JP2005251545A - Hydraulic driving device of circuit breaker - Google Patents

Hydraulic driving device of circuit breaker Download PDF

Info

Publication number
JP2005251545A
JP2005251545A JP2004059958A JP2004059958A JP2005251545A JP 2005251545 A JP2005251545 A JP 2005251545A JP 2004059958 A JP2004059958 A JP 2004059958A JP 2004059958 A JP2004059958 A JP 2004059958A JP 2005251545 A JP2005251545 A JP 2005251545A
Authority
JP
Japan
Prior art keywords
main control
valve
control valve
closing
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004059958A
Other languages
Japanese (ja)
Other versions
JP4537095B2 (en
Inventor
Shinji Seto
信治 瀬戸
Hideo Kawamoto
英雄 河本
Daisuke Ebisawa
大輔 海老澤
Noriyuki Yaginuma
宣幸 柳沼
Kenichi Okubo
健一 大久保
Masahiro Yaegashi
昌弘 八重樫
Tadashi Sugimoto
匡史 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan AE Power Systems Corp
Original Assignee
Hitachi Ltd
Japan AE Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Japan AE Power Systems Corp filed Critical Hitachi Ltd
Priority to JP2004059958A priority Critical patent/JP4537095B2/en
Publication of JP2005251545A publication Critical patent/JP2005251545A/en
Application granted granted Critical
Publication of JP4537095B2 publication Critical patent/JP4537095B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Driven Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize a hydraulic drive device of a circuit breaker and improve reliability. <P>SOLUTION: The hydraulic drive device 3 comprises a hydraulic cylinder 7 for opening and closing a contact part 70, a control valve for opening a flow passage making the hydraulic cylinder open by a liquid force of the operating liquid, and a control valve for closing the flow passage making the hydraulic cylinder close. The control valve for opening the flow passage has a main control valve 30 for opening the flow passage and a pilot valve 50 for driving the opening main control valve. The control valve for closing the flow passage has has a main control valve 20 for closing the floe passage and a pilot valve 60 for driving the closing main control valve. Each main control valve has a valve seat 25, 35 and valve elements 21, 31 for contacting this valve seat. Each valve is arranged in opposition to each other and the length between the contact sections of the valve element with the valve seat is made longer than the distance between the valve seat sections where each valve element contacts with each valve seat. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は遮断器の流体圧駆動装置に関し、特に電力用遮断器に好適な流体圧駆動装置に関する。   The present invention relates to a circuit breaker fluid pressure drive device, and more particularly to a fluid pressure drive device suitable for a power circuit breaker.

従来の遮断器用流体圧駆動装置の例が、特許文献1に記載されている。この公報に記載の駆動装置は、開路弁と閉路弁を同一軸上に別体で設けている。そして、開路弁を一旦開いて開路操作したあと小開口に戻して開路保持させ、閉路動作時に開路弁を速やかに閉じている。従来の遮断器用流体圧駆動装置の他の例が、特許文献2に記載されている。この公報には主操作弁部とパイロット弁部を一体のケース内に配置して、小型化した流体圧駆動装置が記載されている。なおこの公報の従来技術の項または特許文献3には、パイロット弁と主操作弁とを有する2段の流体圧駆動装置において、遮断用主操作弁と開路用主操作弁と別体にすることが記載されている。   An example of a conventional fluid pressure drive device for a circuit breaker is described in Patent Document 1. In the drive device described in this publication, an open valve and a close valve are provided separately on the same shaft. Then, the opening valve is once opened and opened, and then returned to the small opening to keep the opening, and the opening valve is quickly closed during the closing operation. Another example of a conventional hydraulic drive device for a circuit breaker is described in Patent Document 2. This publication describes a fluid pressure drive device that is downsized by disposing a main operation valve portion and a pilot valve portion in an integral case. In the prior art section of this publication or in Patent Document 3, in a two-stage fluid pressure drive device having a pilot valve and a main operation valve, the shut-off main operation valve and the open main operation valve are separated. Is described.

特開平11-96859号公報Japanese Patent Laid-Open No. 11-96859 特開2003−45296号公報Japanese Patent Laid-Open No. 2003-45296 特開平11-353983号公報JP-A-11-353983

上記特許文献1に記載の流体圧駆動装置では、制御弁を動作させるのに多くの流量を必要とし、制御弁を駆動するパイロット弁容量が大きくなる。また、閉路動作後に閉路弁を開状態に保つ必要があり、開路動作時に閉路弁を速やかに閉じることができない。その結果、閉路動作時に制御弁が動作し、高圧の供給側から低圧の戻り側に流れる作動流体量が増大し、圧力変動を引き起こす恐れがある。この圧力変動は遮断器の操作に悪影響を及ぼすので、低減することが望まれている。   In the fluid pressure driving device described in Patent Document 1, a large flow rate is required to operate the control valve, and the pilot valve capacity for driving the control valve increases. Further, it is necessary to keep the closed valve open after the closing operation, and the closing valve cannot be quickly closed during the opening operation. As a result, the control valve operates during the closing operation, and the amount of working fluid flowing from the high pressure supply side to the low pressure return side increases, which may cause pressure fluctuations. Since this pressure fluctuation adversely affects the operation of the circuit breaker, it is desired to reduce it.

上記特許文献2に記載の流体圧駆動装置では、主操作弁とパイロット弁とを一体のケース内に収めるようにしたので、ケース内部の流路構成が複雑になり、それとともに弁の構成も複雑になり、装置が複雑化している。また、特許文献2の従来技術の項に記載のものまたは特許文献3に記載のものは、流路構成は特許文献2の発明よりも簡単であるが、給液ポートと排液ポートと制御ポートの3ポート構成とし、遮断保持時および開路保持時の双方において、必要ポートを閉路しているので、主操作弁部が3個の弁部材にならざるを得ず、やはり流路構成が複雑になる。   In the fluid pressure driving device described in Patent Document 2, since the main operation valve and the pilot valve are housed in an integrated case, the flow path configuration inside the case is complicated, and the valve configuration is also complicated. Therefore, the device is complicated. Moreover, although the thing of the flow path structure is simpler than the invention of patent document 2 as for the thing described in the prior art section of patent document 2, or the thing described in patent document 3, a liquid supply port, a drainage port, and a control port Since the required ports are closed both when shut-off and when the open circuit is held, the main operation valve part must be three valve members, and the flow path structure is also complicated. Become.

本発明は上記従来技術の不具合に鑑みなされたものであり、その目的は遮断器の流体圧駆動装置を小型化および簡素化することにある。本発明の他の目的は、遮断器の流体圧駆動装置の信頼性を向上させることにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to downsize and simplify the fluid pressure driving device of the circuit breaker. Another object of the present invention is to improve the reliability of a fluid pressure drive device for a circuit breaker.

上記目的を達成する本発明の特徴は、接点部を開閉する流体圧シリンダと、この流体圧シリンダを作動流体の流体力により開路動作させる開路用制御弁と閉路動作させる閉路用制御弁とを備えた遮断器の流体圧駆動装置において、開路用制御弁は開路用主制御弁とこの開路用主制御弁を駆動する開路用パイロット弁とを有し、閉路用制御弁は閉路用主制御弁とこの閉路用主制御弁を駆動する閉路用パイロット弁とを有し、各主制御弁は弁座とこの弁座に当接可能な弁体とを有し、各弁体を対向配置し、各弁体と各弁座が当接する弁座部間距離よりも、弁体の弁座への当接部間の長さを長くしたものである。   A feature of the present invention that achieves the above object includes a fluid pressure cylinder that opens and closes a contact portion, a circuit control valve that opens the fluid pressure cylinder by a fluid force of a working fluid, and a circuit control valve that performs a circuit close operation. In the circuit breaker fluid pressure drive device, the open circuit control valve includes an open circuit main control valve and an open circuit pilot valve that drives the open circuit main control valve, and the close circuit control valve includes the close circuit main control valve and A closed-circuit pilot valve that drives the closed-circuit main control valve, each main control valve has a valve seat and a valve body that can come into contact with the valve seat, The length between the contact portions of the valve body with respect to the valve seat is made longer than the distance between the valve seat portions with which the valve body and each valve seat abut.

そしてこの特徴において、開路用主制御弁の弁体と閉路用主制御弁の弁体は、弁を開く方向が互いに反対になるように配置されるのがよく、開路用主制御弁の有する弁体と閉路用主制御弁の有する弁体とが別体で同軸上にあり、流体圧駆動装置の動作中に必ずしも当接しないように配置されているのがよい。   In this feature, the valve body of the open circuit main control valve and the valve body of the close circuit main control valve are preferably arranged so that the valve opening directions are opposite to each other. The body and the valve body of the closing main control valve are separate and coaxial, and are preferably arranged so as not to contact each other during the operation of the fluid pressure drive device.

また、開路用主制御弁に開路用制御室を形成し、この開路用制御室を低圧にして開路用制御弁の弁体を開動作させ、閉路用主制御弁に閉路用制御室を形成し、この閉路用制御室を高圧にして閉路用主制御弁の弁体を開動作させるのがよく、開路保持状態では開路用主制御弁の弁体と閉路用主制御弁の弁体が接触するとともに開路用主制御弁が微小に開口し、開路動作中は開路用主制御弁が開路保持状態よりさらに開口し、閉路保持状態では閉路用主制御弁を微小に開口し、閉路動作中は閉路用主制御弁が閉路保持状態よりもさらに開口するように各弁体を配置するのが好ましい。   In addition, an opening control chamber is formed in the opening main control valve, the opening control chamber is set to a low pressure to open the valve body of the opening control valve, and a closing control chamber is formed in the closing main control valve. The valve body of the main control valve for closing is preferably opened by making the control chamber for high pressure open, and the valve body of the main control valve for opening and the valve body of the main control valve for closing contact with each other in the open circuit holding state. At the same time, the main control valve for opening is slightly opened, and the main control valve for opening is further opened from the open circuit holding state during the opening operation, and the main control valve for opening circuit is opened slightly during the closing operation, and is closed during the closing operation. It is preferable to arrange each valve body so that the main control valve for use opens more than the closed circuit holding state.

さらに、閉路保持状態では、閉路用主制御弁の弁体に加わる圧力による力の合力をほぼ0にし、開路用主制御弁の弁体に高圧部の作動流体の流体力が作動してこの弁体を閉動作させる方向に力がかかるようにし、開路保持状態では、開路用主制御弁の弁体に加わる作動流体の圧力による力の合力をほぼ0にし、閉路用主制御弁の弁体に高圧部の作動流体の流体力が作用してこの弁体を閉動作させる方向に力がかかるようにするのが好ましい。   Further, in the closed circuit holding state, the resultant force due to the pressure applied to the valve body of the closed circuit main control valve is set to almost zero, and the fluid force of the working fluid in the high-pressure section is operated on the valve body of the open circuit main control valve. The force is applied in the direction of closing the body, and in the open circuit holding state, the resultant force of the pressure of the working fluid applied to the valve body of the open circuit main control valve is almost zero, and the valve body of the closed circuit main control valve is It is preferable to apply a force in the direction in which the valve body is closed by the fluid force of the working fluid in the high pressure section.

さらにまた、閉路用主制御弁は閉路用制御室と作動流体の高圧部に連通する供給ポートと流体圧シリンダに接続する閉路用シリンダポートとを備え、閉路用制御室を高圧にして閉路用主制御弁を開き、供給ポートと閉路用シリンダポートを連通し、流体圧シリンダに作動流体を供給して接点部を閉路し、開路用主制御弁は開路用制御室と作動流体の低圧部に連通する排出ポートと流体圧シリンダに連通する開路用シリンダポートとを備え、開路用制御室を低圧にして開路用主制御弁を開き、開路用シリンダポートと排出ポートを連通し、流体圧シリンダから作動流体を排出して接点部を開路することが好ましい。   Furthermore, the closing main control valve includes a closing control chamber, a supply port communicating with the high pressure portion of the working fluid, and a closing cylinder port connected to the fluid pressure cylinder. Open the control valve, connect the supply port and the closing cylinder port, supply the working fluid to the fluid pressure cylinder and close the contact part, and open the main control valve to the opening control chamber and the low pressure part of the working fluid The discharge port and the open cylinder port communicating with the fluid pressure cylinder are opened, the open control chamber is set to low pressure, the open main control valve is opened, and the open cylinder port and the discharge port are communicated to operate from the fluid pressure cylinder. It is preferable to discharge the fluid and open the contact portion.

この構成において、閉路用主制御弁の弁体は閉路用制御室側に突出した軸部を有し、排出ポート内で開路用主制御弁の弁体と接触可能なように配置されており、閉路用主制御弁の弁体の背面側に作動流体の低圧部に開放された円筒部を有し、開路用主制御弁の弁体は開路用制御室側に作動流体の低圧部に開放された円筒部を有し、開路用主制御弁に開路用主制御弁の弁体を閉じる方向に力を発生するばねを設け、閉路用主制御弁に開路用主制御弁の弁体を閉じる方向に力を発生するばねを設けるのがよく、開路用主制御弁のシリンダポートと開路用制御室を絞りを介して接続してもよい。   In this configuration, the valve body of the closing main control valve has a shaft portion protruding toward the closing control chamber, and is disposed so as to be able to contact the valve element of the opening main control valve in the discharge port. There is a cylindrical part opened to the low pressure part of the working fluid on the back side of the valve body of the closing main control valve, and the valve element of the opening main control valve is opened to the low pressure part of the working fluid on the opening control chamber side. The open main control valve is provided with a spring that generates force in the closing direction of the open main control valve, and the close main control valve closes the open main control valve. It is preferable to provide a spring for generating a force, and the cylinder port of the opening main control valve and the opening control chamber may be connected via a throttle.

さらにまた、閉路用主制御弁は閉路用制御室と作動流体の高圧部に連通する供給ポートと流体圧シリンダに連通する閉路用シリンダポートとを備え、閉路用制御室を高圧にして閉路用主制御弁を開動作させ、供給ポートと閉路用シリンダポートを連通し、流体圧シリンダに作動流体を供給して接点部を閉路し、開路用主制御弁は開路用制御室と作動流体の低圧部に連通する排出ポートと流体圧シリンダに連通する開路用シリンダポートとを備え、開路用制御室を低圧にして開路用主制御弁を開動作させ、開路用シリンダポートと排出ポートとを連通し、流体圧シリンダから作動流体を排出して接点部を開路させるのが望ましい。   Further, the closing main control valve includes a closing control chamber, a supply port communicating with the high pressure portion of the working fluid, and a closing cylinder port communicating with the fluid pressure cylinder. The control valve is opened, the supply port and the closing cylinder port are connected, the working fluid is supplied to the fluid pressure cylinder to close the contact, and the opening main control valve is the opening control chamber and the working fluid low pressure part. A discharge port communicating with the fluid pressure cylinder and an opening cylinder port communicating with the fluid pressure cylinder, the opening control chamber is set to a low pressure to open the main control valve, and the opening cylinder port communicates with the discharge port. It is desirable to discharge the working fluid from the fluid pressure cylinder to open the contact portion.

この構成において、閉路用主制御弁の弁体は閉路用制御室側に突出する軸部を有し、排出ポート内で開路用主制御弁の弁体と接触可能に配置され、閉路用主制御弁の弁体の背面側に円筒部を設け、この円筒部の背面に閉路用シリンダポートに連通する背圧室を形成し、開路用主制御弁の弁体は開路用制御室側に円筒部を有し、この円筒部の背面に開路用シリンダポートに連通する背圧室を形成し、開路用主制御弁は開路用主制御弁の弁体を閉じる方向に力を発生するばねを有し、閉路用主制御弁は閉路用主制御弁の弁体を閉じる方向に力を発生するばねを有するのがよい。   In this configuration, the valve body of the closing main control valve has a shaft portion that protrudes toward the closing control chamber, and is disposed in the discharge port so as to be in contact with the valve element of the opening main control valve. A cylindrical part is provided on the back side of the valve body of the valve, a back pressure chamber communicating with the closing cylinder port is formed on the back side of the cylindrical part, and the valve body of the main control valve for opening is the cylindrical part on the side of the opening control chamber A back pressure chamber communicating with the opening cylinder port is formed on the back surface of the cylindrical portion, and the opening main control valve has a spring that generates a force in the direction of closing the valve element of the opening main control valve. The closing main control valve preferably has a spring that generates a force in the direction of closing the valve body of the closing main control valve.

本発明では、開路用制御弁を開路動作時に全開状態にし、動作完了後は全開時よりも小さい開口に保持する。さらに、閉路用制御弁を閉路動作時に全開状態とし、動作完了後は全開よりも小さい開口に保持する。これにより、開路用制御弁や閉路用制御弁を動作させるのに必要な流量を低減できる。その結果、遮断器の流体圧駆動装置を小型簡素化できるとともに信頼性を向上できる。   In the present invention, the opening control valve is fully opened during the opening operation, and is held at an opening smaller than that when fully opening after the operation is completed. Further, the closing control valve is fully opened during the closing operation, and is held in an opening smaller than the full opening after the operation is completed. Thereby, the flow rate required to operate the opening control valve and the closing control valve can be reduced. As a result, the fluid pressure driving device of the circuit breaker can be reduced in size and simplified and the reliability can be improved.

以下、本発明に関する遮断器の流体圧駆動装置のいくつかの実施例を、図面を用いて移説明する。   Hereinafter, several embodiments of a fluid pressure driving device for a circuit breaker according to the present invention will be described with reference to the drawings.

図1ないし図6は遮断器の流体圧駆動装置の一実施例の縦断面図である。図1は、遮断器の閉路状態を示す図であり、通電中の状態を示す。図2は、開路動作の初期の状態を、図3は、開路動作の後期の状態を、それぞれ示す。図4は、開路状態の図であり、遮断した状態である。図5は、閉路動作の初期の状態を、図6は閉路動作の後期の状態を、それぞれ示す。   FIG. 1 to FIG. 6 are longitudinal sectional views of an embodiment of a fluid pressure driving device for a circuit breaker. FIG. 1 is a diagram showing a closed state of a circuit breaker, and shows a state during energization. FIG. 2 shows an initial state of the opening operation, and FIG. 3 shows a later state of the opening operation. FIG. 4 is a diagram of an open circuit state where the circuit is shut off. FIG. 5 shows an initial state of the closing operation, and FIG. 6 shows a later state of the closing operation.

遮断器の流体圧駆動装置3は、接点部70を開閉する流体圧シリンダ部4と、流体圧シリンダ部4の圧力を切り換える開路用主制御弁30と閉路用主制御弁20と、これら主制御弁30、20を駆動する開路用パイロット弁50および閉路用パイロット弁60と、これらパイロット弁50、60を駆動する開路用ソレノイド51および閉路用ソレノイド61を有する。すなわち、2段の弁構成となっている。   The circuit breaker fluid pressure drive device 3 includes a fluid pressure cylinder portion 4 that opens and closes the contact portion 70, an opening main control valve 30 that switches the pressure of the fluid pressure cylinder portion 4, and a closing main control valve 20. An opening pilot valve 50 and a closing pilot valve 60 for driving the valves 30 and 20, and an opening solenoid 51 and a closing solenoid 61 for driving the pilot valves 50 and 60 are provided. That is, it has a two-stage valve configuration.

流体圧シリンダ部4は、シリンダ7内を摺動するピストン5を有し、このシリンダ7は、シリンダ7内を小受圧面積側6とシリンダ制御室(大受圧面積側)7aとに分割する。小受圧面積側6は、ロッド11の断面積分だけ大受圧面積側7aより受圧面積が少ない。ピストン5を先端部に取り付けたロッド11の他端部は、可動接点2に接続されている。可動接点2は、ロッドの往復動により固定接点1との間で電力の遮断または投入動作をする。   The fluid pressure cylinder portion 4 has a piston 5 that slides in the cylinder 7, and the cylinder 7 divides the inside of the cylinder 7 into a small pressure receiving area side 6 and a cylinder control chamber (large pressure receiving area side) 7a. The small pressure receiving area side 6 has a smaller pressure receiving area than the large pressure receiving area side 7 a by the cross-sectional integral of the rod 11. The other end of the rod 11 with the piston 5 attached to the tip is connected to the movable contact 2. The movable contact 2 cuts off or puts in power with the fixed contact 1 by reciprocating movement of the rod.

小受圧面積側6には、ポンプ8から吐出されアキュムレータ9に蓄圧された作動流体の供給圧が、連通路102を介して常時作用する。シリンダ制御室を形成する大受圧面積側7aは、開路用主制御弁30と閉路用主制御弁20に接続されており、これらの主制御弁30、20の開閉により、高圧の供給圧側とリザーバ10に連通する低圧の戻り側とに、連通が切換えられる。リザーバ10は、流体圧シリンダ部4から排出された流体を回収して貯蔵する。   On the small pressure receiving area side 6, the supply pressure of the working fluid discharged from the pump 8 and accumulated in the accumulator 9 always acts via the communication path 102. The large pressure receiving area side 7a forming the cylinder control chamber is connected to the open main control valve 30 and the close main control valve 20, and by opening and closing these main control valves 30, 20, a high pressure supply pressure side and a reservoir are connected. The communication is switched to the return side of the low pressure communicating with 10. The reservoir 10 collects and stores the fluid discharged from the fluid pressure cylinder unit 4.

開路用主制御弁30は、開口が形成された弁座35と、この弁座35に当接する台形断面を有する弁体31とを備える。弁座35の開口近傍には、弁体31よりも大径のシリンダポート33が形成されており、シリンダポート33はシリンダ制御室7aに連通路104を介して連通する。シリンダポート33と隣り合って、弁体31よりも小径の排出ポート38が形成されている。この排出ポート38は、低圧のリザーバ10に連通路105を介して常時連通している。図1の状態では、弁体31が弁座35の開口を塞いでおり、シリンダポート33と排出ポート38とは区画されている。   The open circuit main control valve 30 includes a valve seat 35 in which an opening is formed, and a valve body 31 having a trapezoidal cross section that comes into contact with the valve seat 35. In the vicinity of the opening of the valve seat 35, a cylinder port 33 having a diameter larger than that of the valve body 31 is formed, and the cylinder port 33 communicates with the cylinder control chamber 7a through a communication passage 10. A discharge port 38 having a smaller diameter than the valve body 31 is formed adjacent to the cylinder port 33. The discharge port 38 is always in communication with the low-pressure reservoir 10 through the communication path 105. In the state of FIG. 1, the valve body 31 closes the opening of the valve seat 35, and the cylinder port 33 and the discharge port 38 are partitioned.

弁体31の背面側には、排出ポートよりも小径で弁体外径とほぼ同じ径の円筒部36aが形成されており、この円筒部36aを弁体31の摺動部37が摺動する。摺動部37には、摺動リングが介装されている。弁体31の背面側には軸部32が形成されており、この軸部32と円筒部36aとで、制御室36bが形成される。軸部32の外周部には、ばね34が取り付けられている。ばね34の一端は、制御室36bの壁面に当接している。   A cylindrical portion 36a having a diameter smaller than that of the discharge port and substantially the same as the outer diameter of the valve body is formed on the back surface side of the valve body 31, and the sliding portion 37 of the valve body 31 slides on the cylindrical portion 36a. A sliding ring is interposed in the sliding portion 37. A shaft portion 32 is formed on the back side of the valve body 31, and a control chamber 36b is formed by the shaft portion 32 and the cylindrical portion 36a. A spring 34 is attached to the outer peripheral portion of the shaft portion 32. One end of the spring 34 is in contact with the wall surface of the control chamber 36b.

閉路用制御弁20も開路用制御弁30とほぼ同じ構成であり、開路用制御弁30と対称的に配置されている。すなわち、閉路用制御弁20は、台形断面を有する弁体21と、開口が形成された弁座25とを有する。弁座25の開口に隣り合って、弁体21より大径の供給ポート23が形成されており、弁体21と弁座の当接部(開口)である小径部よりも開路用主制御弁30側には、シリンダポート27が形成されている。   The closing control valve 20 has substantially the same configuration as the opening control valve 30 and is arranged symmetrically with the opening control valve 30. In other words, the closing control valve 20 includes a valve body 21 having a trapezoidal cross section and a valve seat 25 in which an opening is formed. A supply port 23 having a larger diameter than that of the valve body 21 is formed adjacent to the opening of the valve seat 25, and the main control valve for opening the circuit is smaller than a small diameter portion that is a contact portion (opening) between the valve body 21 and the valve seat. A cylinder port 27 is formed on the 30 side.

シリンダポート27は、シリンダ制御室7aに連通路103を介して常時連通している。供給ポート23は、流体圧シリンダ部4の小受圧面積部6に連通路100を介して常時連通している。図1の状態では、弁体21は弁座25に当接していないので、シリンダポート27は供給ポート23に連通している。弁体21の背面側であって弁体21の外周部には、ばね24が取り付けられている。ばね24の一端部は、主制御弁ブロック19に当接している。   The cylinder port 27 is always in communication with the cylinder control chamber 7a through the communication path 103. The supply port 23 is always in communication with the small pressure receiving area portion 6 of the fluid pressure cylinder portion 4 via the communication path 100. In the state of FIG. 1, the valve body 21 is not in contact with the valve seat 25, so that the cylinder port 27 communicates with the supply port 23. A spring 24 is attached to the outer periphery of the valve body 21 on the back side of the valve body 21. One end of the spring 24 is in contact with the main control valve block 19.

閉路用主制御弁20の弁体21の断面台形部よりも開路用主制御弁30側は、開路用主制御弁30の方向に延在しており、その延在部の中間にはシリンダポート27の内周を摺動する円筒形の摺動部28aが形成されている。シリンダポート27は、摺動部28aにより上下2つの部屋、すなわち、シリンダポート室26aと閉路用主弁制御室26bとに分割される。   The opening main control valve 30 side extends from the cross-sectional trapezoidal portion of the valve element 21 of the closing main control valve 20 in the direction of the opening main control valve 30, and a cylinder port is located in the middle of the extending portion. A cylindrical sliding portion 28 a that slides on the inner circumference of the 27 is formed. The cylinder port 27 is divided into two upper and lower rooms, that is, a cylinder port chamber 26a and a closing main valve control chamber 26b by the sliding portion 28a.

閉路用主制御弁20の弁体21は、開路用主制御弁30の弁体31に当接し、摺動部28aよりも小径の円筒部(軸部)28bを有する。この軸部28bは、開路用主制御弁30の排出ポート38にまで延在しており、弁体31に当接したときは、弁座25と弁体21の間、または弁座35と弁体31の間のいずれかが微小に開口する。   The valve element 21 of the closing main control valve 20 is in contact with the valve element 31 of the opening main control valve 30 and has a cylindrical part (shaft part) 28b having a smaller diameter than the sliding part 28a. The shaft portion 28b extends to the discharge port 38 of the open circuit main control valve 30. When the shaft portion 28b comes into contact with the valve body 31, it is located between the valve seat 25 and the valve body 21 or between the valve seat 35 and the valve body. Any one between the bodies 31 opens minutely.

閉路用主制御弁20及び開路用主制御弁30は、それぞれパイロット弁により駆動される。すなわち、閉路用主制御弁20を駆動する閉路用パイロット弁60と、開路用主制御弁30を駆動する回路用パイロット弁50とが、主制御弁ブロック19に取り付けられている。閉路用パイロット弁60には、閉路用ソレノイド61が取り付けられている。同様に開路用パイロット弁50には、開路用ソレノイド51が取り付けられている。開路用パイロット弁50は開路用ソレノイド51を励磁すると開き、励磁を解くと内蔵するばねのばね力で閉じる。閉路用パイロット弁60も同様である。   Each of the closing main control valve 20 and the opening main control valve 30 is driven by a pilot valve. That is, a closing pilot valve 60 that drives the closing main control valve 20 and a circuit pilot valve 50 that drives the opening main control valve 30 are attached to the main control valve block 19. A closing solenoid 61 is attached to the closing pilot valve 60. Similarly, an opening solenoid 51 is attached to the opening pilot valve 50. The opening pilot valve 50 opens when the opening solenoid 51 is excited, and closes by the spring force of the built-in spring when the excitation is released. The same applies to the closing pilot valve 60.

閉路用パイロット弁60の2次側は、閉路用主制御弁20のシリンダポート20に連通路101を解して常時連通している。開路用パイロット弁50の2次側は、開路用主制御弁30の制御室36bに連通路108を介して常時連通している。閉路用パイロット弁60の1次側は、連通路106を介して閉路用主制御弁20の制御室26bおよび開路用主制御弁30の制御室36bに常時連通している。閉路用パイロット弁60の1次側は、さらに閉路用主制御弁30のシリンダポート33に絞り40を介して常時連通している。開路用パイロット弁51の1次側は、低圧のリザーバ10に連通路107を介して常時連通している。   The secondary side of the closing pilot valve 60 is always in communication with the cylinder port 20 of the closing main control valve 20 through the communication path 101. The secondary side of the opening pilot valve 50 is always in communication with the control chamber 36 b of the opening main control valve 30 through the communication path 108. The primary side of the closing pilot valve 60 is always in communication with the control chamber 26 b of the closing main control valve 20 and the control chamber 36 b of the opening main control valve 30 through the communication path 106. The primary side of the closing pilot valve 60 is always in communication with the cylinder port 33 of the closing main control valve 30 via the throttle 40. The primary side of the opening pilot valve 51 is always in communication with the low-pressure reservoir 10 through the communication passage 107.

なお、閉路用主制御弁20と開路用主制御弁30は、同一軸上に配置されている。そして、一方の弁が閉状態であれば、他方の弁が開状態になるように設定されている。各弁体21、31の背面側端部には軸部(円筒部)22、32が形成されており、この軸部22、32は主制御弁ブロック19に形成され低圧のリザーバ10に連通する穴内を摺動する。その摺動の際に、作動油が漏れるのを防止するために、軸部には摺動リングが介装されている。同様に閉路用主制御弁20のシリンダポート27を摺動する弁体21の摺動部28aには、摺動リングが介装されており、シリンダポート室26aと制御室26bとをシールする。   The closing main control valve 20 and the opening main control valve 30 are disposed on the same axis. When one valve is closed, the other valve is set to be open. Shaft portions (cylindrical portions) 22 and 32 are formed at the rear end portions of the valve bodies 21 and 31, and the shaft portions 22 and 32 are formed in the main control valve block 19 and communicate with the low-pressure reservoir 10. Slide in the hole. In order to prevent the hydraulic oil from leaking during the sliding, a sliding ring is interposed in the shaft portion. Similarly, a sliding ring is interposed in the sliding portion 28a of the valve body 21 that slides on the cylinder port 27 of the closing main control valve 20, and seals the cylinder port chamber 26a and the control chamber 26b.

開路用主制御弁30が開状態になりシリンダポート33が排出ポート38に連通すると、両ポート33、38ともに低圧状態になり、作動流体は接点部駆動シリンダ部4から排出され。これにより、ピストン5が開路動作する。接点部70が開くと、弁体31に作用するばね34のばね力が、開路用主制御弁30を閉じる。一方、閉路用主制御弁20が開状態になり閉路用主制御弁20の供給ポート23とシリンダポート27とが連通すると、両ポートとも高圧になりピストン5の両側が高圧の作動油に満たされるが、大受圧面積側7aがロッドの断面積分だけ面積が大きいので、ピストン5が閉路動作する。接点部70が閉じると、弁体21に作用するばね24のばね力が、閉路用主制御弁20を閉じる。   When the open circuit main control valve 30 is opened and the cylinder port 33 communicates with the discharge port 38, both the ports 33 and 38 are in a low pressure state, and the working fluid is discharged from the contact portion drive cylinder portion 4. As a result, the piston 5 opens. When the contact portion 70 is opened, the spring force of the spring 34 acting on the valve body 31 closes the open circuit main control valve 30. On the other hand, when the closing main control valve 20 is opened and the supply port 23 and the cylinder port 27 of the closing main control valve 20 communicate with each other, both ports become high pressure and both sides of the piston 5 are filled with high pressure hydraulic oil. However, since the large pressure receiving area side 7a has a large area by the cross-sectional integral of the rod, the piston 5 is closed. When the contact part 70 is closed, the spring force of the spring 24 acting on the valve body 21 closes the closing main control valve 20.

以上のように構成した本実施例にかかる流体圧駆動装置3の動作を、具体的に説明する。遮断器の接点部70が閉じた状態から、開く動作について初めに説明する。図1は、閉路状態を示している。この状態では、シリンダ制御室7aと開路用主制御弁30の制御室36bと閉路用主制御弁20の制御室26bと閉路用パイロット弁の1次側と開路用パイロット弁の1次側が、高圧になっている。   The operation of the fluid pressure drive device 3 according to this embodiment configured as described above will be specifically described. The operation of opening the circuit breaker contact 70 from the closed state will be described first. FIG. 1 shows a closed state. In this state, the cylinder control chamber 7a, the control chamber 36b of the opening main control valve 30, the control chamber 26b of the closing main control valve 20, the primary side of the closing pilot valve, and the primary side of the opening pilot valve are high pressure. It has become.

閉路用主制御弁20の円筒部22の径d1と開路用主弁側の円筒部28bの径d4は同一であるから、閉路用主制御弁20の弁体21の両面にかかる作動油からの力はバランスしている。このバランスした力に加えて、ばね24の力が弁体21に作用し、弁体21を弁座25側に移動させる。すなわち、閉路用主制御弁20が閉じる。一方、開路用主制御弁30の弁体31の一方の面(上側の面)には、摺動部37の径dと円筒部32の径dの違いにより面積差π(d −d )/4が生じているので、作動油が弁体31を下側に移動させようとする力が作用する。この力に抗して、ばね34は弁体31を上方に押し上げようとする。作動油の圧力がばね24力に打ち勝つように設定しているので、閉路側主制御弁20では、弁座25と弁体21の間に微小な開口が保たれる。 Since the diameter d1 of the cylindrical portion 22 of the closing main control valve 20 and the diameter d4 of the opening-side main valve-side cylindrical portion 28b are the same, the hydraulic oil applied to both surfaces of the valve element 21 of the closing main control valve 20 The power is balanced. In addition to this balanced force, the force of the spring 24 acts on the valve body 21 to move the valve body 21 to the valve seat 25 side. That is, the closing main control valve 20 is closed. On the other hand, on one surface (upper surface) of the valve element 31 of the main control valve 30 for opening, an area difference π (d 6 2) due to the difference between the diameter d 6 of the sliding portion 37 and the diameter d 7 of the cylindrical portion 32. Since -d 7 2 ) / 4 is generated, a force is exerted on the hydraulic oil to move the valve body 31 downward. Against this force, the spring 34 tries to push the valve element 31 upward. Since the hydraulic oil pressure is set so as to overcome the force of the spring 24, a minute opening is maintained between the valve seat 25 and the valve body 21 in the closed-side main control valve 20.

閉路状態を保持する図1の状態において開路指令が発せられた状態を、図2に示す。開路指令が発せられると、開路用ソレノイド51が励磁され、開路用パイロット弁50を押し開く。開路用主制御弁30の制御室36bと閉路用制御弁の制御室26bは、低圧の戻り側に連通する。その結果、閉路用主制御弁20のシリンダポート27の2つの部屋シリンダポート室26aと制御室26bとの圧力バランスが崩れ、閉路用主制御弁20の弁体21は図の下方に移動し、弁座25を弁体21で閉じる。   FIG. 2 shows a state where a circuit opening command is issued in the state of FIG. 1 in which the circuit closing state is maintained. When the opening command is issued, the opening solenoid 51 is excited to push open the opening pilot valve 50. The control chamber 36b of the opening main control valve 30 and the control chamber 26b of the closing control valve communicate with the return side of the low pressure. As a result, the pressure balance between the two cylinder port ports 26a of the cylinder port 27 of the closing main control valve 20 and the control chamber 26b is lost, and the valve body 21 of the closing main control valve 20 moves downward in the figure. The valve seat 25 is closed with the valve body 21.

閉路用主制御弁20の弁体21が移動すると、この弁体21の軸部28bに当接している開路用主制御弁30の弁体31も下方に移動する。さらに、弁体31を下方に移動させる力も発生する。すなわち、シリンダ部4の大受圧面積側7aが高圧になっているので、大受圧面積側7aに連通するシリンダポート33の圧力が高圧となる。シリンダポート33の作動流体の圧力だけが高圧なので、弁体31にはπ(d −d )/4の面積に作用する圧力を積分した力が下方に加わる。ここで、d6は弁体31の外径d6であり、d5は排出ポート38の外径である。これにより、ピストン5がさらに高速に動作する。 When the valve element 21 of the closing main control valve 20 moves, the valve element 31 of the opening main control valve 30 in contact with the shaft portion 28b of the valve element 21 also moves downward. Further, a force that moves the valve body 31 downward is also generated. That is, since the large pressure receiving area side 7a of the cylinder part 4 is high pressure, the pressure of the cylinder port 33 communicating with the large pressure receiving area side 7a is high. Since only the pressure of the working fluid in the cylinder port 33 is high, a force obtained by integrating the pressure acting on the area of π (d 6 2 -d 5 2 ) / 4 is applied to the valve body 31 downward. Here, d6 is the outer diameter d6 of the valve body 31, and d5 is the outer diameter of the discharge port 38. As a result, the piston 5 operates at a higher speed.

開路用主制御弁30が開くと、低圧の排出ポート38にシリンダポート33が連通し、このシリンダポート33に連通するシリンダ部4の大受圧面積側7aの圧力が低下する。その結果、ピストン5を押す小受圧面積側6の力が大受圧面積側の力よりも大になり、ピストン5が右方に移動する。ピストン5にロッド11を介して接続された可動接点も右方に移動し、開路動作が開始される。このとき、制御室26から排出される流体の体積Vは、V=L×π(d −d )/4、Lはストローク、になる。したがって、パイロット弁50が処理する流量は、少なくて済む。 When the open main control valve 30 is opened, the cylinder port 33 communicates with the low pressure discharge port 38, and the pressure on the large pressure receiving area side 7a of the cylinder portion 4 communicating with the cylinder port 33 decreases. As a result, the force on the small pressure receiving area side 6 that pushes the piston 5 becomes larger than the force on the large pressure receiving area side, and the piston 5 moves to the right. The movable contact connected to the piston 5 via the rod 11 also moves to the right, and the opening operation is started. At this time, the volume V of the fluid discharged from the control chamber 26 is V = L × π (d 6 2 −d 7 2 ) / 4, and L is a stroke. Accordingly, the flow rate processed by the pilot valve 50 is small.

開路用主制御弁30の弁体31が開いた状態を、図3に示す。この図3は、開路動作後期の状態を示している。シリンダ部4のピストン5が右方に移動し終わると、シリンダ7から排出される作動油の流れが止まる。それとともに排出ポート38とシリンダポート33が連通し、共にリザーバ11に連通して低圧に保たれる。その結果、開路用主制御弁30には流体圧(上方と下方の差圧)により弁体31を開く力が相殺される。流体圧がバランスしたので、弁体31はばね34のばね力により閉じる方向(左方)に動く。   FIG. 3 shows a state where the valve element 31 of the open circuit main control valve 30 is opened. FIG. 3 shows a state in the latter half of the opening operation. When the piston 5 of the cylinder part 4 finishes moving to the right, the flow of hydraulic oil discharged from the cylinder 7 stops. At the same time, the discharge port 38 and the cylinder port 33 communicate with each other, and both communicate with the reservoir 11 and are kept at a low pressure. As a result, the force for opening the valve element 31 is canceled out by the fluid pressure (upward and downward differential pressure) in the open circuit main control valve 30. Since the fluid pressure is balanced, the valve body 31 moves in the closing direction (leftward) by the spring force of the spring 34.

ただし、閉路用主制御弁20の弁体21には、弁座25の開口部径dと背面側円筒部径dの径差部分にかかる圧力差(アキュムレータ9の圧力とリザーバ10の圧力との差)による圧力による力と、ばね24のばね力により下向きの力が作用している。この下向きの力よりもばね34の上向きの力を小さくして、円筒部28bが主制御弁ブロック19を摺動する開路用主制御弁30が微小開口を保つように設定する。その際、開路用ソレノイド51の励磁が解かれるので、開路用パイロット弁50は内蔵するばねのばね力により閉じる。この状態が図4に示す開路保持状態であり、閉路用主制御弁20の供給ポート23だけが高圧となり、シリンダポート27より下方の部分は低圧となる。 However, the valve element 21 of the closing main control valve 20 has a pressure difference (the pressure of the accumulator 9 and the pressure of the reservoir 10) applied to the diameter difference portion between the opening diameter d 2 of the valve seat 25 and the rear side cylindrical diameter d 1. The downward force is applied by the force due to the pressure due to the difference between the spring 24 and the spring force of the spring 24. The upward force of the spring 34 is made smaller than the downward force so that the opening main control valve 30 in which the cylindrical portion 28b slides on the main control valve block 19 maintains a minute opening. At this time, since the excitation of the opening solenoid 51 is released, the opening pilot valve 50 is closed by the spring force of the built-in spring. This state is the open circuit holding state shown in FIG. 4. Only the supply port 23 of the closing main control valve 20 becomes high pressure, and the portion below the cylinder port 27 becomes low pressure.

図4に示した開路保持状態において、閉路指令が発せられたときの様子を図5に示す。閉路指令が発せられると、閉路用ソレノイド61が励磁され、閉路用パイロット弁60が押し開かれる。閉路用パイロット弁60の1次側と2次側とが連通し、ともに2次側に連通する供給ポートの圧力、即ち高圧になる。閉路用パイロット弁60の1次側は常時閉路用主制御弁20の制御室26bと開路用主制御弁30の制御室36bに連通しているから、制御室26b、36bはともに高圧になる。   FIG. 5 shows a state when a closing command is issued in the open circuit holding state shown in FIG. When a closing command is issued, the closing solenoid 61 is excited, and the closing pilot valve 60 is pushed open. The primary side and the secondary side of the pilot valve for closing 60 communicate with each other, and the pressure of the supply port that communicates with the secondary side, that is, the high pressure, becomes high. Since the primary side of the closing pilot valve 60 is always in communication with the control chamber 26b of the closing main control valve 20 and the control chamber 36b of the opening main control valve 30, both the control chambers 26b and 36b become high pressure.

閉路用制御弁20の弁体21の背面側には、円筒部(径dの位置)を除いて高圧の供給圧が作用し、弁体21の前面側には弁座25の開口部(径dの位置)までシリンダポート27の低圧が作用し、それよりも大径部には供給ポート23の高圧が作用する。したがって、弁体21の径dから径dまでの部分に作用する流体圧およびばね24のばね力により、弁体21には下向きの力が作用する。そこで、これらの力に打ち勝つ力をシリンダポート27部分で発生するように、シリンダポート27の径dと軸部28bの径dを設定する。弁体21の軸部28bの中間に形成した摺動部28aの上側の面には低圧が作用し、下側の面には軸部28bの径dよりも大径部分に高圧の供給圧が作用する。 A high supply pressure is applied to the back side of the valve body 21 of the closing control valve 20 except for the cylindrical portion (the position of the diameter d 1 ), and an opening ( low pressure acts in the cylinder port 27 to the position of the diameter d 2), high-pressure supply port 23 acts also on the large-diameter portion than that. Therefore, by the spring force of the fluid pressure and spring 24 acting on the portion of the diameter d 1 of the valve body 21 to the diameter d 2, a downward force acts on the valve element 21. Therefore, a force to overcome these forces to occur at the cylinder port 27 portion, sets the diameter d 4 of diameter d 3 and the shaft portion 28b of the cylinder port 27. The upper surface of the sliding portion 28a formed intermediate shaft portion 28b of the valve body 21 acts a low-pressure, high-pressure supply pressure to the large diameter portion than the diameter d 4 of the shaft portion 28b in the lower surface Act.

閉路用主制御弁20の各部の径をこのように設定したので、閉路用主制御弁20の弁体21は上方に移動して弁座25を開く。一方、開路用主制御弁30の弁体31の背面側に形成した制御室36bの圧力がリザーバ10の圧力である低圧から供給ポート23の高圧に変化したので、弁体31では少しの開口でのバランス状態が崩れ、上方への力が大きくなる。そこで、弁体31は上方に移動し、弁座35を閉じる。   Since the diameter of each part of the closing main control valve 20 is set in this way, the valve element 21 of the closing main control valve 20 moves upward to open the valve seat 25. On the other hand, the pressure in the control chamber 36b formed on the back side of the valve element 31 of the open main control valve 30 has changed from the low pressure that is the pressure of the reservoir 10 to the high pressure in the supply port 23. The balance state is lost, and the upward force increases. Therefore, the valve body 31 moves upward and closes the valve seat 35.

開路用主制御弁30が閉じ、閉路用主制御弁20が開いたので、シリンダポート27のシリンダポート室26aの圧力がシリンダ7の大受圧面積側7aに作用して、ピストン5、ロッド11および可動接点2を固定接点1側に移動させる。なお、閉路用主制御弁20を動かすためには、パイロット弁60から制御室26bに流体を供給しなければならないが、制御室26bの面積はπ(d −d )/4であるから、パイロット弁に必要な流量は少なくて済む。 Since the opening main control valve 30 is closed and the closing main control valve 20 is opened, the pressure in the cylinder port chamber 26a of the cylinder port 27 acts on the large pressure receiving area side 7a of the cylinder 7, and the piston 5, the rod 11 and The movable contact 2 is moved to the fixed contact 1 side. In order to move the closing main control valve 20, fluid must be supplied from the pilot valve 60 to the control chamber 26b. The area of the control chamber 26b is π (d 3 2 -d 4 2 ) / 4. As a result, less flow is required for the pilot valve.

弁座25が開いたので、閉路用主制御弁20のシリンダポート27に形成したシリンダ制御室7aのも圧力が上昇する。しかしながら、ピストン5が動いている間は供給圧までは上昇しない。その理由は、以下の通りである。ピストン5が動くためには、小受圧面積側6に作用する供給圧および可動接点2の質量、ピストン5の周囲に設けたピストンリングの摩擦力等の負荷に打ち勝つ力を大受圧面積側7aに生じさせなければならない。この力は概ね小受圧面積側6と大受圧面積側7aの受圧面積の比で決まる。大受圧面積側7aの受圧面積がロッド11の断面積分だけ広いから、大受圧面積側7aの圧力は供給圧より低くなる。   Since the valve seat 25 is opened, the pressure in the cylinder control chamber 7a formed in the cylinder port 27 of the closing main control valve 20 also increases. However, the supply pressure does not rise while the piston 5 is moving. The reason is as follows. In order for the piston 5 to move, the force that overcomes the load such as the supply pressure acting on the small pressure receiving area side 6 and the mass of the movable contact 2 and the frictional force of the piston ring provided around the piston 5 is applied to the large pressure receiving area side 7a. Must be generated. This force is generally determined by the ratio of the pressure receiving area between the small pressure receiving area side 6 and the large pressure receiving area side 7a. Since the pressure receiving area on the large pressure receiving area side 7a is wide by the cross-sectional integral of the rod 11, the pressure on the large pressure receiving area side 7a is lower than the supply pressure.

供給圧をPs、大受圧面積側7aの圧力をPcとすると、弁体21には供給ポート23部では閉じる方向に、Ps×π(d −d )/4の力が作用し、閉路用主制御弁20の制御室26bでは開く方向にPs×π(d −d )/4の力が働く。弁体21の背面の円筒部径d1と弁体21の前面の軸部径d4を同じとすれば、2つの力の和Ps×π(d −d )/4が、弁体21を開く方向に作用する。 When the supply pressure is Ps and the pressure on the large pressure receiving area side 7a is Pc, a force of Ps × π (d 2 2− d 1 2 ) / 4 acts on the valve body 21 in the closing direction at the supply port 23 portion. In the control chamber 26b of the closing main control valve 20, a force of Ps × π (d 3 2 −d 4 2 ) / 4 works in the opening direction. If the cylindrical portion diameter d1 on the back surface of the valve body 21 and the shaft portion diameter d4 on the front surface of the valve body 21 are the same, the sum of two forces Ps × π (d 3 2 −d 2 2 ) / 4 is obtained. 21 acts in the direction of opening.

一方、シリンダポート27のシリンダポート室26aでは、閉じる方向にPc×π(d −d )/4の力が働く。供給圧Psがシリンダポート室26aの圧力Pcよりも大きいので、弁体21全体では弁体21を開く方向に力が作用する。この合力よりもばね24が弁体21を閉じる力を小さくすると、弁体21をさらに開くことができる。そこで、ばね24のばね力を合力よりも小さくして、ピストン5をさらに高速に動作させる。 On the other hand, in the cylinder port chamber 26a of the cylinder port 27, a force of Pc × π (d 3 2 −d 2 2 ) / 4 works in the closing direction. Since the supply pressure Ps is larger than the pressure Pc of the cylinder port chamber 26a, a force acts in the direction of opening the valve body 21 in the entire valve body 21. If the force with which the spring 24 closes the valve body 21 is smaller than the resultant force, the valve body 21 can be further opened. Therefore, the spring force of the spring 24 is made smaller than the resultant force to operate the piston 5 at a higher speed.

ピストン5が閉路動作している間は、弁体21は弁座25から離れた開いた状態に保持され、閉路動作を継続する。閉路動作が終了すると、ピストン5が停止する。弁体21が弁座25から離れているので、シリンダポート27は供給ポート23に連通して、高圧になる。シリンダポート27と供給ポート23との連通後は、弁体21に作用する流体圧がバランスし、弁体21はばね24の力だけで閉じる方向に動く。   While the piston 5 is closing, the valve body 21 is held in an open state away from the valve seat 25 and continues the closing operation. When the closing operation is completed, the piston 5 stops. Since the valve body 21 is away from the valve seat 25, the cylinder port 27 communicates with the supply port 23 and becomes high pressure. After the communication between the cylinder port 27 and the supply port 23, the fluid pressure acting on the valve body 21 is balanced, and the valve body 21 moves in the closing direction only by the force of the spring 24.

一方、開路用主制御弁30の弁体31では、弁体31の背面側に設けられた制御室36bに供給圧力による力とばね34のばね力による上向きの力が作用している。この上向きの力よりもばね24の下向きの力を僅かに小さくする。その結果、開路用主制御弁30弁体は、弁座35に当接するまで上方に移動する。   On the other hand, in the valve element 31 of the open circuit main control valve 30, the force due to the supply pressure and the upward force due to the spring force of the spring 34 are acting on the control chamber 36 b provided on the back side of the valve element 31. The downward force of the spring 24 is made slightly smaller than this upward force. As a result, the main control valve 30 for opening the circuit moves upward until it contacts the valve seat 35.

この移動の途中で下方に移動する閉路用主制御弁30の弁体31の軸部28b端面に当接しても、ばね24力は弁体31に作用する上向きの力よりも小さいので、弁体21ともども上方に移動する。弁体31が弁座に当接した状態では、閉路用主制御弁20は微少開口を有する開状態になる(図4参照)。弁体21、31はばね24、34の力だけで元の位置に復帰するので、弁体21、31同士の衝突時の衝撃は小さい。閉路用ソレノイド61は励磁が解かれ、閉路用パイロット弁60は内蔵するばねのばね力により閉じる。   Since the spring 24 force is smaller than the upward force acting on the valve body 31 even when abutting against the end face of the shaft portion 28b of the valve body 31 of the closing main control valve 30 that moves downward during the movement, the valve body 21 both move upward. When the valve body 31 is in contact with the valve seat, the closing main control valve 20 is in an open state having a minute opening (see FIG. 4). Since the valve bodies 21 and 31 return to their original positions only by the force of the springs 24 and 34, the impact at the time of collision between the valve bodies 21 and 31 is small. The closing solenoid 61 is de-energized, and the closing pilot valve 60 is closed by the spring force of a built-in spring.

本実施例によれば、閉路状態では閉路用主制御弁が微小な開口を有する開状態であるから、この閉路状態から開路動作させると、閉路用主制御弁がすばやく閉じる。また、開路状態で開路用主制御弁が微小な開口を有しているから、開路状態から閉路動作させると、開路用主制御弁がすばやく閉じる。   According to the present embodiment, in the closed state, the closing main control valve is in an open state having a minute opening. Therefore, when the opening operation is performed from this closed state, the closing main control valve is quickly closed. Further, since the open main control valve has a minute opening in the open state, the open main control valve is quickly closed when the close operation is performed from the open state.

以上により、開路用主制御弁または閉路用主制御弁を動作させたときに、供給側から低圧の戻り側に直接流れる流体を低減できる。これにより、遮断器の駆動装置の信頼性を向上させることができる。また、開路用主制御弁または閉路用主制御弁を駆動するパイロット弁に必要な作動油の流量は、これらの主制御弁の制御室の流体を排出するときまたは供給するときに要する量だけであるから、パイロット弁の面積が小さくなる。これにより、パイロット弁を小型化できるとともに、駆動装置を大容量化できる。   As described above, when the open main control valve or the close main control valve is operated, the fluid flowing directly from the supply side to the low pressure return side can be reduced. Thereby, the reliability of the drive device of a circuit breaker can be improved. In addition, the flow rate of the hydraulic oil required for the pilot valve that drives the open circuit main control valve or the close circuit main control valve is only the amount required when the fluid in the control chamber of these main control valves is discharged or supplied. Therefore, the area of the pilot valve is reduced. As a result, the pilot valve can be reduced in size and the capacity of the drive device can be increased.

本発明の他の実施例を、図7を用いて説明する。本実施例は、図1で示した実施例と閉路用主制御弁20および開路用主制御弁20の弁体21、31の背面側をリザーバ10に開放しないようにしたことにある。これにともない、主制御弁ブロック19に形成した流路構造も図1に示した実施例とは異なっている。具体的には、閉路用主制御弁20側については、弁体21の背面に形成される背圧室29と、弁体21の軸部28bであって摺動部28aよりも弁座25側の側面を連通する流路106を弁体21内部に形成する。   Another embodiment of the present invention will be described with reference to FIG. In this embodiment, the back side of the valve bodies 21 and 31 of the closing main control valve 20 and the opening main control valve 20 is not opened to the reservoir 10 in the embodiment shown in FIG. Accordingly, the flow path structure formed in the main control valve block 19 is also different from the embodiment shown in FIG. Specifically, with respect to the closing main control valve 20 side, the back pressure chamber 29 formed on the back surface of the valve body 21 and the shaft portion 28b of the valve body 21, which is closer to the valve seat 25 than the sliding portion 28a. A flow path 106 communicating with the side surfaces of the valve body 21 is formed inside the valve body 21.

一方、開路用主制御弁30側については、弁体31の背面側に形成される背圧室39と弁体31が弁座35と当接する面を連通する流路109を弁体31内部に形成する。シリンダポート33dと排出ポート38dとは、その位置が図1に示した実施例とは反対位置になり、弁座35よりも前面側が排出ポート33dであり、弁座35よりも背面側がシリンダポート38dとなっている。閉路用パイロット弁60の1次側及び開路用パイロット弁50の2次側に連通する絞り40を有する流路110は、シリンダポートに開口する代わりに背圧室39に開口している。その他の構成は、図1に示した実施例のものと同じである。   On the other hand, on the side of the main control valve 30 for opening the circuit, the back pressure chamber 39 formed on the back side of the valve body 31 and the flow path 109 communicating the surface where the valve body 31 contacts the valve seat 35 are formed inside the valve body 31. Form. The positions of the cylinder port 33d and the discharge port 38d are opposite to those in the embodiment shown in FIG. 1, the front side of the valve seat 35 is the discharge port 33d, and the back side of the valve seat 35 is the cylinder port 38d. It has become. A flow path 110 having a throttle 40 communicating with the primary side of the closing pilot valve 60 and the secondary side of the opening pilot valve 50 opens in the back pressure chamber 39 instead of opening in the cylinder port. Other configurations are the same as those of the embodiment shown in FIG.

このように構成した本実施例の動作を、以下に説明する。図7に示した閉路状態では、シリンダ7の大受圧面積側7aおよび開路用主制御弁30の制御室36b、閉路用主制御弁20の制御室26b、閉路用パイロット弁60の1次側、開路用パイロット弁50の1次側が高圧になっている。このとき、閉路用主制御弁20の弁体21に作動流体から加わる力はバランスしている。したがって、弁体21にはばね24による閉じる方向の力が働く。なお、弁体21の円筒部22の径dと軸部28bの径dは異なっていてもよい。 The operation of this embodiment configured as described above will be described below. In the closed state shown in FIG. 7, the large pressure receiving area side 7a of the cylinder 7, the control chamber 36b of the main control valve 30 for opening, the control chamber 26b of the main control valve 20 for closing, the primary side of the pilot valve 60 for closing, The primary side of the opening pilot valve 50 is at a high pressure. At this time, the force applied from the working fluid to the valve element 21 of the closing main control valve 20 is balanced. Therefore, a force in the closing direction by the spring 24 acts on the valve body 21. The diameter d 1 and the diameter d 4 of the shaft portion 28b of the cylindrical portion 22 of the valve body 21 may be different.

開路用主制御弁30の弁体31には、摺動部37の径dと円筒部32の径dの径差部分にかかる流体圧とばね34とにより、弁座を閉じる方向の力が作用する。この力は、閉路用主制御弁20の弁体21にかかるばね24の力に打ち勝ち、閉路用主制御弁20の弁座25を微小開口状態にして保持する。 The valve element 31 of the open circuit main control valve 30 has a force in a direction in which the valve seat is closed by the fluid pressure applied to the diameter difference portion between the diameter d 6 of the sliding portion 37 and the diameter d 7 of the cylindrical portion 32 and the spring 34. Works. This force overcomes the force of the spring 24 applied to the valve element 21 of the closing main control valve 20, and holds the valve seat 25 of the closing main control valve 20 in a minute opening state.

この状態において開路指令が発せられると、開路用ソレノイド51が励磁されて開路用パイロット弁50が押し開かれる。開路用主制御弁30の制御室36bおよび閉路用制御弁20の制御室26bは、開路用パイロット弁50を介して低圧の戻り側に連通する。開路用主制御弁30の弁体31は、シリンダ部4の大受圧面積側7aから作用する高圧によって開き始める。シリンダポート33dが低圧の排出ポート38dに連通したので、大受圧面積側7aから作動流体がシリンダポート33dに流れ込み、大受圧面積側7a内の作動流体量が減少する。これにより、ピストン5が可動接点2と一体で右方に移動し、接点部70が開路動作し始める。それとともに閉路用主制御弁20の弁体21は、摺動部28aの上下の圧力バランスが崩れて、下方に移動し弁座25を閉じる。   When an opening command is issued in this state, the opening solenoid 51 is excited and the opening pilot valve 50 is pushed open. The control chamber 36 b of the open circuit main control valve 30 and the control chamber 26 b of the close circuit control valve 20 communicate with the low pressure return side via the open pilot valve 50. The valve element 31 of the open circuit main control valve 30 starts to open due to the high pressure acting from the large pressure receiving area side 7 a of the cylinder portion 4. Since the cylinder port 33d communicates with the low pressure discharge port 38d, the working fluid flows into the cylinder port 33d from the large pressure receiving area side 7a, and the amount of working fluid in the large pressure receiving area side 7a decreases. As a result, the piston 5 moves to the right integrally with the movable contact 2, and the contact portion 70 starts to open. At the same time, the valve body 21 of the closing main control valve 20 loses the pressure balance between the upper and lower sides of the sliding portion 28a and moves downward to close the valve seat 25.

閉路用主制御弁20が閉じたあとも、シリンダ7の小受圧面積側6にかかる高圧により大受圧面積側7aの作動流体が押し出されて、開路用主制御弁30の弁体31は移動を続ける。つまり、開路用主制御弁30の弁体31の外径d6と弁体31の背面側の円筒部径d7の差部分に、作動流体の流体力が作用して、さらに弁座35は開く。これにより、ピストン5がさらに高速に動作する。その後も、開路用主制御弁30の弁座35部は、開いた状態を保つ。   Even after the closing main control valve 20 is closed, the working fluid on the large pressure receiving area side 7a is pushed out by the high pressure applied to the small pressure receiving area side 6 of the cylinder 7, and the valve element 31 of the opening main control valve 30 moves. to continue. That is, the hydraulic force of the working fluid acts on the difference between the outer diameter d6 of the valve element 31 of the main control valve 30 for opening and the cylindrical part diameter d7 on the back side of the valve element 31, and the valve seat 35 is further opened. Thereby, the piston 5 operates at higher speed. Thereafter, the valve seat 35 of the open circuit main control valve 30 is kept open.

シリンダ部4のピストン5の動作が完了した後には、大受圧面積側7aから作動流体が排出されなくなるので、開路用主制御弁30のシリンダポート33と背圧室39の圧力は低下する。その結果、弁体31に作用する流体圧では弁体31が開かなくなり、ばね34のばね力により弁体31は開路用主制御弁30を閉じる方向に動く。ただし、開路側主制御弁30のばね32力よりも、閉路用主制御弁20の開口径d2と弁体21の背面側の円筒部22の径d1の差部分に加わる流体力(供給圧力による力)と、ばね24による下向きの力の和の方が大きい。   After the operation of the piston 5 of the cylinder part 4 is completed, the working fluid is not discharged from the large pressure receiving area side 7a, so the pressure in the cylinder port 33 and the back pressure chamber 39 of the open circuit main control valve 30 decreases. As a result, the valve body 31 is not opened by the fluid pressure acting on the valve body 31, and the valve body 31 moves in the direction to close the open circuit main control valve 30 by the spring force of the spring 34. However, the fluid force (depending on the supply pressure) applied to the difference between the opening diameter d2 of the closing main control valve 20 and the diameter d1 of the cylindrical portion 22 on the back side of the valve body 21 rather than the spring 32 force of the opening main control valve 30. Force) and the downward force by the spring 24 are larger.

そのため、閉路用主制御弁20は閉じた状態を保ち、この閉路用主制御弁20の弁体21の前面側に設けた円筒部28bの端面に開路用主制御弁30の弁体31が当接し、弁座35部では微小開口が保たれる。このとき、開路用ソレノイド51の励磁が解かれ、開路用パイロット弁50は内蔵するばね力により閉じられる。   Therefore, the closing main control valve 20 is kept closed, and the valve element 31 of the opening main control valve 30 is applied to the end face of the cylindrical portion 28b provided on the front side of the valve element 21 of the closing main control valve 20. The minute opening is maintained at the valve seat 35 portion. At this time, the excitation of the opening solenoid 51 is released, and the opening pilot valve 50 is closed by a built-in spring force.

開路状態において閉路指令が発せられると、閉路用ソレノイド61が励磁され、閉路用パイロット弁60が押し開かれる。閉路用パイロット弁60の1次側と2次側が連通して高圧の供給圧になり、閉路用主制御弁20の制御室26bと開路用主制御弁30の制御室36bも高圧になる。閉路用主制御弁20の弁体21では、シリンダポート27において摺動部28aの上下方向の圧力バランスが崩れは、弁体21は上方に移動して弁座25部を開き始める。それとともに、開路用主制御弁30では制御室36bの圧力が高くなり弁体31に作用する流体力のバランスが崩れて、弁体31を上方に移動させ弁座35を閉じる。   When a closing command is issued in the open circuit state, the closing solenoid 61 is excited and the closing pilot valve 60 is pushed open. The primary side and the secondary side of the closing pilot valve 60 communicate with each other to provide a high supply pressure, and the control chamber 26b of the closing main control valve 20 and the control chamber 36b of the opening main control valve 30 also have a high pressure. In the valve body 21 of the closing main control valve 20, when the pressure balance in the vertical direction of the sliding portion 28a in the cylinder port 27 collapses, the valve body 21 moves upward and starts to open the valve seat 25 portion. At the same time, in the open main control valve 30, the pressure in the control chamber 36b is increased, the balance of the fluid force acting on the valve body 31 is lost, the valve body 31 is moved upward, and the valve seat 35 is closed.

閉路用主制御弁20が開き始めたので、シリンダポート23とシリンダポート室26aとが連通し、シリンダ7の小受圧面積側6から大受圧面積側7bに作動流体が供給されて、ピストン5を左方に移動させる。ピストンが左方に移動すると、ピストン5に接続されたロッド11に取り付けられた可動接点2も左方に移動し、接点部70は閉路動作し始める。弁座25が開いたので、閉路用主制御弁20のシリンダポート27と大受圧面積側7bの圧力も上昇する。しかし、ピストン5が動いている間はこれらの空間27、7bの圧力は、供給圧までは上昇しない。   Since the closing main control valve 20 starts to open, the cylinder port 23 and the cylinder port chamber 26a communicate with each other, the working fluid is supplied from the small pressure receiving area side 6 of the cylinder 7 to the large pressure receiving area side 7b, and the piston 5 Move to the left. When the piston moves to the left, the movable contact 2 attached to the rod 11 connected to the piston 5 also moves to the left, and the contact portion 70 begins to close. Since the valve seat 25 is opened, the pressure on the cylinder port 27 and the large pressure receiving area side 7b of the closing main control valve 20 also increases. However, while the piston 5 is moving, the pressure in these spaces 27 and 7b does not rise to the supply pressure.

供給圧をPs、大受圧面積側7bの圧力をPcとすると、閉路用主制御弁20の弁体21には弁体を開く方向を正として、
Ps×π(d −d )/4+Pc×πd /4−Pc×πd /4−Ps×π(d −d )/4−Pc×πd /4
の力が作用する。つまり、閉路用主制御弁20を開く方向に
(Ps−Pc)×π{(d −d )−(d −d )}/4
の力が作用する。
Assuming that the supply pressure is Ps and the pressure on the large pressure receiving area side 7b is Pc, the valve element 21 of the closing main control valve 20 is positive in the direction of opening the valve element,
Ps × π (d 3 2 −d 4 2 ) / 4 + Pc × πd 4 2 / 4−Pc × πd 1 2 / 4−Ps × π (d 2 2 −d 1 2 ) / 4−Pc × πd 4 2 / 4
The force of acts. That is, (Ps−Pc) × π {(d 3 2 −d 4 2 ) − (d 2 2 −d 1 2 )} / 4 in the direction to open the main control valve 20 for closing.
The force of acts.

したがって、閉路用主制御弁20のシリンダポート27の径d3と弁体21の軸部28bの径d4とで形成される径差部の面積が、弁座25の開口径d2と弁体21の背面側に設けた円筒部22の径d1とで形成される径差部の面積よりも大きくする。これにより、弁体21に作用する作動流体の流体圧が、弁体21を開く方向に作用する。この流体力よりもばね24の力を小さくして、弁体21がさらに開くよう動作させる。弁体21の移動量を大きくしたので、ピストン5はさらに高速に動作する。   Therefore, the area of the diameter difference portion formed by the diameter d3 of the cylinder port 27 of the closing main control valve 20 and the diameter d4 of the shaft portion 28b of the valve body 21 is the opening diameter d2 of the valve seat 25 and the valve body 21. It is larger than the area of the diameter difference portion formed by the diameter d1 of the cylindrical portion 22 provided on the back side. Thereby, the fluid pressure of the working fluid which acts on the valve body 21 acts in the direction which opens the valve body 21. The force of the spring 24 is made smaller than the fluid force so that the valve body 21 is further opened. Since the moving amount of the valve body 21 is increased, the piston 5 operates at a higher speed.

ピストン5が閉路動作しているときは、弁体21は開いた状態に保たれて、閉路動作を継続する。閉路動作が終了してピストン5が停止したら、シリンダポート27は高圧になる。作動流体の流体力がバランスし、ばね24の力によって弁体21は閉じる方向に動く。このとき、開路用主制御弁30では、制御室36bが供給圧なっており、弁体31には制御室36bの作動流体による流体力とばね34によるばね力とが、上向きに作用する。これにより、開路用主制御弁30は閉じられる。   When the piston 5 is closing, the valve body 21 is kept open and the closing operation is continued. When the closing operation is completed and the piston 5 is stopped, the cylinder port 27 becomes high pressure. The fluid force of the working fluid is balanced, and the valve body 21 moves in the closing direction by the force of the spring 24. At this time, in the open circuit main control valve 30, the control chamber 36b has a supply pressure, and the fluid force of the working fluid in the control chamber 36b and the spring force of the spring 34 act upward on the valve body 31. As a result, the open circuit main control valve 30 is closed.

閉路用主制御弁20の弁体21には、ばね24の力が下向きに働くが、開路用主制御弁30の弁体31に作用する上向きの力よりも小さく設定しているので、軸部28bの端面で当接している閉路用主制御弁20の弁座25部は微小開口を保つ。本実施例によれば、閉路用主制御弁20および開路用主制御弁30に低圧のリザーバ10側に開放する部分を設けておらず、構造が簡素化する。   The force of the spring 24 acts downward on the valve body 21 of the closing main control valve 20, but is set smaller than the upward force acting on the valve body 31 of the opening main control valve 30, so that the shaft portion The valve seat 25 portion of the closing main control valve 20 that is in contact with the end face 28b maintains a minute opening. According to the present embodiment, the closing main control valve 20 and the opening main control valve 30 are not provided with a portion opened to the low pressure reservoir 10 side, and the structure is simplified.

上記いずれの実施例においても、開路用主制御弁と閉路用主制御弁を対向させ、各制御弁の弁座の開口部間の軸方向長さよりも、この弁座に当接する弁体同士の弁座に当接する部分間の軸方向長さを長くしているので、双方の主制御弁が同時に閉じることがない。これにより、各主制御弁の動作を速めることができる。さらに、開路用主制御弁と閉路用主制御弁を別体にしたので、一方の弁体が動作しているときに、他方の弁体が動作しない時間を確保でき、主制御弁内部での圧力抜けを防止できる。   In any of the above-described embodiments, the main control valve for opening and the main control valve for closing are made to face each other, and the length of the valve bodies in contact with the valve seats is larger than the axial length between the opening portions of the valve seats of the control valves. Since the axial length between the portions in contact with the valve seat is increased, both main control valves do not close at the same time. Thereby, the operation of each main control valve can be speeded up. Furthermore, since the main control valve for opening and the main control valve for closing are separated, when one valve body is operating, the time during which the other valve body does not operate can be secured. Can prevent pressure loss.

本発明に係る遮断器の一実施例の縦断面図。The longitudinal cross-sectional view of one Example of the circuit breaker which concerns on this invention. 図1に示した遮断器の開路動作を説明する面図。FIG. 3 is a plan view for explaining an opening operation of the circuit breaker shown in FIG. 1. 図1に示した遮断器の開路動作を説明する図。The figure explaining the circuit opening operation | movement of the circuit breaker shown in FIG. 図1に示した遮断器の開路状態を説明する図。The figure explaining the open circuit state of the circuit breaker shown in FIG. 図1に示した遮断器の閉路動作を説明する図。The figure explaining the closing operation of the circuit breaker shown in FIG. 図1に示した遮断器の閉路動作を説明する図。The figure explaining the closing operation of the circuit breaker shown in FIG. 本発明に係る遮断器の他の実施例の縦断面図であり、図1に対応する図。It is a longitudinal cross-sectional view of the other Example of the circuit breaker based on this invention, and is a figure corresponding to FIG.

符号の説明Explanation of symbols

4…流体圧シリンダ、5…ピストン、20…閉路用主制御弁、21…弁体、26b…閉路用制御室、30…開路用主制御弁、31…弁体、36b…開路用制御室、50…開路用パイロット弁、51…開路用ソレノイド、60…閉路用パイロット弁、61…閉路用ソレノイド、70…接点部。 DESCRIPTION OF SYMBOLS 4 ... Fluid pressure cylinder, 5 ... Piston, 20 ... Closing main control valve, 21 ... Valve body, 26b ... Closing control chamber, 30 ... Opening main control valve, 31 ... Valve body, 36b ... Opening control chamber, DESCRIPTION OF SYMBOLS 50 ... Pilot valve for circuit opening, 51 ... Solenoid for circuit opening, 60 ... Pilot valve for circuit closing, 61 ... Solenoid for circuit closing, 70 ... Contact part.

Claims (11)

接点部を開閉する流体圧シリンダと、この流体圧シリンダを作動流体の流体力により開路動作させる開路用制御弁と閉路動作させる閉路用制御弁とを備えた遮断器の流体圧駆動装置において、前記開路用制御弁は開路用主制御弁とこの開路用主制御弁を駆動する開路用パイロット弁とを有し、前記閉路用制御弁は閉路用主制御弁とこの閉路用主制御弁を駆動する閉路用パイロット弁とを有し、前記各主制御弁は弁座とこの弁座に当接可能な弁体とを有し、各弁体を対向配置し、各弁体と各弁座が当接する弁座部間距離よりも、弁体の弁座への当接部間の長さを長くしたことを特徴とする遮断器の流体圧駆動装置。   In the fluid pressure drive device for a circuit breaker, comprising: a fluid pressure cylinder that opens and closes a contact portion; a circuit control valve that opens the fluid pressure cylinder by a fluid force of a working fluid; and a circuit control valve that performs a circuit close operation. The opening control valve has an opening main control valve and an opening pilot valve that drives the opening main control valve, and the closing control valve drives the closing main control valve and the closing main control valve. Each of the main control valves has a valve seat and a valve body that can come into contact with the valve seat, the valve bodies are arranged opposite to each other, and each valve body and each valve seat are in contact with each other. A fluid pressure drive device for a circuit breaker, characterized in that the length between contact portions of the valve body to the valve seat is made longer than the distance between the valve seat portions in contact with each other. 前記開路用主制御弁の弁体と前記閉路用主制御弁の弁体は、弁を開く方向が互いに反対になるように配置されたことを特徴とする請求項1に記載の遮断器の流体圧駆動装置。   2. The circuit breaker fluid according to claim 1, wherein the valve body of the opening main control valve and the valve body of the closing main control valve are arranged so that the valve opening directions are opposite to each other. Pressure drive device. 前記開路用主制御弁の有する弁体と閉路用主制御弁の有する弁体とが別体で同軸上にあり、流体圧駆動装置の動作中に必ずしも当接しないように配置されていることを特徴とする請求項1に記載の遮断器の流体圧駆動装置。   The valve body of the opening main control valve and the valve body of the closing main control valve are separate and coaxial, and are arranged not to contact each other during the operation of the fluid pressure drive device. The circuit breaker fluid pressure driving device according to claim 1, characterized in that: 前記開路用主制御弁に開路用制御室を形成し、この開路用制御室を低圧にして開路用制御弁の弁体を開動作させ、前記閉路用主制御弁に閉路用制御室を形成し、この閉路用制御室を高圧にして閉路用主制御弁の弁体を開動作させることを特徴とする請求項1に記載の遮断器の流体圧駆動装置。   An opening control chamber is formed in the opening main control valve, the opening control chamber is set to a low pressure to open a valve body of the opening control valve, and a closing control chamber is formed in the closing main control valve. 2. The circuit breaker fluid pressure driving device according to claim 1, wherein the closing control chamber is set to a high pressure to open the valve element of the closing main control valve. 開路保持状態では前記開路用主制御弁の弁体と前記閉路用主制御弁の弁体が接触するとともに開路用主制御弁が微小に開口し、開路動作中は開路用主制御弁が開路保持状態よりさらに開口し、閉路保持状態では閉路用主制御弁を微小に開口し、閉路動作中は閉路用主制御弁が閉路保持状態よりもさらに開口するように各弁体を配置したことを特徴とする請求項1に記載の遮断器の流体圧駆動装置。   In the open circuit holding state, the valve body of the open circuit main control valve and the valve body of the closed circuit main control valve are in contact with each other and the open circuit main control valve is slightly opened. During the open circuit operation, the open circuit main control valve is held open. Each valve element is arranged so that the main control valve for closing is slightly opened in the closed state and the main control valve for closing is further opened than the closed state during the closing operation. The fluid pressure drive device for a circuit breaker according to claim 1. 閉路保持状態では、前記閉路用主制御弁の弁体に加わる圧力による力の合力をほぼ0にし、前記開路用主制御弁の弁体に高圧部の作動流体の流体力が作動してこの弁体を閉動作させる方向に力がかかるようにし、開路保持状態では、前記開路用主制御弁の弁体に加わる作動流体の流体力の合力をほぼ0にし、前記閉路用主制御弁の弁体に高圧部の作動流体の圧力による力が作用してこの弁体を閉動作させる方向に力がかかるようにしたことを特徴とする請求項1に記載の遮断器の流体圧駆動装置。   In the closed circuit holding state, the resultant force due to the pressure applied to the valve body of the closed circuit main control valve is made substantially zero, and the fluid force of the working fluid in the high pressure section is actuated on the valve body of the open circuit main control valve. A force is applied in the direction in which the body is closed, and in the open circuit holding state, the resultant force of the working fluid applied to the valve body of the open circuit main control valve is substantially zero, and the valve body of the closed circuit main control valve 2. The circuit breaker fluid pressure drive device according to claim 1, wherein a force due to the pressure of the working fluid in the high-pressure portion is applied to the valve body in a closing direction. 3. 前記閉路用主制御弁は閉路用制御室と作動流体の高圧部に連通する供給ポートと前記流体圧シリンダに接続する閉路用シリンダポートとを備え、前記閉路用制御室を高圧にして閉路用主制御弁を開き、前記供給ポートと前記閉路用シリンダポートを連通し、流体圧シリンダに作動流体を供給して接点部を閉路し、前記開路用主制御弁は開路用制御室と作動流体の低圧部に連通する排出ポートと前記流体圧シリンダに連通する開路用シリンダポートとを備え、前記開路用制御室を低圧にして開路用主制御弁を開き、前記開路用シリンダポートと前記排出ポートを連通し、前記流体圧シリンダから作動流体を排出して接点部を開路することを特徴とする請求項1に記載の遮断器の流体圧駆動装置。   The closing main control valve includes a closing control chamber, a supply port communicating with a high pressure portion of the working fluid, and a closing cylinder port connected to the fluid pressure cylinder, and the closing control chamber is set to a high pressure. The control valve is opened, the supply port and the closing cylinder port are communicated, the working fluid is supplied to the fluid pressure cylinder to close the contact portion, and the opening main control valve is connected to the opening control chamber and the working fluid low pressure. An opening port communicating with the fluid pressure cylinder and an opening cylinder port communicating with the fluid pressure cylinder, the opening control chamber is opened by opening the opening control chamber, and the opening cylinder port communicates with the discharging port. The fluid pressure drive device for a circuit breaker according to claim 1, wherein the working fluid is discharged from the fluid pressure cylinder to open the contact portion. 前記閉路用主制御弁の弁体は閉路用制御室側に突出した軸部を有し、前記排出ポート内で前記開路用主制御弁の弁体と接触可能なように配置されており、前記閉路用主制御弁の弁体の背面側に作動流体の低圧部に開放された円筒部を有し、前記開路用主制御弁の弁体は開路用制御室側に作動流体の低圧部に開放された円筒部を有し、前記開路用主制御弁に開路用主制御弁の弁体を閉じる方向に力を発生するばねを設け、前記閉路用主制御弁に開路用主制御弁の弁体を閉じる方向に力を発生するばねを設けたことを特徴とする請求項7に記載の遮断器の流体圧駆動装置。   The valve body of the closing main control valve has a shaft portion that protrudes toward the closing control chamber, and is disposed so as to be in contact with the valve body of the opening main control valve in the discharge port, It has a cylindrical part opened to the low pressure part of the working fluid on the back side of the valve body of the main control valve for closing, and the valve element of the main control valve for opening is opened to the low pressure part of the working fluid on the side of the opening control chamber A spring that generates a force in a direction to close the valve body of the open circuit main control valve is provided in the open circuit main control valve, and the valve body of the open circuit main control valve is provided in the close circuit main control valve 8. The circuit breaker fluid pressure driving device according to claim 7, further comprising a spring that generates a force in a closing direction. 前記閉路用主制御弁は閉路用制御室と作動流体の高圧部に連通する供給ポートと流体圧シリンダに連通する閉路用シリンダポートとを備え、閉路用制御室を高圧にして閉路用主制御弁を開動作させ、供給ポートと閉路用シリンダポートを連通し、前記流体圧シリンダに作動流体を供給して接点部を閉路し、前記開路用主制御弁は開路用制御室と作動流体の低圧部に連通する排出ポートと流体圧シリンダに連通する開路用シリンダポートとを備え、前記開路用制御室を低圧にして開路用主制御弁を開動作させ、前記開路用シリンダポートと前記排出ポートとを連通し、前記流体圧シリンダから作動流体を排出して接点部を開路させることを特徴とする請求項1に記載の遮断器の流体圧駆動装置。   The closing main control valve includes a closing control chamber, a supply port communicating with the high pressure portion of the working fluid, and a closing cylinder port communicating with the fluid pressure cylinder, and the closing control chamber is set to a high pressure. The supply port and the closing cylinder port are connected, the working fluid is supplied to the fluid pressure cylinder to close the contact portion, and the opening main control valve is connected to the opening control chamber and the low pressure portion of the working fluid. A discharge port that communicates with the fluid pressure cylinder, and an opening cylinder port that communicates with the fluid pressure cylinder. The opening control chamber is set to a low pressure to open the main control valve for opening, and the opening cylinder port and the discharge port are connected to each other. 2. The circuit breaker fluid pressure drive device according to claim 1, wherein the fluid pressure cylinder communicates and discharges the working fluid from the fluid pressure cylinder to open the contact portion. 前記閉路用主制御弁の弁体は前記閉路用御室側に突出する軸部を有し、前記排出ポート内で前記開路用主制御弁の弁体と接触可能に配置され、前記閉路用主制御弁の弁体の背面側に円筒部を設け、この円筒部の背面に閉路用シリンダポートに連通する背圧室を形成し、前記開路用主制御弁の弁体は前記開路用制御室側に円筒部を有し、この円筒部の背面に開路用シリンダポートに連通する背圧室を形成し、前記開路用主制御弁は開路用主制御弁の弁体を閉じる方向に力を発生するばねを有し、前記閉路用主制御弁は閉路用主制御弁の弁体を閉じる方向に力を発生するばねを有することを特徴とする請求項1に記載の遮断器の流体圧駆動装置。   The valve body of the closing main control valve has a shaft portion that protrudes toward the closing chamber, and is disposed in the discharge port so as to be in contact with the valve element of the opening main control valve. A cylindrical portion is provided on the back side of the valve body of the valve, and a back pressure chamber communicating with the closing cylinder port is formed on the back surface of the cylindrical portion. The valve body of the opening main control valve is located on the opening control chamber side. A spring having a cylindrical portion and forming a back pressure chamber communicating with the opening cylinder port on the back surface of the cylindrical portion, wherein the opening main control valve generates a force in a direction to close the valve body of the opening main control valve 2. The circuit breaker fluid pressure drive device according to claim 1, wherein the closing main control valve has a spring that generates a force in a direction to close the valve body of the closing main control valve. 前記開路用主制御弁のシリンダポートと開路用制御室を絞りを介して接続したことを特徴とする請求項8または9に記載の遮断器の流体圧駆動装置。   10. The circuit breaker fluid pressure drive device according to claim 8, wherein a cylinder port of the open circuit main control valve and the open circuit control chamber are connected via a throttle.
JP2004059958A 2004-03-04 2004-03-04 Circuit breaker fluid pressure drive Expired - Fee Related JP4537095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004059958A JP4537095B2 (en) 2004-03-04 2004-03-04 Circuit breaker fluid pressure drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004059958A JP4537095B2 (en) 2004-03-04 2004-03-04 Circuit breaker fluid pressure drive

Publications (2)

Publication Number Publication Date
JP2005251545A true JP2005251545A (en) 2005-09-15
JP4537095B2 JP4537095B2 (en) 2010-09-01

Family

ID=35031812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004059958A Expired - Fee Related JP4537095B2 (en) 2004-03-04 2004-03-04 Circuit breaker fluid pressure drive

Country Status (1)

Country Link
JP (1) JP4537095B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159405A (en) * 2006-12-25 2008-07-10 Hitachi Ltd Fluid pressure driving device for circuit breaker
CN105402201A (en) * 2015-12-29 2016-03-16 沈阳东北电力调节技术有限公司 Integrated electro hydraulic control switch
DE102016124663B4 (en) 2016-12-16 2023-04-20 Abb Schweiz Ag Arrangement comprising a plug-in module for a switchgear with an electrical contact element and a drive

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217472A (en) * 1991-10-16 1993-08-27 Toshiba Corp Hydraulic operation apparatus
JPH0877889A (en) * 1994-09-01 1996-03-22 Toshiba Corp Liquid-pressure driving device
JPH1196859A (en) * 1997-09-18 1999-04-09 Hitachi Ltd Fluid pressure driving device for breaker

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217472A (en) * 1991-10-16 1993-08-27 Toshiba Corp Hydraulic operation apparatus
JPH0877889A (en) * 1994-09-01 1996-03-22 Toshiba Corp Liquid-pressure driving device
JPH1196859A (en) * 1997-09-18 1999-04-09 Hitachi Ltd Fluid pressure driving device for breaker

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159405A (en) * 2006-12-25 2008-07-10 Hitachi Ltd Fluid pressure driving device for circuit breaker
CN105402201A (en) * 2015-12-29 2016-03-16 沈阳东北电力调节技术有限公司 Integrated electro hydraulic control switch
DE102016124663B4 (en) 2016-12-16 2023-04-20 Abb Schweiz Ag Arrangement comprising a plug-in module for a switchgear with an electrical contact element and a drive

Also Published As

Publication number Publication date
JP4537095B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP4994455B2 (en) Fluid working machine and valve configuration
JP6289943B2 (en) Variable displacement pump
WO2020013169A1 (en) Capacity control valve
US8087902B2 (en) Hydraulic device with a lubricating pump
JP2007507671A (en) Pressure supply valve
KR101197421B1 (en) A valve for controlling the path of fluid using by bypass channnels
CN110337555B (en) Electromagnetic proportional valve
CN109416031B (en) Swash plate type plunger pump
JP4537095B2 (en) Circuit breaker fluid pressure drive
CN107690509B (en) Pneumatic actuator for engine valve
US6205964B1 (en) Damping device for movable masses, preferably for electromagnetic systems
WO2019159999A1 (en) Capacity control valve
JP4108591B2 (en) Anti-sway valve device, control unit including the same, and fluid pressure equipment
CN113661324B (en) Capacity control valve
JP7220520B2 (en) spool valve
US6903295B2 (en) Fluid pressure operating apparatus for circuit breaker
JP2005127283A (en) Displacement control valve for variable displacement compressor
KR20040077808A (en) Device for controlling charge exchange valves
JP3861834B2 (en) Circuit breaker fluid pressure drive
JP2005248785A (en) Marine spool valve
JP7346037B2 (en) flow control valve
JP4865535B2 (en) Circuit breaker fluid pressure drive
JP2572873Y2 (en) Pilot operated directional switching valve
JP2005076571A (en) Injector
JP2003301925A (en) Valve device of torque converter with transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4537095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees