JP2005251914A - Method for processing semiconductor substrate - Google Patents

Method for processing semiconductor substrate Download PDF

Info

Publication number
JP2005251914A
JP2005251914A JP2004059005A JP2004059005A JP2005251914A JP 2005251914 A JP2005251914 A JP 2005251914A JP 2004059005 A JP2004059005 A JP 2004059005A JP 2004059005 A JP2004059005 A JP 2004059005A JP 2005251914 A JP2005251914 A JP 2005251914A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor substrate
compound semiconductor
compound
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004059005A
Other languages
Japanese (ja)
Other versions
JP4410582B2 (en
Inventor
Ryo Sakamoto
陵 坂本
Masatoshi Iwata
雅年 岩田
Junji Saito
淳史 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2004059005A priority Critical patent/JP4410582B2/en
Publication of JP2005251914A publication Critical patent/JP2005251914A/en
Application granted granted Critical
Publication of JP4410582B2 publication Critical patent/JP4410582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a deposit from adhering to the rear face of a substrate by a simple method, when a chemical semiconductor thin film is grown by an MOCVD method, and to prevent the occurrence of crosshatches. <P>SOLUTION: When the chemical semiconductor thin film is grown on the surface of the chemical semiconductor substrate by the MOCVD method, a compound having Si and O is coated on the rear face of the chemical semiconductor substrate prior to the growth. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は,化合物半導体基板上に,有機金属を用いた化学的気相成長法(MOCVD法)によって化合物半導体薄膜を成長するに際し,成長前の半導体基板を処理する方法に関する。   The present invention relates to a method for processing a semiconductor substrate before growth when a compound semiconductor thin film is grown on a compound semiconductor substrate by chemical vapor deposition (MOCVD) using an organic metal.

GaAs,InPなどの化合物半導体素子は,その高い駆動速度を利用して携帯電話を始めとする移動体通信機器に,また,広い波長域を持つ発光特性を利用して光通信機器及び表示装置に使用されている。これらの化合物半導体素子は,化合物単結晶基板(以下単に「基板」と言う)上に化合物半導体薄膜をエピタキシャル成長させて作成される。薄膜の作成方法としては有機金属を用いた化学的気相成長法(MOCVD法)が広く用いられている。通常,基板の片方の面(表面)のみにエピタキシャル層を成長させ,裏面にはエピタキシャル層を成長させないが,成長時に,基板と基板を支持する部品の隙間から薄膜の原料である有機金属を含んだガスが基板裏面にも供給され,熱分解によって分解した原料が堆積し付着する。そのため,基板裏面の状態が変化し,基板の熱吸収が不均一になり,基板の温度分布が不均一になる。特にGaAs基板上におけるAlGaInP層あるいはInP基板上におけるInGaAsP層の成長に代表される混晶系の成長においては,基板とエピタキシャル層の格子間距離が一致する原料組成範囲が狭い。そのため基板の温度分布の不均一により,基板の外周部において,基板とエピタキシャル層の格子間距離が一致する原料組成範囲を外れ,クロスハッチと呼ばれる欠陥が発生するという問題があった。クロスハッチの発生した領域に作成された半導体素子はその特性が劣化するため,半導体素子製造工程の歩留まりが低下してしまう。このため従来より,特許第3127616号公報,特開2003−22975号公報に示されるように,エピタキシャル層の成長速度や基板の昇温速度を制御する方策などが知られている。   Compound semiconductor devices such as GaAs and InP are used in mobile communication devices such as mobile phones by utilizing their high driving speeds, and in optical communication devices and display devices by utilizing light emission characteristics having a wide wavelength range. in use. These compound semiconductor elements are formed by epitaxially growing a compound semiconductor thin film on a compound single crystal substrate (hereinafter simply referred to as “substrate”). As a method for forming a thin film, a chemical vapor deposition method (MOCVD method) using an organic metal is widely used. Normally, an epitaxial layer is grown only on one surface (front surface) of the substrate and no epitaxial layer is grown on the back surface. However, the organic metal that is the raw material of the thin film is contained in the gap between the substrate and the components that support the substrate. The gas is also supplied to the back of the substrate, and the raw material decomposed by thermal decomposition accumulates and adheres. Therefore, the state of the back surface of the substrate changes, the heat absorption of the substrate becomes non-uniform, and the temperature distribution of the substrate becomes non-uniform. In particular, in the growth of mixed crystals represented by the growth of an AlGaInP layer on a GaAs substrate or an InGaAsP layer on an InP substrate, the raw material composition range in which the interstitial distance between the substrate and the epitaxial layer matches is narrow. For this reason, there is a problem that due to non-uniform temperature distribution of the substrate, a defect called cross-hatch occurs in the outer peripheral portion of the substrate, which deviates from the raw material composition range in which the interstitial distance between the substrate and the epitaxial layer matches. Since the characteristics of the semiconductor element formed in the region where the cross hatching occurs are deteriorated, the yield of the semiconductor element manufacturing process is lowered. For this reason, conventionally, as disclosed in Japanese Patent No. 3127616 and Japanese Patent Laid-Open No. 2003-22975, measures for controlling the growth rate of the epitaxial layer and the temperature increase rate of the substrate are known.

