JP2005254042A - Photocatalyst having high reaction efficiency - Google Patents

Photocatalyst having high reaction efficiency Download PDF

Info

Publication number
JP2005254042A
JP2005254042A JP2004065299A JP2004065299A JP2005254042A JP 2005254042 A JP2005254042 A JP 2005254042A JP 2004065299 A JP2004065299 A JP 2004065299A JP 2004065299 A JP2004065299 A JP 2004065299A JP 2005254042 A JP2005254042 A JP 2005254042A
Authority
JP
Japan
Prior art keywords
photocatalyst
partial region
particle
particle surface
particulate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004065299A
Other languages
Japanese (ja)
Inventor
Yoshinori Nakato
義禮 中戸
Ryuhei Nakamura
龍平 中村
Yuuki Ura
勇樹 浦
Tetsushi Imanishi
哲士 今西
Naomichi Ohashi
直倫 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004065299A priority Critical patent/JP2005254042A/en
Priority to PCT/JP2005/003371 priority patent/WO2005084804A1/en
Publication of JP2005254042A publication Critical patent/JP2005254042A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalyst particle capable of obtaining a high reaction efficiency. <P>SOLUTION: An electronic band energy at only a part area of a surface is varied by crystal surface-selectively etching a surface of the particulate photocatalyst or modifying only the part area of the surface by an organic group. Thereby, since spatial inclination or bending of the energy band is generated at the inside of the photocatalyst and an electron produced by irradiation with a light and a positive hole are immediately moved in a reverse direction, both early re-bonding is prevented. Thereby, the optical reaction efficiency of the catalyst is enhanced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高い反応効率が得られる光触媒に関する。   The present invention relates to a photocatalyst capable of obtaining high reaction efficiency.

二酸化チタン(TiO2)に代表される光触媒は、光照射により、水の分解反応を引き起こしたり、有機物質等を分解したりする作用等があることが知られている。このような作用を利用して、光エネルギーから化学エネルギーへの変換や、有機物質の分解除去等に関して多くの研究が行われている。また、その実用化への試みとして、例えば、光触媒粒子を溶剤に分散させた懸濁液を建築物の壁面や窓等に塗布して、建築物壁面等に付着した汚れを分解するために用いるといったことが行われている(特許文献1参照)。また、殺菌剤や癌治療剤、新規な反応経路を提供する触媒など、医療分野や有機合成分野への応用も期待されている。 It is known that a photocatalyst represented by titanium dioxide (TiO 2 ) has an action of causing a water decomposition reaction or decomposing an organic substance or the like by light irradiation. Much research has been conducted on conversion of light energy to chemical energy, decomposition and removal of organic substances, and the like by utilizing such an action. In addition, as an attempt to put it into practical use, for example, a suspension in which photocatalyst particles are dispersed in a solvent is applied to a wall surface or window of a building, and used to decompose dirt adhering to the wall surface of the building. (See Patent Document 1). In addition, it is expected to be applied to medical and organic synthesis fields such as bactericides, cancer therapeutic agents, and catalysts that provide new reaction pathways.

しかし、現在のところ、光触媒は反応効率が非常に低く、上記の効果を十分に得るには、多量の光触媒ないしは高強度の光照射を必要とする。
この反応効率の低さをカバーするため、触媒を製造する際の焼成温度等を調節して、触媒粒子の比表面積を増大させることが行われている(特許文献2参照)。
また、近年、窒素や炭素などを金属酸化物中にドープすることで、光触媒の作用範囲が従来の紫外光領域のみから、可視光領域にまで拡大することが見出されている(特許文献3参照)。
However, at present, the photocatalyst has a very low reaction efficiency, and a large amount of photocatalyst or high-intensity light irradiation is required to sufficiently obtain the above-described effects.
In order to cover this low reaction efficiency, the specific surface area of the catalyst particles is increased by adjusting the calcination temperature or the like when the catalyst is produced (see Patent Document 2).
Further, in recent years, it has been found that the working range of a photocatalyst is expanded from only the conventional ultraviolet light region to the visible light region by doping nitrogen or carbon into a metal oxide (Patent Document 3). reference).

特開平09-300515号公報JP 09-300515 A 特開平09-000942号公報JP 09-000942 A 特開2000-140636号公報Japanese Unexamined Patent Publication No. 2000-140636

焼成温度等を調節することにより比表面積を大幅に増大させることは困難であり、特許文献2の方法では反応効率を大きく向上させることは難しい。
光触媒の作用範囲を可視光領域にまで拡大させる特許文献3の方法によれば、従来に比べて広い波長領域の光を用いることができるため、反応効率を向上させることは可能である。しかし、この方法は、光触媒の光量子収率自体を上げるものではなく、また、拡張される作用範囲も低エネルギー領域であるため、反応効率を大きく向上させることは難しい。
It is difficult to greatly increase the specific surface area by adjusting the firing temperature and the like, and it is difficult to greatly improve the reaction efficiency by the method of Patent Document 2.
According to the method of Patent Document 3 in which the range of action of the photocatalyst is expanded to the visible light region, light in a wider wavelength region can be used as compared with the conventional method, so that the reaction efficiency can be improved. However, this method does not increase the photon yield of the photocatalyst itself, and the extended range of action is in the low energy region, so it is difficult to greatly improve the reaction efficiency.

本発明が解決しようとする課題は、従来に比べて高い反応効率が得られる光触媒を提供することにある。   The problem to be solved by the present invention is to provide a photocatalyst capable of obtaining a higher reaction efficiency than conventional ones.

上記課題を解決するために成された本発明に係る粒子状光触媒は、粒子表面の一部領域のみにおいて電子帯エネルギーが変化したものであることを特徴とする。   The particulate photocatalyst according to the present invention made to solve the above problems is characterized in that the electron band energy is changed only in a partial region of the particle surface.

粒子表面の一部領域のみにおいて電子帯エネルギーを変化させる具体的な方法としては、例えば、一部領域のみにおいて特定の結晶面を現出させるとか、一部の領域のみの表面を有機基で修飾する等を挙げることができる。   Specific methods for changing the electron band energy in only a partial region of the particle surface include, for example, revealing a specific crystal plane only in a partial region, or modifying the surface of only a partial region with an organic group And so on.

光触媒粒子の反応効率が低いのは、光照射により生成した電子と正孔(光電荷キャリアー)がすぐに再結合することによる。このため、生成した電子と正孔が再結合するのを防止する又は遅らせることができれば、光触媒の反応効率を大きく向上させることが可能になる。   The reaction efficiency of the photocatalyst particles is low because electrons and holes (photocharge carriers) generated by light irradiation are recombined immediately. For this reason, if it is possible to prevent or delay the recombination of the generated electrons and holes, the reaction efficiency of the photocatalyst can be greatly improved.

本発明者らは、ルチル型TiO2光触媒の(100)面の電子帯エネルギーが、(110)面の電子帯エネルギーと比較して約0.09eV高い値を示すことを見出した。このことは、結晶面によって光触媒の電子帯エネルギーが異なることを示しており、光触媒粒子表面の一部領域を変化させることにより、光触媒粒子内のエネルギーバンドの空間分布を非対称にして(エネルギーバンドに傾き及び/又は曲がりを生じさせ)、電子と正孔が再結合するのを防止することができるのではないかと考えた。 The present inventors have found that the electron band energy of the (100) plane of the rutile TiO 2 photocatalyst is about 0.09 eV higher than the electron band energy of the (110) plane. This indicates that the electronic band energy of the photocatalyst varies depending on the crystal plane. By changing a part of the surface of the photocatalyst particle, the spatial distribution of the energy band in the photocatalyst particle is made asymmetric (into the energy band). It was thought that it would be possible to prevent recombination of electrons and holes by causing inclination and / or bending).

光触媒粒子のエネルギーバンドを空間的に非対称にした場合、すなわち、エネルギーバンドに傾き及び/又は曲がりを導入した場合、伝導帯に励起された電子及び価電子帯に残された正孔が空間的に分離され、両者が直ちに再結合することを防止することが可能となる。   When the energy band of the photocatalyst particles is spatially asymmetric, that is, when a tilt and / or bend is introduced into the energy band, electrons excited in the conduction band and holes left in the valence band are spatially generated. It is possible to prevent the two from being immediately recombined.

図1は均一な表面を有する光触媒粒子に光が照射され、電子及び正孔が生成した際の様子を表した図であり、図2は、粒子表面の一部領域のみにおいて電子帯エネルギーを変化させ、エネルギーバンドを非対称にした光触媒粒子に電子及び正孔が生成した際の様子を表した図である。   FIG. 1 is a view showing a state in which light is irradiated to photocatalyst particles having a uniform surface to generate electrons and holes, and FIG. 2 shows a change in electron band energy only in a partial region of the particle surface. It is the figure which expressed the mode at the time of making an electron and a hole generate | occur | produce in the photocatalyst particle which made the energy band asymmetrical.

光触媒には絶縁性のものと半導性のものがあるが、まず、光触媒が絶縁性のものである場合について考える。
図1に示すように均一な表面を有する光触媒粒子では、価電子帯(VB)エネルギー及び伝導帯(CB)エネルギーは全表面及び粒子内で均一であり、図3に示すように、エネルギーバンドは粒子内全域においてフラットになる(これを「対称である」と呼ぶ)。光照射により生成した電子と正孔は空間的に近傍に存在するため、短時間のうちに再結合する。
Photocatalysts can be insulative and semiconductive. First, consider the case where the photocatalyst is insulative.
In photocatalyst particles having a uniform surface as shown in FIG. 1, the valence band (VB) energy and conduction band (CB) energy are uniform across the entire surface and particles, and as shown in FIG. It becomes flat throughout the interior of the particle (this is called “symmetric”). Since electrons and holes generated by light irradiation exist spatially in the vicinity, they recombine within a short time.

一方、図2に示すように粒子表面の一部領域のみを変化させると、その表面においてエネルギーバンドの位置が変化し(高く/低くなり)、その他の表面又は内部との間に差が生じる。すなわち、粒子内においてエネルギーバンドに空間的な傾き又は曲がりが生ずる(この状態を、「非対称である」と呼ぶ)。このような光触媒粒子に光を照射すると、図4に示すように、生成した電子と正孔はバンドの傾きによって直ちに反対方向に移動し、空間的に引き離される。このため、電子と正孔の再結合が防止される。   On the other hand, when only a partial region of the particle surface is changed as shown in FIG. 2, the position of the energy band changes (becomes higher / lower) on the surface, and a difference occurs between the other surface or the inside. That is, a spatial tilt or bend occurs in the energy band in the particle (this state is called “asymmetric”). When such photocatalyst particles are irradiated with light, as shown in FIG. 4, the generated electrons and holes immediately move in opposite directions due to the inclination of the band, and are spatially separated. For this reason, recombination of electrons and holes is prevented.

半導性光触媒の場合も、絶縁性光触媒の場合とほぼ同様に考えることができる。例えば粒子がn型半導体である場合、粒子サイズが空間電荷層の幅と同程度かそれ以上のとき、暗所での平衡状態において、粒子表面にショットキー障壁が形成され、粒子内部においてエネルギーバンドは、図5の実線で示すように、下に凸の曲がりを生ずる。この場合、光を照射された粒子において生成された電子と正孔は、粒子内のエネルギーバンドの曲がりにより、電子は粒子内部に入り、正孔は粒子表面に移動して、電子と正孔の再結合が防止される。しかし、粒子内部に入った電子は反応することができないため、粒子内部で伝導帯に蓄積してゆき、その結果として短時間の光照射によってバンドの曲がりが小さくなる。このような電子の蓄積は、バンドの曲がりが減少した状態で、電子が表面種と反応できるようになるまで進行する。このため、光照射を始めるとすぐに、図5の破線で示すように、エネルギーバンドはほぼフラットになる。従って、半導性光触媒の場合においても、粒子が均一な表面を有している場合、電子と正孔の分離効果はほとんど働かない。   The case of the semiconductive photocatalyst can be considered in substantially the same manner as the case of the insulating photocatalyst. For example, when the particle is an n-type semiconductor, a Schottky barrier is formed on the particle surface in an equilibrium state in the dark when the particle size is equal to or larger than the width of the space charge layer, and an energy band is formed inside the particle. As shown by a solid line in FIG. In this case, the electrons and holes generated in the light-irradiated particle enter the inside of the particle due to the bending of the energy band in the particle, and the hole moves to the particle surface. Recombination is prevented. However, since electrons entering the inside of the particle cannot react, they accumulate in the conduction band inside the particle, and as a result, the bending of the band is reduced by short-time light irradiation. Such accumulation of electrons proceeds until the electrons can react with the surface species with the band bending reduced. For this reason, as soon as light irradiation is started, the energy band becomes almost flat as shown by the broken line in FIG. Therefore, even in the case of a semiconducting photocatalyst, if the particles have a uniform surface, the effect of separating electrons and holes hardly acts.

一方、粒子表面の一部領域のみを変化させた半導性光触媒では、絶縁性光触媒の場合と同様、図6に破線で示すように、光定常状態においてエネルギーバンドの傾きが存在する。これにより、光照射により生成した電子と正孔は直ちに反対方向に移動して空間的に引き離され、電子と正孔の再結合が防止される。
粒子サイズが約100nm以下の小さな半導性光触媒の場合は、図5の実線で示すようなエネルギーバンドの曲がりがほとんど存在しないため、図3及び図4の場合と同様に考えることができる。
On the other hand, in the semiconducting photocatalyst in which only a partial region on the particle surface is changed, as in the case of the insulating photocatalyst, as shown by the broken line in FIG. As a result, electrons and holes generated by light irradiation immediately move in the opposite directions and are spatially separated, thereby preventing recombination of electrons and holes.
In the case of a small semiconducting photocatalyst having a particle size of about 100 nm or less, since there is almost no bending of the energy band as shown by the solid line in FIG. 5, it can be considered in the same manner as in FIGS.

一般的な光触媒粒子は、数nm〜数10μmの粒径を有するが、このような小さな粒子の一部表面領域のみを変化させる方法としては、光エッチングや有機基による表面修飾、化学エッチングや、粉砕・へき開等がある。光エッチングでは、特定のエッチング方法を用いることにより、特定の方向に特定の結晶面を選択的に表面に露出させることができるようになる。このような方向的・結晶面選択的エッチングは粒子の全表面のうちの一部においてしか生じないため、粒子全体としての非対称化を実現することができる。   Common photocatalyst particles have a particle size of several nanometers to several tens of μm, but as a method of changing only a part of the surface area of such small particles, photoetching, surface modification with organic groups, chemical etching, There are crushing and cleavage. In photoetching, a specific crystal plane can be selectively exposed on the surface in a specific direction by using a specific etching method. Such directional / crystal face selective etching occurs only on a part of the entire surface of the particle, so that asymmetry of the entire particle can be realized.

方向的・結晶面選択的エッチングを行うことにより、該領域の電子帯エネルギーを変化させることができることを、ルチル型TiO2単結晶(100)及び(110)面のフラットバンド電位Ufbを測定することにより確認した。 The flat band potential U fb of the rutile TiO 2 single crystal (100) and the (110) plane is measured that the electron band energy of the region can be changed by performing the directional / crystal plane selective etching. Was confirmed.

まず、0.05wt%のNbをドープした、(100)及び(110)カット面を有するルチル型TiO2単結晶を20%のHF水溶液に10分間浸漬して引き上げた後、大気雰囲気中で600℃で1時間焼成を行った。このような処理を施したTiO2単結晶粒子の(100)及び(110)カット面の原子間力顕微鏡(AFM)像を図7及び図8に示す。(100)面、(110)面のいずれにおいても、ステップ−テラス構造が明瞭に観察される。AFM像からこれらの面のステップ高さを測定したところ、それぞれ0.27nmと0.35nmであり、結晶格子モデルから見積もったステップ高さ((100)面は0.25nm、(110)面は0.36nm)とほぼ一致した。また、これらの面の低エネルギー電子線回折(LEED)像を観察したところ、明確な(1×1)スポットを示した(図9及び図10)。これらのことから、TiO2結晶の(100)面と(110)面は、原子レベルで平坦化されていることが確認された。 First, a rutile type TiO 2 single crystal doped with 0.05 wt% Nb and having (100) and (110) cut faces was dipped in a 20% HF aqueous solution for 10 minutes and then pulled up, and then at 600 ° C. in an air atmosphere. Baked for 1 hour. 7 and 8 show atomic force microscope (AFM) images of the (100) and (110) cut surfaces of the TiO 2 single crystal particles subjected to such treatment. The step-terrace structure is clearly observed on both the (100) plane and the (110) plane. The step heights of these surfaces were measured from the AFM image, and were 0.27 nm and 0.35 nm, respectively, and the step heights estimated from the crystal lattice model (0.25 for the (100) plane and 0.36 nm for the (110) plane) Almost matched. Moreover, when low energy electron diffraction (LEED) images of these surfaces were observed, clear (1 × 1) spots were shown (FIGS. 9 and 10). From these results, it was confirmed that the (100) plane and (110) plane of the TiO 2 crystal were flattened at the atomic level.

このように平坦化した(100)面及び(110)面のフラットバンド電位Ufbを、次のようにして測定した。上記のTiO2結晶を電極として(参照電極:銀/塩化銀電極、飽和塩化カリウム水溶液)、電極電位(U)を変更しながら微分電気容量(C)を測定し、これをMott-Schottkyプロット(U vs. 1/C2)して求めた。なお、測定は、周波数を10Hz又は100Hz又は1000Hzとして行った。 The flat band potential U fb of the (100) plane and the (110) plane thus flattened was measured as follows. Using the above TiO 2 crystal as an electrode (reference electrode: silver / silver chloride electrode, saturated potassium chloride aqueous solution), the differential capacitance (C) was measured while changing the electrode potential (U), and this was measured using a Mott-Schottky plot ( U vs. 1 / C 2 ). The measurement was performed at a frequency of 10 Hz, 100 Hz, or 1000 Hz.

プロットの結果を図11及び図12に示す。これらの図に示されるように、プロットは良好な直線性を示し、10, 100, 1000Hzの全ての周波数において傾きはほぼ一致した。Mott-Schottkyプロットのx切片からUfbを求めると、(100)面では-0.34±0.01V、(110)面では-0.25±0.01Vであった。
また、光電流測定を行ったところ、(100)面における光電流の立ち上がり電位は、(110)面の場合と比較して約0.1V負であり、Ufbの差と一致した(図13)。更に、発光強度を測定したところ、840nmに極大を持つ発光は(100)表面でのみ観測され、(110)表面では観測されなかった(図14)。
The plot results are shown in FIGS. As shown in these figures, the plots showed good linearity, and the slopes were almost the same at all frequencies of 10, 100, and 1000 Hz. When U fb was determined from the x-intercept of the Mott-Schottky plot, it was −0.34 ± 0.01 V for the (100) plane and −0.25 ± 0.01 V for the (110) plane.
Further, when the photocurrent was measured, the rising potential of the photocurrent in the (100) plane was about 0.1 V negative compared with the case of the (110) plane, which coincided with the difference in U fb (FIG. 13). . Furthermore, when the luminescence intensity was measured, luminescence having a maximum at 840 nm was observed only on the (100) surface and not on the (110) surface (FIG. 14).

光エッチングを行う際は、光触媒粒子に金属微粒子を担持させ、酸性水溶液中で所定の波長の光を照射する。光照射により光触媒内で生成した電子は、金属微粒子上での酸性水溶液からの水素生成反応を、正孔は光触媒のエッチング反応を引き起こす。その結果、一方向に所定の結晶面が選択的に露出したナノサイズの細孔や溝が光触媒に形成される。すなわち、一部領域においてのみ、表面の電子帯エネルギーが変化する。
水素発生金属触媒としては、PtやPd、Ni、Ir、Ru、Rh、Au微粒子等を用いることができる。酸性水溶液としては、硫酸水溶液等を用いることができる。照射する光の波長は、光触媒の作用波長に応じて選択する。
When performing photoetching, metal fine particles are supported on photocatalyst particles, and light having a predetermined wavelength is irradiated in an acidic aqueous solution. Electrons generated in the photocatalyst by light irradiation cause a hydrogen generation reaction from the acidic aqueous solution on the metal fine particles, and holes cause an etching reaction of the photocatalyst. As a result, nano-sized pores and grooves in which a predetermined crystal plane is selectively exposed in one direction are formed in the photocatalyst. That is, the surface electron band energy changes only in a partial region.
As the hydrogen generating metal catalyst, Pt, Pd, Ni, Ir, Ru, Rh, Au fine particles and the like can be used. A sulfuric acid aqueous solution or the like can be used as the acidic aqueous solution. The wavelength of the light to irradiate is selected according to the working wavelength of a photocatalyst.

触媒粒子表面の一部領域のみでの有機基による修飾は、例えば、光触媒を有機溶剤中に投入した後、これに少量の水系溶剤を加えて触媒粒子を凝集させ、二次粒子(触媒粒子凝集体)とした上で、有機修飾剤を加える方法により行うことができる。この方法では、二次粒子の表面に現れた部分のみが有機修飾剤と反応するため、一次粒子(粒子単体)の一部領域のみが有機基により修飾される。また、反応時間を調節して、触媒と有機基の反応量を制御する方法によっても、触媒粒子表面の一部領域のみに有機基による修飾を行うことができる。
有機修飾剤としては、アルコールや、有機酸(カルボン酸、安息香酸、エステル類など)、シランカップリング剤、界面活性剤、錯体等を用いることができる。例えば、代表的な光触媒である二酸化チタンの場合は、表面にTi-OH基を有しているため、これをアルコールと反応させることによりTi-OR(Rはアルキル基等)として、表面をOR基で修飾することができる。
Modification with an organic group in only a part of the surface of the catalyst particle is performed, for example, by adding a photocatalyst into an organic solvent and then adding a small amount of an aqueous solvent to aggregate the catalyst particles to form secondary particles (catalyst particle coagulation). It is possible to carry out the method by adding an organic modifier. In this method, since only the portion appearing on the surface of the secondary particle reacts with the organic modifier, only a partial region of the primary particle (particle simple substance) is modified with the organic group. Further, modification with an organic group can be performed only on a partial region of the surface of the catalyst particle by adjusting the reaction time to control the reaction amount between the catalyst and the organic group.
As the organic modifier, alcohols, organic acids (such as carboxylic acid, benzoic acid, and esters), silane coupling agents, surfactants, complexes, and the like can be used. For example, in the case of titanium dioxide, which is a typical photocatalyst, since it has a Ti-OH group on the surface, it reacts with alcohol to form Ti-OR (R is an alkyl group, etc.), and the surface is ORed. Can be modified with groups.

なお、触媒に化学エッチングを施したり、触媒をボールミル等で粉砕・へき開する方法では、光エッチングのように特定の面を選択的に露出させることはできないものの、処理時間の調節等により、触媒を非対称化することは可能である。   In addition, the method of chemically etching the catalyst or crushing and cleaving the catalyst with a ball mill or the like cannot selectively expose a specific surface like photoetching, but the catalyst can be adjusted by adjusting the processing time. It is possible to make it asymmetric.

表面の一部領域のみを変化させることは、いずれの光触媒に対しても行うことができる。例えば、TiO2、NドープTiO2、CドープTiO2、SドープTiO2、Cr;SbドープTiO2、LaTiO2N、WO3、RbNbWO6、CsNbWO6、SnO2、Fe2O3、ZnO、Nb2O5、SrTiO3、La;NドープSrTiO3、Ta2O5、TaON、Ta3N5、KTaO3、NaTaO3、ZrO2、BiVO4、AgNbO3、Bi2MoO6、Bi2WO6、Ag3VO4、In2O3、Cu2O、CdS、ZnS、NaInS2、AgInS2、CuInS2、CuInSe2、AgGaS2、CdSe、GaAs、GaP、GaN等の光触媒がある。また、各光触媒の結晶構造は特に問うものではなく、例えばTiO2では、アナターゼ型、ルチル型、ブルッカイト型のいずれであってもよい。 Changing only a partial region of the surface can be performed for any photocatalyst. For example, TiO 2, N-doped TiO 2, C-doped TiO 2, S-doped TiO 2, Cr; Sb-doped TiO 2, LaTiO 2 N, WO 3, RbNbWO 6, CsNbWO 6, SnO 2, Fe 2 O 3, ZnO, Nb 2 O 5 , SrTiO 3 , La; N-doped SrTiO 3 , Ta 2 O 5 , TaON, Ta 3 N 5 , KTaO 3 , NaTaO 3 , ZrO 2 , BiVO 4 , AgNbO 3 , Bi 2 MoO 6 , Bi 2 WO 6 , photocatalysts such as Ag 3 VO 4 , In 2 O 3 , Cu 2 O, CdS, ZnS, NaInS 2 , AgInS 2 , CuInS 2 , CuInSe 2 , AgGaS 2 , CdSe, GaAs, GaP, and GaN. The crystal structure of each photocatalyst is not particularly limited. For example, TiO 2 may be any of anatase type, rutile type, or brookite type.

光触媒粒子表面の一部領域のみを変化させることは、粒子単体に対してだけでなく、粒子が基板上に固定化された薄膜系光触媒等、その他の形態を有するものにも適用することができる。   Changing only a part of the surface of the photocatalyst particle can be applied not only to the single particle but also to other forms such as a thin film photocatalyst in which the particle is fixed on the substrate. .

粒子表面の一部領域のみを変化させ、エネルギーバンドを非対称にした粒子状光触媒では、光照射により生成する電子と正孔が直ちに再結合することを防止できることから、従来の光触媒に比べて光量子収率を大幅に向上させることが可能である。このような触媒を用いれば、半導体光エネルギー変換装置や光エネルギー環境浄化装置等の反応効率を大幅に向上させることが可能である。   A particulate photocatalyst that changes only a partial region of the particle surface and has an asymmetric energy band can prevent the recombination of electrons and holes generated by light irradiation immediately. The rate can be greatly improved. If such a catalyst is used, it is possible to greatly improve the reaction efficiency of a semiconductor light energy conversion device, a light energy environment purification device, or the like.

例えば、水の光分解に代表されるup-hill型(エネルギー貯蔵型)の反応は、一般に多電子移動反応であるため、電子と正孔がそれぞれ引き起こす還元及び酸化反応はともに、光触媒表面に反応中間体を形成する。バンドの傾き又は曲がりがない場合は、これが電子と正孔の再結合を促進するため、十分な反応効率を得ることができない。しかし、本発明に係る光触媒では、粒子内にバンドの傾き又は曲がりが存在し、電子と正孔は空間的に分離されることから、上述の再結合過程が抑制され、反応効率が大きく向上する。
このように、本発明に係る光触媒は、up-hill型の反応に特に有効であり、最近開発された窒素ドープ等による金属酸化物光触媒の可視光応答化と組み合わせることにより、従来の装置に比べて非常に効率のよい太陽光水分解による水素発生装置等を製造することが可能である。
For example, the up-hill type (energy storage type) reaction typified by water photolysis is generally a multi-electron transfer reaction, so that both the reduction and oxidation reactions caused by electrons and holes react on the surface of the photocatalyst. Form an intermediate. When there is no band inclination or bending, this promotes the recombination of electrons and holes, so that sufficient reaction efficiency cannot be obtained. However, in the photocatalyst according to the present invention, there is a band inclination or bend in the particle, and electrons and holes are spatially separated, so that the above-mentioned recombination process is suppressed and the reaction efficiency is greatly improved. .
As described above, the photocatalyst according to the present invention is particularly effective for an up-hill type reaction, and is combined with a visible light response of a metal oxide photocatalyst by recently developed nitrogen doping or the like, compared with a conventional apparatus. It is possible to manufacture a hydrogen generator by solar water splitting that is very efficient.

0.1mMのH2PtCl6水溶液中でルチル型のTiO2微粒子(触媒学会参照触媒JRC-TIO-5、rutile94%)に紫外光を照射することにより、TiO2微粒子表面にPtを析出させ、担持させた。このTiO2微粒子を0.05Mの硫酸水溶液に投入し、この水溶液を攪拌しながら72時間紫外光を照射することにより、触媒粒子を光エッチングした。 By irradiating rutile TiO 2 fine particles (catalyst society reference catalyst JRC-TIO-5, rutile 94%) with ultraviolet light in 0.1 mM H 2 PtCl 6 aqueous solution, Pt is deposited on the surface of TiO 2 fine particles and supported I let you. The TiO 2 fine particles were put into a 0.05M sulfuric acid aqueous solution, and the aqueous solution was stirred and irradiated with ultraviolet light for 72 hours to photoetch the catalyst particles.

図15は、このようにして得られたPt担持TiO2微粒子の走査型電子顕微鏡(SEM)写真である。図15から、光エッチングによって、TiO2微粒子表面の一部分のみにナノサイズの細孔が形成されていることがわかる。また、光エッチングを行う前のTiO2触媒は、840nmの発光を示さなかったのに対し、光エッチング後のTiO2触媒は、(100)面に固有の840nmの発光を示した。このことから、ナノサイズの細孔の壁面に(100)面が現出していることが確認された。 FIG. 15 is a scanning electron microscope (SEM) photograph of the Pt-supported TiO 2 fine particles thus obtained. From FIG. 15, it can be seen that nano-sized pores are formed only in part of the surface of the TiO 2 fine particles by photoetching. In addition, the TiO 2 catalyst before photoetching did not show 840 nm emission, whereas the TiO 2 catalyst after photoetching showed 840 nm emission specific to the (100) plane. From this, it was confirmed that the (100) plane appeared on the wall surface of the nano-sized pore.

このようにして粒子表面の一部領域のみを変化させたTiO2微粒子を用い、モデル反応として酢酸の光分解反応(光コルベ反応)を行った。光コルベ反応は、以下の式(1)及び式(2)で表される反応である。
Using the TiO 2 fine particles in which only a partial region of the particle surface was changed in this way, a photolysis reaction (photo-Kolbe reaction) of acetic acid was performed as a model reaction. The photo Kolbe reaction is a reaction represented by the following formulas (1) and (2).

光コルベ反応により生成したメタンの量の時間変化を図16に、エタンの量の時間変化を図17に示す。図16,図17において、実線は光エッチング後、破線は光エッチング前の生成量を表している。
図16及び図17に示されたように、光生成物であるメタンとエタンの生成量は、触媒を光エッチングすることによって約2.5倍増加した。
FIG. 16 shows the change over time in the amount of methane produced by the photo Kolbe reaction, and FIG. 17 shows the change over time in the amount of ethane. 16 and 17, the solid line represents the generation amount after photoetching, and the broken line represents the generation amount before photoetching.
As shown in FIGS. 16 and 17, the production amounts of methane and ethane as photoproducts were increased by about 2.5 times by photoetching the catalyst.

以上のことから、触媒表面の一部領域のみにエッチング処理等を施して光触媒粒子のエネルギーバンドを非対称にすることにより、触媒の光反応効率を大きく向上させることが可能であることが示された。   From the above, it was shown that the photoreaction efficiency of the catalyst can be greatly improved by applying an etching process or the like to only a part of the catalyst surface to make the energy band of the photocatalyst particles asymmetric. .

均一な表面を有する光触媒粒子に電子及び正孔が生成した際の様子を表した模式図。The schematic diagram showing a mode when an electron and a hole were produced | generated in the photocatalyst particle | grains which have a uniform surface. 表面の一部領域のみを変化させた光触媒粒子に電子及び正孔が生成した際の様子を表した模式図。The schematic diagram showing a mode when an electron and a hole were produced | generated in the photocatalyst particle which changed only the partial area | region of the surface. 均一な表面を有する絶縁性光触媒のエネルギーバンド構造と、光照射による電子と正孔の生成と、これらの再結合の過程を表した説明図。Explanatory drawing showing the energy band structure of the insulating photocatalyst which has a uniform surface, the production | generation of an electron and a hole by light irradiation, and the process of these recombination. 絶縁性光触媒の粒子表面の一部領域のみを変化させることにより非対称にしたエネルギーバンド構造と、光照射による電子・正孔生成及び移動過程を表した説明図。Explanatory drawing showing the energy band structure made asymmetric by changing only a partial region of the particle surface of the insulating photocatalyst, and electron / hole generation and transfer processes by light irradiation. 均一な表面を有するn型半導性光触媒のエネルギーバンド構造と光照射による電子・正孔生成及び移動過程を表した説明図。Explanatory drawing showing the energy band structure of an n-type semiconducting photocatalyst having a uniform surface and electron / hole generation and transfer processes by light irradiation. n型半導性光触媒の粒子表面の一部領域のみを変化させることにより非対称にしたエネルギーバンド構造と、光照射による電子・正孔生成及び移動過程を表した説明図。Explanatory drawing showing the energy band structure made asymmetric by changing only a partial region of the particle surface of the n-type semiconducting photocatalyst, and electron / hole generation and transfer processes by light irradiation. 0.05wt%のNbをドープしたルチル型TiO2単結晶の(100)カット面のAFM像。AFM image of (100) cut surface of rutile TiO 2 single crystal doped with 0.05wt% Nb. 0.05wt%のNbをドープしたルチル型TiO2単結晶の(110)カット面のAFM像。AFM image of (110) cut surface of rutile TiO 2 single crystal doped with 0.05 wt% Nb. 0.05wt%のNbをドープしたルチル型TiO2単結晶の(100)カット面のLEED像。LEED image of (100) cut surface of rutile TiO 2 single crystal doped with 0.05 wt% Nb. 0.05wt%のNbをドープしたルチル型TiO2単結晶の(110)カット面のLEED像。LEED image of (110) cut surface of rutile TiO 2 single crystal doped with 0.05 wt% Nb. 0.05wt%のNbをドープしたルチル型TiO2単結晶の(100)面のMott-Schottkyプロット図。The Mott-Schottky plot of the (100) plane of rutile TiO 2 single crystal doped with 0.05 wt% Nb. 0.05wt%のNbをドープしたルチル型TiO2単結晶の(110)面のMott-Schottkyプロット図。The Mott-Schottky plot of the (110) plane of rutile TiO 2 single crystal doped with 0.05 wt% Nb. 0.05wt%のNbをドープしたルチル型TiO2単結晶の(100)面及び(110)面電極の光電流と電位の関係を表した図。The figure showing the relationship between the photocurrent and potential of the (100) plane and (110) plane electrodes of rutile TiO 2 single crystal doped with 0.05 wt% Nb. 0.05wt%のNbをドープしたルチル型TiO2単結晶の(100)面及び(110)面電極の発光強度と電極電位の関係を表した図。The figure showing the relationship between the luminescence intensity and the electrode potential of the (100) and (110) plane electrodes of rutile TiO 2 single crystal doped with 0.05 wt% Nb. 光エッチングによって表面が非対称化されたPt担持TiO2微粒子のSEM写真。SEM photograph of Pt-supported TiO 2 fine particles whose surface has been asymmetrical by photoetching. 光コルベ反応により生成したメタンの量の時間変化を表した図。The figure showing the time change of the quantity of methane produced | generated by optical Kolbe reaction. 光コルベ反応により生成したエタンの量の時間変化を表した図。The figure showing the time change of the quantity of the ethane produced | generated by optical Kolbe reaction.

Claims (8)

粒子表面の一部領域のみにおいて電子帯エネルギーが変化していることを特徴とする粒子状光触媒。   A particulate photocatalyst characterized in that the electron band energy changes only in a partial region of the particle surface. 結晶面選択的エッチングにより、粒子表面の一部領域のみにおいて電子帯エネルギーが変化していることを特徴とする請求項1に記載の粒子状光触媒。   2. The particulate photocatalyst according to claim 1, wherein the electron band energy is changed only in a partial region of the particle surface by crystal plane selective etching. 粒子表面の一部領域のみにおける有機基の修飾により、粒子表面の一部領域のみにおいて電子帯エネルギーが変化していることを特徴とする請求項1に記載の粒子状光触媒。   2. The particulate photocatalyst according to claim 1, wherein the electron band energy is changed only in a partial region of the particle surface due to the modification of the organic group only in the partial region of the particle surface. 表面に水素発生金属触媒を担持させた光触媒粒子を水溶液中に浸漬し、所定の波長の光を照射することにより結晶面選択的にエッチングし、粒子表面の一部領域のみにおいて電子帯エネルギーを変化させることを特徴とする粒子状光触媒の製造方法。   Photocatalyst particles carrying a hydrogen-generating metal catalyst on the surface are immersed in an aqueous solution and irradiated with light of a predetermined wavelength to selectively etch the crystal plane, changing the electron band energy only in a part of the particle surface. A method for producing a particulate photocatalyst characterized by comprising: 前記水素発生金属触媒がPt、Pd、Ni、Ir、Ru、Rh、Auのいずれか又はその2以上の組み合わせであることを特徴とする請求項4に記載の粒子状光触媒の製造方法。   The method for producing a particulate photocatalyst according to claim 4, wherein the hydrogen generating metal catalyst is any one of Pt, Pd, Ni, Ir, Ru, Rh, Au, or a combination of two or more thereof. 光触媒を有機溶剤中に投入した後、これに少量の水系溶剤を加えて触媒粒子を凝集させ、触媒粒子を二次粒子化した光触媒懸濁液に有機修飾剤を加えることにより、粒子表面の一部領域のみを有機基で修飾し、粒子表面の一部領域のみにおいて電子帯エネルギーを変化させることを特徴とする粒子状光触媒の製造方法。   After introducing the photocatalyst into the organic solvent, a small amount of an aqueous solvent is added to agglomerate the catalyst particles, and an organic modifier is added to the photocatalyst suspension in which the catalyst particles are converted into secondary particles. A method for producing a particulate photocatalyst, wherein only a partial region is modified with an organic group, and the electron band energy is changed only in a partial region of the particle surface. 前記有機修飾剤が、アルコール、有機酸、シランカップリング剤、界面活性剤、又は錯体のいずれかであることを特徴とする請求項6に記載の粒子状光触媒の製造方法。   The method for producing a particulate photocatalyst according to claim 6, wherein the organic modifier is any one of an alcohol, an organic acid, a silane coupling agent, a surfactant, or a complex. 請求項1〜3のいずれかに記載された粒子状光触媒を基板上に固定したことを特徴とする薄膜型光触媒。   A thin-film photocatalyst, wherein the particulate photocatalyst according to any one of claims 1 to 3 is fixed on a substrate.
JP2004065299A 2004-03-09 2004-03-09 Photocatalyst having high reaction efficiency Pending JP2005254042A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004065299A JP2005254042A (en) 2004-03-09 2004-03-09 Photocatalyst having high reaction efficiency
PCT/JP2005/003371 WO2005084804A1 (en) 2004-03-09 2005-03-01 Photocatalyst having high reaction efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004065299A JP2005254042A (en) 2004-03-09 2004-03-09 Photocatalyst having high reaction efficiency

Publications (1)

Publication Number Publication Date
JP2005254042A true JP2005254042A (en) 2005-09-22

Family

ID=34918233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004065299A Pending JP2005254042A (en) 2004-03-09 2004-03-09 Photocatalyst having high reaction efficiency

Country Status (2)

Country Link
JP (1) JP2005254042A (en)
WO (1) WO2005084804A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519057A (en) * 2007-02-20 2010-06-03 イッサム リサーチ ディベロップメント カンパニー オブ ザ ヘブライ ユニバーシティー オブ エルサレム,リミテッド Hybrid metal semiconductor nanoparticles, photoinduced charge separation methods and applications
WO2011102353A1 (en) 2010-02-16 2011-08-25 昭和電工株式会社 Tungsten oxide photocatalyst modified with copper ion, and process for production thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519057A (en) * 2007-02-20 2010-06-03 イッサム リサーチ ディベロップメント カンパニー オブ ザ ヘブライ ユニバーシティー オブ エルサレム,リミテッド Hybrid metal semiconductor nanoparticles, photoinduced charge separation methods and applications
WO2011102353A1 (en) 2010-02-16 2011-08-25 昭和電工株式会社 Tungsten oxide photocatalyst modified with copper ion, and process for production thereof
CN102762302A (en) * 2010-02-16 2012-10-31 昭和电工株式会社 Tungsten oxide photocatalyst modified with copper ion, and process for production thereof
US9061272B2 (en) 2010-02-16 2015-06-23 Showa Denko K.K. Tungsten oxide photocatalyst modified with copper ion, and process for production thereof

Also Published As

Publication number Publication date
WO2005084804A1 (en) 2005-09-15

Similar Documents

Publication Publication Date Title
Wang et al. Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting
Wang et al. Enhanced full-spectrum water splitting by confining plasmonic Au nanoparticles in N-doped TiO2 bowl nanoarrays
CN107075696B (en) Photocatalytic hydrogen production from water by a catalyst having a P-N junction and a plasma material
Sun et al. Enabling silicon for solar-fuel production
JP6175596B2 (en) Method for producing hydrogen production catalyst
Peng et al. Enhanced visible-light-driven photocatalytic activity by 0D/2D phase heterojunction of quantum dots/nanosheets on bismuth molybdates
Ji et al. Surface Ti3+/Ti4+ redox shuttle enhancing photocatalytic H2 production in ultrathin TiO2 nanosheets/CdSe quantum dots
Li et al. High photocatalytic performance of a type-II α-MoO 3@ MoS 2 heterojunction: From theory to experiment
Kumar et al. Dominant {100} facet selectivity for enhanced photocatalytic activity of NaNbO 3 in NaNbO 3/CdS core/shell heterostructures
Li et al. High efficient photocatalytic activity from nanostructuralized photonic crystal-like pn coaxial hetero-junction film photocatalyst of Cu3SnS4/TiO2 nanotube arrays
Huang et al. Stimulating charge transfer over quantum dots via ligand-triggered layer-by-layer assembly toward multifarious photoredox organic transformation
Zhou et al. CdSe nanotube arrays on ITO via aligned ZnO nanorods templating
Hsu et al. Facile synthesis of Pt nanoparticles/ZnO nanorod arrays for photoelectrochemical water splitting
Zou et al. Fabrication, optoelectronic and photocatalytic properties of some composite oxide nanostructures
CN110252353B (en) BiOI/Bi/TiO of ternary heterostructure2Composite photocatalytic material and preparation and application thereof
WO2014034004A1 (en) Photochemical electrode for carbon dioxide reduction and method for reducing carbon dioxide using photochemical electrode for carbon dioxide reduction
JP4000374B2 (en) Semiconductor metal oxide photocatalyst and method for decomposing hazardous chemicals using the same
Zargazi et al. Ultrasound assisted deposition of highly stable self-assembled Bi2MoO6 nanoplates with selective crystal facet engineering as photoanode
CN112777634B (en) Preparation method of bismuth vanadate with high (010) crystal face exposure ratio
KR101724391B1 (en) Plasmonic core-shell structure with three component system for visible light energy conversion and method for synthesizing thereof
Chen et al. Ag bridged Z-scheme AgVO3/Bi4Ti3O12 heterojunction for enhanced antibiotic degradation
Mezzetti et al. Hyperbranched TiO2–CdS nano-heterostructures for highly efficient photoelectrochemical photoanodes
Dang et al. MoS2 hydrogen evolution catalysis on p-Si nanorod photocathodes
Abdullah et al. Unbiased solar water splitting of GaN photoanodes with Au nanoparticles supported by plasmon-assisted hot-carrier transfer
Li et al. A nanoporous GaN photoelectrode on patterned sapphire substrates for high-efficiency photoelectrochemical water splitting