JP2005251449A - Low-pressure mercury vapor discharge lamp - Google Patents

Low-pressure mercury vapor discharge lamp Download PDF

Info

Publication number
JP2005251449A
JP2005251449A JP2004057227A JP2004057227A JP2005251449A JP 2005251449 A JP2005251449 A JP 2005251449A JP 2004057227 A JP2004057227 A JP 2004057227A JP 2004057227 A JP2004057227 A JP 2004057227A JP 2005251449 A JP2005251449 A JP 2005251449A
Authority
JP
Japan
Prior art keywords
arc tube
outer tube
tube
coldest spot
mercury vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004057227A
Other languages
Japanese (ja)
Inventor
Hironori Kitagawa
浩規 北川
潤一 ▲高▼橋
Junichi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004057227A priority Critical patent/JP2005251449A/en
Publication of JP2005251449A publication Critical patent/JP2005251449A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-pressure mercury vapor discharge lamp capable of suppressing temperature variation of the coldest point part, of preventing dispersion of lamp characteristics between lamps from occurring, and of improving the lamp characteristics. <P>SOLUTION: This low-pressure mercury vapor discharge lamp comprises: a double spiral arc tube 2; a holder 3 for holding both ends of the arc tube 2; a lighting circuit 4 formed and incorporated on the side opposite to the arc tube of the holder 3; a case 6 mounted to the holder 3 so as to cover the lighting circuit 4 while having a bulb base 5; and an outer tube 7 mounted by covering the arc tube 2. A projection part 9 being a coldest point presumption part of the arc tube 2 is embedded in a thermally conductive medium 10 and thermally connected thereto. For the thermally conductive medium 10, a substance prepared by mixing a silicone resin with aluminum powder is used. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、外管内に湾曲した発光管を備えた低圧水銀蒸気放電ランプに関する。   The present invention relates to a low-pressure mercury vapor discharge lamp provided with a curved arc tube in an outer tube.

外管内に湾曲した発光管を備えた低圧水銀蒸気放電ランプとして、例えば一般電球代替の電球形蛍光ランプが知られている。   As a low-pressure mercury vapor discharge lamp provided with a curved arc tube in the outer tube, for example, a light bulb-type fluorescent lamp instead of a general light bulb is known.

従来の電球形蛍光ランプとしては、図4に示すように、外管7内に湾曲した発光管2が設けられた外管付きのものがある。この外管付きのものは、ホルダ3に立設保持された発光管2を、なす形のガラスからなる外管7によって覆ったものであり、ホルダ3の反発光管側に点灯回路4(図示せず)を設け、さらにこの点灯回路4を覆うように、一般電球と同じE形口金5が設けられたケース6がホルダ3に装着されている。   As a conventional bulb-type fluorescent lamp, as shown in FIG. 4, there is a lamp with an outer tube in which a curved arc tube 2 is provided in an outer tube 7. In the case with the outer tube, the arc tube 2 standingly held on the holder 3 is covered with an outer tube 7 made of glass of a glass shape, and the lighting circuit 4 (see FIG. A case 6 provided with the same E-shaped base 5 as a general light bulb is mounted on the holder 3 so as to cover the lighting circuit 4.

発光管2としては、二重螺旋形の発光管2が用いられており、この二重螺旋形の発光管2は直管状のガラス管を二重螺旋形に湾曲させたものである。そして、この管の両端部には電子放射物質が充填された一対のタングステンコイル電極が気密封止され、管内表面には蛍光体が塗布され、また、管内には水銀Hgと緩衝ガスとしてアルゴンなどの希ガスが封入されている。   As the arc tube 2, a double helix arc tube 2 is used, and this double helix arc tube 2 is a straight tubular glass tube bent into a double helix. A pair of tungsten coil electrodes filled with an electron emitting material are hermetically sealed at both ends of the tube, and a phosphor is applied to the inner surface of the tube. Also, mercury Hg and argon as a buffer gas are contained in the tube. Noble gas is enclosed.

ところで、特に外管付きの電球形蛍光ランプにおいて、発光管内に封入される水銀は単体ではなく、Bi−In−Hg等のアマルガムの形態で封入されることはよく知られている。これは、ランプ定常点灯時において、外管を有しているが故、比較的高温となる発光管内における水銀蒸気圧を、ランプ効率が最も効率の良い最適範囲となるよう低減・調整するためである。   By the way, it is well known that in a bulb-type fluorescent lamp with an outer tube, mercury enclosed in the arc tube is not a simple substance but is enclosed in the form of an amalgam such as Bi-In-Hg. This is because the mercury vapor pressure in the arc tube, which has a relatively high temperature, is reduced / adjusted so that the lamp efficiency is within the optimum range with the highest efficiency, because the outer tube is provided during steady lamp operation. is there.

その他に、外管付きタイプでの水銀蒸気圧の上昇を抑制するために、外管付きでも基本的に発光管2の水銀は単体の形態で封入し、発光管2の最冷点箇所9と外管7との間を熱伝導性媒体15により結合し、これによって最冷点箇所の温度を低下させるという手段が提案されている(例えば、特許文献1、特許文献2)。
特開昭58−178951号公報 特開2003−263972号公報
In addition, in order to suppress an increase in mercury vapor pressure in the type with the outer tube, the mercury in the arc tube 2 is basically sealed in a single form even with the outer tube, and the coldest spot 9 of the arc tube 2 Means have been proposed for connecting the outer tube 7 with a heat conductive medium 15 to thereby reduce the temperature at the coldest spot (for example, Patent Document 1 and Patent Document 2).
JP 58-177891 A JP 2003-263972 A

二重螺旋形等の湾曲ガラス管からなる発光管2を装備した低圧水銀蒸気放電ランプにおいて、発光管2内に水銀を単体あるいは単体に近い形態で封入・存在させ、かつ発光管内径を5〜9mmとし、発光管2の、発光中に最冷点箇所となる最冷点予定箇所9と外管7とをシリコーン樹脂からなる熱伝導性媒体15により結合することにより、ランプ始動時の光束立上特性が一般蛍光ランプと同等レベルまで向上し、発光管2の最冷点箇所の温度を最大ランプ効率の得られる最適範囲60〜65℃に設定することが可能となり、よってランプ効率としても63lm/W以上の高いレベルが達成されることが分かった。   In a low-pressure mercury vapor discharge lamp equipped with an arc tube 2 made of a curved glass tube such as a double helix, mercury is enclosed and present in the arc tube 2 in a single or near form, and the inner diameter of the arc tube is 5 to 5. 9 mm, and the coldest spot planned spot 9 which is the coldest spot during light emission of the arc tube 2 and the outer tube 7 are joined by a heat conductive medium 15 made of silicone resin, so that the luminous flux rise at the time of starting the lamp is established. The upper characteristic is improved to a level equivalent to that of a general fluorescent lamp, and the temperature at the coldest spot of the arc tube 2 can be set to an optimum range of 60 to 65 ° C. at which the maximum lamp efficiency can be obtained. It has been found that high levels above / W are achieved.

しかしながら、この構成によれば、量産において完成したランプ間における、ランプ効率のばらつき幅が比較的大きくなることがわかった。例えば、二重螺旋形の発光管を適用した一般電球60W代替の12W品種の量産ロットにおいて、ランプ効率が58〜68lm/Wというばらつき幅が確認された。   However, according to this configuration, it has been found that the range of variation in lamp efficiency between lamps completed in mass production is relatively large. For example, in a mass production lot of a 12W product type instead of a general light bulb 60W using a double spiral arc tube, a variation range of lamp efficiency of 58 to 68 lm / W was confirmed.

この要因を解析したところ、熱伝導性媒体であるシリコーン樹脂の充填量や充填形状のばらつきによって、最冷点箇所の温度が完成ランプ間で比較的大きく変動してしまっていることがわかった。そして、かかる最冷点温度の変動を抑制できれば、ランプ効率のばらつき幅を狭め、かつ平均値も上昇できることもわかった。   When this factor was analyzed, it was found that the temperature at the coldest spot fluctuated relatively greatly among the completed lamps due to variations in the filling amount and filling shape of the silicone resin, which is a heat conductive medium. It has also been found that if the fluctuation of the coldest spot temperature can be suppressed, the variation range of lamp efficiency can be narrowed and the average value can be increased.

本発明は、このような課題を解決するためになされたものであり、最冷点箇所の温度変動を抑制し、ランプ間におけるランプ特性にばらつきを生じさせず、かつランプ特性を向上することのできる低圧水銀蒸気放電ランプを得ることを目的とする。   The present invention has been made to solve such problems, and suppresses temperature fluctuations at the coldest spot, does not cause variations in lamp characteristics between lamps, and improves lamp characteristics. The object is to obtain a low-pressure mercury vapor discharge lamp that can be produced.

請求項1記載の低圧水銀蒸気放電ランプは、両端部に一対の電極を有するとともに内部に一つの湾曲した放電路を有する発光管が外管内に設けられており、前記発光管は発光中に最冷点箇所となる最冷点予定箇所を備えているとともに、前記最冷点予定箇所と、この最冷点予定箇所と対向する前記外管の部分とが樹脂製の熱伝導性媒体を介して接続されており、前記熱伝導性媒体には金属粉体が混合された構成を有する。   The low-pressure mercury vapor discharge lamp according to claim 1 is provided with an arc tube having a pair of electrodes at both ends and a curved discharge path inside the outer tube, and the arc tube is the outermost during light emission. While having the coldest spot planned location which becomes the cold spot location, the coldest spot planned location and the portion of the outer pipe facing the coldest spot planned location through a resin thermal conductive medium The heat conductive medium is connected and metal powder is mixed.

これにより、熱伝導性媒体の熱伝導率を上昇でき、ランプ間における発光管の最冷点箇所の冷却効果を増大でき、よって量産ランプ間で結合距離がばらついても発光管の最冷点温度の変動を抑えることができる。さらに、ランプ効率のばらつき幅も縮小でき、かつその平均値を高めることができる。   As a result, the thermal conductivity of the heat conductive medium can be increased, and the cooling effect of the coldest spot of the arc tube between the lamps can be increased. Therefore, even if the coupling distance varies between the mass production lamps, the cold spot temperature of the arc tube Fluctuations can be suppressed. Furthermore, the variation width of the lamp efficiency can be reduced, and the average value can be increased.

請求項2記載の発明は、請求項1記載の構成において、前記最冷点予定箇所が前記外管に直接接触した構成を有する。   According to a second aspect of the present invention, in the configuration of the first aspect, the coldest spot planned portion is in direct contact with the outer tube.

請求項3記載の発明は、請求項1記載の構成において、前記最冷点予定箇所と、この最冷点予定箇所が直接接触する外管の部分とが嵌合して直接接触した構成を有する。   Invention of Claim 3 has the structure which the part of the outer tube | pipe which the coldest-spot planned location and this coldest-spot planned location contact directly fit, and it contacted directly in the structure of Claim 1. .

請求項4記載の発明は、請求項2〜請求項3記載の構成において、前記最冷点予定箇所と前記外管とが直接接触している箇所が溶着された構成を有する。   Invention of Claim 4 has the structure by which the location where the said coldest spot planned location and the said outer tube | pipe are directly contacting in the structure of Claims 2-3 is welded.

請求項1記載の発明によれば、熱伝導性媒体の熱伝導率を上昇でき、ランプ間における発光管の最冷点箇所の冷却効果を増大でき、よって量産ランプ間で結合距離がばらついても発光管の最冷点温度の変動を抑えることができる。さらに、ランプ効率のばらつき幅も縮小でき、かつその平均値を高めることができる。   According to the first aspect of the present invention, the thermal conductivity of the heat conductive medium can be increased, and the cooling effect of the coldest spot of the arc tube between the lamps can be increased. Therefore, even if the coupling distance varies between the mass production lamps. Variations in the coldest spot temperature of the arc tube can be suppressed. Furthermore, the variation width of the lamp efficiency can be reduced, and the average value can be increased.

また、請求項2記載の発明により、最冷点箇所の熱を外管に伝えることができ、かつ金属粉体が混合された熱伝導性媒体の作用と相まって発光管の最冷点温度の変動を一層抑えることができる。   According to the second aspect of the present invention, the heat at the coldest spot can be transferred to the outer tube, and the cold spot temperature fluctuation of the arc tube is coupled with the action of the heat conductive medium mixed with the metal powder. Can be further suppressed.

また、請求項3記載の発明により、接触面積が増える分、最冷点箇所の熱を外管に伝えることができ、かつ金属粉体が混合された熱伝導性媒体の作用と相まって発光管の最冷点温度の変動を、より一層抑えることができる。また、最冷点箇所と外管との溶着作業を容易に行うことができる。   Further, according to the invention described in claim 3, the heat of the coldest spot can be transmitted to the outer tube as much as the contact area increases, and combined with the action of the heat conductive medium mixed with the metal powder, The fluctuation of the coldest spot temperature can be further suppressed. Further, the welding operation between the coldest spot and the outer tube can be easily performed.

また、請求項4記載の発明により、最冷点予定箇所と外管とが直接接触している箇所の強度を向上でき、ランプ輸送中の振動や衝撃に対する強度を向上することができる。   According to the fourth aspect of the present invention, the strength of the place where the coldest spot and the outer tube are in direct contact can be improved, and the strength against vibration and impact during lamp transportation can be improved.

以下、本発明の実施形態について図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に示す本発明の第1の実施形態である一般電球60W代替用の電球形蛍光ランプ1(以下、本発明品Aという)は、二重螺旋状の発光管2と、この発光管2の両端部を保持するホルダ3と、このホルダ3の反発光管側に設けられ内蔵されるシリーズインバータ方式の点灯回路4(図中破線で示す)と、電球口金5を有しかつ、点灯回路4を覆うようにホルダ3に取り付けられた漏斗形状のケース6と、発光管2を覆ってかつ開口部がケース6の径大側開口部の内周面とホルダ3の外周面とで形成された間隙に接着剤によって固着されて設けられた、なす形状のガラス製の外管7とからなる。   A light bulb-type fluorescent lamp 1 (hereinafter referred to as the present invention A) as a first embodiment of the present invention shown in FIG. 1, which is a substitute for a general light bulb 60W, is a double spiral arc tube 2 and the arc tube 2 And a series inverter type lighting circuit 4 (indicated by a broken line in the figure) provided on the side opposite to the luminous bulb of the holder 3 and a light bulb base 5, and a lighting circuit 4, a funnel-shaped case 6 attached to the holder 3 so as to cover 4, an arc tube 2 that covers the arc tube 2, and an opening is formed by the inner peripheral surface of the large-diameter side opening of the case 6 and the outer peripheral surface of the holder 3. And a glass outer tube 7 having a shape formed by being fixed to the gap with an adhesive.

発光管2は、直管ガラスをいわゆるスパイラル状に成形加工した湾曲したガラス管からなり、両端部には電極(図示せず)が封止されている。発光管2の内表面には蛍光体が塗布され、管内には水銀が約5mgのほかに、緩衝ガスとしてアルゴンが550Pa封入されている。蛍光体としては三波長域蛍光体を用いた。また、発光管2内に封入された水銀は、発光管2の動作時における水銀蒸気圧がほぼ水銀単体の蒸気圧値を呈するような形態で存在することが基本である。従って、発光管2の製造工程において上記水銀は単体か、その他に上記動作時の水銀蒸気圧が水銀単体に近い値を呈する例えば亜鉛水銀や錫水銀などの形態で封入してもよい。   The arc tube 2 is a curved glass tube formed by processing a straight tube glass into a so-called spiral shape, and electrodes (not shown) are sealed at both ends. A fluorescent material is applied to the inner surface of the arc tube 2, and in addition to about 5 mg of mercury, 550 Pa of argon as a buffer gas is sealed in the tube. A three-wavelength region phosphor was used as the phosphor. Further, the mercury sealed in the arc tube 2 is basically present in such a form that the mercury vapor pressure during operation of the arc tube 2 exhibits a vapor pressure value of mercury alone. Therefore, in the manufacturing process of the arc tube 2, the mercury may be single or may be sealed in the form of, for example, zinc mercury or tin mercury in which the mercury vapor pressure during the operation exhibits a value close to that of the single mercury.

発光管2の内径は8.2mm、電極間距離は400mm、発光管2が二重螺旋形状の約4.5ターンとし、管内には上記のように水銀が単体あるいは単体に近い形態で封入されている。また、発光管2のホルダ3とは反対側の先端部8に発光中(動程中)に最冷点箇所となる最冷点予定箇所として突出部9が形成されており、これにより水銀の動作時における蒸気圧は一義的にその最冷点箇所の温度により規定されることとなる。   The inner diameter of the arc tube 2 is 8.2 mm, the distance between the electrodes is 400 mm, the arc tube 2 has a double spiral shape of about 4.5 turns, and mercury is enclosed in the tube in the form of single or close to the single as described above. ing. Further, a projection 9 is formed at the tip 8 on the side opposite to the holder 3 of the arc tube 2 as a coldest spot planned spot which becomes the coldest spot during light emission (during the travel), and this allows mercury The vapor pressure during operation is uniquely determined by the temperature at the coldest spot.

外管7は外径55mmで、約1.3mmの厚さである。また、外管7の内表面には炭酸カルシウムを主成分とする全拡散透過率約97%の拡散膜(図示せず)が塗布されている。   The outer tube 7 has an outer diameter of 55 mm and a thickness of about 1.3 mm. The inner surface of the outer tube 7 is coated with a diffusion film (not shown) having a total diffusion transmittance of about 97% mainly composed of calcium carbonate.

発光管2の最冷点予定箇所である突出部9は高さ約3mmで、厚さ約0.06mmであり、発光管2の突出部9と、この突出部9と対向する外管7の部分とは約1.7mm離間しているとともに、この突出部9は熱伝導性媒体10に埋設されている。この熱伝導性媒体10は発光管2の突出部9と対向する外管7の部分に充填され接触しており、従って、発光管2の突出部9と外管7とは熱伝導性媒体を介して熱的に接続された構成となっている。   The projection 9, which is the coldest spot of the arc tube 2, has a height of about 3 mm and a thickness of about 0.06 mm. The projection 9 of the arc tube 2 and the outer tube 7 facing the projection 9 The protrusion 9 is embedded in the heat conductive medium 10 while being separated from the portion by about 1.7 mm. The thermally conductive medium 10 is filled and in contact with the portion of the outer tube 7 facing the protruding portion 9 of the arc tube 2, and therefore, the protruding portion 9 and the outer tube 7 of the arc tube 2 serve as a thermally conductive medium. It is the composition connected thermally via.

また、熱伝導性媒体10としては、シリコーン樹脂と金属粉末例えばアルミニウム粉末とが混合されたものを用いている。   The heat conductive medium 10 is a mixture of silicone resin and metal powder such as aluminum powder.

金属粉末としてアルミニウム粉末が混合された熱伝導性媒体10は、シリコーン樹脂に平均粒径10〜50μmのアルミニウム粉体を混合・攪拌したものを用いている。   As the heat conductive medium 10 in which aluminum powder is mixed as a metal powder, a mixture obtained by mixing and stirring an aluminum powder having an average particle diameter of 10 to 50 μm in a silicone resin is used.

次に、上記本発明品Aと、図4に示す後述の比較品との比較を行った。   Next, the product A of the present invention was compared with a comparative product described later shown in FIG.

図4に示す比較品14は、熱伝導性媒体として透光性のシリコーン樹脂15を外管7と発光管2の最冷点予定箇所である突出部9との間に介在させ、発光管2の突出部9と外管7とをシリコーン樹脂15を介して熱的に接続した構成を有している。また、発光管2の突出部と外管7との間には約1.7mmの間隙が開けられ、この間隙にはシリコーン樹脂15が充填されている。このような構成の比較品14を50個作製し、それらのランプ特性を測定した。その結果、ランプ効率の平均値が63lm/Wに対して、そのばらつき幅は58〜68lm/Wの範囲であった。   The comparative product 14 shown in FIG. 4 has a light-transmitting silicone resin 15 as a heat conductive medium interposed between the outer tube 7 and the projection 9 which is the coldest spot of the arc tube 2. The protruding portion 9 and the outer tube 7 are thermally connected via a silicone resin 15. Further, a gap of about 1.7 mm is opened between the protruding portion of the arc tube 2 and the outer tube 7, and this gap is filled with a silicone resin 15. Fifty comparative products 14 having such a configuration were produced, and their lamp characteristics were measured. As a result, the average value of the lamp efficiency was 63 lm / W, and the variation range was 58 to 68 lm / W.

これに対して、本発明品Aにおけるランプ効率のばらつき幅は63〜69lm/Wの範囲に縮小され、かつランプ効率の平均値も比較品の63lm/Wから66.5lm/Wに向上することが分かった。その他、ランプ光束の立上特性も、始動3秒後のランプ光束値が室温25℃で定常点灯時の40%以上のレベルまで向上することが分かった。   On the other hand, the variation width of the lamp efficiency in the product A of the present invention is reduced to the range of 63 to 69 lm / W, and the average value of the lamp efficiency is improved from 63 lm / W of the comparative product to 66.5 lm / W. I understood. In addition, it has also been found that the lamp luminous flux rises to a level where the luminous flux value of the lamp 3 seconds after the start-up is 40% or more at the time of steady lighting at room temperature 25 ° C.

以上のように、本発明の第1の実施形態によれば、熱伝導性媒体10の熱伝導率を上昇でき、ランプ間における発光管2の最冷点箇所の冷却効果を増大でき、よって量産ランプ間で結合距離がばらついても発光管2の最冷点温度の変動を抑えることができ、さらに、ランプ効率のばらつき幅も縮小でき、かつその平均値を高めることができ、ランプ特性が一層優れ、かつ安定した品質の低圧水銀蒸気放電ランプを得ることができる。   As described above, according to the first embodiment of the present invention, the thermal conductivity of the thermal conductive medium 10 can be increased, the cooling effect of the coldest spot of the arc tube 2 between the lamps can be increased, and thus mass production is possible. Even if the coupling distance varies between lamps, fluctuations in the coldest spot temperature of the arc tube 2 can be suppressed, the variation range of lamp efficiency can be reduced, and the average value can be increased, and the lamp characteristics can be further improved. An excellent and stable quality low-pressure mercury vapor discharge lamp can be obtained.

なお、熱伝導性媒体10としては、上記シリコーン以外に例えばシリカを用いても良く、また、アルミニウム粉末以外の例えばニッケル、酸化鉄等の金属粉末を用いてもよい。また、本実施形態では熱伝導性媒体としてシリコーン樹脂を約3g使用し、その重さに対してアルミニウム粉末を約50%混合している。   In addition, as the heat conductive medium 10, for example, silica may be used in addition to the silicone, and metal powders such as nickel and iron oxide other than aluminum powder may be used. In this embodiment, about 3 g of silicone resin is used as the heat conductive medium, and about 50% of aluminum powder is mixed with the weight of the silicone resin.

なお、金属粉末を極端に入れすぎると直下照度の低下や光束の低下、またランプ重量が重くなったり、コストも高くなってしまう。また逆に少なすぎると効果が得られにくいこととなるため、金属粉末の封入量においてはランプの大きさや形態によって、これらの課題を鑑みた上適宜封入すればよい。   If the metal powder is excessively added, the illuminance directly below, the luminous flux decrease, the lamp weight increases, and the cost increases. On the other hand, if the amount is too small, it is difficult to obtain the effect. Therefore, the amount of metal powder to be encapsulated may be appropriately encapsulated in view of these problems depending on the size and form of the lamp.

次に、本発明の第2の実施形態について図面を用いて説明する。   Next, a second embodiment of the present invention will be described with reference to the drawings.

図2に示す本発明の第2の実施形態である一般電球60W代替用の電球形蛍光ランプ11(以下、本発明品Bという)は上記本発明品Aと同じ構成であるが、発光管2の突出部9とこの突出部9に対向する外管7の部分が当接して直接接触した点で異なる。突出部9は上記実施形態同様、金属粉末が混合された熱伝導性媒体10によって埋設されている。   A bulb-type fluorescent lamp 11 (hereinafter referred to as the present invention product B), which is a second embodiment of the present invention shown in FIG. This is different in that the protruding portion 9 and the portion of the outer tube 7 opposed to the protruding portion 9 are in direct contact with each other. Similar to the above-described embodiment, the protruding portion 9 is embedded with a thermally conductive medium 10 mixed with metal powder.

このような構成とすることで、最冷点箇所の熱を外管7に直接伝えることができるとともに、金属粉体が混合された熱伝導性媒体10によって熱伝導率を上昇できるので、発光管の最冷点温度の変動を一層抑えることができる。   With such a configuration, the heat at the coldest spot can be directly transferred to the outer tube 7 and the thermal conductivity can be increased by the heat conductive medium 10 mixed with the metal powder. The fluctuation of the coldest spot temperature can be further suppressed.

また、本発明品Bにおいては、ランプ効率のばらつき幅が67〜71lm/Wの範囲まで一層縮小でき、かつ平均値も69lm/Wへと一層上昇することを確かめた。また、ランプ光束の立上特性も、本発明品Aと同様のレベルまで向上することが分かった。   In the product B of the present invention, it was confirmed that the variation range of the lamp efficiency could be further reduced to a range of 67 to 71 lm / W, and the average value further increased to 69 lm / W. It was also found that the rise characteristic of the lamp luminous flux was improved to the same level as that of the product A of the present invention.

次に、本発明の第3の実施形態について図面を用いて説明する。   Next, a third embodiment of the present invention will be described with reference to the drawings.

図3に示す本発明の第3の実施形態である一般電球60W代替用の電球形蛍光ランプ12(以下、本発明品Cという)は上記本発明品A,Bと同じ構成であるが、外管7のうち、発光管2の突出部9が当接する部分に外方に向かって約1.0mm窪んだ窪部13を形成しており、発光管2の突出部9がこの窪部13にはめ込まれて嵌合し、最冷点予定箇所である突出部9と外管7とが熱的に直接接触している点で異なる。突出部9は上記各実施形態同様、金属粉末が混合された熱伝導性媒体10によって埋設されている。なお、外管7の窪部13の外表面は外方に向かって約1〜2mm突出している。   A bulb-type fluorescent lamp 12 (hereinafter referred to as the present invention product C), which is a third embodiment of the present invention shown in FIG. In the tube 7, a recessed portion 13 that is recessed about 1.0 mm outward is formed at a portion where the protruding portion 9 of the arc tube 2 contacts, and the protruding portion 9 of the arc tube 2 is formed in the recessed portion 13. The difference is that the protrusion 9 and the outer tube 7 which are the coldest spots are in direct thermal contact with each other. Similar to each of the above embodiments, the protruding portion 9 is embedded with a thermally conductive medium 10 mixed with metal powder. The outer surface of the recess 13 of the outer tube 7 protrudes about 1 to 2 mm outward.

この本発明品Cにおいては、ランプ効率のばらつき幅が67〜71lm/Wの範囲まで一層縮小され、かつ平均値も69lm/Wへと一層上昇することを確かめた。また、ランプ光束の立上特性も、本発明品Aと同様のレベルまで向上することが分かった。また、後述の発光管2の突出部9と外管7との溶着を比較的容易に行うことができる。   In the product C of the present invention, it was confirmed that the variation width of the lamp efficiency was further reduced to the range of 67 to 71 lm / W, and the average value further increased to 69 lm / W. It was also found that the rise characteristic of the lamp luminous flux was improved to the same level as that of the product A of the present invention. Further, it is possible to relatively easily weld a protruding portion 9 of the arc tube 2 to be described later and the outer tube 7.

上記本発明品BおよびCにおいては、それぞれ発光管2の最冷点予定箇所である突出部9と外管7とが当接によって直接接触したものであるが、当接する部分において溶着した構成としても同様の効果を得ることができる。さらにこの場合、この溶着した部分において強度が増し、ランプ輸送中の振動や衝撃に対する強度を向上することができる。   In the products B and C of the present invention, the projection 9 and the outer tube 7 which are the coldest spots of the arc tube 2 are in direct contact with each other by contact, but are welded at the contact portions. The same effect can be obtained. Furthermore, in this case, the strength is increased at the welded portion, and the strength against vibration and impact during lamp transportation can be improved.

発光管2の突出部9は外管7に直接接触し溶着したものは、従来、発光管2の突出部9と外管7とを直接接触させると、外的な衝撃等により発光管2が割れやすくなると考えられていたが、予想を反して強度が向上していることが分かった。これは、発光管2の突出部9と外管7とが直接接触し、かつ溶着され、さらに樹脂製の熱伝導性媒体により覆われているため、その直接接触している箇所においてガラスの肉厚が厚くなることとなり強度が保たれ、かつ樹脂製の熱伝導性媒体が衝撃等を和らげる作用を生じさせるためであると考えられる。   The protrusion 9 of the arc tube 2 is in direct contact with and welded to the outer tube 7. Conventionally, when the protrusion 9 of the arc tube 2 and the outer tube 7 are brought into direct contact with each other, the arc tube 2 is brought into contact by the external impact or the like. Although it was thought to be easily broken, it was found that the strength was improved contrary to expectations. This is because the protruding portion 9 of the arc tube 2 and the outer tube 7 are in direct contact with each other and are welded and further covered with a heat conductive medium made of resin. This is considered to be because the thickness is increased, the strength is maintained, and the resin-made thermally conductive medium has an effect of reducing the impact and the like.

本発明は、二重螺旋形の発光管はもちろん、例えば3本のU字管または4本のU字管を連結した発光管を用いた電球形蛍光ランプにも適用でき、さらには、最冷点箇所を有する発光管とこの発光管を覆う外管を備えたランプであって、特に最冷点箇所の温度制御を必要とする低圧水銀蒸気放電ランプにおいて有効に適応できる。   The present invention can be applied not only to a double spiral arc tube but also to a bulb-type fluorescent lamp using an arc tube in which three U-tubes or four U-tubes are connected. The lamp is provided with a light emitting tube having a spot and an outer tube covering the light emitting tube, and can be effectively applied particularly to a low-pressure mercury vapor discharge lamp that requires temperature control at the coldest spot.

本発明は、二重螺旋形の発光管はもちろん、例えば3本のU字管または4本のU字管を連結した発光管を用いた電球形蛍光ランプにも適用でき、さらには、最冷点箇所を有する発光管とこの発光管を覆う外管を備えたランプであって、特に最冷点箇所の温度制御を必要とする低圧水銀蒸気放電ランプにおいて有効に適応できる。   The present invention can be applied not only to a double spiral arc tube but also to a bulb-type fluorescent lamp using an arc tube in which three U-tubes or four U-tubes are connected. The lamp is provided with a light emitting tube having a spot and an outer tube covering the light emitting tube, and can be effectively applied particularly to a low-pressure mercury vapor discharge lamp that requires temperature control at the coldest spot.

本発明の第1の実施形態である電球形蛍光ランプの一部切欠正面図1 is a partially cutaway front view of a bulb-type fluorescent lamp according to a first embodiment of the present invention. 本発明の第2の実施形態である電球形蛍光ランプの一部切欠正面図Partially cutaway front view of a bulb-type fluorescent lamp according to a second embodiment of the present invention 本発明の第3の実施形態である電球形蛍光ランプの一部切欠正面図Partially cutaway front view of a bulb-type fluorescent lamp that is a third embodiment of the present invention 従来の電球形蛍光ランプの一部切欠正面図Partially cutaway front view of a conventional bulb-type fluorescent lamp

符号の説明Explanation of symbols

2 発光管
3 ホルダ
4 点灯回路
5 口金
6 ケース
7 外管
9 突出部
10 熱伝導性媒体
13 窪部
2 arc tube 3 holder 4 lighting circuit 5 base 6 case 7 outer tube 9 protrusion 10 heat conductive medium 13 recess

Claims (4)

両端部に一対の電極を有するとともに内部に一つの湾曲した放電路を有する発光管が外管内に設けられており、前記発光管は発光中に最冷点箇所となる最冷点予定箇所を備えているとともに、前記最冷点予定箇所と、この最冷点予定箇所と対向する前記外管の部分とが樹脂製の熱伝導性媒体を介して接続されており、前記熱伝導性媒体には金属粉体が混合されていることを特徴とする低圧水銀蒸気放電ランプ。 An arc tube having a pair of electrodes at both ends and having one curved discharge path inside is provided in the outer tube, and the arc tube has a coldest spot planned location that becomes the coldest spot during light emission. And the coldest spot planned location and the portion of the outer tube facing the coldest spot planned location are connected via a resin thermal conductive medium, the thermal conductive medium A low-pressure mercury vapor discharge lamp characterized in that metal powder is mixed. 前記最冷点予定箇所が前記外管に直接接触していることを特徴とする請求項1記載の低圧水銀蒸気放電ランプ。 2. The low-pressure mercury vapor discharge lamp according to claim 1, wherein the planned coldest spot is in direct contact with the outer tube. 前記最冷点予定箇所と、この最冷点予定箇所が直接接触する外管の部分とが嵌合して直接接触していることを特徴とする請求項1記載の低圧水銀蒸気放電ランプ。 2. The low-pressure mercury vapor discharge lamp according to claim 1, wherein the coldest spot expected location and the portion of the outer tube where the coldest spot expected direct contact is fitted and in direct contact. 前記最冷点予定箇所と前記外管とが直接接触している箇所が溶着されていることを特徴とする請求項2〜請求項3のいずれかに記載の低圧水銀蒸気放電ランプ。 The low-pressure mercury vapor discharge lamp according to any one of claims 2 to 3, wherein a place where the coldest spot is directly in contact with the outer tube is welded.
JP2004057227A 2004-03-02 2004-03-02 Low-pressure mercury vapor discharge lamp Pending JP2005251449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004057227A JP2005251449A (en) 2004-03-02 2004-03-02 Low-pressure mercury vapor discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004057227A JP2005251449A (en) 2004-03-02 2004-03-02 Low-pressure mercury vapor discharge lamp

Publications (1)

Publication Number Publication Date
JP2005251449A true JP2005251449A (en) 2005-09-15

Family

ID=35031733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004057227A Pending JP2005251449A (en) 2004-03-02 2004-03-02 Low-pressure mercury vapor discharge lamp

Country Status (1)

Country Link
JP (1) JP2005251449A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262775A (en) * 2009-04-30 2010-11-18 Nec Lighting Ltd Self-ballasted fluorescent lamp
CN102522314A (en) * 2009-10-30 2012-06-27 浙江阳光照明电器集团股份有限公司 Quick-start cover-type energy-saving fluorescent lamp
CN103094058A (en) * 2011-10-31 2013-05-08 盐城豪迈照明科技有限公司 Energy-saving fluorescent lamp with cover and using low-temperature amalgam

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262775A (en) * 2009-04-30 2010-11-18 Nec Lighting Ltd Self-ballasted fluorescent lamp
CN102522314A (en) * 2009-10-30 2012-06-27 浙江阳光照明电器集团股份有限公司 Quick-start cover-type energy-saving fluorescent lamp
CN102522314B (en) * 2009-10-30 2014-08-20 浙江阳光照明电器集团股份有限公司 Quick-start cover-type energy-saving fluorescent lamp
CN103094058A (en) * 2011-10-31 2013-05-08 盐城豪迈照明科技有限公司 Energy-saving fluorescent lamp with cover and using low-temperature amalgam

Similar Documents

Publication Publication Date Title
JP5174148B2 (en) Low pressure mercury discharge lamp with amalgam capsule with amalgam chamber
JP2000173537A (en) Low pressure mercury-vapor discharge lamp and lighting system
JP2003168391A (en) Mercury-free arc tube for discharge lamp device
US8193711B2 (en) Metal halide lamp
JP2003288859A (en) Metal halide lamp and headlamp device for vehicle
US7573203B2 (en) Mercury-free high-pressure discharge lamp and luminaire using the same
JP5112025B2 (en) Discharge lamp for vehicle
JP2005251449A (en) Low-pressure mercury vapor discharge lamp
JP4301892B2 (en) Metal vapor discharge lamp and lighting device
US20080211411A1 (en) High-pressure discharge lamp, high-pressure discharge lamp operating apparatus, and illuminating apparatus
JP2003272560A (en) Metal halide lamp
JP2009140846A (en) Discharge lamp for vehicle
JP4379552B2 (en) High pressure discharge lamp and lighting device
JP2010003488A (en) Metal halide lamp and lighting fixture
JP2005346983A (en) Electrodeless discharge lamp and its manufacturing method
JP2005251448A (en) Low-pressure mercury vapor discharge lamp
JP3956040B2 (en) Fluorescent lamp and lighting device
JP2008016434A (en) Metal halide lamp
JP2008123742A (en) Metal halide lamp
JP2007220444A (en) Metal halide lamp
JP2668434B2 (en) Metal halide lamp
AU2013319546B2 (en) High-wattage ceramic metal halide lamp
JP2008277150A (en) Electrode structure, cold-cathode discharge lamp, and lighting system
JP2000243349A (en) Metal halide lamp, discharge lamp lighting device and lighting system
JP2006286400A (en) Metal halide lamp