特許第3127616号公報Japanese Patent No. 3127616 特開2003−22975号公報JP 2003-22975 A

また,クロスハッチの発生防止のため,基板裏面側にキャリアガスであるHあるいはV族を含んだHガスを少量導入することによって,基板表面側への有機金属を含んだ原料ガスの侵入を防ぐ方法が採用されている。また,裏面を基板支持リングに密着させて基板裏面の空間を無くすことにより,原料ガスが基板裏面に侵入することを防ぐ方法が採用されている。また,基板支持リングと基板周縁部との隙間をなくし,有機金属を含んだ原料ガスが基板裏面に侵入することを防ぐ方法が採用されている。更に,スパッタ法,EB蒸着法,P−CVD法又はゾルゲル法により,基板の裏面に数10nmから数μmのSiNあるいはSiOからなる膜を成長させてを保護する方法が採用されている。 Further, cross-hatch for prevention of, by introducing small amounts of H 2 gas containing H 2 or the group V is a carrier gas to the back side of the substrate, penetration of the raw material gas containing an organic metal on the substrate surface side The method to prevent is adopted. In addition, a method is employed in which the source gas is prevented from entering the back surface of the substrate by bringing the back surface into close contact with the substrate support ring and eliminating the space on the back surface of the substrate. In addition, a method is employed in which a gap between the substrate support ring and the peripheral edge of the substrate is eliminated, and a raw material gas containing an organic metal is prevented from entering the back surface of the substrate. Further, a method is employed in which a film made of several tens of nm to several μm of SiN or SiO 2 is grown on the back surface of the substrate by a sputtering method, an EB vapor deposition method, a P-CVD method, or a sol-gel method.

しかしながら,基板裏面側にキャリアガスであるH等を導入した場合,そのガスが基板の表面側にも流れ込み,原料ガスの組成が変化し,エピタキシャル膜の成長速度が低下したり,面内の膜厚の均一性を悪くしてしまう。この問題を回避するために裏面側に供給したガスを基板の外周部で排気して,表面に流れ込まないようにする方法もあるが,一般的な量産用MOCVD装置では,エピタキシャル膜の面内均一性及びバッチ内の均一性を上げる目的で基板を自公転させているため,そのような排気ラインを設けるには基板回転機構そのものに配管を内蔵させる必要があり,困難である。また,裏面側に導入するガスの流量を,セットされている基板1枚毎に制御する機構を設ける必要がある。そのため装置の構造が非常に複雑になり,装置の価格が高くなってしまうだけでなく,装置のメンテナンス性も悪いためランニングコストも高くなってしまう。 However, when H 2 or the like, which is a carrier gas, is introduced on the back side of the substrate, the gas also flows into the front side of the substrate, the source gas composition changes, the growth rate of the epitaxial film decreases, The uniformity of the film thickness is deteriorated. In order to avoid this problem, there is a method in which the gas supplied to the back side is exhausted at the outer periphery of the substrate so that it does not flow into the surface. However, in a general mass production MOCVD apparatus, the epitaxial film is uniform in the plane. Since the substrate is rotated and revolved for the purpose of improving the performance and uniformity in the batch, it is difficult to provide such an exhaust line because it is necessary to incorporate a pipe in the substrate rotation mechanism itself. In addition, it is necessary to provide a mechanism for controlling the flow rate of the gas introduced to the back side for each set substrate. For this reason, the structure of the apparatus becomes very complicated, and not only the price of the apparatus increases, but also the running cost increases because the maintainability of the apparatus is poor.

また,基板裏面を平板に密着させるためには,両者の寸法精度を非常に高くする必要がある。通常,2インチ基板で,常温においても5μm以上の反りがあり,基板支持リングの材料として一般的に使用されるカーボン部品の寸法精度は10μm程度である。また,加熱中に基板がさらに反ることにより,基板支持リングとの隙間はさらに広がるので,基板裏面を基板支持リングに密着させた状態を維持することは難しい。また,基板と基板支持リングが接触している箇所と接触していない箇所で,基板の表面温度に差が生じ,エピタキシャル層の特性が不均一になってしまう。   In addition, in order to bring the back surface of the substrate into close contact with the flat plate, it is necessary to increase the dimensional accuracy of both. Usually, a 2-inch substrate has a warp of 5 μm or more even at room temperature, and the dimensional accuracy of a carbon component generally used as a material for a substrate support ring is about 10 μm. Further, since the substrate is further warped during heating, the gap with the substrate support ring is further widened, so that it is difficult to maintain the state where the back surface of the substrate is in close contact with the substrate support ring. In addition, the surface temperature of the substrate is different between the portion where the substrate and the substrate support ring are in contact with each other, and the characteristics of the epitaxial layer become non-uniform.

また,基板支持リングと基板との隙間をなくす場合も,同様に,寸法精度を高くしなくてはならず,隙間なく基板を支持しておくことが難しい。前記と同様に,加熱中における基板の反りによって隙間を生じ,そこから原料ガスが裏面側に侵入してしまう。   Similarly, when eliminating the gap between the substrate support ring and the substrate, the dimensional accuracy must be increased, and it is difficult to support the substrate without any gap. Similarly to the above, a gap is generated by the warping of the substrate during heating, and the source gas enters the back side from there.

更に,基板裏面をSiN等の膜で保護する方法は,堆積物の付着は抑制できるが,保護膜と基板の熱膨張率の差からエピタキシャル成長中に基板が著しく反ってしまい,基板の格子定数が変化し所望の組成のエピタキシャル膜の成長を阻害する。また,基板が加熱または冷却される時に生じる熱歪みにより,基板表面にスリップが発生してしまう。また,基板裏面に作成する保護膜は極力薄くする必要があり,好ましくは10nm以下の膜厚にする必要があるが,基板裏面に均一に10nm以下の薄膜を形成するためには非常に高度な製膜技術が必要であり,製膜装置も複雑な構造になり,量産用MOCVDと同等またはそれ以上に高価になってしまう。   Furthermore, the method of protecting the back surface of the substrate with a film such as SiN can suppress the adhesion of deposits, but due to the difference in thermal expansion coefficient between the protective film and the substrate, the substrate is warped significantly during epitaxial growth, and the lattice constant of the substrate is reduced. It changes and inhibits the growth of an epitaxial film having a desired composition. Also, slippage occurs on the substrate surface due to thermal distortion that occurs when the substrate is heated or cooled. In addition, the protective film formed on the back surface of the substrate needs to be as thin as possible, preferably 10 nm or less. However, in order to uniformly form a thin film of 10 nm or less on the back surface of the substrate, it is very advanced. Film forming technology is required, and the film forming apparatus has a complicated structure, which is as expensive as or higher than MOCVD for mass production.

従って,本発明の目的は,MOCVD法によって化合物半導体薄膜を成長するに際し,簡単な方法によって基板裏面への堆積物の付着を防ぎ,クロスハッチの発生防止を図ることにある。   Accordingly, an object of the present invention is to prevent deposits from adhering to the back surface of a substrate and to prevent occurrence of cross hatching by a simple method when growing a compound semiconductor thin film by MOCVD.

この目的を達成するために,化合物半導体基板の表面にMOCVD法によって化合物半導体薄膜を成長するに際し,成長前に,前記化合物半導体基板の裏面に,SiとOを有する化合物を塗布することを特徴とする,半導体基板の処理方法が提供される。   In order to achieve this object, when a compound semiconductor thin film is grown on the surface of a compound semiconductor substrate by MOCVD, a compound containing Si and O is applied to the back surface of the compound semiconductor substrate before the growth. A method for processing a semiconductor substrate is provided.

成長前に,化合物半導体基板の裏面に,例えば有機Si化合物などといったSiとOを有する化合物を予め塗布しておくことにより,化合物半導体基板の表面にMOCVD法を施す際に,基板の裏面に非常に薄いSiOの保護膜を形成することができる。その結果,原料ガスが基板の裏面に侵入しても,堆積物が付着しなくなり,基板の温度不均一を原因とするクロスハッチの発生を防止できる。 Before the growth, when a compound having Si and O, such as an organic Si compound, is applied to the back surface of the compound semiconductor substrate in advance, when the MOCVD method is applied to the surface of the compound semiconductor substrate, A thin SiO 2 protective film can be formed. As a result, even if the source gas penetrates into the back surface of the substrate, deposits do not adhere and the occurrence of cross hatching due to uneven temperature of the substrate can be prevented.

本発明にあっては,化合物半導体基板の表面にMOCVD法によって化合物半導体薄膜を成長するに際し,化合物半導体薄膜を成長させる前に,半導体薄膜を成長させる表面と反対側となる化合物半導体基板の裏面に,例えば有機Si化合物などといったSiとOを有する化合物を予め塗布しておく。ここで,化合物半導体基板は,例えばIII−V族化合物半導体基板であり,その具体例として,GaAs,InP,GaP,GaSb及びInAsのいずれかなどがあげられる。   In the present invention, when the compound semiconductor thin film is grown on the surface of the compound semiconductor substrate by MOCVD, before the compound semiconductor thin film is grown, the compound semiconductor substrate is formed on the back surface of the compound semiconductor substrate opposite to the surface on which the semiconductor thin film is grown. A compound containing Si and O, such as an organic Si compound, is applied in advance. Here, the compound semiconductor substrate is, for example, a group III-V compound semiconductor substrate, and specific examples thereof include GaAs, InP, GaP, GaSb, and InAs.

化合物半導体基板の裏面に塗布されるSiとOを有する化合物として,オルガノシロキサンもしくはオルガノシラザンなどといった有機Si化合物が例示される。これらは工業的に生産されており,半導体工業に適した純度の高い薬品として入手しやすい。   Organic Si compounds such as organosiloxane or organosilazane are exemplified as the compound having Si and O applied to the back surface of the compound semiconductor substrate. These are produced industrially and are easily available as high-purity chemicals suitable for the semiconductor industry.

また,このように化合物半導体基板の裏面に塗布されるSiとOを有する化合物の分子中におけるSi原子の数は,3〜12の範囲であることが好ましい。原子数が3未満では例えば有機Si化合物などといったSiとOを有する化合物の揮発性が高く,MOCVD法の昇温過程でそのほとんどが基板裏面から蒸発してしまい,化合物半導体薄膜を成長する過程において十分な厚みの保護膜を維持することが難しい。また,Siの原子数が12を超える有機Si化合物などは化学的安定性に乏しく,空気中の水分によって容易に加水分解してしまい,取り扱いが難しい。   Moreover, it is preferable that the number of Si atoms in the molecule | numerator of the compound which has Si and O apply | coated to the back surface of a compound semiconductor substrate in this way is the range of 3-12. When the number of atoms is less than 3, for example, organic Si compounds and other compounds having Si and O are highly volatile, and most of them evaporate from the back surface of the substrate during the MOCVD process, and in the process of growing a compound semiconductor thin film It is difficult to maintain a sufficiently thick protective film. In addition, organic Si compounds having Si atoms exceeding 12 have poor chemical stability and are easily hydrolyzed by moisture in the air, making them difficult to handle.

化合物半導体基板の裏面にSiとOを有する化合物を塗布する場合,例えば有機ケイ素化合物を有機溶剤に溶かし,その溶液を化合物半導体基板の裏面に塗布しても良い。その場合,溶液において,Siの含有量が,0.1m mol/リットル以上であることが望ましい。溶液中のSiの含有量が0.1m mol/リットル未満だと,MOCVD法の昇温過程でそのほとんどが基板裏面から蒸発してしまい,化合物半導体薄膜を成長する過程において十分な厚みの保護膜を維持することが難しい。なお,溶液中のSi濃度をあまり高くすると基板裏面に形成されるSiOの膜厚が厚くなり過ぎ,基板が加熱または冷却される時に生じる熱歪みにより,基板表面にスリップが発生してしまう。このような不具合を発生させないために,使用する化合物半導体基板やSiとOを有する化合物,有機Si化合物の物性,成長させる化合物半導体薄膜の組成,成長温度,MOCVD装置の条件などに基き,基板裏面に塗布する溶液中のSi濃度の上限を適宜定める。 When applying a compound containing Si and O to the back surface of the compound semiconductor substrate, for example, an organic silicon compound may be dissolved in an organic solvent, and the solution may be applied to the back surface of the compound semiconductor substrate. In that case, it is desirable that the Si content in the solution is 0.1 mmol / liter or more. If the Si content in the solution is less than 0.1 mmol / liter, most of it evaporates from the back surface of the substrate during the temperature rising process of the MOCVD method, and the protective film has a sufficient thickness in the process of growing the compound semiconductor thin film. Difficult to maintain. If the Si concentration in the solution is too high, the SiO 2 film formed on the back surface of the substrate becomes too thick, and slippage occurs on the substrate surface due to thermal distortion that occurs when the substrate is heated or cooled. In order to prevent such problems, the backside of the substrate is determined based on the compound semiconductor substrate used, the compound containing Si and O, the physical properties of the organic Si compound, the composition of the compound semiconductor thin film to be grown, the growth temperature, the conditions of the MOCVD apparatus, and the like. The upper limit of the Si concentration in the solution to be applied is determined as appropriate.

そして,裏面にSiとOを有する化合物を予め塗布した化合物半導体基板を,乾燥後,MOCVD装置にセットし,化合物半導体薄膜を成長させる温度まで化合物半導体基板を加熱する。この昇温過程において,基板裏面に塗布されたSiとOを有する化合物中に含まれているSiが,SiとOを有する化合物中もしくは基板裏面に形成された酸化膜中,周囲雰囲気中等に存在している酸素と反応し,基板裏面にSiOの極薄い保護膜を形成する。 Then, after drying the compound semiconductor substrate on which the compound containing Si and O is applied in advance on the back surface, the compound semiconductor substrate is set in an MOCVD apparatus and heated to a temperature at which the compound semiconductor thin film is grown. In this temperature rising process, Si contained in the compound containing Si and O applied to the back surface of the substrate exists in the compound containing Si and O or in the oxide film formed on the back surface of the substrate, in the ambient atmosphere, etc. It reacts with oxygen and forms a very thin protective film of SiO 2 on the back surface of the substrate.

その後,原料ガスを供給して化合物半導体基板の表面にMOCVD法によって化合物半導体薄膜をエピタキシャル成長させる。この場合,化合物半導体薄膜は,例えばIII−V族化合物半導体薄膜であり,(AlGa1−xIn1−yP(0≦x≦1,0≦y≦1),InGa1−xAs1−y(0≦x≦1,0≦y≦1)からなるものが例示される。 Thereafter, a source gas is supplied to epitaxially grow a compound semiconductor thin film on the surface of the compound semiconductor substrate by MOCVD. In this case, the compound semiconductor thin film is a semiconductor thin film for example a III-V group compound, (Al x Ga 1-x ) y In 1-y P (0 ≦ x ≦ 1,0 ≦ y ≦ 1), In x Ga Examples thereof include 1-x As y P 1-y (0 ≦ x ≦ 1, 0 ≦ y ≦ 1).

以下,本発明の実施例を,従来のものと比較して説明する。図1に示すように,実施例で使用したMOCVD装置1は,減圧可能なケーシング10の内部に形成された反応室11に,サセプタ12を配置している。サセプタ12の上面中央には回転支持軸13が取付けられ,この回転支持軸13を介してサセプタ12は,反応室11内部で回転駆動させられる。   Hereinafter, examples of the present invention will be described in comparison with conventional ones. As shown in FIG. 1, the MOCVD apparatus 1 used in the embodiment has a susceptor 12 disposed in a reaction chamber 11 formed inside a casing 10 that can be decompressed. A rotation support shaft 13 is attached to the center of the upper surface of the susceptor 12, and the susceptor 12 is driven to rotate inside the reaction chamber 11 via the rotation support shaft 13.

サセプタ12には,略円盤形状の化合物半導体基板(ウェハ)Wを支持する基板支持部15が複数箇所に設けてある。これら基板支持部15に,化合物半導体基板Wが表面(MOCVD法によって化合物半導体薄膜を成長させる面)を下に向けた姿勢で支持されている。機構の説明は省略するが,これら基板支持部15も,化合物半導体基板Wをそれぞれ回転駆動自在に支持している。   The susceptor 12 is provided with a plurality of substrate support portions 15 for supporting a substantially disc-shaped compound semiconductor substrate (wafer) W. The compound semiconductor substrate W is supported on these substrate support portions 15 with the surface (the surface on which the compound semiconductor thin film is grown by the MOCVD method) facing downward. Although the description of the mechanism is omitted, these substrate support portions 15 also support the compound semiconductor substrate W so as to be freely rotatable.

図2に示すように,基板支持部15は,均熱板16と基板支持リング17を上下に重ねて配置し,これら均熱板16と基板支持リング17の周りをリング形状のホルダ18で囲んだ構成を通している。この実施例では,二通りの構成の基板支持リング17a,17bを使用している。   As shown in FIG. 2, the substrate support unit 15 includes a heat equalizing plate 16 and a substrate support ring 17 that are stacked one above the other, and surrounds the heat equalizing plate 16 and the substrate support ring 17 with a ring-shaped holder 18. Through the composition. In this embodiment, substrate support rings 17a and 17b having two configurations are used.

一方の支持リング17aは,図3に示すように,互いに間隔をあけて配置された3つの爪20の上に化合物半導体基板Wの周縁部を載せて支持する構成である。他方の支持リング17bは,図4に示すように,化合物半導体基板Wの周縁部に連続して接触するように配置されたリング形状の爪21の上に化合物半導体基板Wの周縁部を載せて支持する構成である。   As shown in FIG. 3, the one support ring 17a is configured to support the peripheral portion of the compound semiconductor substrate W on the three claws 20 arranged at intervals. As shown in FIG. 4, the other support ring 17 b is configured such that the peripheral portion of the compound semiconductor substrate W is placed on the ring-shaped claw 21 disposed so as to continuously contact the peripheral portion of the compound semiconductor substrate W. It is the structure which supports.

図2に示すように,基板支持部15に支持された化合物半導体基板Wの裏面(化合物半導体薄膜を成長させない面であり,図2にでは上面)上方には,均熱板16との間に空間22が形成されている。図3に示す如き3つの爪20に周縁部を載せて化合物半導体基板W支持する一方の支持リング17aを使用した場合は,支持リング17aの内側縁と化合物半導体基板Wの周縁部との間に200μm程度の隙間が形成されるので,化合物半導体基板Wの表面側(化合物半導体薄膜を成長させる面側であり,図2にでは下面側)の雰囲気(原料ガス)が,その隙間を通じて,化合物半導体基板Wの裏面側(空間22)にも容易に入り込むことができる。一方,図4に示す如きリング形状の爪21に周縁部を載せて化合物半導体基板W支持する他方の支持リング17bを使用した場合は,化合物半導体基板Wの周縁部にリング形状の爪21が連続して接触しているため,化合物半導体基板Wの表面側の雰囲気(原料ガス)は化合物半導体基板Wの裏面側(空間22)に入り込むことがほとんどできない。   As shown in FIG. 2, the rear surface of the compound semiconductor substrate W supported by the substrate support 15 (the surface on which the compound semiconductor thin film is not grown, the upper surface in FIG. 2) is located above the soaking plate 16. A space 22 is formed. When one support ring 17 a that supports the compound semiconductor substrate W by placing the peripheral portion on the three claws 20 as shown in FIG. 3 is used, it is between the inner edge of the support ring 17 a and the peripheral portion of the compound semiconductor substrate W. Since a gap of about 200 μm is formed, the atmosphere (raw material gas) on the surface side of the compound semiconductor substrate W (the side on which the compound semiconductor thin film is grown, the lower surface side in FIG. 2) passes through the gap to form the compound semiconductor. It is possible to easily enter the back side (space 22) of the substrate W. On the other hand, when the other support ring 17 b that supports the compound semiconductor substrate W by placing the peripheral portion on the ring-shaped claw 21 as shown in FIG. 4 is used, the ring-shaped claw 21 continues to the peripheral portion of the compound semiconductor substrate W. Therefore, the atmosphere (raw material gas) on the front surface side of the compound semiconductor substrate W can hardly enter the back surface side (space 22) of the compound semiconductor substrate W.

図1に示すように,サセプタ12の周囲に石英からなる隔壁24を配置することにより,ケーシング10内の反応室11は,上部空間11aと下部空間11bに区分けされている。上部空間11aには,サセプタ12の上面に対向するように複数の抵抗加熱方式のヒータ25が配置してあり,これらヒータ25の加熱によって,基板支持部15に支持された化合物半導体基板Wを所望の温度に昇温させることができる。   As shown in FIG. 1, by arranging a partition wall 24 made of quartz around the susceptor 12, the reaction chamber 11 in the casing 10 is divided into an upper space 11a and a lower space 11b. In the upper space 11 a, a plurality of resistance heating type heaters 25 are disposed so as to face the upper surface of the susceptor 12, and the compound semiconductor substrate W supported by the substrate support portion 15 is desired by heating of the heaters 25. The temperature can be raised to

また,下部空間11bには,サセプタ12の下面に対向するように冷却盤26が配置してあり,この冷却盤26の冷却によって,基板支持部15に支持された化合物半導体基板Wを所望の温度に冷却させることができる。なお,冷却盤26の上面は,石英板27によって覆われている。   A cooling plate 26 is disposed in the lower space 11b so as to face the lower surface of the susceptor 12, and the cooling of the cooling plate 26 causes the compound semiconductor substrate W supported by the substrate support unit 15 to have a desired temperature. Can be cooled. Note that the upper surface of the cooling plate 26 is covered with a quartz plate 27.

ケーシング10の底面中央及びこれら冷却盤26と石英板27の中央を貫通して原料ガスの導入ノズル28が設けてある。また,ケーシング10の底面側方には排気路29が設けてある。化合物半導体薄膜を成長するに際しては,導入ノズル28から反応室11の下部空間11bに原料ガスを導入し,排気路29から排気することができる。   A raw material gas introduction nozzle 28 is provided through the center of the bottom surface of the casing 10 and the center of the cooling plate 26 and the quartz plate 27. An exhaust passage 29 is provided on the side of the bottom surface of the casing 10. When growing the compound semiconductor thin film, the source gas can be introduced into the lower space 11 b of the reaction chamber 11 from the introduction nozzle 28 and exhausted from the exhaust passage 29.

以上に説明した減圧型のMOCVD装置1を用いて,2インチのGaAs基板からなる化合物半導体基板Wの表面に,MOCVD法によってAlGaInP薄膜からなる化合物半導体薄膜をエピタキシャル成長させた。成長させるにあたり,有機金属として,トリメチルガリウム(TMG),トリメチルインジウム(TMI)を使用し,無機原料としてAsH,PHを使用し,キャリアガスとしてHを使用した。 Using the reduced pressure MOCVD apparatus 1 described above, a compound semiconductor thin film made of an AlGaInP thin film was epitaxially grown on the surface of the compound semiconductor substrate W made of a 2-inch GaAs substrate by MOCVD. In the growth, trimethylgallium (TMG) and trimethylindium (TMI) were used as organic metals, AsH 3 and PH 3 were used as inorganic raw materials, and H 2 was used as a carrier gas.

本発明の実施例として,有機Si化合物(SiとOを有する化合物)であるオクタメチルシクロテトラシロキサンを,有機溶剤であるn−ヘキサンに溶かし,その溶液を化合物半導体基板Wの裏面に塗布し,それぞれサンプルA,B,Cとした。これらサンプルA,B,Cにおける溶液中のSiの含有量は,サンプルAが0.05m mol/リットル,サンプルBが0.5m mol/リットル,サンプルCが5m mol/リットルである。   As an example of the present invention, octamethylcyclotetrasiloxane, which is an organic Si compound (compound having Si and O), is dissolved in n-hexane, which is an organic solvent, and the solution is applied to the back surface of the compound semiconductor substrate W. Samples A, B, and C were used, respectively. The contents of Si in the solutions of these samples A, B, and C are 0.05 mmol / liter for sample A, 0.5 mmol / liter for sample B, and 5 mmol / liter for sample C.

また,本発明の実施例として,オクタメチルシクロテトラシロキサンの代わりに有機Si化合物(SiとOを有する化合物)であるヘキサメチルジシラザンを,有機溶剤であるn−ヘキサンに溶かし,その溶液を化合物半導体基板Wの裏面に塗布し,サンプルDとした。このサンプルDにおける溶液中のSiの含有量は,0.5m mol/リットルである。   Also, as an example of the present invention, hexamethyldisilazane, which is an organic Si compound (compound having Si and O), is dissolved in n-hexane, which is an organic solvent, instead of octamethylcyclotetrasiloxane, and the resulting solution is compounded. The sample D was applied to the back surface of the semiconductor substrate W. The content of Si in the solution in Sample D is 0.5 mmol / liter.

一方,比較例として,SiとOを有する化合物を含まないn−ヘキサンのみを化合物半導体基板Wの裏面に塗布し,サンプルEとした。   On the other hand, as a comparative example, only n-hexane not containing a compound containing Si and O was applied to the back surface of the compound semiconductor substrate W to obtain a sample E.

また,比較例として,化合物半導体基板Wの裏面に何も塗布しないサンプルF,Gを用意した。   As comparative examples, samples F and G in which nothing is applied to the back surface of the compound semiconductor substrate W were prepared.

そして,これらサンプルA〜Gを,先に説明したMOCVD装置1において,基板支持部15にそれぞれ支持し,各サンプルA〜Gの表面(下面)にMOCVD法によって化合物半導体薄膜を成長させた。   These samples A to G were respectively supported by the substrate support 15 in the MOCVD apparatus 1 described above, and a compound semiconductor thin film was grown on the surface (lower surface) of each sample A to G by the MOCVD method.

なお,サンプルA〜Fについては,図3で説明した支持リング17aを使用した。これらサンプルA〜Fについては,支持リング17aの内側縁と化合物半導体基板Wの周縁部との間に200μm程度の隙間が形成されるので,原料ガスが化合物半導体基板Wの裏面側にも容易に入り込むことができる。   For samples A to F, the support ring 17a described in FIG. 3 was used. In these samples A to F, since a gap of about 200 μm is formed between the inner edge of the support ring 17a and the peripheral edge of the compound semiconductor substrate W, the source gas can be easily supplied to the back surface side of the compound semiconductor substrate W. Can get in.

一方,サンプルGについては,図4で説明した支持リング17bを使用した。サンプルGについては,化合物半導体基板Wの周縁部にリング形状の爪21が連続して接触しているため,原料ガスは化合物半導体基板Wの裏面側に入り込むことがほとんどできない。   On the other hand, for sample G, the support ring 17b described in FIG. 4 was used. Regarding the sample G, since the ring-shaped claw 21 is continuously in contact with the peripheral portion of the compound semiconductor substrate W, the source gas can hardly enter the back side of the compound semiconductor substrate W.

そして先ず,これらサンプルA〜Gのそれぞれについて,MOCVD装置1にてHガスを流しながら75Torrの減圧下で化合物半導体基板Wを500℃まで加熱し,その後PHとHを流して,化合物半導体基板W表面の酸化膜を除去したのち,原料ガスを流して化合物半導体基板Wの表面に,図5で示すように,GaAs層51(0.5μm),AlGaInP層52(2.0μm),GaAs層53(1.0m)の順にエピタキシャル層を積層させた。 First, for each of these samples A to G, the compound semiconductor substrate W is heated to 500 ° C. under a reduced pressure of 75 Torr while flowing H 2 gas in the MOCVD apparatus 1, and then PH 3 and H 2 are flown to After removing the oxide film on the surface of the semiconductor substrate W, a raw material gas is flowed to the surface of the compound semiconductor substrate W to form a GaAs layer 51 (0.5 μm), an AlGaInP layer 52 (2.0 μm), as shown in FIG. Epitaxial layers were stacked in the order of the GaAs layer 53 (1.0 m).

次いで,化合物半導体基板WをH雰囲気下で100℃まで冷却後,MOCVD装置1から取り出し,各サンプルA〜Gのそれぞれについて,表面と裏面の状態を目視および光学顕微鏡で観察した。さらに,裏面をESCAで観察しSi−O間の結合に起因するピークの有無を観察した。表1に,各サンプルA〜Gについて,基板表面のクロスハッチの程度,基板裏面への原料ガスの回り込みによる原料分解物の付着の程度,ESCAによる裏面観察におけるSi−O間の結合によるピークの有無を比較して示した。 Next, the compound semiconductor substrate W was cooled to 100 ° C. in an H 2 atmosphere, then taken out from the MOCVD apparatus 1, and the state of the front and back surfaces of each of the samples A to G was observed visually and with an optical microscope. Furthermore, the back surface was observed with ESCA, and the presence or absence of a peak due to Si—O bonding was observed. Table 1 shows the degree of cross-hatch on the substrate surface, the degree of adhesion of the raw material decomposition product due to the introduction of the raw material gas to the back surface of the substrate, and the peak due to the bond between Si and O in the back surface observation by ESCA. The presence or absence was compared.

オクタメチルテトラシクロシロキサンを塗布したサンプルB,Cとヘキサメチルジシラザンを塗布したサンプルDは基板裏面への堆積物の付着がなく,基板裏面の堆積物の付着に起因する基板表面のクロスハッチの発生がなかった。また,ESCAの観察結果では,サンプルB,C,DからSi−Oの結合に起因するピークが観察された。これはサンプルB,C,Dの裏面に非常に薄いSiOの保護膜が形成されていることを示している。サンプルEからはSi−O間に起因するピークは観察されなかったことから,SiOの起源はオクタメチルテトラシクロシロキサンおよびヘキサメチルジシラザンであることが解かる。また,サンプルAとサンプルB,Cの比較から,有機Si化合物(SiとOを有する化合物)の濃度が低すぎるとMOCVD装置1内で昇温中にほとんど揮発してしまい,基板裏面に十分な保護膜が形成されないことが解かる。なお,オルガノシロキサンに近い特性をもつオルガノシラザンについても同様の結果が容易に予想される。また,サンプルGの結果が示すように,支持リング17bを用いて原料ガスが化合物半導体基板Wの裏面側に入り込まないようにしても,加熱中における化合物半導体基板Wの変形で,化合物半導体基板Wと支持リング17bの間に隙間ができ,そこから侵入した原料ガスにより,基板裏面に堆積物が付着してしまう。 Samples B and C coated with octamethyltetracyclosiloxane and sample D coated with hexamethyldisilazane have no deposit on the backside of the substrate, and cross-hatching of the substrate surface caused by the deposit on the backside of the substrate. There was no outbreak. Moreover, in the observation result of ESCA, the peak resulting from the coupling | bonding of Si-O was observed from sample B, C, D. This indicates that a very thin protective film of SiO 2 is formed on the back surfaces of the samples B, C, and D. Since no peak due to Si—O was observed in sample E, it can be seen that the origin of SiO 2 is octamethyltetracyclosiloxane and hexamethyldisilazane. Further, from the comparison of sample A with samples B and C, if the concentration of the organic Si compound (compound having Si and O) is too low, it will be almost volatilized during the temperature rise in the MOCVD apparatus 1 and sufficient for the back surface of the substrate. It can be seen that no protective film is formed. Similar results are easily expected for organosilazanes, which have characteristics close to those of organosiloxanes. Further, as shown in the result of the sample G, even if the source gas does not enter the back side of the compound semiconductor substrate W using the support ring 17b, the compound semiconductor substrate W is deformed by the deformation of the compound semiconductor substrate W during heating. A gap is formed between the support ring 17b and deposits adhere to the back surface of the substrate due to the raw material gas entering from there.

Figure 2005251914
裏面付着物:++(全面に付着),+(部分的に付着),−(ほとんど付着無し)
クロスハッチ:++(全周に渡って発生),+(部分的に発生),−(ほとんど発生無し)
ESCA測定におけるSi−Oピーク:++(ピーク大),+(ピーク小),−(ピーク無し)
Figure 2005251914
Back side deposits: ++ (attached to the entire surface), + (partially attached),-(almost no adhesion)
Cross hatch: ++ (occurs over the entire circumference), + (partially occurs),-(almost no occurrence)
Si-O peak in ESCA measurement: ++ (peak large), + (small peak),-(no peak)

本発明によれば,原料ガスによって発生する基板裏面への堆積物の付着を防止することができる。そのため基板温度が均一になり,基板表面にクロスハッチが発生しない。本発明は,その原理上,InP基板上におけるInGaAsP層に代表される他の混晶系のエピタキシャル成長にも,同様に適用できる。   According to the present invention, it is possible to prevent deposits from adhering to the back surface of the substrate generated by the source gas. Therefore, the substrate temperature becomes uniform and no cross hatch occurs on the substrate surface. In principle, the present invention is also applicable to other mixed crystal epitaxial growth represented by an InGaAsP layer on an InP substrate.

MOCVD装置の説明図である。It is explanatory drawing of a MOCVD apparatus. 基板支持部の説明図である。It is explanatory drawing of a board | substrate support part. 3つの爪に基板の周縁部を載せて支持する支持リングの底面図である。It is a bottom view of the support ring which mounts and supports the peripheral part of a board | substrate on three nail | claws. リング形状の爪の上に基板の周縁部を載せて支持する支持リングの底面図である。It is a bottom view of the support ring which mounts and supports the peripheral part of a board | substrate on a ring-shaped nail | claw. 基板表面に積層される各エピタキシャル層の説明図である。It is explanatory drawing of each epitaxial layer laminated | stacked on a substrate surface.

符号の説明Explanation of symbols

W 化合物半導体基板
1 MOCVD装置
10 ケーシング
11 反応室
12 サセプタ
13 回転支持軸
15 基板支持部
16 均熱板
17 基板支持リング
18 ホルダ
20,21 爪
22 空間
24 隔壁
25 ヒータ
26 冷却盤
27 石英板
28 導入ノズル
29 排気路
W Compound semiconductor substrate 1 MOCVD apparatus 10 Casing 11 Reaction chamber 12 Susceptor 13 Rotation support shaft 15 Substrate support portion 16 Heat equalizing plate 17 Substrate support ring 18 Holder 20, 21 Claw 22 Space 24 Partition 25 Heater 26 Cooling plate 27 Quartz plate 28 Introduction Nozzle 29 exhaust passage

Claims (9)

化合物半導体基板の表面にMOCVD法によって化合物半導体薄膜を成長するに際し,成長前に,前記化合物半導体基板の裏面に,SiとOを有する化合物を塗布することを特徴とする,半導体基板の処理方法。   A method of processing a semiconductor substrate, comprising: applying a compound containing Si and O to the back surface of the compound semiconductor substrate before the growth when growing the compound semiconductor thin film on the surface of the compound semiconductor substrate by MOCVD. 前記化合物半導体基板が,III−V族化合物半導体基板であることを特徴とする,請求項1に記載の半導体基板の処理方法。   2. The semiconductor substrate processing method according to claim 1, wherein the compound semiconductor substrate is a III-V group compound semiconductor substrate. 前記III−V族化合物半導体基板が,GaAs,InP,GaP,GaSb及びInAsのいずれかからなることを特徴とする。請求項2に記載の半導体基板の処理方法。   The III-V group compound semiconductor substrate is made of any one of GaAs, InP, GaP, GaSb, and InAs. The method for processing a semiconductor substrate according to claim 2. 前記化合物半導体薄膜が,III−V族化合物半導体薄膜であることを特徴とする,請求項1,2又は3に記載の半導体基板の処理方法。   4. The method for processing a semiconductor substrate according to claim 1, wherein the compound semiconductor thin film is a III-V group compound semiconductor thin film. 前記III−V族化合物半導体薄膜が,(AlGa1−xIn1−yP(0≦x≦1,0≦y≦1)またはInGa1−xAs1−y(0≦x≦1,0≦y≦1)からなることを特徴とする,請求項4に記載の半導体基板の処理方法。 The group III-V compound semiconductor thin film, (Al x Ga 1-x ) y In 1-y P (0 ≦ x ≦ 1,0 ≦ y ≦ 1) or In x Ga 1-x As y P 1-y 5. The method of processing a semiconductor substrate according to claim 4, wherein the processing method is (0 ≦ x ≦ 1, 0 ≦ y ≦ 1). 前記SiとOを有する化合物が,オルガノシロキサンもしくはオルガノシラザンであることを特徴とする,請求項1,2,3,4又は5に記載の半導体基板の処理方法。   6. The method for treating a semiconductor substrate according to claim 1, wherein the compound containing Si and O is organosiloxane or organosilazane. 前記SiとOを有する化合物の分子中におけるSi原子の数が,3〜12の範囲であることを特徴とする,請求項1,2,3,4,5又は6に記載の半導体基板の処理方法。   The number of Si atoms in the molecule | numerator of the compound which has the said Si and O is the range of 3-12, The processing of the semiconductor substrate of Claim 1, 2, 3, 4, 5 or 6 characterized by the above-mentioned. Method. 前記SiとOを有する化合物を,有機溶剤に溶かして塗布することを特徴とする,請求項1,2,3,4,5,6又は7に記載の半導体基板の処理方法。   8. The method for processing a semiconductor substrate according to claim 1, wherein the compound containing Si and O is dissolved and applied in an organic solvent. 前記SiとOを有する化合物を有機溶剤に溶かした溶液において,Siの含有量が,0.1m mol/リットル以上であることを特徴とする,請求項8に記載の半導体基板の処理方法。   9. The method of processing a semiconductor substrate according to claim 8, wherein the content of Si in the solution obtained by dissolving the compound containing Si and O in an organic solvent is 0.1 mmol / liter or more.
JP2004059005A 2004-03-03 2004-03-03 Semiconductor substrate processing method Expired - Fee Related JP4410582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004059005A JP4410582B2 (en) 2004-03-03 2004-03-03 Semiconductor substrate processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004059005A JP4410582B2 (en) 2004-03-03 2004-03-03 Semiconductor substrate processing method

Publications (2)

Publication Number Publication Date
JP2005251914A true JP2005251914A (en) 2005-09-15
JP4410582B2 JP4410582B2 (en) 2010-02-03

Family

ID=35032122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004059005A Expired - Fee Related JP4410582B2 (en) 2004-03-03 2004-03-03 Semiconductor substrate processing method

Country Status (1)

Country Link
JP (1) JP4410582B2 (en)

Also Published As

Publication number Publication date
JP4410582B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
KR100729894B1 (en) Semiconductor manufacturing apparatus and method for fabricating semiconductor
EP1801269B1 (en) Process for producing a free-standing III-N layer, and free-standing III-N substrate
TWI695811B (en) A method of making graphene layer structures
KR102177385B1 (en) A Hydride Vapor Phase Epitaxy Apparatus for Manufacturing a GaN Wafer and a Method for Manufacturing the Same
TW200807505A (en) Method for maintaining semiconductor manufacturing apparatus, semiconductor manufacturing apparatus, and method for manufacturing semiconductor
JP4410582B2 (en) Semiconductor substrate processing method
KR102050369B1 (en) Vapor deposition method
JP4497170B2 (en) Epitaxial substrate manufacturing method
JP2012222301A (en) Method for manufacturing silicon epitaxial wafer
KR100447855B1 (en) A method for fabricating a iii-v nitride film and an apparatus for fabricating the same
JP2012174731A (en) Vapor phase deposition method and compound semiconductor film formed by vapor phase deposition method
TWI745656B (en) Vapor growth method
JP3104677B2 (en) Group III nitride crystal growth equipment
JP2008053669A (en) Crystal growing method, and device using temperature-controlled process gas
CN113053731A (en) Method for manufacturing gallium metal film and method for protecting gallium nitride substrate
JP2009135158A (en) Vapor phase growth apparatus and vapor phase growth method
JPH02254715A (en) Manufacture of compound semiconductor crystal layer
JPS62182196A (en) Vapor growth apparatus
JP2004253413A (en) Compound semiconductor vapor growth device
JPS60255699A (en) Member for producing semiconductor si single crystal and production thereof
JPH04187598A (en) Production of thin film of gallium nitride
JP2006041300A (en) Soaking plate and vapor-phase epitaxial growth device
JPH05335245A (en) Crystal growth and its crystal growth device
JPH0559080B2 (en)
JPH03255620A (en) Low temperature selective epitaxial growth method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070221

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090511

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20091110

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091113

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees