to the second solvent at a high concentration, C60 fine wires cannot be grown.

カリウムをKOHの形でイソプロピルアルコールに溶解させて添加した場合、約5x10-3mol/
L濃度以上になると、粒子状のC60析出物が生じて、長繊維のC60細線を得ることができな
い。図4のTEM写真に示すように、9.9x10-3mol/L濃度のIPAを用いて、C60のメタキシレン
飽和溶液との液−液法により得た析出物は、球状粒子と不定形な棒状の析出物であった。
また、10−8mol/L以下の濃度では、濃度が小さすぎて長繊維化をもたらす効果が観察
されない。
When potassium is dissolved in isopropyl alcohol in the form of KOH and added, about 5x10 -3 mol /
When the concentration exceeds L, particulate C60 precipitates are formed, and C60 fine wires of long fibers cannot be obtained. As shown in the TEM photograph of FIG. 4, precipitates obtained by the liquid-liquid method with a saturated solution of C60 metaxylene using IPA with a concentration of 9.9 × 10 −3 mol / L are spherical particles and irregular rod-like shapes. This was a precipitate.
In addition, at a concentration of 10 −8 mol / L or less, the effect of causing long fiber formation is not observed because the concentration is too small.

前記第1溶媒がフラーレンの良溶媒であり、前記第2溶媒がフラーレンの貧溶媒である
。前記第1溶媒が非極性溶媒であり、前記第2溶媒が極性溶媒である。前記第1溶媒が炭
化水素系溶媒である。前記炭化水素系溶媒が、トルエン、キシレン、ベンゼン、ヘキサン
、ペンタン、二硫化炭素及びこれらの誘導体からなる群より選ばれる少なくとも1種の物
質からなる。前記第2溶媒がアルコール系溶媒である。前記アルコール系溶媒が、ペンタ
ノール、ブチルアルコール、イソプロピルアルコール、n−プロピルアルコール、メチル
アルコール、エチルアルコール、及び多価アルコールからなる群より選ばれる少なくとも
1種のアルコールからなる。前記第1工程で、金属触媒又は金属酸化物触媒を添加すると
よい。
The first solvent is a good solvent for fullerene, and the second solvent is a poor solvent for fullerene. The first solvent is a nonpolar solvent and the second solvent is a polar solvent. The first solvent is a hydrocarbon solvent. The hydrocarbon solvent is composed of at least one substance selected from the group consisting of toluene, xylene, benzene, hexane, pentane, carbon disulfide, and derivatives thereof. The second solvent is an alcohol solvent. The alcohol solvent comprises at least one alcohol selected from the group consisting of pentanol, butyl alcohol, isopropyl alcohol, n-propyl alcohol, methyl alcohol, ethyl alcohol, and polyhydric alcohol. In the first step, a metal catalyst or a metal oxide catalyst may be added.

Figure 2005254393
Figure 2005254393

<水酸化カリウム(KOH)をカリウム源としたときの例>
表1の(a)〜(e)に示す溶液組成でフラーレン細線を成長させた。C60の飽和トルエン(第
1溶媒)溶液(約2.2gL-1)を、適当な大きさのガラスバイアルビン(望ましくは、容量5
mL〜50mL)に注ぎ込み、室温付近(5℃〜25℃)で、ほぼ等量のKOHを溶解したイソプ
ロピルアルコール(第2溶媒)を、ピペットを用いて、静かにビン壁を伝わらせるか、滴
下するかして注ぎ込み、C60のメタキシレン溶液とイソプロピルアルコールの液−液界面
を形成させた。このガラスビンを室温付近(15℃〜25℃)で、2週間程度以上静置し
た。この間にC60細線(C60ナノウィスカー)が成長した。以上の方法は、C70細線(C70
ノウィスカー)の作製についても同様に実施した。
<Example when potassium hydroxide (KOH) is used as the potassium source>
Fullerene fine wires were grown with the solution compositions shown in (a) to (e) of Table 1. A saturated solution of C 60 in toluene (first solvent) (approximately 2.2 gL −1 ) is added to a suitably sized glass vial (preferably with a volume of 5
pour into isopropyl alcohol (second solvent) with approximately the same amount of KOH at room temperature (5 ° C to 25 ° C) using a pipette, or gently transfer it to the bottle wall. As a result, the mixture was poured to form a liquid-liquid interface between a C 60 metaxylene solution and isopropyl alcohol. The glass bottle was allowed to stand at about room temperature (15 ° C. to 25 ° C.) for about 2 weeks or more. During this time, C 60 wires (C 60 nanowhiskers) grew. Above process was carried out similarly for manufacturing the C 70 thin line (C 70 nanowhiskers).

10-3 molL-1濃度のKOHを溶質としたIPAの系では、C60細線が成長しなかったが、10-5
10-6 molL-1濃度のKOH−IPAの系では、著しく長く成長したC60細線が得られた。CH3OKを
微量添加した(f)と(g)においても、長繊維のC60細線が育成された。微量のKOHを添加した
(d)と(e)では、長繊維のC70細線が育成された。
In the IPA system with 10 -3 molL -1 concentration of KOH as the solute, C 60 fine wire did not grow, but 10 -5 ~
In the system of KOH-IPA with a concentration of 10 −6 molL −1 , C 60 wires that grew remarkably long were obtained. In (f) and (g) to which a small amount of CH 3 OK was added, long-fiber C 60 fine wires were grown. Added a small amount of KOH
(d) and in (e), C 70 thin line of the long fibers are grown.

<CH3OKをカリウム源としたときの例>
表1の(f)〜(G)に示す溶液組成でフラーレン細線を成長させた。CH3OKを溶質とし、IPA-
3wt%CH3OHを溶媒とする溶液を調製した。(1)と同様にして、微量のCH3OKを添加し
たIPA-3wt%CH3OH溶液とC60飽和トルエンもしくはメタキシレン溶液の系による液−液
界面析出法によって、C60細線を育成した。長繊維のC60細線が育成された。
<Example when CH 3 OK is used as potassium source>
Fullerene fine wires were grown with the solution compositions shown in (f) to (G) of Table 1. CH 3 OK as solute and IPA-
A solution using 3 wt% CH 3 OH as a solvent was prepared. In the same manner as in (1), C 60 fine wires were grown by liquid-liquid interface deposition using an IPA-3 wt% CH 3 OH solution to which a small amount of CH 3 OK was added and a C 60 saturated toluene or meta-xylene solution. . Long-fiber C 60 thin wires were grown.

<Ca(OH)2をカルシウム源としたときの例>
Ca(OH)2のIPA溶液を調製し、これとC60のメタキシレン飽和溶液の系による液−液法に
よって、C60細線を成長させた。長繊維のC60細線が育成された。
<Example using Ca (OH) 2 as the calcium source>
An IPA solution of Ca (OH) 2 was prepared, and C 60 fine wires were grown by a liquid-liquid method using this and a saturated solution of C 60 metaxylene. Long-fiber C 60 thin wires were grown.

<NaOHをナトリウム源としたときの例>
NaOHのIPA溶液を調製し、これとC60のメタキシレン飽和溶液の系による液−液法によって
、C60細線を成長させた。長繊維のC60細線が育成された。
<Example when NaOH is used as the sodium source>
An IPA solution of NaOH was prepared and C 60 wires were grown by a liquid-liquid method using this and a saturated solution of C 60 metaxylene. Long-fiber C 60 thin wires were grown.

<長繊維C60細線の観察例>
図1(a)に、実施例1の(b)のKOHを10-5molL-1溶解したIPAとC60のメタキシレン飽和
溶液とで作製したC60細線、 図1(b)に、実施例3のCa(OH)2を10-5 molL-1溶解した
IPAとC60のメタキシレン飽和溶液とで作製したC60細線、図1(c)に、実施例4のNaOH
を10-5molL-1溶解したIPAとC60のメタキシレン飽和溶液とで作製したC60細線の走査電子
顕微鏡(SEM)像を示す。いずれも、ミリメートルオーダーのC60細線として成長している
ことが分かる。
<Observation example of long fiber C 60 fine wire>
Figure 1 (a), C 60 thin line KOH were prepared in a xylene saturated solution of 10 -5 molL -1 dissolved IPA and C 60 of Example 1 (b), in FIG. 1 (b), carried out 10 -5 molL -1 of Ca (OH) 2 of Example 3 was dissolved
The C 60 fine wire prepared with IPA and a saturated solution of C 60 metaxylene, FIG. 1 (c) shows the NaOH of Example 4.
Shows a scanning electron microscope (SEM) image of a C 60 fine wire prepared from IPA in which 10 -5 molL -1 is dissolved and a saturated solution of C 60 metaxylene. It can be seen that both have grown as C 60 fine wires on the order of millimeters.

図2に、図1の各試料の拡大図を示す。良好に成長したC60細線が示されている。図3
に、実施例1の(d)のC60のメタキシレン飽和溶液と、KOHを10-5molL-1添加したIPAを
用いて、液−液法により作製したC60細線のX線回折図形を示す。回折図形から明らかなよ
うに、結晶性の良いC60細線が得られている。
FIG. 2 shows an enlarged view of each sample in FIG. It has been shown to favorably grown C 60 thin line. FIG.
An X-ray diffraction pattern of a C 60 thin wire prepared by a liquid-liquid method using a saturated solution of C 60 metaxylene in Example 1 (d) and IPA added with 10 −5 mol L −1 of KOH. Show. As is clear from the diffraction pattern, C 60 fine wires with good crystallinity are obtained.

本発明の方法によって得られる長繊維フラーレン細線は取り扱いやすいことが著しい長
所となり、燃料電池触媒担持材料、光増感太陽電池、フィルター、イオン交換カラム充填
剤、抗菌材料、複合繊維材料、など、エネルギー、環境、繊維、半導体、医薬品産業にお
いて利用されることにより、大きな経済効果を生じると期待される。
The long fiber fullerene fine wire obtained by the method of the present invention is a remarkable advantage that it is easy to handle, such as fuel cell catalyst support material, photosensitized solar cell, filter, ion exchange column filler, antibacterial material, composite fiber material, etc. When used in the environment, textile, semiconductor and pharmaceutical industries, it is expected to produce significant economic effects.

図1(a)は、実施例1の(b)、図1(b)は、実施例3、図1(c)は、実施例4により作製したC60細線の図面代用走査電子顕微鏡(SEM)像である。1 (a) is, in Example 1 (b), FIG. 1 (b), Example 3, FIG. 1 (c), Example 4 C 60 thin line drawing-substituting SEM manufactured by (SEM ) 図1に示す試料の拡大図面代用SEM像である。It is a SEM image substituted for an enlarged drawing of the sample shown in FIG. 実施例1の(d)により作製したC60細線のX線回折図形である。2 is an X-ray diffraction pattern of a C 60 thin line produced according to Example 1 (d). KOH濃度9.9×10-3のIPAを用いて、C60のメタキシレン飽和溶液との液−液法により得た析出物の図面代用TEM写真像である。FIG. 3 is a drawing-substitute TEM photographic image of a precipitate obtained by a liquid-liquid method with a saturated solution of C 60 metaxylene using IPA having a KOH concentration of 9.9 × 10 −3 .

Claims (4)

フラーレンを構成要素とする炭素細線を得るにあたり、(1)フラーレンを溶解している
第1溶媒を含む溶液と、前記第1溶媒よりもフラーレンの溶解能が小さな第2溶媒とを合
わせる工程、(2)前記溶液と前記第2溶媒との間に液−液界面を形成する工程、及び(
3)前記液−液界面にて炭素細線を析出させる工程を含むフラーレン細線の製造方法にお
いて、
前記第2溶媒に、アルカリ金属元素、アルカリ土類金属元素、アルカリ金属元素又はアル
カリ土類金属元素の水酸化物、アルコキシド、その他の有機・無機化合物からなる群から
選ばれる少なくとも1種を添加することを特徴とする長繊維フラーレン細線の製造方法。
(1) A step of combining a solution containing a first solvent in which fullerene is dissolved with a second solvent having a lower ability to dissolve fullerene than the first solvent in obtaining a carbon fine wire having fullerene as a constituent element. 2) forming a liquid-liquid interface between the solution and the second solvent;
3) In the method for producing fullerene fine wires, including the step of depositing carbon fine wires at the liquid-liquid interface,
At least one selected from the group consisting of alkali metal elements, alkaline earth metal elements, hydroxides of alkali metal elements or alkaline earth metal elements, alkoxides, and other organic / inorganic compounds is added to the second solvent. A method for producing a long-fiber fullerene fine wire.
添加する濃度は10−4〜10−7mol/Lであることを特徴とする請求項1記載の長繊維
フラーレン細線の製造方法。
The method for producing a long-fiber fullerene fine wire according to claim 1, wherein the concentration to be added is 10 −4 to 10 −7 mol / L.
フラーレンを溶解している第1溶媒はトルエンやメタキシレン溶液などの有機溶液であり
、第2溶媒はイソプロピルアルコールなどのアルコール溶液であることを特徴とする請求
項1記載の長繊維フラーレン細線の製造方法。
2. The long fiber fullerene fine wire according to claim 1, wherein the first solvent dissolving the fullerene is an organic solution such as toluene or metaxylene solution, and the second solvent is an alcohol solution such as isopropyl alcohol. Method.
請求項1〜3のいずれかの方法によって作製した長繊維フラーレン細線。 A long fiber fullerene fine wire produced by the method according to claim 1.
JP2004069597A 2004-03-11 2004-03-11 Fullerene fine wire manufacturing method Expired - Lifetime JP4035618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004069597A JP4035618B2 (en) 2004-03-11 2004-03-11 Fullerene fine wire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004069597A JP4035618B2 (en) 2004-03-11 2004-03-11 Fullerene fine wire manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007228737A Division JP5045915B2 (en) 2007-09-04 2007-09-04 Fullerene fine wires and their aggregates

Publications (2)

Publication Number Publication Date
JP2005254393A true JP2005254393A (en) 2005-09-22
JP4035618B2 JP4035618B2 (en) 2008-01-23

Family

ID=35080623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004069597A Expired - Lifetime JP4035618B2 (en) 2004-03-11 2004-03-11 Fullerene fine wire manufacturing method

Country Status (1)

Country Link
JP (1) JP4035618B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069043A (en) * 2006-09-14 2008-03-27 National Institute For Materials Science Method of manufacturing fullerene thin wire
JP2008091575A (en) * 2006-09-29 2008-04-17 Dainippon Printing Co Ltd Organic thin film solar cell element and coating liquid for forming photoelectric conversion layer
US20110008571A1 (en) * 2007-08-29 2011-01-13 Seung Ii Cha Substrate having fullerene thin wires and method for manufacture thereof
JP2016104464A (en) * 2014-12-01 2016-06-09 国立研究開発法人物質・材料研究機構 Adsorptive removal filter and adsorptive removal method
CN112374489A (en) * 2020-10-30 2021-02-19 华中科技大学 Fullerene nanofiber film, porous carbon fiber film and preparation method of fullerene nanofiber film
CN115849344A (en) * 2022-11-23 2023-03-28 盐城工学院 Preparation of two self-separated fullerene C with different sizes simultaneously 60 Method for producing nano-rod

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209485A (en) 2011-03-30 2012-10-25 Sony Corp Method for manufacturing organic element, method for bonding organic molecular crystal layer, method for manufacturing fine linear conductor, organic element, and fine linear conductor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069043A (en) * 2006-09-14 2008-03-27 National Institute For Materials Science Method of manufacturing fullerene thin wire
JP2008091575A (en) * 2006-09-29 2008-04-17 Dainippon Printing Co Ltd Organic thin film solar cell element and coating liquid for forming photoelectric conversion layer
US20110008571A1 (en) * 2007-08-29 2011-01-13 Seung Ii Cha Substrate having fullerene thin wires and method for manufacture thereof
US8685160B2 (en) * 2007-08-29 2014-04-01 National Institute For Materials Science Substrate having fullerene thin wires and method for manufacture thereof
JP2016104464A (en) * 2014-12-01 2016-06-09 国立研究開発法人物質・材料研究機構 Adsorptive removal filter and adsorptive removal method
CN112374489A (en) * 2020-10-30 2021-02-19 华中科技大学 Fullerene nanofiber film, porous carbon fiber film and preparation method of fullerene nanofiber film
CN115849344A (en) * 2022-11-23 2023-03-28 盐城工学院 Preparation of two self-separated fullerene C with different sizes simultaneously 60 Method for producing nano-rod
CN115849344B (en) * 2022-11-23 2024-03-29 盐城工学院 Simultaneous preparation of two differently sized and self-separating fullerenes C 60 Method for preparing nano rod

Also Published As

Publication number Publication date
JP4035618B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
Su et al. Large-scale synthesis and mechanism of β-SiC nanoparticles from rice husks by low-temperature magnesiothermic reduction
Zhang et al. Si-containing precursors for Si-based anode materials of Li-ion batteries: A review
Li et al. One-step solution-based catalytic route to fabricate novel α-MnO 2 hierarchical structures on a large scale
Shrestha et al. Fullerene nanoarchitectonics: from zero to higher dimensions
Carim et al. Bicrystalline silicon nanowires
Zhang et al. A simple solution route to ZnS nanotubes and hollow nanospheres and their optical properties
Yang et al. Recent advances in CsPbX3 perovskite solar cells: focus on crystallization characteristics and controlling strategies
US8119093B2 (en) C70fullerene tube and process for producing the same
Li et al. Room‐Temperature Surface‐Erosion Route to ZnO Nanorod Arrays and Urchin‐like Assemblies
KR20140146695A (en) Manufacturing methods of carbon quantum dots using emulsion
Wolff et al. Advanced hybrid GaN/ZnO nanoarchitectured microtubes for fluorescent micromotors driven by UV light
JP2006117475A (en) Method for manufacturing silicon nanowire
JP4035618B2 (en) Fullerene fine wire manufacturing method
WO2005090232A1 (en) Fullerene hollow structure needle crystal and c60-c70 mixed fine wire, and method for preparation thereof
Han et al. M13 bacteriophage-templated gold nanowires as stretchable electrodes in perovskite solar cells
JP5045915B2 (en) Fullerene fine wires and their aggregates
KR20060013510A (en) Nano-fiber or nano-tube comprising v group transition metal dichalcogenide crystals, and method for preparation thereof
Shi et al. Multicomponent and hybrid hydrogels comprised of carbon nanotube–nickel/nickel oxide core/shell nanoparticle heterostructures incorporated in polyvinyl alcohol
US7771689B2 (en) Bulk synthesis of metal and metal based dielectric nanowires
Zhou et al. Fabrication of large-scale ultra-fine Cd-doped ZnO nanowires
JP2006511422A (en) Nanostructure
EP1681264A1 (en) Fullerene shell tube and method for producing same
Wang et al. Nanothermometers for transmission electron microscopy–fabrication and characterization
JP4576607B2 (en) Single crystal zinc sulfide nanotube and method for producing the same
Phuruangrat et al. Influence of PVP on the Morphologies of Bi2S3 Nanostructures Synthesized by Solvothermal Method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

R150 Certificate of patent or registration of utility model

Ref document number: 4035618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term