JP2005253820A - Magnetic resonance imaging apparatus - Google Patents

Magnetic resonance imaging apparatus Download PDF

Info

Publication number
JP2005253820A
JP2005253820A JP2004072037A JP2004072037A JP2005253820A JP 2005253820 A JP2005253820 A JP 2005253820A JP 2004072037 A JP2004072037 A JP 2004072037A JP 2004072037 A JP2004072037 A JP 2004072037A JP 2005253820 A JP2005253820 A JP 2005253820A
Authority
JP
Japan
Prior art keywords
magnetic field
coil
coils
static magnetic
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004072037A
Other languages
Japanese (ja)
Other versions
JP4393234B2 (en
JP2005253820A5 (en
Inventor
Takeshi Yao
武 八尾
Akira Kurome
明 黒目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2004072037A priority Critical patent/JP4393234B2/en
Publication of JP2005253820A publication Critical patent/JP2005253820A/en
Publication of JP2005253820A5 publication Critical patent/JP2005253820A5/ja
Application granted granted Critical
Publication of JP4393234B2 publication Critical patent/JP4393234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic resonance imaging apparatus that preferably controls an eddy current generating in a coil storage container even in the case that flat active sealed type gradient magnetic field coils are arranged in a recessed arrangement space between the top and the bottom faces of the coil storage container. <P>SOLUTION: The magnetic resonance imaging apparatus comprises a static magnetic field generating means (4) arranged face to face with an imaging space in between, having a pair of static magnetic field generators with recessed arrangement spaces on the sides facing to each other, and generating a static magnetic field to each other; main coils (13c) arranged in the recessed arrangement spaces and generating a magnetic field in the imaging space; and magnetic field generating coils having sealed coils (13d), arranged between the main coils and the static magnetic field generator, and used to cancel a magnetic filed generated by the main coils in the other side of the imaging space. The magnetic field generating coil comprises first coils (23) in the recessed arrangement space, which control a magnetic field generated by the main coils and the sealed coils on a side face in parallel with the static magnetic field direction in the recessed arrangement space. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、磁気共鳴イメージング装置(以下、MRI装置という。)に係り、特に、傾斜磁場コイルの駆動により発生する渦電流を好適に抑制する技術に関する。   The present invention relates to a magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus), and more particularly to a technique for suitably suppressing an eddy current generated by driving a gradient magnetic field coil.

MRI装置は、均一な静磁場内に置かれた被検体に電磁波を照射したときに、被検体を構成する原子の原子核に生じる核磁気共鳴現象を利用し、被検体からの核磁気共鳴信号(以下、NMR信号という。)を検出し、このNMR信号を使って画像を再構成することにより、被検体の物理的性質をあらわす磁気共鳴画像(以下、NMR画像という。)を得るものである。このイメージングの位置情報を与えるために、静磁場に重畳して傾斜磁場が印加される。   The MRI system uses the nuclear magnetic resonance phenomenon that occurs in the nucleus of the atoms that make up the subject when the subject placed in a uniform static magnetic field is irradiated with electromagnetic waves. Hereinafter, an NMR signal is detected, and an image is reconstructed using the NMR signal, thereby obtaining a magnetic resonance image (hereinafter referred to as an NMR image) representing the physical properties of the subject. In order to give this imaging position information, a gradient magnetic field is applied in a superimposed manner on the static magnetic field.

従来のMRI装置は、装置を設置した検査室内に、被検体の水素原子核(プロトン)のスピンの向きを整列させるための静磁場を計測空間内に発生するための静磁場発生源と、被検体の位置情報を与えるために、X,Y,Zの3軸方向に位置エンコーディングを行う3チャンネルの傾斜磁場コイルと、プロトンの共鳴周波数をもつ電磁波を放射する送信用高周波コイルと、プロトンからのNMR信号を受信する受信用高周波コイルと、更に、発生する静磁場および傾斜磁場を補正するためのシムコイルなどを備えている。ただし、静磁場発生の方法としては、超電導コイルによる方法、常電導コイルによる方法、永久磁石による方法等が知られている。   A conventional MRI apparatus includes a static magnetic field generation source for generating a static magnetic field in a measurement space for aligning the spin directions of the hydrogen nuclei (protons) of the subject in the examination room in which the apparatus is installed, and the subject. In order to provide position information, a three-channel gradient coil that performs position encoding in the X, Y, and Z directions, a transmission high-frequency coil that emits electromagnetic waves having a proton resonance frequency, and NMR from protons A receiving high-frequency coil for receiving signals and a shim coil for correcting a generated static magnetic field and gradient magnetic field are further provided. However, as a method for generating a static magnetic field, a method using a superconducting coil, a method using a normal conducting coil, a method using a permanent magnet, and the like are known.

近年、静磁場方向が被検体の体軸方向と直交する垂直磁場方式のMRI装置において、上下対向して配置されるコイル収容容器の上下対向面に凹状配置スペースを設け、該スペースに平板の傾斜磁場コイルが収容されるようにしたものが提案されており、所要起磁力を小さくするためにこの構成が望ましいとされている(例えば、特許文献1参照。)。
特許第3469436号公報
In recent years, in a vertical magnetic field type MRI apparatus in which the direction of the static magnetic field is orthogonal to the body axis direction of the subject, a concave arrangement space is provided on the upper and lower opposing surfaces of the coil container arranged opposite to each other, and a flat plate is inclined in the space A configuration in which a magnetic field coil is accommodated has been proposed, and this configuration is desirable in order to reduce the required magnetomotive force (see, for example, Patent Document 1).
Japanese Patent No. 3469436

一方、静磁場発生用の磁石容器表面に傾斜磁場コイルの駆動に伴う渦電流が発生すると、傾斜磁場波形が本来の形状(例えば、矩形波)から歪んでしまうため、画質が劣化する。これを防ぐためにX,Y,Zの3軸方向の傾斜磁場の主コイルの外側に、傾斜磁場のシールドコイルをX,Y,Zの3軸方向にそれぞれ設け、主コイルによって発生する磁場を磁石容器表面において打ち消すようにしたものがある。これは、アクティブシールド方式の傾斜磁場コイルと呼ばれている。   On the other hand, when an eddy current accompanying the driving of the gradient magnetic field coil is generated on the surface of the magnet container for generating a static magnetic field, the gradient magnetic field waveform is distorted from the original shape (for example, a rectangular wave), and the image quality deteriorates. To prevent this, a gradient magnetic field shield coil is provided in each of the X, Y, and Z axis directions on the outside of the X, Y, and Z gradient magnetic field main coil, and the magnetic field generated by the main coil is magnetized. There are some which are made to cancel on the container surface. This is called an active shield type gradient magnetic field coil.

特許文献2では特に、垂直磁場方式のMRI装置用の平板型アクティブシールド方式の傾斜磁場コイルにおいて、磁石容器表面の端部領域に発生する磁場を好適に打ち消す技術が開示されている。
特開2002−112977号公報
Patent Document 2 discloses a technique that suitably cancels out a magnetic field generated in an end region on the surface of a magnet container in a flat-type active shield type gradient magnetic field coil for a vertical magnetic field type MRI apparatus.
JP 2002-112977 A

特許文献2記載の従来技術では、傾斜磁場の平板状の主コイルと、撮像空間に対して前記主コイルの背面に配置され、電流の向きが主コイルとほぼ反対方向の傾斜磁場の平板状のシールドコイルとを備えたアクティブシールド方式の傾斜磁場コイルにおいて、傾斜磁場の主コイル配列面と傾斜磁場のシールドコイル配列面の中間に第3のコイル配列面を設け、そこにシールドコイルと同じ方向の電流を流すことによって磁石容器表面の端部領域に発生する磁場を好適に打ち消し、渦電流を抑制している。   In the prior art described in Patent Document 2, a flat main coil with a gradient magnetic field and a flat magnetic field with a gradient magnetic field arranged on the back surface of the main coil with respect to the imaging space and having a current direction substantially opposite to the main coil. In the active shield type gradient magnetic field coil having a shield coil, a third coil array surface is provided between the main coil array surface of the gradient magnetic field and the shield coil array surface of the gradient magnetic field, and the third coil array surface is provided in the same direction as the shield coil. By passing an electric current, the magnetic field generated in the end region on the surface of the magnet container is preferably canceled out, and the eddy current is suppressed.

本発明者は、上記従来技術を検討した結果、以下の問題点を見い出した。
すなわち、特許文献2記載の従来技術では、特許文献2の図1に示されているように、上下に対向して配置されるコイル収容容器の上下対向面に凹状配置スペースがない、平らの垂直磁場方式のMRI装置において、渦電流の抑制を最適化していた。
The present inventor has found the following problems as a result of studying the above prior art.
That is, in the prior art described in Patent Document 2, as shown in FIG. 1 of Patent Document 2, there is no concave arrangement space on the upper and lower opposed surfaces of the coil storage container arranged opposite to each other, and a flat vertical In the magnetic field type MRI apparatus, the suppression of eddy current was optimized.

しかしながら、特許文献2記載の平板型のアクティブシールド方式の傾斜磁場コイルを特許文献1記載のMRI装置の凹状配置スペースに配置した場合には、第3のコイルと主コイルの間の磁束密度が大きくなるため、それによる漏洩磁場が、凹状配置スペースの内側の側面(凹状の底部でないZ軸に平行な面)にまで到達すると、渦電流が発生し画質が劣化する問題が生じた。   However, when the flat-type active shield type gradient magnetic field coil described in Patent Document 2 is arranged in the concave arrangement space of the MRI apparatus described in Patent Document 1, the magnetic flux density between the third coil and the main coil is large. Therefore, when the leakage magnetic field thereby reaches the inner side surface of the concave arrangement space (a surface parallel to the Z-axis that is not the concave bottom portion), an eddy current is generated and the image quality deteriorates.

本発明の目的は、コイル収容容器の上下対向面側に構成された凹状配置スペースに平板型のアクティブシールド方式の傾斜磁場コイルを配置する場合にも、コイル収容容器に発生する渦電流を好適に抑制した磁気共鳴イメージング装置を提供することにある。   It is an object of the present invention to suitably apply eddy currents generated in a coil container even when a flat-type active shield type gradient magnetic field coil is disposed in a concave arrangement space formed on the upper and lower surfaces of the coil container. An object of the present invention is to provide a suppressed magnetic resonance imaging apparatus.

本発明の第1の特徴によれば、撮影空間を間に挟んで対向して配置され、対向面側に凹状配置スペースがそれぞれ設けられた一対の静磁場発生源を有し、前記対向方向に静磁場を発生する静磁場発生手段と、前記凹状配置スペース内に配置されて前記撮影空間に磁場を発生させる主コイルと、前記主コイルと前記静磁場発生源の間に配置されて該主コイルが前記撮影空間と反対側に発生する磁場をキャンセルするためのシールドコイルとを有した磁場発生コイルを備えた磁気共鳴イメージング装置において、前記磁場発生コイルは、前記主コイルと前記シールドコイルが前記凹状配置スペースの前記静磁場方向と平行な側面に発生する磁場を抑制する第1のコイルを前記凹状配置スペース内に備えたことを特徴とする磁気共鳴イメージング装置が提供される。   According to the first feature of the present invention, it has a pair of static magnetic field generation sources that are arranged to face each other with a shooting space in between, and each provided with a concave arrangement space on the facing surface side, in the facing direction. Static magnetic field generating means for generating a static magnetic field, a main coil disposed in the concave arrangement space and generating a magnetic field in the imaging space, and the main coil disposed between the main coil and the static magnetic field generation source In the magnetic resonance imaging apparatus including a magnetic field generating coil having a shield coil for canceling a magnetic field generated on the opposite side to the imaging space, the magnetic field generating coil includes the main coil and the shield coil in the concave shape. A magnetic resonance imaging apparatus comprising a first coil for suppressing a magnetic field generated on a side surface parallel to the static magnetic field direction of the arrangement space in the concave arrangement space It is provided.

また本発明の第2の特徴によれば、前記第1のコイルによって前記撮影空間に生じる磁場の変化を補正する第2のコイルを前記凹状配置スペース内で、静磁場方向の中心軸方向に対して半径方向に第1のコイルより内側に備えたことを特徴とする本発明の第1の特徴を併せ持つ磁気共鳴イメージング装置が提供される。   According to the second feature of the present invention, the second coil for correcting the change in the magnetic field generated in the imaging space by the first coil is within the concave arrangement space with respect to the central axis direction of the static magnetic field direction. Thus, a magnetic resonance imaging apparatus having the first feature of the present invention is provided, which is provided inside the first coil in the radial direction.

また本発明の第3の特徴によれば、前記第1と第2のコイルを配置する静磁場方向の位置は、前記主コイルを配置する平面の位置と同一であることを特徴とする本発明の第2の特徴を併せ持つ磁気共鳴イメージング装置が提供される。   According to the third aspect of the present invention, the position of the static magnetic field direction in which the first and second coils are disposed is the same as the position of the plane in which the main coil is disposed. A magnetic resonance imaging apparatus having the second feature is provided.

また本発明の第4の特徴によれば、前記第1と第2のコイルを配置する静磁場方向の位置は、前記主コイルを配置する平面の位置と、前記シールドコイルを配置する平面の位置のいずれとも異なる第3の静磁場方向の位置であることを特徴とする本発明の第2の特徴を併せ持つ磁気共鳴イメージング装置が提供される。   According to the fourth feature of the present invention, the position in the static magnetic field direction where the first and second coils are arranged is the position of the plane where the main coil is arranged, and the position of the plane where the shield coil is arranged. There is provided a magnetic resonance imaging apparatus having the second feature of the present invention characterized in that the position is in a third static magnetic field direction different from any of the above.

また本発明の第5の特徴によれば、前記第1と第2のコイルを配置する静磁場方向の位置は、前記主コイルを配置する平面の位置と、前記シールドコイルを配置する平面の位置の間であることを特徴とする第2の特徴を併せ持つ磁気共鳴イメージング装置が提供される。   According to the fifth feature of the present invention, the position in the static magnetic field direction where the first and second coils are arranged is the position of the plane where the main coil is arranged, and the position of the plane where the shield coil is arranged. There is provided a magnetic resonance imaging apparatus having a second feature characterized by being between.

本発明によれば、コイル収容容器の上下対向面側に構成された凹状配置スペースに平板型のアクティブシールド方式の傾斜磁場コイルを配置する場合にも、コイル収容容器に発生する渦電流を好適に抑制した磁気共鳴イメージング装置を提供することができる。   According to the present invention, even when a flat active shield type gradient magnetic field coil is arranged in a concave arrangement space formed on the upper and lower surfaces of the coil container, eddy currents generated in the coil container are preferably used. A suppressed magnetic resonance imaging apparatus can be provided.

以下、一般的なMRI装置のシステム構成を図1により詳細に説明する。 MRI装置は大別して、中央処理装置(以下、CPUと略称する)1と、シーケンサ2と 、送信系3と、静磁場発生用磁石4と、受信系5と、傾斜磁場発生系21と、信号処理系6とから構成されている。   Hereinafter, the system configuration of a general MRI apparatus will be described in detail with reference to FIG. The MRI apparatus is roughly classified into a central processing unit (hereinafter abbreviated as CPU) 1, a sequencer 2, a transmission system 3, a static magnetic field generating magnet 4, a receiving system 5, a gradient magnetic field generating system 21, and a signal. It consists of a processing system 6.

CPU1は、予め定められたプログラムに従って、シーケンサ2、送信系3、受信系5、信号処理系6を制御するようになっている。シーケンサ2は、CPU1からの制御指令に基づいて動作し、被検体7の断層面の画像データ収集に必要な種々の命令を送信系3、傾斜磁場発生系21、受信系5に送るようになっている。   The CPU 1 controls the sequencer 2, the transmission system 3, the reception system 5, and the signal processing system 6 according to a predetermined program. The sequencer 2 operates based on a control command from the CPU 1, and sends various commands necessary for collecting image data of the tomographic plane of the subject 7 to the transmission system 3, the gradient magnetic field generation system 21, and the reception system 5. ing.

送信系3は、高周波発振器8と、変調器9と、照射コイル11とを備え、シーケンサ2の指令により高周波発振器8からの基準高周波パルスを変調器9で振幅変調し、この振幅変調された高周波パルスを高周波増幅器10を介して増幅して照射コイル11に供給することにより、所定のパルス状の電磁波を被検体に照射するようになっている。   The transmission system 3 includes a high-frequency oscillator 8, a modulator 9, and an irradiation coil 11. The reference high-frequency pulse from the high-frequency oscillator 8 is amplitude-modulated by the modulator 9 according to a command from the sequencer 2, and the amplitude-modulated high-frequency signal is transmitted. By amplifying the pulse through the high frequency amplifier 10 and supplying it to the irradiation coil 11, a predetermined pulsed electromagnetic wave is irradiated to the subject.

静磁場発生用磁石4は、被検体7の周りの所定の方向に均一な静磁場を発生させるためのものである。この静磁場発生用磁石4の内部には、照射コイル11と、傾斜磁場コイル13と、受信コイル14とが配置されている。傾斜磁場コイル13は傾斜磁場発生系21に含まれ、傾斜磁場電源12より電流の供給を受け、シーケンサ2の制御のもとに傾斜磁場を発生させる。   The static magnetic field generating magnet 4 is for generating a uniform static magnetic field in a predetermined direction around the subject 7. In the static magnetic field generating magnet 4, an irradiation coil 11, a gradient magnetic field coil 13, and a receiving coil 14 are arranged. The gradient magnetic field coil 13 is included in the gradient magnetic field generation system 21 and receives a current supplied from the gradient magnetic field power supply 12 and generates a gradient magnetic field under the control of the sequencer 2.

受信系5は、被検体の生体組織の原子核の核磁気共鳴により放出される高周波信号(NMR信号)を検出するもので、受信コイル14と増幅器15と直交位相検波器16とA/D変換器17とを有しており、上記照射コイル14から照射された電磁波による被検体の応答の高周波信号(NMR信号)は被検体に近接して配置された受信コイル14で検出され、増幅器15及び直交位相検波器16を介してA/D変換器17に入力され、ディジタル量に変換され、その信号がCPU1に送られるようになっている。   The receiving system 5 detects a high-frequency signal (NMR signal) emitted by nuclear magnetic resonance of the nucleus of the biological tissue of the subject, and includes a receiving coil 14, an amplifier 15, a quadrature detector 16, and an A / D converter. The high frequency signal (NMR signal) of the response of the subject due to the electromagnetic wave irradiated from the irradiation coil 14 is detected by the receiving coil 14 disposed in the vicinity of the subject, and the amplifier 15 and orthogonal The signal is input to the A / D converter 17 via the phase detector 16, converted into a digital quantity, and the signal is sent to the CPU 1.

信号処理系6は、磁気ディスク20、光ディスク19などの外部記憶装置と、CRTなどからなるディスプレイ18とを備え、受信系5からのデータがCPU1に入力されると、CPU1が信号処理、画像再構成などの処理を実行し、その結果である被検体7の所望の断層面の画像をディスプレイ18で表示すると共に、外部記憶装置の磁気ディスク20などに記憶するようになっている。   The signal processing system 6 includes an external storage device such as a magnetic disk 20 and an optical disk 19 and a display 18 such as a CRT. When data from the reception system 5 is input to the CPU 1, the CPU 1 performs signal processing and image re-processing. Processing such as configuration is executed, and the resulting image of a desired tomographic plane of the subject 7 is displayed on the display 18 and stored in the magnetic disk 20 of the external storage device or the like.

上記システム構成を持つ特許文献1記載の垂直磁場方式のMRI装置において、コイル収容容器の上下対向面の凹状配置スペースに平板型のアクティブシールド方式の傾斜磁場コイルを配置する配置例については、特開平9−262223号公報の実施例2から4に開示されている。このうち、実施例2で示された構成が、最もシールドコイルの構造が簡易で安価な構成である。しかしながら、実施例2に配置されている主コイルとシールドコイルにおいて、凹状配置スペースの内側の側面に渦電流が発生しないようにするためには、下記に説明する付加電流を加えることが必要である。   In the vertical magnetic field type MRI apparatus described in Patent Document 1 having the above system configuration, an arrangement example in which a flat active shield type gradient magnetic field coil is arranged in the concave arrangement space on the upper and lower opposing surfaces of the coil container is disclosed in It is disclosed in Examples 2 to 4 of 9-262223. Among these, the configuration shown in the second embodiment is the most simple and inexpensive configuration of the shield coil. However, in the main coil and the shield coil arranged in the second embodiment, in order to prevent eddy current from being generated on the inner side surface of the concave arrangement space, it is necessary to add the additional current described below. .

図2は、本発明の実施例1に係る垂直磁場方式MRI装置の、静磁場発生源と傾斜磁場コイルの断面の一部である。ただし、図2はコイルの形状がZ軸(静磁場の方向)に対して軸対称なZ軸方向傾斜磁場コイルの例であり、図2の断面を静磁場の方向から見ると、同心円状のコイルが並んでいる。傾斜磁場コイルのコイルパターンに関しては、米国特許3515979号公報等に公知である。4aは凹状配置スペースの側面、4bは凹状配置スペースの底面、13aは傾斜磁場コイルのシールドコイル面、13bは傾斜磁場コイルのメインコイル面、21で示した丸印の中央に点を付加した記号は紙面の裏側から手前へ電流が流れるコイル、22で示した丸印に×印を付加した記号は紙面の手前から裏側へ電流が流れるコイル、23で示した1列以上のコイルは付加電流1を流すためのコイル、24で示した1列以上のコイルは付加電流2を流すためのコイルである。また、13cは、従来のシールドコイルパターン、13dは従来のメインコイルパターンであり、それぞれ特許文献2の図9に示されたものである。   FIG. 2 is a part of a cross section of a static magnetic field generation source and a gradient magnetic field coil of the vertical magnetic field type MRI apparatus according to Embodiment 1 of the present invention. However, Fig. 2 is an example of a Z-axis gradient magnetic field coil in which the coil shape is axisymmetric with respect to the Z-axis (the direction of the static magnetic field). When the cross section of Fig. 2 is viewed from the direction of the static magnetic field, Coils are lined up. The coil pattern of the gradient magnetic field coil is known in US Pat. 4a is a side surface of the concave arrangement space, 4b is a bottom surface of the concave arrangement space, 13a is a shield coil surface of the gradient magnetic field coil, 13b is a main coil surface of the gradient magnetic field coil, and a symbol with a dot added at the center of the circle indicated by 21 Is a coil in which current flows from the back side of the paper to the front side, a symbol with an X mark added to the circle indicated by 22 is a coil in which current flows from the front side to the back side of the paper surface, and one or more coils indicated by 23 have additional current 1 The one or more coils indicated by 24 are coils for causing the additional current 2 to flow. Reference numeral 13c denotes a conventional shield coil pattern, and reference numeral 13d denotes a conventional main coil pattern, which are shown in FIG. 9 of Patent Document 2, respectively.

本実施例によれば、従来のメインコイルとシールドコイルに加えて、先ず付加電流1がメインコイル面に加わっている。これによって、メインコイルとシールドコイルによって凹状配置スペースの内側の側面に発生する磁場を打ち消すことができる。一方、付加電流1の印加によって撮像空間の傾斜磁場に変化が生じてしまうため、これを補正するために付加電流2を静磁場方向の中心軸に対して第1のコイルより半径方向内側に加えている。これにより、付加電流1と付加電流2を合わせて、凹状配置スペースの内側の側面に発生する磁場も打ち消し、そこに発生する渦電流も低減でき、また撮像空間に発生する傾斜磁場に変化が生じないようにすることができる。   According to this embodiment, in addition to the conventional main coil and shield coil, the additional current 1 is first applied to the main coil surface. Thus, the magnetic field generated on the inner side surface of the concave arrangement space can be canceled by the main coil and the shield coil. On the other hand, since the gradient magnetic field in the imaging space changes due to the application of the additional current 1, in order to correct this, the additional current 2 is applied radially inward from the first coil with respect to the central axis in the static magnetic field direction. ing. As a result, the additional current 1 and the additional current 2 can be combined to cancel the magnetic field generated on the inner side surface of the concave arrangement space, reduce the eddy current generated there, and change the gradient magnetic field generated in the imaging space. Can not be.

図3は、本発明の実施例2に係る垂直磁場方式MRI装置の、傾斜磁場コイルの主コイル面を静磁場の発生する方向から見た図である。ただし、実施例1はコイルの形状がZ軸(静磁場の方向)に対して軸対称なZ軸方向傾斜磁場コイルの例であったが、実施例2は、X軸方向傾斜磁場コイルについての例であり、そのメインコイル面をX軸とY軸に囲まれた右上四半分の部分のみを示し、他は省略している。23aは付加電流1を流すためのコイル、24aは付加電流2を流すためのコイルである。また、13dは従来のメインコイルパターンであり、特許文献2の図9に示されたものである。また、横軸はX軸、縦軸はY軸である。   FIG. 3 is a diagram of the main coil surface of the gradient magnetic field coil as viewed from the direction in which the static magnetic field is generated in the vertical magnetic field MRI apparatus according to the second embodiment of the present invention. However, although Example 1 is an example of a Z-axis gradient magnetic field coil whose shape of the coil is axisymmetric with respect to the Z-axis (the direction of the static magnetic field), Example 2 relates to the X-axis gradient magnetic field coil. This is an example, and only the upper right quadrant of the main coil surface surrounded by the X and Y axes is shown, and the others are omitted. 23a is a coil for flowing additional current 1, and 24a is a coil for flowing additional current 2. Reference numeral 13d denotes a conventional main coil pattern, which is shown in FIG. The horizontal axis is the X axis, and the vertical axis is the Y axis.

本実施例によれば、従来のメインコイルとシールドコイルに加えて、先ず付加電流1がメインコイル面に加わっている。これによって、メインコイルとシールドコイルによって凹状配置スペースの内側の側面に発生する磁場を打ち消すことができる。一方、付加電流1の印加によって撮像空間に傾斜磁場に歪みが生じてしまうため、これを補正するために付加電流2を静磁場方向の中心軸に対して第1のコイルより半径方向内側に加え、更に付加電流1と2は端25aで繋がれ、合わせてループが描かれるようになっている。これにより、付加電流1と付加電流2を合わせて、凹状配置スペースの内側の側面に発生する磁場も打ち消し、そこに発生する渦電流も低減でき、また撮像空間に発生する傾斜磁場に変化が生じないようにすることができる。   According to this embodiment, in addition to the conventional main coil and shield coil, the additional current 1 is first applied to the main coil surface. Thereby, the magnetic field generated on the inner side surface of the concave arrangement space by the main coil and the shield coil can be canceled. On the other hand, since the gradient magnetic field is distorted in the imaging space by the application of the additional current 1, the additional current 2 is applied radially inward from the first coil with respect to the central axis in the static magnetic field direction in order to correct this. Further, the additional currents 1 and 2 are connected at the end 25a, and a loop is drawn together. As a result, the additional current 1 and the additional current 2 can be combined to cancel the magnetic field generated on the inner side surface of the concave arrangement space, reduce the eddy current generated there, and change the gradient magnetic field generated in the imaging space. Can not be.

実施例1及び2のように、付加電流1、及び2を加えることにより、凹状配置スペースの内側の側面に発生する磁場を低減することが可能となるが、付加電流1、及び2によって、メインコイル面の端部の電流密度は高くなり、それによる発熱も大きくなる。ゆえに、付加電流1、及び2の電流量はなるべく小さい方が望ましく、そのためには付加電流1はなるべく凹状配置スペースの内側の側面に近く、付加電流2及びメインコイルは凹状配置スペースの内側の側面から離して配置するのが良い。   As in the first and second embodiments, by adding the additional currents 1 and 2, it is possible to reduce the magnetic field generated on the inner side surface of the concave arrangement space. The current density at the end of the coil surface increases, and the heat generated thereby increases. Therefore, it is desirable that the amount of the additional currents 1 and 2 be as small as possible. For this purpose, the additional current 1 is as close to the inner side surface of the concave arrangement space as possible, and the additional current 2 and the main coil are the inner side surfaces of the concave arrangement space. It should be placed away from

図4は、本発明の実施例3に係る垂直磁場方式MRI装置の、静磁場発生源と傾斜磁場コイルの断面の一部である。ただし、実施例3では、実施例1,2においてメインコイル面の最外部が電流密度が高いことにより発熱してしまうことを緩和するために、付加電流1及び2を流すコイルを、メインコイル面とシールドコイル面のいずれとも異なる第3層に設けている。また、実施例3は実施例1と同じコイルの形状がZ軸(静磁場の方向)に対して軸対称なZ軸方向傾斜磁場コイルの例であり、図4の断面を静磁場の発生する方向から見ると、同心円状にコイルが並んでいる。   FIG. 4 is a part of a cross section of a static magnetic field generation source and a gradient magnetic field coil of a vertical magnetic field MRI apparatus according to Embodiment 3 of the present invention. However, in Example 3, in order to alleviate heat generation due to the high current density in the outermost part of the main coil surface in Examples 1 and 2, the coil that passes additional currents 1 and 2 is connected to the main coil surface. And a third layer different from the shield coil surface. Further, the third embodiment is an example of a Z-axis direction gradient magnetic field coil in which the same coil shape as that of the first embodiment is axisymmetric with respect to the Z-axis (the direction of the static magnetic field). When viewed from the direction, the coils are arranged concentrically.

4aは凹状配置スペースの側面、4bは凹状配置スペースの底面、13aは傾斜磁場コイルのシールドコイル面、13bは傾斜磁場コイルのメインコイル面、21で示した丸印の中央に点を付加した記号は紙面の裏側から手前に電流が流れるコイル、22で示した丸印に×印を付加した記号は紙面の手前から裏側へ流れるコイル、23bで示した2列のコイルは付加電流1を流すためのコイル、24bで示した2列のコイルは付加電流2を流すためのコイルである。また、13cは、従来のシールドコイルパターン、13dは従来のメインコイルパターンであり、それぞれ特許文献2の図9に示されたものである。   4a is a side surface of the concave arrangement space, 4b is a bottom surface of the concave arrangement space, 13a is a shield coil surface of the gradient magnetic field coil, 13b is a main coil surface of the gradient magnetic field coil, and a symbol with a dot added at the center of the circle indicated by 21 Is the coil through which current flows from the back side of the paper, the symbol with a cross added to the circle indicated by 22 is the coil that flows from the front side of the paper to the back side, and the two rows of coils shown by 23b carry additional current 1 The two rows of coils indicated by 24b are coils for passing the additional current 2. Reference numeral 13c denotes a conventional shield coil pattern, and reference numeral 13d denotes a conventional main coil pattern, which are shown in FIG. 9 of Patent Document 2, respectively.

本実施例では、実施例1や2と同様に、付加電流1と付加電流2を組み合わせることにより、凹状配置スペースの内側の側面に発生する磁場も打ち消し、そこに発生する渦電流も低減できるとともに、また撮像空間に発生する傾斜磁場に変化が生じないようにすることができる。更に、本実施例では、付加電流1及び2を流すコイルを、メインコイル面とシールドコイル面のいずれとも異なる第3層、望ましくはメインコイル面とシールドコイル面の間に設けているので、断面積の大きなコイルを付加電流1及び2を流すためのコイルとして使用でき、電流密度が高いことにより発熱してしまうことを緩和することが可能である。   In the present embodiment, similarly to the first and second embodiments, by combining the additional current 1 and the additional current 2, the magnetic field generated on the inner side surface of the concave arrangement space can be canceled, and the eddy current generated there can be reduced. In addition, it is possible to prevent the gradient magnetic field generated in the imaging space from changing. Further, in the present embodiment, the coil through which the additional currents 1 and 2 flow is provided in a third layer different from both the main coil surface and the shield coil surface, preferably between the main coil surface and the shield coil surface. A coil with a large area can be used as a coil for flowing the additional currents 1 and 2, and it is possible to mitigate heat generation due to high current density.

図5は、本発明の実施例4に係る垂直磁場方式MRI装置の、傾斜磁場コイルを静磁場の方向から見た図である。ただし、図5は図を見やすくするためコイルパターンの一部分のみを示しており、実施例4は、X軸方向傾斜磁場コイルについての例である。また、13cは従来のメインコイルパターン、13dは従来のシールドコイルパターンであり、それぞれ特許文献2の図9に示されたものである。23cは付加電流1を流すためのコイル、24cは付加電流2を流すためのコイルである。実施例4では、付加電流1を流すためのコイル23c及び付加電流2を流すためのコイル24cは、メインコイルパターンの面とシールドコイルパターンの面の中間の第3層に配置されていて、更に付加電流1と2は端25cで繋がれ、合わせてループが描かれるようになっている。   FIG. 5 is a diagram of the gradient magnetic field coil as viewed from the direction of the static magnetic field in the vertical magnetic field MRI apparatus according to Embodiment 4 of the present invention. However, FIG. 5 shows only a part of the coil pattern to make the drawing easier to see, and Example 4 is an example of the X-axis direction gradient magnetic field coil. Reference numeral 13c denotes a conventional main coil pattern, and reference numeral 13d denotes a conventional shield coil pattern, which are shown in FIG. 9 of Patent Document 2, respectively. 23c is a coil for flowing additional current 1, and 24c is a coil for flowing additional current 2. In Example 4, the coil 23c for flowing the additional current 1 and the coil 24c for flowing the additional current 2 are arranged in the third layer between the surface of the main coil pattern and the surface of the shield coil pattern, and The additional currents 1 and 2 are connected at the end 25c, and a loop is drawn together.

本実施例では、実施例1〜3と同様に、付加電流1と付加電流2を組み合わせることにより、凹状配置スペースの内側の側面に発生する磁場も打ち消し、そこに発生する渦電流も低減できるとともに、また撮像空間に発生する傾斜磁場に変化が生じないようにすることができる。更に、本実施例では、付加電流1及び2を流すコイルを、メインコイル面とシールドコイル面のいずれとも異なる第3層、望ましくはメインコイル面とシールドコイル面の間に設けているので、断面積の大きなコイルを付加電流1及び2を流すためのコイルとして使用でき、電流密度が高いことにより発熱してしまうことを緩和することが可能である。   In the present embodiment, as in the first to third embodiments, by combining the additional current 1 and the additional current 2, the magnetic field generated on the inner side surface of the concave arrangement space can be canceled, and the eddy current generated there can be reduced. In addition, it is possible to prevent the gradient magnetic field generated in the imaging space from changing. Further, in the present embodiment, the coil through which the additional currents 1 and 2 flow is provided in a third layer different from both the main coil surface and the shield coil surface, preferably between the main coil surface and the shield coil surface. A coil with a large area can be used as a coil for flowing the additional currents 1 and 2, and it is possible to mitigate heat generation due to high current density.

上記実施例1〜4では、漏洩磁場を抑制する構造を持つ傾斜磁場コイルについて述べてきたが、上記構造にてコイルパターンを作成したとしても、設計通りの機械的精度で製作されていないと、それに起因して十分な磁場精度が出ない。これを解決した傾斜磁場コイルの実施例5を、図6から図8を用い説明する。   In the above Examples 1 to 4, the gradient magnetic field coil having a structure that suppresses the leakage magnetic field has been described, but even if the coil pattern is created with the above structure, it is not manufactured with mechanical accuracy as designed, As a result, sufficient magnetic field accuracy cannot be obtained. Embodiment 5 of the gradient coil that solves this will be described with reference to FIGS.

図6および図7に示す実施例5では、各コイル間をプリプレグで挟んで積層し、さらに厚さ方向に位置合わせ部材を積層している。ここで、プリプレグとは、樹脂、添加物、及び繊維状又は繊条状強化材の混合物のことを言い、図6は実施例1および2のように、付加電流1および付加電流2を流すためのコイルがメインコイル面と同一の面に配置されている場合、図7は実施例3および4のように、付加電流1および付加電流2を流すためのコイルがメインコイル面とシールドコイル面のいずれとも異なる第3層に設けている場合を示す。   In Example 5 shown in FIGS. 6 and 7, the coils are stacked with prepregs interposed therebetween, and alignment members are stacked in the thickness direction. Here, the prepreg means a mixture of a resin, an additive, and a fibrous or filamentary reinforcing material, and FIG. 6 is used to pass the additional current 1 and the additional current 2 as in Examples 1 and 2. 7 is arranged on the same surface as the main coil surface, as shown in FIG. 7 in the third and fourth embodiments, the coils for passing the additional current 1 and the additional current 2 are arranged between the main coil surface and the shield coil surface. The case where it is provided in a third layer different from both is shown.

x,y,zのメインコイル、x,y,zのシールドコイルをそれぞれ、もしくはx,y,zのメインコイル、x,y,zのシールドコイルをまとめて積層したうえで、厚さ方向に加圧し、加熱してプリプレグを硬化させると、プリプレグの厚さを一定にすることができ、かつ各コイル間を剛的に構成することができる。およそ4MPaの圧力にて120℃から150℃で加熱すると、硬化時のプリプレグの厚さは1層辺り数μm程度の精度で管理でき、かつエポキシ系の接着剤の本来の接着力を安定して得ることができる。   Stack the x, y, and z main coils and x, y, and z shield coils, or the x, y, and z main coils and the x, y, and z shield coils together in the thickness direction. When pressure is applied and heated to cure the prepreg, the thickness of the prepreg can be made constant and the coils can be configured rigidly. When heated from 120 ° C to 150 ° C at a pressure of about 4MPa, the thickness of the prepreg during curing can be managed with an accuracy of about several micrometers per layer, and the original adhesive strength of epoxy adhesives can be stabilized. Can be obtained.

プリプレグとしては、あらゆる物が使用可能であるが、ポリエチレンテレフタラート等の絶縁フィルムの両面にエポキシ樹脂を半硬化状態で塗った物や、ガラスクロスにエポキシ樹脂を染み込ませたもの、及びそれらの組み合わせを用いれば、コイル間の絶縁を良くするために有効である。   Any material can be used as the prepreg, but an insulating film such as polyethylene terephthalate is coated with an epoxy resin in a semi-cured state, a glass cloth is impregnated with an epoxy resin, and combinations thereof. Is effective for improving the insulation between the coils.

より詳細な断面図を図7に簡単に示す。図7によれば、積層構造を串刺しにするような横方向位置合わせ部材を用いている。このことにより、横方向の位置ずれを抑える事が可能となる。図7に図示した構造によって、各方向の位置合わせが出来ているので、さらに構造部材を加えたり、隙間をエポキシ樹脂等の樹脂やセメント等の固化材料でモールドすることにより、傾斜磁場コイルを構造的に完成させることができる。ただし、樹脂よりも安価な骨材を入れた上でモールドすれば、高価な樹脂の使用量を減らすことができ、安価に製作することができる。   A more detailed cross-sectional view is simply shown in FIG. According to FIG. 7, a lateral alignment member that uses a stacked structure as a skewer is used. This makes it possible to suppress lateral displacement. The structure shown in FIG. 7 allows alignment in each direction, so the gradient magnetic field coil can be structured by adding additional structural members or molding the gap with a resin such as epoxy resin or a solidified material such as cement. Can be completed. However, if molding is performed after putting an aggregate cheaper than the resin, the amount of expensive resin used can be reduced, and the resin can be manufactured at a low cost.

また、構造部材と位置合わせ部材を機能的に分けることにより、構造部材は寸法精度が
不要なので、安価な既存の部材を加工せずに簡便に用いる事が可能であるし、位置合わせ部材は構造を維持する為の強度が要らないので、加工性の面から柔らかな材質を選択することが可能である。
In addition, by separating the structural member and the alignment member functionally, the structural member does not require dimensional accuracy, so it is possible to easily use an inexpensive existing member without processing it. Therefore, it is possible to select a soft material from the viewpoint of workability.

本発明は上記実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々に変形して実施できる。例えば、実施例1と3ではZ軸方向傾斜磁場コイルの例を示し、実施例2と4ではX軸方向傾斜磁場コイルの例を示したが、Y軸方向傾斜磁場コイルに本発明を適用可能なのは勿論である。また、傾斜磁場コイルのみならず、発生する静磁場および傾斜磁場を補正するためのシムコイルにも本発明は適用可能である。例えばシムコイルにおいても、傾斜磁場コイルと同様に、メインとシールドコイルを備えて構成する場合があるので実施例1から4のような構成は適用できる。また、垂直磁場方式のMRI装置においては、平板状のものを何層か積み重ねてシムコイルを構成する場合があるので実施例5のような構成はシムコイルにも適用できる。また、実施例5において、プリプレグを傾斜磁場コイルの固定のために用いたが、プリプレグを傾斜磁場コイルあるいはシムコイルの固定のために用いることは、コイル収容容器の上下対向面の凹状配置スペースがある垂直磁場方式のMRI装置のみならず、コイル収容容器の上下対向面が平らな垂直磁場方式のMRI装置にも適用可能であることは勿論であり、例えば、従来の傾斜磁場コイルの様な付加電流を流すコイルが全くないような場合にもプレプレグを適用することができ、その例を図9に示す。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. For example, in Examples 1 and 3, an example of a Z-axis gradient magnetic field coil is shown, and in Examples 2 and 4, an example of an X-axis gradient magnetic field coil is shown. However, the present invention can be applied to a Y-axis gradient magnetic field coil. Of course. Further, the present invention can be applied not only to gradient magnetic field coils but also to shim coils for correcting generated static magnetic fields and gradient magnetic fields. For example, since the shim coil may be configured to include a main and a shield coil as in the gradient magnetic field coil, the configurations as in the first to fourth embodiments are applicable. In addition, in a vertical magnetic field type MRI apparatus, a shim coil may be formed by stacking several layers of flat plates, and therefore the configuration as in the fifth embodiment can be applied to a shim coil. Further, in Example 5, the prepreg was used for fixing the gradient magnetic field coil, but using the prepreg for fixing the gradient magnetic field coil or shim coil has a concave arrangement space on the upper and lower surfaces of the coil container. Of course, it can be applied not only to the vertical magnetic field type MRI apparatus but also to the vertical magnetic field type MRI apparatus in which the upper and lower surfaces of the coil container are flat. A prepreg can be applied even when there is no coil to flow through, and an example is shown in FIG.

一般的なMRI装置のシステム構成。General MRI system configuration. 本発明の実施例1に係る垂直磁場方式MRI装置の、静磁場発生源と傾斜磁場コイルの断面の一部。FIG. 2 is a part of a cross section of a static magnetic field generation source and a gradient magnetic field coil of the vertical magnetic field type MRI apparatus according to Embodiment 1 of the present invention. 本発明の実施例2に係る垂直磁場方式MRI装置の、傾斜磁場コイルの主コイル面を静磁場の発生する方向から見た図。The figure which looked at the main coil surface of the gradient magnetic field coil from the direction which a static magnetic field generate | occur | produces of the perpendicular magnetic field type | mold MRI apparatus which concerns on Example 2 of this invention. 本発明の実施例3に係る垂直磁場方式MRI装置の、静磁場発生源と傾斜磁場コイルの断面の一部。A part of cross section of a static magnetic field generation source and a gradient magnetic field coil of a vertical magnetic field type MRI apparatus according to Embodiment 3 of the present invention. 本発明の実施例4に係る垂直磁場方式MRI装置の、傾斜磁場コイルを静磁場の発生する方向から見た図。The figure which looked at the gradient magnetic field coil from the direction which a static magnetic field generate | occur | produces of the perpendicular magnetic field type | system | group MRI apparatus which concerns on Example 4 of this invention. 本発明の実施例5に係る傾斜磁場コイルをプリプレグを用い組み立てている様子を示す図で、b付加電流1および付加電流2を流すためのコイルがメインコイル面と同一の面に配置されている場合に対応する図。FIG. 6 is a diagram showing a state where a gradient magnetic field coil according to Example 5 of the present invention is assembled using a prepreg, and a coil for passing b additional current 1 and additional current 2 is arranged on the same plane as the main coil surface. The figure corresponding to a case. 本発明の実施例5に係る傾斜磁場コイルをプリプレグを用い組み立てている様子を示す図で、b付加電流1および付加電流2を流すためのコイルがメインコイル面シールドコイル面でもない第3層に配置されている場合に対応する図。FIG. 6 is a diagram showing a state where a gradient magnetic field coil according to Example 5 of the present invention is assembled using a prepreg, and a coil for flowing b additional current 1 and additional current 2 is formed on a third layer that is not a main coil surface shield coil surface. The figure corresponding to the case where it has arrange | positioned. 本発明の実施例5に係る傾斜磁場コイルのより詳細な断面図。FIG. 7 is a more detailed cross-sectional view of a gradient coil according to Example 5 of the present invention. 付加電流を流すコイルが全くないような場合にプレプレグを適用した例を示す図。The figure which shows the example which applied the prepreg when there is no coil which sends additional current at all.

符号の説明Explanation of symbols

4 静磁場発生用磁石
4a 凹状配置スペースの側面
4b 凹状配置スペースの底面
13a 傾斜磁場コイルのシールドコイル面
13b 傾斜磁場コイルのメインコイル面
13c 従来のシールドコイルパターン
13d 従来のメインコイルパターン
21 紙面の裏側から手前へ電流が流れるコイル
22 紙面の手前から裏面へ電流が流れるコイル
23 付加電流1を流すためのコイル
24 付加電流2を流すためのコイル
4 Magnet for generating static magnetic field 4a Side surface of concave arrangement space 4b Bottom surface of concave arrangement space 13a Shield coil surface of gradient magnetic field coil 13b Main coil surface of gradient magnetic field coil 13c Conventional shield coil pattern 13d Conventional main coil pattern 21 Back side of paper A coil through which current flows from the front to the front 22 A coil through which current flows from the front to the back of the paper 23 A coil for flowing the additional current 1 24 A coil for flowing the additional current 2

Claims (4)

撮影空間を間に挟んで対向して配置され、対向面側に凹状配置スペースがそれぞれ設けられた一対の静磁場発生源を有し、前記対向方向に静磁場を発生する静磁場発生手段と、前記凹状配置スペース内に配置されて前記撮影空間に磁場を発生させる主コイルと、前記主コイルと前記静磁場発生源の間に配置されて該主コイルが前記撮影空間と反対側に発生する磁場をキャンセルするためのシールドコイルとを有した磁場発生コイルを備えた磁気共鳴イメージング装置において、前記磁場発生コイルは、前記主コイルと前記シールドコイルが前記凹状配置スペースの前記静磁場方向と平行な側面に発生する磁場を抑制する第1のコイルを前記凹状配置スペース内に備えたことを特徴とする磁気共鳴イメージング装置。   A pair of static magnetic field generation sources disposed opposite to each other with a photographing space interposed therebetween, each provided with a concave arrangement space on the opposite surface side, and a static magnetic field generation means for generating a static magnetic field in the facing direction; A main coil that is disposed in the concave arrangement space and generates a magnetic field in the imaging space, and a magnetic field that is disposed between the main coil and the static magnetic field generation source and is generated on the opposite side of the imaging space. In the magnetic resonance imaging apparatus comprising a magnetic field generating coil having a shield coil for canceling the magnetic field, the magnetic field generating coil is a side surface in which the main coil and the shield coil are parallel to the static magnetic field direction of the concave arrangement space. A magnetic resonance imaging apparatus comprising a first coil for suppressing a magnetic field generated in the concave arrangement space. 前記第1のコイルによって前記撮影空間に生じる磁場の変化を補正する第2のコイルを前記凹状配置スペース内で、静磁場方向の中心軸に対して半径方向に第1のコイルより内側に備えたことを特徴とする請求項1記載の磁気共鳴イメージング装置。   A second coil for correcting a change in the magnetic field generated in the imaging space by the first coil is provided inside the first coil in the radial direction with respect to the central axis in the static magnetic field direction in the concave arrangement space. The magnetic resonance imaging apparatus according to claim 1. 前記第1と第2のコイルを配置する静磁場方向の位置は、前記主コイルを配置する平面の位置と同一であることを特徴とする請求項2に記載の磁気共鳴イメージング装置。   3. The magnetic resonance imaging apparatus according to claim 2, wherein a position in a static magnetic field direction in which the first and second coils are arranged is the same as a position in a plane in which the main coil is arranged. 前記第1と第2のコイルを配置する静磁場方向の位置は、前記主コイルを配置する平面の位置と、前記シールドコイルを配置する平面の位置の間であることを特徴とする請求項2に記載の磁気共鳴イメージング装置。   3. The position in the static magnetic field direction where the first and second coils are arranged is between a position of a plane where the main coil is arranged and a position of a plane where the shield coil is arranged. The magnetic resonance imaging apparatus described in 1.
JP2004072037A 2004-03-15 2004-03-15 Magnetic resonance imaging system Expired - Fee Related JP4393234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004072037A JP4393234B2 (en) 2004-03-15 2004-03-15 Magnetic resonance imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004072037A JP4393234B2 (en) 2004-03-15 2004-03-15 Magnetic resonance imaging system

Publications (3)

Publication Number Publication Date
JP2005253820A true JP2005253820A (en) 2005-09-22
JP2005253820A5 JP2005253820A5 (en) 2007-05-10
JP4393234B2 JP4393234B2 (en) 2010-01-06

Family

ID=35080122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004072037A Expired - Fee Related JP4393234B2 (en) 2004-03-15 2004-03-15 Magnetic resonance imaging system

Country Status (1)

Country Link
JP (1) JP4393234B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008079650A (en) * 2006-09-26 2008-04-10 Hitachi Medical Corp Gradient magnetic field coil and nuclear magnetic resonance tomographic apparatus using the same
JP2009172072A (en) * 2008-01-23 2009-08-06 Hitachi Medical Corp Magnetic resonance imaging apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008079650A (en) * 2006-09-26 2008-04-10 Hitachi Medical Corp Gradient magnetic field coil and nuclear magnetic resonance tomographic apparatus using the same
JP2009172072A (en) * 2008-01-23 2009-08-06 Hitachi Medical Corp Magnetic resonance imaging apparatus

Also Published As

Publication number Publication date
JP4393234B2 (en) 2010-01-06

Similar Documents

Publication Publication Date Title
US11397233B2 (en) Ferromagnetic augmentation for magnetic resonance imaging
US7852629B2 (en) Suspension device for a superconducting magnet heat shield enclosure
JP5427604B2 (en) Open magnetic resonance imaging system
US20110050229A1 (en) Method and apparatus for compensating insufficient homogeneity of the basic magnetic field in a magnetic resonance apparatus
JP4897493B2 (en) Magnetic resonance imaging system
JP2007111187A (en) Rf coil and magnetic resonance imaging system
JP2003010147A (en) External magnetic field measuring device, static magnetic field correcting method, external magnetic field measuring device and mri system
JP4648722B2 (en) Magnetic resonance imaging system
KR101424552B1 (en) Magnetic resonance imaging device and manufacturing method thereof
JP4393234B2 (en) Magnetic resonance imaging system
JP2002017708A (en) Magnetic resonance imaging device
JP4201810B2 (en) RF coil for MRI apparatus and MRI apparatus
JP2002102205A (en) Magnetic resonace imaging apparatus
JP2016096829A (en) Magnetic resonance imaging device
JP2018023407A (en) Magnetic resonance imaging device
WO2016199640A1 (en) Open magnetic resonance imaging apparatus
JP4392978B2 (en) Gradient magnetic field coil and magnetic resonance imaging apparatus using the same
JP4852053B2 (en) Magnetic resonance imaging system
JP2015053982A (en) Magnetic resonance imaging apparatus
JP7076339B2 (en) Magnetic resonance imaging device
JP2005288044A (en) Magnetic resonance imaging device
JP2008125895A (en) Magnetic resonance imaging apparatus
JP4566024B2 (en) Magnetic resonance imaging system
JPH0866379A (en) Mri magnet and manufacture thereof
JP4509625B2 (en) Magnetic resonance imaging apparatus and static magnetic field forming apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070314

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees