JP2005249961A - Solid coloring matter laser chip - Google Patents

Solid coloring matter laser chip Download PDF

Info

Publication number
JP2005249961A
JP2005249961A JP2004058026A JP2004058026A JP2005249961A JP 2005249961 A JP2005249961 A JP 2005249961A JP 2004058026 A JP2004058026 A JP 2004058026A JP 2004058026 A JP2004058026 A JP 2004058026A JP 2005249961 A JP2005249961 A JP 2005249961A
Authority
JP
Japan
Prior art keywords
dye
optical waveguide
laser
chip
laser chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004058026A
Other languages
Japanese (ja)
Inventor
Masamitsu Tanaka
優光 田中
Seisaku Tamura
精作 田村
Yuichi Kiyoki
雄一 苣木
Yuji Ko
雄司 興
Hirobumi Watanabe
博文 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUKUOKA PREF GOV SANGYO KAGAKU
Fukuoka Industry Science and Technology Foundation
Seiko Electric Co Ltd
Original Assignee
FUKUOKA PREF GOV SANGYO KAGAKU
Fukuoka Industry Science and Technology Foundation
Seiko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUKUOKA PREF GOV SANGYO KAGAKU, Fukuoka Industry Science and Technology Foundation, Seiko Electric Co Ltd filed Critical FUKUOKA PREF GOV SANGYO KAGAKU
Priority to JP2004058026A priority Critical patent/JP2005249961A/en
Publication of JP2005249961A publication Critical patent/JP2005249961A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid coloring matter laser chip in which output is made high, wavelength stability is good and the service life is long. <P>SOLUTION: In the solid coloring matter laser coloring chip, optical waveguides 2, in which coloring matter is doped, are formed on a substrate 1 in a stripe shape and diffraction gratings 11 having different lengths and interference exposure times are formed on a portion of the surfaces of the optical waveguides 2. The diffraction gratings are formed on both ends of the optical waveguides. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、色素をドープしたストライプ状に形成した光導波路上に回折格子を形成し、励起光を光導波路に照射することによって回折格子のピッチに従った波長のレーザーを発振できる固体色素レーザーチップに関する。   The present invention is a solid dye laser chip capable of oscillating a laser having a wavelength according to the pitch of the diffraction grating by forming a diffraction grating on an optical waveguide formed in a stripe shape doped with a dye and irradiating the optical waveguide with excitation light. About.

色素をドープした複数の光導波路をストライプ状に形成した固体色素レーザーチップが、例えば本出願人らに係る特許文献1で知られている。   A solid dye laser chip in which a plurality of optical waveguides doped with dyes are formed in a stripe shape is known, for example, in Patent Document 1 related to the present applicants.

図4(a)は特許文献1に開示されている従来の光導波路がストライプ状に形成された従来の固体色素レーザーチップの概略図、(b)は固体色素レーザーチップを利用した可変波長レーザーの概略図である。図4(a)において、アクリル製の基板1に形成された、色素をドープした光導波路2のそれぞれの表面にピッチの異なる回折格子を形成し、YAGレーザー等のレーザー励起によりピッチに相当する波長の光が光導波路2の端面から放出される。   4A is a schematic diagram of a conventional solid dye laser chip in which the conventional optical waveguide disclosed in Patent Document 1 is formed in a stripe shape, and FIG. 4B is a diagram of a variable wavelength laser using the solid dye laser chip. FIG. In FIG. 4A, diffraction gratings having different pitches are formed on the surfaces of the dye-doped optical waveguide 2 formed on the acrylic substrate 1, and the wavelength corresponding to the pitch is obtained by laser excitation of a YAG laser or the like. Is emitted from the end face of the optical waveguide 2.

図4(b)において、YAGレーザーからの励起光は、凹レンズ3で拡大され、次いでシリンドリカルレンズ4で平行ビームにし、シリンドリカルレンズ5で絞られた平行ビームになり、Nd:YAGレーザーの励起光の一部がチップホルダー6に取り付けられた固体色素レーザーチップ7に直接入射するとともに、残りの励起光がミラー8にから反射され、固体色素レーザーチップ7において干渉を起こすことでレーザーは光導波路2の端から出力する。   In FIG. 4B, the excitation light from the YAG laser is magnified by the concave lens 3, then converted into a parallel beam by the cylindrical lens 4, and becomes a parallel beam focused by the cylindrical lens 5. A part of the light is directly incident on the solid dye laser chip 7 attached to the chip holder 6, and the remaining excitation light is reflected from the mirror 8, causing interference in the solid dye laser chip 7, thereby causing the laser to pass through the optical waveguide 2. Output from the end.

また、本出願人らは、固体色素レーザーチップの製造方法として、色素をメタクリル酸メチル、もしくはメタクリル酸メチルとメタクリル酸ヒドロキシエチルの共重合に混合し、この混合物を基板に滴下し、スピンコートして基板上で薄膜化し、この薄膜を乾燥し、そしてアニーリングして固化し、次いで、フォトマスクを用いたエキシマランプにより露光した後、ウエットエッチングにより複数のストライプからなる光導波路を形成する方法を提案した(特許文献2参照)。
特開2003−273434号公報 特開2003−273433号公報
In addition, as a method for producing a solid dye laser chip, the present applicants mixed a dye with methyl methacrylate or a copolymer of methyl methacrylate and hydroxyethyl methacrylate, and dropped the mixture onto a substrate, followed by spin coating. We propose a method of forming an optical waveguide consisting of multiple stripes by wet etching after thinning on a substrate, drying this thin film, solidifying by annealing, and then exposing it with an excimer lamp using a photomask (See Patent Document 2).
JP 2003-273434 A JP 2003-273433 A

従来の固体色素レーザーチップは、光導波路を形成した後、DFB(Distributed Feedback:分布帰還)を光導波路全面に作製するというものであった。しかしながら、この方法ではDFB作製時の紫外線レーザーによる光導波路の色素の劣化があり、高出力と長寿命化、波長安定性に限界があった。   In the conventional solid dye laser chip, after the optical waveguide is formed, DFB (Distributed Feedback) is produced on the entire surface of the optical waveguide. However, in this method, the dye of the optical waveguide is deteriorated by the ultraviolet laser at the time of producing the DFB, and there is a limit to high output, long life, and wavelength stability.

固体色素レーザーにおいては、レーザー媒質は色素分子が担うものであるから、出力と寿命を確保するためにはDFB作製前の色素分子の個数が媒質中に必要となる。これまでの固体色素レーザーチップは、光導波路全体にDFBを作製し、励起光を光導波路全体に照射し発振させていたため、DFBの劣化による波長シフトが問題となっていた。   In the solid dye laser, the laser medium is carried by the dye molecule. Therefore, the number of dye molecules before the DFB preparation is required in the medium in order to ensure the output and the lifetime. The conventional solid dye laser chips have produced a DFB over the entire optical waveguide and oscillated it by irradiating the entire optical waveguide with excitation light. Therefore, wavelength shift due to degradation of the DFB has been a problem.

また、従来の固体色素レーザーチップにおいて、レーザーは光導波路の両側から出力されるが、これまで片側の出力しか利用できてなかったため、単純に半分の出力を無駄に失っていた。そのため、寿命を維持し出力を確保するためには、図4(b)に示すように、片側に励起光の半分をレーザーチップへ反射させるためのミラーを取り付ける必要性があったために、構造が複雑になるという問題があった。   Further, in the conventional solid dye laser chip, the laser is output from both sides of the optical waveguide, but since only the output on one side has been available so far, the output of half is simply lost. Therefore, in order to maintain the life and ensure the output, as shown in FIG. 4B, it is necessary to attach a mirror for reflecting half of the excitation light to the laser chip on one side. There was a problem of becoming complicated.

また、レーザー出力の大きさは励起光の強さに依存する。しかし、色素には寿命があり、励起光の単位面積当たりの照射エネルギーと繰り返しで寿命が決まるので、ひとつの光導波路に照射する励起入力が大きければ大きい程、寿命が短くなるので大出力化の阻害になっており、そのため、寿命を維持し、高出力を確保するためには一度に励起する光導波路の数を増やしてレーザーを取り出さなければならないという欠点があった。   The magnitude of the laser output depends on the intensity of the excitation light. However, the dye has a lifetime, and the lifetime is determined by the irradiation energy per unit area of the excitation light and the repetition, so the larger the excitation input to irradiate one optical waveguide, the shorter the lifetime and the higher the output. For this reason, in order to maintain the lifetime and secure a high output, there is a drawback in that the number of optical waveguides excited at a time must be increased to extract the laser.

そこで、本願発明は、高出力で波長安定性が良く且つ寿命の長い固体色素レーザーチップを提供するものである。   Therefore, the present invention provides a solid dye laser chip having high output, good wavelength stability and long life.

本発明は、基板上に色素をドープした光導波路がストライプ状に形成された固体色素レーザー色素チップにおいて、前記光導波路の表面の一部に長さと干渉露光時間の異なる回折格子を形成することを特徴とする。   The present invention relates to a solid dye laser dye chip in which a dye-doped optical waveguide is formed in a stripe shape on a substrate, and a diffraction grating having a different length and interference exposure time is formed on a part of the surface of the optical waveguide. Features.

前記構成において、回折格子を光導波路の両端に形成したり、光導波路の片側にアルミ等の蒸着によりミラーを形成したり、あるいは同時に励起する複数本の光導波路を配置することができる。   In the above configuration, a diffraction grating can be formed at both ends of the optical waveguide, a mirror can be formed by vapor deposition of aluminum or the like on one side of the optical waveguide, or a plurality of optical waveguides that can be excited simultaneously can be arranged.

本発明は、光導波路にマスクを施し、紫外レーザーによる干渉露光を行うことで、DFB作製時の紫外線レーザーによる色素劣化を抑えることができるので、高出力が得られるとともに、寿命を長くすることができる。   In the present invention, by applying a mask to the optical waveguide and performing interference exposure with an ultraviolet laser, it is possible to suppress dye deterioration due to the ultraviolet laser during DFB production, so that high output can be obtained and the life can be extended. it can.

本発明では、光導波路にマスクを施し、紫外レーザーによる干渉露光を行うことで任意の場所に回折格子を作製できる。   In the present invention, a diffraction grating can be produced at an arbitrary place by applying a mask to an optical waveguide and performing interference exposure with an ultraviolet laser.

図1は本発明の固体色素レーザーチップの製造プロセスの一例を示す図である。   FIG. 1 is a diagram showing an example of the manufacturing process of the solid dye laser chip of the present invention.

色素をメタクリル酸メチル、もしくはメタクリル酸メチルとメタクリル酸ヒドロキシエチルの共重合に混合し、この混合物をアクリル製の基板1に滴下し、スピンコートして基板上に薄膜9を形成し(図1(a)参照)、この薄膜9を乾燥し、そして70℃、20〜24時間アニーリングして完全重合させる。次いで、フォトマスク10を施して紫外線レーザーまたはランプにより露光し(図1(b)参照)、その後、ウエットエッチングにより複数のストライプからなる光導波路2を形成する(図1(c)参照)。   The dye is mixed with methyl methacrylate or copolymerization of methyl methacrylate and hydroxyethyl methacrylate, and this mixture is dropped onto an acrylic substrate 1 and spin coated to form a thin film 9 on the substrate (FIG. 1 ( a))), this thin film 9 is dried and annealed at 70 ° C. for 20-24 hours to complete polymerization. Next, a photomask 10 is applied and exposed with an ultraviolet laser or a lamp (see FIG. 1B), and then an optical waveguide 2 composed of a plurality of stripes is formed by wet etching (see FIG. 1C).

次いで、レーザー導波路の両端にDFB構造をもつ回折格子を形成する。回折格子の作製は、回折格子を作製する両端を除く領域を露光用レーザーから色素を保護するため、図1(d)に示すようにマスク10を施す。マスク10を施した後、2方向からのレーザーを干渉させて光導波路2の両端に回折格子11を作製する。   Next, a diffraction grating having a DFB structure is formed at both ends of the laser waveguide. In the production of the diffraction grating, a mask 10 is applied as shown in FIG. 1D in order to protect the dye from the exposure laser in the region excluding both ends where the diffraction grating is produced. After applying the mask 10, the diffraction grating 11 is produced at both ends of the optical waveguide 2 by making laser beams from two directions interfere.

本実施例では、光導波路にマスクを施し、紫外レーザーによる干渉露光を行うことで任意の場所に回折格子を作製できるだけでなく、色素を紫外レーザーから保護することができ、その結果、DFB作製時の紫外線レーザーによる色素劣化を抑えることができるので、高出力で波長の安定性が得られるとともに、寿命を長くすることができる。   In this embodiment, a mask is provided on the optical waveguide and interference exposure using an ultraviolet laser is performed, so that not only a diffraction grating can be produced at an arbitrary place, but also the dye can be protected from the ultraviolet laser. Therefore, it is possible to suppress the deterioration of the dye caused by the ultraviolet laser, so that it is possible to obtain wavelength stability at a high output and to extend the lifetime.

図2は本発明の固体色素レーザーチップの別実施例を示す概略図である。本実施例では、基板1上に形成された光導波路2の端面を鏡面研磨し、この面にアルミなど反射率の高いものを真空蒸着などで被覆してミラー12を形成する。   FIG. 2 is a schematic view showing another embodiment of the solid dye laser chip of the present invention. In this embodiment, the end surface of the optical waveguide 2 formed on the substrate 1 is mirror-polished, and this surface is coated with a highly reflective material such as aluminum by vacuum deposition or the like to form the mirror 12.

従来の固体色素レーザーチップでは片側からのみ出力しており、片側の出力を無駄にしているが、本実施例では、アルミ等を蒸着してミラーを形成することですべての自然放出光やレーザーをムダなく使うことができ、出力特性が大きく改善される。   The conventional solid dye laser chip outputs only from one side, and the output from one side is wasted, but in this embodiment, all spontaneous emission light and lasers can be obtained by forming a mirror by evaporating aluminum or the like. It can be used without waste, and the output characteristics are greatly improved.

本発明の固体色素レーザーチップでは色素チップの性能的には従来数%であった出力を数十%に向上させることができ、従来の出力より数倍程度大きな出力が取り出せるようになる。これは、通常の導波路全面に回析格子を作るDFB構造や導波路の両端のみに回析格子を作るDBRのどちらの方式でも適応できる。   In the solid dye laser chip of the present invention, the output of the dye chip can be improved to several tens of% in terms of the performance of the dye chip, and an output several times larger than the conventional output can be taken out. This can be applied to both the DFB structure in which a diffraction grating is formed on the entire surface of a normal waveguide and the DBR system in which a diffraction grating is formed only at both ends of the waveguide.

図3は本発明の固体色素レーザーチップの別実施例を示す概略図である。本実施例では、同時に励起する複数本の光導波路が配置される。   FIG. 3 is a schematic view showing another embodiment of the solid dye laser chip of the present invention. In this embodiment, a plurality of optical waveguides that are excited simultaneously are arranged.

高出力のレーザーなどで1本の導波路を励起すると励起光のエネルギー密度が高いため色素チップの寿命も短く効率良く出力を取り出すことができないが、本実施例では、光導波路の幅を狭めていくと光の閉じ込め効果により出力が増大していくことから、複数本の幅の狭い(数十〜数百μm程度)光導波路を同時に励起することで、長寿命で効率の良いレーザー出力を得ることができる。これは、通常の導波路全面に回析格子を作るDFB構造や導波路の両端のみに回析格子を作るDBRのどちらの方式でも適応できる。   When a single waveguide is excited with a high-power laser or the like, the energy density of the excitation light is high, so the life of the dye chip is short and the output cannot be extracted efficiently. In this embodiment, however, the width of the optical waveguide is reduced. Since the output increases due to the light confinement effect, a long-life and efficient laser output can be obtained by simultaneously exciting a plurality of narrow (several tens to several hundred μm) optical waveguides. be able to. This can be applied to both the DFB structure in which a diffraction grating is formed on the entire surface of a normal waveguide and the DBR system in which a diffraction grating is formed only at both ends of the waveguide.

本発明の固体色素レーザーチップの製造プロセスを示す図である。It is a figure which shows the manufacturing process of the solid dye laser chip of this invention. 本発明の固体色素レーザーチップの別実施例を示す概略図である。It is the schematic which shows another Example of the solid dye laser chip of this invention. 本発明の固体色素レーザーチップの別実施例を示す概略図である。It is the schematic which shows another Example of the solid dye laser chip of this invention. 従来の光導波路がストライプに形成された従来の固体色素レーザーチップの概略図、(b)は固体色素レーザーチップを利用した可変波長レーザーの概略図である。FIG. 2B is a schematic view of a conventional solid dye laser chip in which a conventional optical waveguide is formed in a stripe, and FIG. 5B is a schematic view of a variable wavelength laser using the solid dye laser chip.

符号の説明Explanation of symbols

1:基板
2:光導波路
3:凹レンズ
4,5:シリンドリカルレンズ
6:チップホルダー
7:固体色素レーザーチップ
8:ミラー
9:薄膜
10:マスク
11:回折格子
12:ミラー
1: Substrate 2: Optical waveguide 3: Concave lens 4, 5: Cylindrical lens 6: Chip holder 7: Solid dye laser chip 8: Mirror 9: Thin film 10: Mask 11: Diffraction grating 12: Mirror

Claims (4)

基板上に色素をドープした光導波路がストライプ状に形成された固体色素レーザー色素チップにおいて、前記光導波路の表面の一部に回折格子を形成することを特徴とする固体色素レーザー色素チップ。   A solid dye laser dye chip in which an optical waveguide doped with a dye is formed in a stripe shape on a substrate, wherein a diffraction grating is formed on a part of the surface of the optical waveguide. 前記回折格子が前記光導波路の両端に形成されていることを特徴とする請求項1記載の固体色素レーザー色素チップ。   2. The solid dye laser dye chip according to claim 1, wherein the diffraction grating is formed at both ends of the optical waveguide. 基板上に色素をドープした光導波路がストライプ状に形成された固体色素レーザー色素チップにおいて、光導波路の片側にアルミ等の蒸着によりミラーを形成したことを特徴とする固体色素レーザー色素チップ。   A solid dye laser dye chip in which an optical waveguide doped with a dye is formed in a stripe shape on a substrate, wherein a mirror is formed on one side of the optical waveguide by vapor deposition of aluminum or the like. 基板上に色素をドープした光導波路がストライプ状に形成された固体色素レーザー色素チップにおいて、同時に励起する複数本の光導波路を配置したことを特徴とする固体色素レーザー色素チップ。
A solid dye laser dye chip comprising a plurality of optical waveguides that are simultaneously excited in a solid dye laser dye chip in which an optical waveguide doped with a dye is formed in a stripe shape on a substrate.
JP2004058026A 2004-03-02 2004-03-02 Solid coloring matter laser chip Pending JP2005249961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004058026A JP2005249961A (en) 2004-03-02 2004-03-02 Solid coloring matter laser chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004058026A JP2005249961A (en) 2004-03-02 2004-03-02 Solid coloring matter laser chip

Publications (1)

Publication Number Publication Date
JP2005249961A true JP2005249961A (en) 2005-09-15

Family

ID=35030507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004058026A Pending JP2005249961A (en) 2004-03-02 2004-03-02 Solid coloring matter laser chip

Country Status (1)

Country Link
JP (1) JP2005249961A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080950A (en) * 2008-08-29 2010-04-08 Semiconductor Energy Lab Co Ltd Solid-state dye laser

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465886A (en) * 1990-07-06 1992-03-02 Mitsubishi Heavy Ind Ltd Distributed reflection type dye cell and distributed reflection type dye laser
JPH0548179A (en) * 1991-08-07 1993-02-26 Mitsubishi Heavy Ind Ltd Waveguide type wavelength variable ring laser
JPH05198879A (en) * 1991-02-18 1993-08-06 Mitsubishi Heavy Ind Ltd Wavelength-changeable distributed reflection type polymer dye cell and laser equipment
JPH10321941A (en) * 1997-05-13 1998-12-04 Lucent Technol Inc Equipment constituted of slid-state electromagnetic radiation source
JP2000187108A (en) * 1998-12-22 2000-07-04 Toshiba Corp Small-sized laser
WO2003044911A2 (en) * 2001-11-20 2003-05-30 Basf Aktiengesellschaft Amplifying medium for solid-state dye lasers
JP2003273433A (en) * 2002-03-19 2003-09-26 Japan Science & Technology Corp Manufacturing method of distribution feedback type solid coloring matter laser

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465886A (en) * 1990-07-06 1992-03-02 Mitsubishi Heavy Ind Ltd Distributed reflection type dye cell and distributed reflection type dye laser
JPH05198879A (en) * 1991-02-18 1993-08-06 Mitsubishi Heavy Ind Ltd Wavelength-changeable distributed reflection type polymer dye cell and laser equipment
JPH0548179A (en) * 1991-08-07 1993-02-26 Mitsubishi Heavy Ind Ltd Waveguide type wavelength variable ring laser
JPH10321941A (en) * 1997-05-13 1998-12-04 Lucent Technol Inc Equipment constituted of slid-state electromagnetic radiation source
JP2000187108A (en) * 1998-12-22 2000-07-04 Toshiba Corp Small-sized laser
WO2003044911A2 (en) * 2001-11-20 2003-05-30 Basf Aktiengesellschaft Amplifying medium for solid-state dye lasers
JP2005510091A (en) * 2001-11-20 2005-04-14 ビーエーエスエフ アクチェンゲゼルシャフト Amplification media for solid dye lasers
JP2003273433A (en) * 2002-03-19 2003-09-26 Japan Science & Technology Corp Manufacturing method of distribution feedback type solid coloring matter laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080950A (en) * 2008-08-29 2010-04-08 Semiconductor Energy Lab Co Ltd Solid-state dye laser

Similar Documents

Publication Publication Date Title
JP5161767B2 (en) Broadband laser lamp with speckle reduction
JP2007086101A (en) Deep ultraviolet laser device
JP2006066818A (en) One-dimensional illumination device and image forming device
Jung et al. Tunable colloidal quantum dot distributed feedback lasers integrated on a continuously chirped surface grating
US20070263974A1 (en) Laser Inscription of Optical Structures in Crystals
JP2005249961A (en) Solid coloring matter laser chip
Kurobori et al. Applications of wide-band-gap materials for optoelectronic functional devices fabricated by a pair of interfering femtosecond laser pulses
JP2007300015A (en) Optical unit
JPH09246648A (en) Laser beam source and illuminating optical device
JPH04167419A (en) Laser aligner
JP2000111699A (en) Soft x-ray light source device
JP2007096275A5 (en)
US7068689B2 (en) Frequency-converted laser apparatus with frequency conversion crystals
JP3060986B2 (en) Semiconductor laser beam shaping optical system and semiconductor laser pumped solid-state laser device
JPH0983048A (en) Solid state laser
US20050128570A1 (en) Top-pumped optical device
Kawamura et al. Femtosecond-laser-encoded distributed-feedback color center laser in lithium fluoride single crystal
JP6090954B2 (en) Laser oscillation element made of colloidal crystal gel and method for manufacturing the same
KR100257401B1 (en) Output controlling laser beam generator
JP2000357836A (en) Super narrow frequency band fluorine laser device
JPH033379A (en) Solid-state laser device
JPH04158588A (en) Semiconductor laser exciting solid laser device
JPH0697102A (en) Laser annealing method and dye laser device
JP2001111148A (en) Laser diode exciting solid laser oscillator
Nakai et al. Fabrication of etchless gratings for distributed feedback solid-state dye lasers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100326