JP2005253756A - Manufacturing method of model tooth for dentistry training - Google Patents
Manufacturing method of model tooth for dentistry training Download PDFInfo
- Publication number
- JP2005253756A JP2005253756A JP2004070762A JP2004070762A JP2005253756A JP 2005253756 A JP2005253756 A JP 2005253756A JP 2004070762 A JP2004070762 A JP 2004070762A JP 2004070762 A JP2004070762 A JP 2004070762A JP 2005253756 A JP2005253756 A JP 2005253756A
- Authority
- JP
- Japan
- Prior art keywords
- shape
- tooth
- model tooth
- cavity
- dental
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Instructional Devices (AREA)
- Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
- Dental Prosthetics (AREA)
Abstract
Description
本発明は歯科実習用模型歯の製造方法に関する。 The present invention relates to a method for manufacturing a dental tooth for dental training.
従来より歯冠部に支台形態または窩洞形態を有する歯科実習用模型は、歯科大学や歯科技工士学校等の教育分野で歯冠修復実習、補綴物製作実習などに広く用いられている。一般的に支台形態または窩洞形態は、症例毎に形状を変える必要性があるため、同一部位であっても数種類〜数十種類もの多種の類似商品が必要となっている。また、歯科実習教育は全ての学生に対し平等である必要があるため、供給される歯科実習用模型歯の形状は、極力個体差のない同一形状を持ったものでなければならない。
このような多種類の歯科実習用模型歯を効率よく製造する方法としては、たとえば下記の非特許文献に記載されているものがあり、ここに開示されている手法は、液状の熱硬化性レジンを軟性ゴム型に注型し、支台歯形態や窩洞形成形態を製造するものである。
As a method for efficiently producing such various types of dental training model teeth, for example, there are those described in the following non-patent literature, and the method disclosed here is a liquid thermosetting resin. Is cast into a soft rubber mold to produce an abutment tooth form and a cavity forming form.
しかしながら、前記非特許文献1に開示される手法は、1つの基となる模型歯を一旦ゴム型に反転した後、このゴム型を用いて複数回の成形物を成形するため、複数個の同一成形物を製造するには多くの時間を要し、また、軟性ゴム型を使用するため、成形回数を重ねるごとにゴム型が変形し、金型を使用した場合のように高いレベルの寸法精度を有する成形物を得ることができないという問題点があった。
However, the technique disclosed in Non-Patent
また、歯科医療分野で患者各人の歯科補綴物を精度よく製造する手法としては、例えば下記の特許文献1〜4に開示されているものが挙げられ、これら特許文献に開示されている手法はいずれも、患者の歯牙形状データから切削加工により歯科用補綴物を製造するものである。
しかしながら、前記特許文献1〜4に開示されている歯科用補綴物の製造方法は、患者各人の形状データを基に、補綴用の魂状材料から患者の歯形にあった歯科補綴物を削りだす手法であるが、塊状の材料から補綴物を切削加工するために、所望の形状を得るには原料の無駄が多く、また加工時間も長く、工業製品の製造としては生産性に優れたものではなかった。
However, in the method for manufacturing a dental prosthesis disclosed in
本発明は、少量多品種にわたる歯科実習用模型歯を、短時間かつ高いレベルの寸法精度で製造する方法を提供するものである。 The present invention provides a method for producing a small number of various types of dental training model teeth in a short time with a high level of dimensional accuracy.
すなわち、本発明の歯科実習用模型歯の製造方法は、歯冠部に支台形態または窩洞形態が人工的に模して形成された歯科実習用模型歯を製造するための方法であって、当該方法が、人工的に模して形成された歯冠部および歯根部からなる人工模型歯を成形する工程(工程A)、所望の支台形態または窩洞形態に関する形状データを作成する工程(工程B)、前記形状データを、支台形態または窩洞形態を形成するための切削データに変換する工程(工程C)、前記切削データを用いて前記人工模型歯の歯冠部に支台形態または窩洞形態を切削造形する工程(工程D)からなることを特徴とする。
また、本発明は、上述の特徴を有した歯科実習用模型歯の製造方法において、前記形状データが、人工的に模して形成された歯冠部および歯根部からなる前記人工模型歯に所望の支台形態または窩洞形態を造形により付与した後、当該支台形態または窩洞形態を3次元形状測定器を用いて3次元形状計測することにより取得されたものであることを特徴とするものである。
さらには、本発明は、上述の特徴を有した歯科実習用模型歯の製造方法において、前記形状データが、人工的に模して形成された歯冠部および歯根部からなる前記人工模型歯の形状データに、所望の支台形態または窩洞形態に関する形状データをデータ上にて付与することにより取得されたものであることを特徴とするものである。
本発明では、人工的に模して形成された歯冠部および歯根部からなる人工模型歯は、金型を用いた射出成形法により成形されたものであることが好ましい。
That is, the method for producing a dental practice model tooth of the present invention is a method for producing a dental practice model tooth formed by artificially imitating an abutment form or a cavity form in a crown part, The method includes a step (step A) of forming an artificial model tooth composed of a crown portion and a root portion artificially imitated, and a step of creating shape data relating to a desired abutment shape or cavity shape (step) B), a step of converting the shape data into cutting data for forming an abutment shape or a cavity shape (step C), and using the cutting data, the abutment shape or the cavity in the crown portion of the artificial model tooth It consists of the process (process D) which carries out the cutting shaping of the form, It is characterized by the above-mentioned.
According to the present invention, in the method for manufacturing a dental training model tooth having the above-described features, the shape data is desired for the artificial model tooth including a crown part and a root part artificially formed. After the abutment form or cavity shape is provided by modeling, the abutment form or cavity shape is obtained by measuring the three-dimensional shape using a three-dimensional shape measuring instrument. is there.
Furthermore, the present invention provides a dental training model tooth manufacturing method having the above-described features, wherein the shape data of the artificial model tooth comprising a crown portion and a root portion artificially imitated. It is obtained by adding shape data relating to a desired abutment form or cavity form to the shape data.
In the present invention, it is preferable that the artificial model tooth including the crown portion and the root portion artificially imitated is formed by an injection molding method using a mold.
本発明の製造方法を用いることによって、少量多品種にわたる歯科実習用模型歯を、短時間かつ高いレベルの寸法精度で製造することができる。 By using the manufacturing method of the present invention, a small number of various kinds of dental training model teeth can be manufactured in a short time with a high level of dimensional accuracy.
図1に一例を示すように、本発明の製造方法により得られる歯科実習用模型歯は、人工的に模して形成された歯冠部(1)と歯根部(2)からなり、少なくとも歯冠部には所望の支台形態(4)あるいは窩洞形態(3)を有している。図1(a)は、健全な形態が形成された歯科実習様模型歯の概略形状の一例を示す図であり、図1(b)は、本発明の製造方法により得られる窩洞形態を形成した歯科実習用模型歯の概略形状の一例を示す図であり、図1(c)は、支台形態を形成した歯科実習用模型歯の概略形状の一例を示す図である。
歯冠部(1)に設けられた支台形態(4)は、補綴物の装着に適した形態となっており、歯の部位や歯の大きさ、あるいは補綴物の種類などにより適宜決定される。また、歯冠部(1)に設けられた窩洞形態(3)も、歯の部位や歯の大きさ、症例などにより適宜決定される。この窩洞形態(3)は、歯冠部(1)のみならず、歯根部(2)にも設けられていてもよく、またその数も1つに限定されない。
As shown in FIG. 1, a dental training model tooth obtained by the manufacturing method of the present invention includes a crown portion (1) and a root portion (2) that are formed artificially, and at least teeth. The crown has the desired abutment configuration (4) or cavity configuration (3). Fig.1 (a) is a figure which shows an example of the schematic shape of the dental practice-like model tooth in which the healthy form was formed, FIG.1 (b) formed the cavity shape obtained by the manufacturing method of this invention. It is a figure which shows an example of schematic shape of the dental training model tooth, FIG.1 (c) is a figure which shows an example of schematic shape of the dental training model tooth which formed the abutment form.
The abutment form (4) provided in the crown part (1) is a form suitable for mounting of the prosthesis, and is appropriately determined depending on the site of the tooth, the size of the tooth, or the type of the prosthesis. The Moreover, the cavity shape (3) provided in the crown part (1) is also appropriately determined according to the site of the tooth, the size of the tooth, the case, and the like. The cavity shape (3) may be provided not only in the crown portion (1) but also in the root portion (2), and the number thereof is not limited to one.
支台形態や窩洞形態が造形される人工模型歯は、その歯冠部および歯根部が同一の材質で成形されていても良いし、複数の材質から成形されていても良く、また、人間の天然歯の様に、表面にエナメル質層を有し、内部に象牙質層を有する多層構造となっていても良い。この場合、歯冠部を形成するエナメル質層と象牙質層は異なった材質から形成されていても良く、同一材質であってもよいが、より天然歯に近い歯科教育実習が行える点で、エナメル層の材質は象牙質の材質よりも硬質の材質を用いることが望ましい。尚、歯冠部(1)には、その表面に中心線平均あらさをRa0.1マイクロメートル以上10マイクロメートル未満、望ましくは0.15マイクロメートル以上5マイクロメートル程度の微細な凹凸が設けられ、レーザー光線を反射できるようになっていても良い。 Artificial model teeth for which an abutment form and a cavity form are formed, the crown part and root part may be formed of the same material, may be formed of a plurality of materials, Like natural teeth, it may have a multilayer structure having an enamel layer on the surface and a dentin layer inside. In this case, the enamel layer and the dentin layer that form the crown part may be formed of different materials, may be the same material, but can perform dental education practice closer to natural teeth, The material of the enamel layer is preferably a harder material than the dentin material. The crown (1) is provided with fine irregularities on the surface thereof with a centerline average roughness Ra of 0.1 micrometer or more and less than 10 micrometers, preferably about 0.15 micrometers or more and 5 micrometers, The laser beam may be reflected.
また、表面部分にウ蝕や沈着による変色部分を設けることで、より現実の天然歯に近い模型歯としても良いし、歯石を模した付着物を設けても良い。更には、エナメル質層と象牙質層の界面に、ウ蝕を模した変色部を設けることも可能であるし、象牙質内部に歯髄腔を形成しても良い。
歯科実習用模型歯の歯根部は、単層構造であっても多層構造であっても良く、より天然歯に近い複数の歯根を有する構造、あるいは、天然歯を単純化した単根構造であっても良い。又、内部に天然歯を模した歯髄腔や根管が形成されていてもよい。
これらの歯科実習用模型歯は、乳歯や永久歯など人間の生体に合わせた複数の部位を用意することが望ましく、例えば永久歯であれば上下顎合わせて32部位の人工模型歯を作製し、所定の顎模型に設置出来るようになっていても良い。
Further, by providing a discolored portion due to caries or deposition on the surface portion, it may be a model tooth that is closer to an actual natural tooth, or a deposit imitating tartar may be provided. Furthermore, it is possible to provide a discolored portion simulating caries at the interface between the enamel layer and the dentin layer, and a pulp cavity may be formed inside the dentin.
The root part of the dental model tooth for dental training may be a single layer structure or a multilayer structure, and has a structure having a plurality of roots closer to natural teeth, or a single root structure obtained by simplifying natural teeth. May be. Further, a pulp cavity or a root canal that simulates a natural tooth may be formed inside.
These dental training model teeth are preferably prepared with a plurality of parts suitable for a human living body such as milk teeth and permanent teeth. For example, in the case of permanent teeth, 32 artificial model teeth are prepared by combining upper and lower jaws, It may be designed to be installed on the jaw model.
このような歯科実習用模型歯の原料としては、一般的に公知の射出成形または圧縮成形が可能なものを用いることができ、例えば、セラミックス等の磁器あるいはアクリル、ポリスチレン、ポリカーボネイト、ポリエステル等の熱可塑性やメラミン、ユリア、不飽和ポリエステル、フェノール、エポキシ等の熱硬化性等の合成樹脂材料、トリメチロールプロパントリメタクリレートやジメタクリロキシエチルトリメチルヘキサメチレンジウレタン等の重合性モノマー材料、さらには、これらの主原料にガラス繊維、カーボン繊維、パルプ、合成樹脂繊維等の有機、無機の各種強化繊維、タルク、シリカ、マイカ、炭酸カルシウム、硫酸バリウム、アルミナ、ガラス粉末等の各種充填材、顔料や染料等の着色剤、あるいは耐候剤や帯電防止剤等の各種添加剤を添加したものを用いることができる。
ここで、より天然歯に近い切削感を有する模型歯を得るには、歯冠部のエナメル質層に上記した重合性モノマー材料にシリカなどの無機材料を充填した硬質材料を用い、象牙質層や歯根部の材料として、アクリルやメラミン、エポキシ等を主原料とする比較的硬度の低い材料を用いることが望ましい。
これらの材料の色調は特に限定されないが、所望の色調に適宜調色される。調色の手法は特に限定されず、公知の各種顔料や染料を適宜組み合わせ、希望とする色調に調整すれば良い。
As a raw material for such dental training model teeth, generally known injection moldable or compression moldable materials can be used, for example, ceramics or other porcelain or heat such as acrylic, polystyrene, polycarbonate, polyester or the like. Synthetic resin materials such as plasticity, thermosetting such as melamine, urea, unsaturated polyester, phenol and epoxy, polymerizable monomer materials such as trimethylolpropane trimethacrylate and dimethacryloxyethyltrimethylhexamethylenediurethane, and more Main raw materials for glass fiber, carbon fiber, pulp, synthetic resin fiber and other organic and inorganic reinforcing fibers, talc, silica, mica, calcium carbonate, barium sulfate, alumina, glass powder and other fillers, pigments and dyes Colorants such as weathering agents and antistatic agents It can be used those obtained by adding various additives.
Here, in order to obtain a model tooth having a cutting feeling closer to that of a natural tooth, a hard material in which an inorganic material such as silica is filled in the polymerizable monomer material described above is used for the enamel layer of the crown portion, and the dentin layer It is desirable to use a material having a relatively low hardness, mainly made of acrylic, melamine, epoxy, or the like, as a material for the tooth root.
The color tone of these materials is not particularly limited, but is appropriately adjusted to a desired color tone. The method of toning is not particularly limited, and may be adjusted to a desired color tone by appropriately combining various known pigments and dyes.
ついで、本発明の歯科実習用模型歯の製造方法について図面を用いて説明するが、本発明は、これに限定されるものではない。
まず、図2(a)に示すような人工的に模して形成された歯冠部および歯根部からなる人工模型歯の形状を有する金型内に、原料を充填固化し、所望の人工模型歯を成形する(工程A)。ここで金型とは金属を素材とする成形型のみでなく、試作型に使用されるような充填材入りの硬質樹脂型も含んでいる。
成形の手法としては、一般的に公知の射出成形や圧縮成形といった金型内に材料を充填固化する方法を用いることができる。例えば、人工模型歯の素材に熱硬化性樹脂材料を用いる場合、一般的に知られる射出成形法により人工模型歯を成形することが望ましく、図2(a)に示すような金型(5)を用い、加熱軟化させた樹脂材料(6)を樹脂材料の硬化温度以上に保たれた金型内に充填し(図2(b))、加圧下で加熱・固化した後、金型を開放して成形物を取り出す(図2(c))ことで、寸法精度の高い人工模型歯(7)を効率よく成形できる(図2(d))。
Next, the method for producing the dental training model tooth of the present invention will be described with reference to the drawings, but the present invention is not limited to this.
First, a raw material is filled and solidified in a mold having the shape of an artificial model tooth composed of a crown portion and a root portion artificially imitated as shown in FIG. A tooth is formed (step A). Here, the mold includes not only a mold made of metal but also a hard resin mold containing a filler used for a prototype mold.
As a molding method, a generally known method of filling and solidifying a material in a mold such as injection molding or compression molding can be used. For example, when a thermosetting resin material is used as the material for the artificial model tooth, it is desirable to mold the artificial model tooth by a generally known injection molding method. A mold (5) as shown in FIG. The resin material (6) softened by heating is filled into a mold maintained at a temperature higher than the curing temperature of the resin material (FIG. 2 (b)), heated and solidified under pressure, and then the mold is opened. Then, by taking out the molded product (FIG. 2C), the artificial model tooth (7) having high dimensional accuracy can be efficiently molded (FIG. 2D).
また、粉末状のアルミナとワックスなどの樹脂成分とを混合した材料を上記のような金型内に充填固化し、取り出した成形物を加熱することによりワックスを蒸散させ、その後、高温で焼き固める手法を用いることで、寸法精度の高いセラミックス製の人工模型歯を成形することも可能である。
さらには、光硬化型樹脂による3次元造型機や各種材料積層型3次元造型機を用い、3次元形状データを基に成形する手法を用いることも可能であるが、これらの手法は、成形に比較的長時間を要するため、射出成形や圧縮成形で成形不可能な形状の人工模型歯成形に応用する場合に用いるのが一般的である。
In addition, a material in which powdery alumina and a resin component such as wax are mixed is filled and solidified in the mold as described above, and the taken-out molded product is heated to evaporate the wax, and then baked and hardened at a high temperature. By using this method, it is also possible to mold an artificial model tooth made of ceramics with high dimensional accuracy.
Furthermore, it is possible to use a method of molding based on three-dimensional shape data using a three-dimensional molding machine using a photo-curing resin or a three-dimensional molding machine of various materials, but these techniques are used for molding. Since it takes a relatively long time, it is generally used when it is applied to artificial model tooth molding that cannot be molded by injection molding or compression molding.
ついで、所望の支台形態または窩洞形態を有する形状データを作成する(工程B)。形状データを作成する手法としては、あらかじめ造形した支台形態または窩洞形態を3次元形状計測器により形状計測して得ることも可能であり、また、3次元CADなどを用いて所望の形状を作成することも可能である。
前者の場合、上記した支台形態または窩洞形態を切削造形する基となる人工模型歯を用い、この人工模型歯に所望の支台形態または窩洞形態を造形したものを3次元形状計測することで、容易に支台形態または窩洞形態を含む形状データを取得することができる。形状データを取得する方法としては、一般的に公知の図3に示すような接触式3次元形状測定器(9)やレーザー光やハロゲン光を用いた非接触3次元形状測定器などを用いることができる。
また後者の場合、3次元CADなどを用いて、所望とする支台形態または窩洞形態の形状をデータ上にて作成することも可能であるが、より忠実な形状データが得られるという点で、支台形態または窩洞形態を切削造形する基となる人工模型歯の歯冠部分を含む必要な部分を形状計測し、得られた形状データをCAD上で支台形態または窩洞形態を含む形状に変更し、所望とする形状データを取得することが望ましい。
Next, shape data having a desired abutment shape or cavity shape is created (step B). As a method of creating shape data, it is also possible to obtain a pre-shaped abutment shape or cavity shape by measuring the shape with a three-dimensional shape measuring instrument, and creating a desired shape using a three-dimensional CAD or the like It is also possible to do.
In the former case, by using an artificial model tooth that is a basis for cutting and shaping the above-described abutment form or cavity shape, three-dimensional shape measurement is performed on the artificial model tooth obtained by shaping a desired abutment form or cavity shape. The shape data including the abutment form or the cavity form can be easily obtained. As a method for acquiring shape data, a generally known contact type three-dimensional shape measuring device (9) as shown in FIG. 3 or a non-contact three-dimensional shape measuring device using laser light or halogen light is used. Can do.
In the latter case, it is possible to create a desired abutment shape or cavity shape on the data using a three-dimensional CAD or the like, but more faithful shape data can be obtained. Measure the shape of the necessary part including the crown part of the artificial model tooth that is the basis for cutting and shaping the abutment form or cavity shape, and change the obtained shape data to a shape including the abutment form or cavity shape on CAD It is desirable to obtain desired shape data.
次に、取得された支台形態または窩洞形態の形状データをCAM上で切削加工用のNCデータに変換する(工程C)。切削時間を最小限にするために、取得された支台形態部あるいは窩洞形態部のみの切削NCデータを作成することが望ましい。また、作成されたNCデータを複数の位置に複製することも可能である。 Next, the acquired shape data of the abutment shape or the cavity shape is converted into NC data for cutting on the CAM (step C). In order to minimize the cutting time, it is desirable to create cutting NC data of only the acquired abutment shape portion or cavity shape portion. It is also possible to duplicate the created NC data at a plurality of positions.
次に、上記切削NCデータを用いて人工模型歯より支台形態または窩洞形態を切削造形する(工程D)。切削造形を行う手法としては、図4に示すような刃物(11)を使って切削を行う縦型や横型のNC切削装置、マシニングセンタなどNCデータを基に、切削造形を行う加工機の所定の位置に基となる人工模型歯を固定し、NCデータを基に切削造形を行う。ここで、切削造形とは、回転刃物による切削加工や回転砥石による研削加工あるいは超音波振動による研削加工に加え、レーザー切削加工なども含んでいる。
切削造形を行う機械への人工模型歯の取り付け方法は特には限定されず、例えば、人工模型歯の底部や歯根部をねじ(10)により固定する方法、歯根部を挟持する方法、歯根部を真空吸着する方法、歯根部に金属を固定し磁力により固定する方法などから適宜選択される。
切削造形を行う人工模型歯の数は、1個であっても複数個であっても良いが、より高い生産性が得られる点で、複数個の人工模型歯を切削造型機に固定するのが望ましい。複数個の人工模型歯は全てが同一部位であっても良いし、あるいは異なった部位でもよく、生産性を考慮して適宜決定される。
Next, an abutment form or a cavity form is cut from the artificial model tooth using the cutting NC data (step D). As a technique for performing the cutting modeling, a predetermined type of a processing machine that performs the cutting modeling based on NC data such as a vertical or horizontal NC cutting apparatus or a machining center that performs cutting using a cutter (11) as shown in FIG. An artificial model tooth based on the position is fixed, and cutting modeling is performed based on NC data. Here, the cutting modeling includes laser cutting and the like in addition to cutting with a rotary blade, grinding with a rotating grindstone, or grinding with ultrasonic vibration.
The method of attaching the artificial model tooth to the machine for cutting and shaping is not particularly limited. For example, a method of fixing the bottom and root of the artificial model tooth with a screw (10), a method of clamping the root, and a root The method is suitably selected from a method of vacuum adsorption, a method of fixing a metal to a tooth root portion, and fixing by a magnetic force.
The number of artificial model teeth to be cut and shaped may be one or plural, but a plurality of artificial model teeth are fixed to the cutting molding machine in terms of obtaining higher productivity. Is desirable. The plurality of artificial model teeth may all be the same site or may be different sites, and are appropriately determined in consideration of productivity.
人工模型歯を固定する方向も、切削造形を行う軸方向に垂直あるいは水平に近い方向であっても良いし、自由な角度を持っていても良く、所望とする支台形態または窩洞形態により適宜決定される。また、人工模型歯の切削造型機への固定に際し、冶具(8)を用いたり、さらには、切削造型機に、冶具(8)をある一定の軸を中心として回転できるような回転機構を設けた冶具固定部(12)を設けることで、人工模型歯の固定方向を可変とすることができ、より生産性を高めることができる。
例えば、図5に示すような冶具固定部(12)を切削造型機に設け、この冶具固定部(12)に、人工模型歯(7)の歯根部(2)の少なくとも一部を挿入固定できるような冶具(8)を、冶具回転装置(13)により回転可能にして取り付ける。そして、図5に示されるようにして、この冶具(8)に複数の人工模型歯(7)を固定した後、切削刃物(11)を用いて人工模型歯(7)を一本ずつ、あるいは複数本を同時に切削する。図5に例示されるような冶具を用いることで、限られた範囲で多くの歯科実習用模型歯を製造することができる。さらには、本発明では、図6の(a)〜(c)に示されるようにして、人工模型歯固定冶具(8)に人工模型歯(7)を固定し、治具(8)を順次回転させることによって人工模型歯(7)をさまざまな方向から切削しても良く、この場合には、予め決められた切削データに基づいて人口模型歯(7)の歯冠部及び/又は歯根部の切削が効率良く行うことができ、所望の支台形態または窩洞形態を比較的短時間のうちに形成させることができるため、非常に生産性の高いものとなる。
The direction in which the artificial model teeth are fixed may be perpendicular or horizontal to the axial direction in which cutting and shaping are performed, or may have a free angle, depending on the desired abutment form or cavity form. It is determined. In addition, the jig (8) is used for fixing the artificial model teeth to the cutting molding machine, and further, the cutting molding machine is provided with a rotation mechanism that can rotate the jig (8) about a certain axis. By providing the jig fixing portion (12), the fixing direction of the artificial model teeth can be made variable, and the productivity can be further increased.
For example, a jig fixing part (12) as shown in FIG. 5 is provided in a cutting molding machine, and at least a part of the root part (2) of the artificial model tooth (7) can be inserted and fixed to the jig fixing part (12). Such a jig (8) is attached by being rotated by a jig rotating device (13). Then, as shown in FIG. 5, after fixing a plurality of artificial model teeth (7) to this jig (8), one artificial model tooth (7) is used one by one using a cutting blade (11), or Cut multiple pieces at the same time. By using a jig as illustrated in FIG. 5, many dental training model teeth can be manufactured within a limited range. Further, in the present invention, as shown in FIGS. 6A to 6C, the artificial model tooth (7) is fixed to the artificial model tooth fixing jig (8), and the jig (8) is sequentially attached. The artificial model tooth (7) may be cut from various directions by rotating, and in this case, the crown part and / or root part of the artificial model tooth (7) based on predetermined cutting data. Therefore, the desired abutment shape or cavity shape can be formed in a relatively short time, so that the productivity is extremely high.
切削造形に用いる切削刃物(11)は、所望とする支台形態あるいは窩洞形態により適宜選択されるが、例えば、一般的なエンドミル、ボールエンドミル、テーパーエンドミル、ラジアスエンドミル等の金属加工用の刃物や、アルミナ粉末などを樹脂材料で固めた砥石、あるいは歯科用のカーバイトバーやダイアモンド砥粒を金属棒に電着したダイアモンドバーなどを使用することができる。本発明では、切削刃物の大きさや形状も支台形態あるいは窩洞形態に応じて適宜選択される。 The cutting blade (11) used for cutting shaping is appropriately selected depending on the desired abutment shape or cavity shape. For example, a cutting tool for metal processing such as a general end mill, ball end mill, taper end mill, radius end mill, etc. In addition, a grindstone in which alumina powder or the like is hardened with a resin material, or a dental carbide bar or diamond bar in which diamond abrasive grains are electrodeposited on a metal rod can be used. In the present invention, the size and shape of the cutting blade are also appropriately selected according to the abutment form or the cavity form.
このような本発明の製造方法を用いることによって、少量多品種にわたる支台形態あるいは窩洞形態を有する歯科実習用模型歯を、短時間かつ高いレベルの寸法精度で製造することができる。
尚、本発明の製法を用いて得られた歯科実習用模型歯は、そのままで商品として供給されても良いし、さらに、歯冠部表面や支台形態部あるいは窩洞形態部を鉛筆やインク等で着色したり、レーザによりその表面に焦げ跡を付けるなどの後加工を施した後に供給されても良い。また、歯科実習用模型歯の歯根部に製品番号や、製造番号などをインクジェットマーカーやレーザーマーカー等により印字することも可能である。
By using such a manufacturing method of the present invention, a dental training model tooth having an abutment shape or a cavity shape with a wide variety of small quantities can be manufactured in a short time and with a high level of dimensional accuracy.
The dental training model tooth obtained using the manufacturing method of the present invention may be supplied as a product as it is, and the crown surface, the abutment form part or the cavity form part may be replaced with a pencil, ink, etc. It may be supplied after being subjected to post-processing such as coloring with a laser or marking the surface with a laser. It is also possible to print the product number, manufacturing number, etc. on the root of the dental training model tooth using an inkjet marker, a laser marker, or the like.
〔実施例1〕
臼歯の歯冠部および歯根部の形状が形成され、約165℃に加熱された金型を、型締め力75Tの熱硬化樹脂射出成形機(松田製作所社製)に取り付けた。その後、約90℃に加熱軟化させた乳白色のメラミン樹脂を金型内に充填し、約50秒間加熱硬化させた後、金型を開放してメラミン樹脂製人工模型歯を取り出した。
ついで、前記メラミン樹脂製人工模型歯の咬合面に支台形態を、歯科技工用のリューターおよびカーバイトバーを用いて形成した。
この、支台形態を形成した人工模型歯を、歯根部を勘合させる方式の冶具に取り付け、その人工模型歯の支台形態を含むように、ほぼ歯軸に一致する方向から、接触式3次元形状計測器(アドバンス社製)にて形状計測を行った。
[Example 1]
The shape of the molar crown and root of the molar was formed, and the mold heated to about 165 ° C. was attached to a thermosetting resin injection molding machine (manufactured by Matsuda Seisakusho) with a clamping force of 75T. Thereafter, milky white melamine resin softened by heating at about 90 ° C. was filled in the mold and cured by heating for about 50 seconds, and then the mold was opened and the artificial model tooth made of melamine resin was taken out.
Next, an abutment form was formed on the occlusal surface of the artificial model tooth made of melamine resin using a dental technician's router and a carbide bar.
This artificial model tooth that forms the abutment form is attached to a jig of a method for fitting the root part, and a contact type three-dimensional view from a direction substantially coinciding with the tooth axis so as to include the abutment form of the artificial model tooth. Shape measurement was performed with a shape measuring instrument (manufactured by Advance).
得られた形状データをCAD(デルキャム社製)にてポリゴンデータに加工し、このデータを基にCAM(デルキャム社製)上で加工軌跡およびNCデータを計算した。このとき、加工軌跡の計算は、計測された窩洞を切削するのに必要最小限の領域とした。また、刃物は直径0.6mm、有効長6mmのボールエンドミル(日進工具社製)を用い、切削条件は、回転数30000rpm、送り速度1200mm/minとした。
ついで、前に計測に使った冶具に新たな人工模型歯を固定し、この冶具を縦型のマシニングセンタ(DIGMA社製)の所定の位置に取り付けた。CAMにより計算されたNCデータをマシニングセンタに取り込み、計測軸と同方向に切削加工を行った。この、人工模型歯の取り付けから切削までを数回繰り返し、支台形態を有する歯科実習用模型歯を製造した。形状データ取得に要した時間は約30分であり、形状データからNCデータを計算するのに要した時間は約60分であった。また、1本当たりの切削に要した時間は約1分であった。
このようにして得られた歯科実習用模型歯の最大長を計測した結果、基となる支台形態を形成した人工模型歯との差は0.03mm以内であり、また、製造した歯科実習用模型歯間のばらつきは0.02mm以内となり、その寸法精度は良好であった。
The obtained shape data was processed into polygon data by CAD (manufactured by Delcam), and the processing locus and NC data were calculated on CAM (manufactured by Delcam) based on this data. At this time, the calculation of the machining trajectory was set to a minimum area necessary for cutting the measured cavity. A blade end mill (manufactured by Nisshin Tool Co., Ltd.) having a diameter of 0.6 mm and an effective length of 6 mm was used as the blade, and the cutting conditions were a rotation speed of 30000 rpm and a feed rate of 1200 mm / min.
Next, a new artificial model tooth was fixed to a jig used for measurement before, and this jig was attached to a predetermined position of a vertical machining center (manufactured by DIGMA). NC data calculated by the CAM was taken into the machining center and cut in the same direction as the measurement axis. This artificial model tooth attachment to cutting was repeated several times to produce a dental training model tooth having an abutment form. The time required for obtaining the shape data was about 30 minutes, and the time required for calculating the NC data from the shape data was about 60 minutes. Further, the time required for cutting per one piece was about 1 minute.
As a result of measuring the maximum length of the dental training model tooth thus obtained, the difference from the artificial model tooth forming the base abutment form is within 0.03 mm, and the manufactured dental training model tooth The variation between the model teeth was within 0.02 mm, and the dimensional accuracy was good.
〔実施例2〕
臼歯の歯冠部および歯根部の形状が形成され、約165℃に加熱された金型を、型締め力75Tの熱硬化樹脂射出成形機(松田製作所社製)に取り付けた。その後、約90℃に加熱軟化させた乳白色のメラミン樹脂を金型内に充填し、約50秒間加熱硬化させた後、金型を開放してメラミン樹脂製人工模型歯を取り出した。
ついで、前記メラミン樹脂製人工模型歯を、歯根部を勘合させる方式の冶具に取り付け、その咬合面をほぼ歯軸に一致する方向から、接触式3次元形状計測器(アドバンス社製)にて形状計測を行った。
[Example 2]
The shape of the molar crown and root of the molar was formed, and the mold heated to about 165 ° C. was attached to a thermosetting resin injection molding machine (manufactured by Matsuda Seisakusho) with a clamping force of 75T. Thereafter, milky white melamine resin softened by heating at about 90 ° C. was filled in the mold and cured by heating for about 50 seconds, and then the mold was opened and the artificial model tooth made of melamine resin was taken out.
Next, the artificial model tooth made of melamine resin is attached to a jig that engages the root of the tooth, and the occlusal surface is shaped with a contact type three-dimensional shape measuring instrument (manufactured by Advance Co., Ltd.) in a direction that substantially coincides with the tooth axis. Measurement was performed.
得られた形状データをCAD(デルキャム社製)にてポリゴンデータに加工し、この咬合面データを変形して、データ上で咬合面に支台形態を形成した。この支台形態を形成したデータを基にCAM(デルキャム社製)上で加工軌跡およびNCデータを計算した。このとき、加工軌跡の計算は、計測された窩洞を切削するのに必要最小限の領域とした。また、刃物は直径0.6mm、有効長6mmのボールエンドミル(日進工具社製)を用い、切削条件は、回転数30000rpm、送り速度1200mm/minとした。
ついで、前に計測に使った冶具に新たな人工模型歯を固定し、この冶具を縦型のマシニングセンタ(DIGMA社製)の所定の位置に取り付けた。CAMにより計算されたNCデータをマシニングセンタに取り込み、計測軸と同方向に切削加工を行った。この、人工模型歯の取り付けから切削までを数回繰り返し、支台形態を有する歯科実習用模型歯を製造した。形状データからNCデータを計算するのに要した時間は約60分であった。また、1本当たりの切削に要した時間は約1分であった。
このようにして得られた歯科実習用模型歯の最大長を計測した結果、基となる形状データとの差は0.02mm以内であり、また、製造した歯科実習用模型歯間のばらつきは0.02mm以内となり、その寸法精度は良好であった。
The obtained shape data was processed into polygon data by CAD (manufactured by Delcam), the occlusal surface data was deformed, and an abutment form was formed on the occlusal surface on the data. The machining trajectory and NC data were calculated on CAM (manufactured by Delcam) based on the data forming this abutment form. At this time, the calculation of the machining trajectory was set to a minimum area necessary for cutting the measured cavity. A blade end mill (manufactured by Nisshin Tool Co., Ltd.) having a diameter of 0.6 mm and an effective length of 6 mm was used as the blade, and the cutting conditions were a rotation speed of 30000 rpm and a feed rate of 1200 mm / min.
Next, a new artificial model tooth was fixed to a jig used for measurement before, and this jig was attached to a predetermined position of a vertical machining center (manufactured by DIGMA). NC data calculated by the CAM was taken into the machining center and cut in the same direction as the measurement axis. This artificial model tooth attachment to cutting was repeated several times to produce a dental training model tooth having an abutment form. The time required to calculate the NC data from the shape data was about 60 minutes. Further, the time required for cutting per piece was about 1 minute.
As a result of measuring the maximum length of the dental training model tooth thus obtained, the difference from the shape data as a basis is within 0.02 mm, and there is no variation between the manufactured dental training model teeth. It was within .02 mm, and the dimensional accuracy was good.
〔比較例〕
実施例1で用いた支台形態を形成した人工模型歯の歯根部底面を、φ50mmの平板のほぼ中央部に固定し、市販のガムテープを用いて、φ50mmの平板外周に枠を形成させた。次いで、人工模型歯が完全に埋没されるまで、2液性常温硬化型シリコン樹脂(付加重合タイプ)を注型し、真空チャンバー内で真空脱泡を行ったものを常温にて自然硬化させた。自然硬化が完了した後、60℃に保たれたオーブン内で、シリコン樹脂を完全硬化させた。シリコン樹脂が完全硬化した後、基となる支台形態が形成された人工模型歯を脱型した。空洞が形成されたシリコン樹脂型の上下を反転させ、シリコン樹脂内に形成された空洞にエポキシ樹脂を注型した。エポキシ樹脂の真空脱泡を行った後、エポキシ樹脂を自然硬化させた。自然硬化が完了した後、60℃に保たれたオーブン内で、エポキシ樹脂を完全硬化させた。エポキシ樹脂が完全硬化した後、シリコン樹脂内から支台形態が形成された歯科実習用模型歯を取り出し、180番の紙やすりにより歯根部底面を整えた。
このエポキシ樹脂の注型から歯根部底面の仕上げまでを数回繰り返し、支台形態を有する歯科実習用模型歯を製造した。シリコン樹脂型の作成に要した時間は、硬化時間を含めて約480分であった。また、1本当たりの注型に要した時間は、硬化時間を含めて約360分であった。
このようにして得られた歯科実習用模型歯の最大長を計測した結果、基となる支台形態を形成した人工模型歯との差は平均で0.1mm程度であり、また、製造した歯科実習用模型歯間のばらつきは最大0.2mmとなり、寸法精度に劣っていた。
[Comparative example]
The root part bottom surface of the artificial model tooth in which the abutment form used in Example 1 was formed was fixed to a substantially central part of a φ50 mm flat plate, and a frame was formed on the outer periphery of the φ50 mm flat plate using a commercially available gum tape. Next, until the artificial model teeth are completely buried, a two-component room-temperature-curing silicone resin (addition polymerization type) is poured, and the vacuum-defoamed material in the vacuum chamber is naturally cured at room temperature. . After the natural curing was completed, the silicone resin was completely cured in an oven maintained at 60 ° C. After the silicone resin was completely cured, the artificial model tooth on which the base abutment shape was formed was removed. The silicon resin mold in which the cavity was formed was turned upside down, and an epoxy resin was poured into the cavity formed in the silicon resin. After vacuum defoaming of the epoxy resin, the epoxy resin was naturally cured. After the natural curing was completed, the epoxy resin was completely cured in an oven maintained at 60 ° C. After the epoxy resin was completely cured, the dental training model tooth in which the abutment form was formed was taken out from the silicon resin, and the root of the root portion was prepared with a 180th sandpaper.
From the casting of the epoxy resin to the finishing of the bottom surface of the root portion was repeated several times, a dental training model tooth having an abutment form was manufactured. The time required for producing the silicon resin mold was about 480 minutes including the curing time. Moreover, the time required for casting per one piece was about 360 minutes including the curing time.
As a result of measuring the maximum length of the dental training model tooth thus obtained, the difference from the artificial model tooth forming the base abutment form is about 0.1 mm on average, and the manufactured dental The variation between the model teeth for training was 0.2 mm at the maximum, and the dimensional accuracy was inferior.
1:歯冠部
2:歯根部
3:窩洞形態
4:支台形態
5:人工模型歯成形用金型
6:人工模型歯材料
7:人工模型歯
8:人工模型歯固定冶具
9:3次元形状計測器
10:人工模型歯固定ねじ
11:切削刃物
12:冶具固定部
13:冶具回転装置
14:ランナー
1: crown part 2: tooth root part 3: cavity shape 4: abutment form 5: mold for artificial model tooth molding 6: artificial model tooth material 7: artificial model tooth 8: artificial model tooth fixing jig 9: three-dimensional shape Measuring instrument 10: Artificial model tooth fixing screw 11: Cutting blade 12: Jig fixing part 13: Jig rotating device 14: Runner
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004070762A JP4159494B2 (en) | 2004-03-12 | 2004-03-12 | Method for manufacturing dental teeth for dental practice |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004070762A JP4159494B2 (en) | 2004-03-12 | 2004-03-12 | Method for manufacturing dental teeth for dental practice |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005253756A true JP2005253756A (en) | 2005-09-22 |
JP4159494B2 JP4159494B2 (en) | 2008-10-01 |
Family
ID=35080067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004070762A Expired - Fee Related JP4159494B2 (en) | 2004-03-12 | 2004-03-12 | Method for manufacturing dental teeth for dental practice |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4159494B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007026414A1 (en) * | 2005-08-31 | 2007-03-08 | Nissin Dental Products Inc. | Method of fabricating tooth model for dental training |
EP2037430A1 (en) * | 2006-06-12 | 2009-03-18 | Kabushiki Kaisha Shofu | Tooth for jaw tooth model and method of producing the same |
JP2012078644A (en) * | 2010-10-04 | 2012-04-19 | Jsr Corp | Teeth model, teeth model block, and method for manufacturing the same |
EP2399545A3 (en) * | 2010-06-25 | 2012-09-26 | Kabushiki Kaisha Shofu | Machine for abrading artificial teeth |
WO2015074897A1 (en) * | 2013-11-19 | 2015-05-28 | Heraeus Kulzer Gmbh | Method and device for securing prefabricated prosthetic teeth |
WO2015155283A1 (en) * | 2014-04-11 | 2015-10-15 | Heraeus Kulzer Gmbh | Method for processing prefabricated prosthetic teeth |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101532645B1 (en) * | 2014-02-14 | 2015-06-30 | 주식회사 한일아이너스 | Dental model for x-ray imaging training and manufacturing method thereof |
CN105250044B (en) * | 2015-08-28 | 2017-01-25 | 浙江工业大学 | Three-dimensional orthodontic force dynamic measurement method and apparatus capable of simulating movement of teeth |
-
2004
- 2004-03-12 JP JP2004070762A patent/JP4159494B2/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007026414A1 (en) * | 2005-08-31 | 2007-03-08 | Nissin Dental Products Inc. | Method of fabricating tooth model for dental training |
EP2037430A1 (en) * | 2006-06-12 | 2009-03-18 | Kabushiki Kaisha Shofu | Tooth for jaw tooth model and method of producing the same |
EP2037430A4 (en) * | 2006-06-12 | 2011-04-13 | Shofu Kk | Tooth for jaw tooth model and method of producing the same |
US8425233B2 (en) | 2006-06-12 | 2013-04-23 | Kabushiki Kaisha Shofu | Tooth for jaw tooth model and method for producing the same |
EP2399545A3 (en) * | 2010-06-25 | 2012-09-26 | Kabushiki Kaisha Shofu | Machine for abrading artificial teeth |
US8682463B2 (en) | 2010-06-25 | 2014-03-25 | Kabushiki Kaisha Shofu | Denture grinding machine |
JP2012078644A (en) * | 2010-10-04 | 2012-04-19 | Jsr Corp | Teeth model, teeth model block, and method for manufacturing the same |
WO2015074897A1 (en) * | 2013-11-19 | 2015-05-28 | Heraeus Kulzer Gmbh | Method and device for securing prefabricated prosthetic teeth |
WO2015155283A1 (en) * | 2014-04-11 | 2015-10-15 | Heraeus Kulzer Gmbh | Method for processing prefabricated prosthetic teeth |
CN106163449A (en) * | 2014-04-11 | 2016-11-23 | 贺利氏古萨有限公司 | The processing method of prefabricated artificial tooth |
CN106163449B (en) * | 2014-04-11 | 2018-11-06 | 贺利氏古萨有限公司 | The processing method of prefabricated artificial tooth |
US10390914B2 (en) | 2014-04-11 | 2019-08-27 | Kulzer Gmbh | Method for processing prefabricated prosthetic teeth |
Also Published As
Publication number | Publication date |
---|---|
JP4159494B2 (en) | 2008-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10463456B2 (en) | Production of a dental prosthesis by printing prosthetic base onto prosthetic teeth | |
US6190171B1 (en) | Method and apparatus for tooth restoration | |
Park et al. | Comparison of prosthetic models produced by traditional and additive manufacturing methods | |
US10463455B2 (en) | Formed denture and method of making same | |
US9192456B2 (en) | Denture and method and apparatus of making same | |
US7384266B2 (en) | Method and apparatus for manufacturing and constructing a physical dental arch model | |
ES2243341T5 (en) | Procedure for manufacturing a ceramic dental prosthesis | |
JP5437263B2 (en) | Digitally painted dental articles | |
US8636513B2 (en) | Fabricating a base compatible with physical tooth models | |
JP6403802B2 (en) | Manufacturing method for denture base semi-finished products | |
Nakamura et al. | In vitro fitting accuracy of copy-milled alumina cores and all-ceramic crowns. | |
US20100119992A1 (en) | Artificial tooth | |
JPH09103438A (en) | Artificial tooth, and die to form artificial tooth | |
JP7209375B2 (en) | Method for manufacturing denture with denture, denture with denture, and apparatus for manufacturing denture with denture | |
US9610145B2 (en) | Precision-milled denture teeth and method and devices for making same | |
JP2017524466A (en) | Dental prosthesis for wear surface determination | |
CN104116569A (en) | Computer fabrication of dental prosthetic | |
JP4159494B2 (en) | Method for manufacturing dental teeth for dental practice | |
JP6817689B2 (en) | Dental Prosthesis Manufacturing Method and Polymerization Flask | |
US4403961A (en) | Method and apparatus for fabricating dental prosthetics | |
US10893921B2 (en) | Method of making a denture with nature bite and wear properties and denture | |
JP4566263B2 (en) | Method and material kit for manufacturing tooth replacement parts | |
JPH10305044A (en) | Manufacture of dental repair object using premold | |
JP2004344623A (en) | Automatic forming device for dental structure | |
Bammani et al. | Dental crown manufacturing using stereolithography method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061218 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20061218 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071005 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080603 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080618 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080715 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130725 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130725 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |