JP2005247986A - Semiconducting aromatic amic acid composition and manufacturing method of semiconducting endless tubular polyimide film using the same - Google Patents

Semiconducting aromatic amic acid composition and manufacturing method of semiconducting endless tubular polyimide film using the same Download PDF

Info

Publication number
JP2005247986A
JP2005247986A JP2004059582A JP2004059582A JP2005247986A JP 2005247986 A JP2005247986 A JP 2005247986A JP 2004059582 A JP2004059582 A JP 2004059582A JP 2004059582 A JP2004059582 A JP 2004059582A JP 2005247986 A JP2005247986 A JP 2005247986A
Authority
JP
Japan
Prior art keywords
aromatic
semiconductive
amic acid
aromatic tetracarboxylic
acid composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004059582A
Other languages
Japanese (ja)
Other versions
JP5175021B2 (en
Inventor
Naoki Nishiura
直樹 西浦
Takashi Kuraoka
隆志 鞍岡
Tsutomu Yoshida
勉 吉田
Junya Kanetake
潤也 金武
Toru Murakami
徹 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Ube Corp
Original Assignee
Gunze Ltd
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004059582A priority Critical patent/JP5175021B2/en
Application filed by Gunze Ltd, Ube Industries Ltd filed Critical Gunze Ltd
Priority to US10/591,326 priority patent/US8097693B2/en
Priority to EP04773760.6A priority patent/EP1721924B1/en
Priority to KR1020117021427A priority patent/KR101443830B1/en
Priority to PCT/JP2004/015309 priority patent/WO2005085324A1/en
Priority to KR1020067020029A priority patent/KR20060134129A/en
Priority to KR1020137009810A priority patent/KR101544112B1/en
Priority to CN2009101590363A priority patent/CN101638480B/en
Publication of JP2005247986A publication Critical patent/JP2005247986A/en
Priority to HK07110940.3A priority patent/HK1105650A1/en
Priority to HK10104420.0A priority patent/HK1138302A1/en
Priority to US13/280,713 priority patent/US8314204B2/en
Application granted granted Critical
Publication of JP5175021B2 publication Critical patent/JP5175021B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulding By Coating Moulds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconducting polyimide film of high qualities exhibiting more excellent homogeneity of electric resistivity than conventional semiconducting polyimide films, and its manufacturing method. <P>SOLUTION: The semiconducting aromatic amic acid composition comprises an aromatic amic acid oligomer obtained by a polycondensation reaction of at least two aromatic tetracarboxylic acid components with an aromatic diamine component, conductive carbon black, and an organic polar solvent. The manufacturing method thereof is also provided. The manufacturing method of the semiconducting endless tubular polyimide film comprises subjecting the aromatic amic acid composition to rotational molding and a subsequent heat treatment at approximately 100-190°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導電性芳香族アミド酸組成物及びそれを用いた半導電性の無端管状ポリイミドフイルムの製造方法に関する。また、該製造方法により得られる半導電性の無端管状ポリイミドフイルムは、例えば電子写真方式の中間転写ベルトとして使用される。   The present invention relates to a semiconductive aromatic amic acid composition and a method for producing a semiconductive endless tubular polyimide film using the same. Further, the semiconductive endless tubular polyimide film obtained by the production method is used as an electrophotographic intermediate transfer belt, for example.

管状ポリイミドフイルムに導電性カーボンブラックを混合分散して半導電性を付与したものが、複写機、プリンター、ファクシミリ、印刷機用の中間転写ベルトとして使用されている。   A tubular polyimide film obtained by mixing and dispersing conductive carbon black to impart semiconductivity is used as an intermediate transfer belt for copying machines, printers, facsimiles, and printing machines.

この半導電性管状ポリイミドフイルムの成形原料は、ポリイミドのポリマ前駆体である高分子量(数平均分子量は通常10000〜30000程度)のポリアミド酸(或いはポリアミック酸)溶液が用いられている。   As a forming raw material for the semiconductive tubular polyimide film, a polyamic acid (or polyamic acid) solution having a high molecular weight (number average molecular weight is usually about 10,000 to 30,000), which is a polyimide polymer precursor, is used.

半導電性管状ポリイミドフイルムの成形方法としては、上記の成形原料と導電性カーボンブラックを含む組成物を用いて一旦フラット状のフイルムに成形した後このフイルムの両端を繋いで管状に加工する方法や、遠心注型によって一挙に無端の管状フイルムに成形する方法などが知られている。また、この遠心注型を実質的無遠心力下で成形する方法も、例えば本願出願人による特許文献1に記載されている。   As a method for forming a semiconductive tubular polyimide film, a method of forming into a flat film once using the composition containing the above-mentioned forming raw material and conductive carbon black, then processing both ends of the film into a tubular shape, A method of forming an endless tubular film at once by centrifugal casting is known. A method of forming this centrifugal casting under a substantially no centrifugal force is also described, for example, in Patent Document 1 by the present applicant.

上記のポリアミド酸溶液は、具体的には例えば、1,2,4,5−ベンゼンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物等の点対称位置に酸無水物基を結合する芳香族テトラカルボン酸二無水物と、p−フェニレンジアミン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン等の芳香族ジアミンとの等モル量を、有機極性溶媒中でイミド化しない程度の低温で重縮合反応させて製造されている。   Specific examples of the polyamic acid solution include 1,2,4,5-benzenetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and 3,3. Aromatic tetracarboxylic dianhydrides that bind acid anhydride groups to point-symmetrical positions such as', 4,4'-benzophenone tetracarboxylic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride Polycondensation reaction of an equimolar amount of the product with an aromatic diamine such as p-phenylenediamine, 4,4′-diaminodiphenyl ether, or 4,4′-diaminodiphenylmethane at a low temperature that does not imidize in an organic polar solvent Is manufactured.

しかし、上記の成形方法で得られるポリアミド酸溶液にはポットライフがあるため、保存により徐々に部分的ゲル化が起こり易いという欠点がある。このゲル化は、温度が高い程進行し易いが低温でも経時的に進行し、ゲル化が極微量あっても最終物であるポリイミドフイルムの物性に悪影響を与えることは勿論、平面性の悪化も招いてしまう。これが、導電性カーボンブラックを混合した該フイルムにあっては、電気抵抗のバラツキの増大にまで及んでしまう。   However, since the polyamic acid solution obtained by the above molding method has a pot life, there is a drawback that partial gelation tends to occur gradually upon storage. This gelation is more likely to proceed at higher temperatures, but progresses with time even at low temperatures, and even if the amount of gelation is extremely small, the physical properties of the final polyimide film will be adversely affected, and flatness may be deteriorated. I will invite you. In the film mixed with conductive carbon black, this leads to an increase in variation in electric resistance.

また、ポリアミド酸樹脂は有機極性溶媒に対する溶解性に限度があり、高濃度化ができない(溶液中の不揮発分濃度としてせいぜい25重量%まで)という欠点もある。低濃度ポリアミド酸溶液では、一度により厚いフイルムを成形することが困難であることと、多くの該溶媒を必要とするとともにその蒸発除去に多くの時間を必要とする。   In addition, the polyamic acid resin has a limit in solubility in an organic polar solvent, and has a drawback that it cannot be increased in concentration (the concentration of nonvolatile components in the solution is at most 25% by weight). With a low-concentration polyamic acid solution, it is difficult to form a thicker film at one time, and a large amount of the solvent is required and a lot of time is required for the evaporation removal.

ところで、前記のポリアミド酸溶液からのポリイミドフイルム成形に対して、新たな原料組成物を用いた成形方法が特許文献2に記載されている。これは、点対称性の例えば3,3’,4,4’−ビフェニルテトラカルボン酸二無水物に替えて、非対称性の芳香族テトラカルボン酸(具体的には2,3,3’,4’−ビフェニルテトラカルボン酸又はそのエステルを主成分(60モル%以上)とする芳香族テトラカルボン酸成分)と芳香族ジアミン成分(例えば4,4’−ジアミノジフェニルエーテルを主成分とする)との等モルを混合したモノマを主とする溶液組成物を用いる成形方法である。そして、特許文献2には、該溶液組成物をガラス板に塗布流延して加熱(80〜350℃の間で階段的に昇温)してフラットフイルム成形に供する方法、銀粉、銅粉、カーボンブラック等を混合して耐熱導電ペーストに供する方法が開示されている。   Incidentally, Patent Document 2 describes a molding method using a new raw material composition for the polyimide film molding from the polyamic acid solution. This is because asymmetric aromatic tetracarboxylic acid (specifically, 2,3,3 ′, 4 is used instead of point-symmetrical 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, for example. 'Aromatic tetracarboxylic acid component containing as main component (60 mol% or more)'-biphenyltetracarboxylic acid or ester thereof) and aromatic diamine component (for example, containing 4,4'-diaminodiphenyl ether as the main component), etc. This is a molding method using a solution composition mainly composed of monomers mixed with moles. Patent Document 2 discloses a method in which the solution composition is applied and cast on a glass plate and heated (stepwise temperature increase between 80 to 350 ° C.) to be used for flat film molding, silver powder, copper powder, A method of mixing carbon black or the like and providing it to a heat resistant conductive paste is disclosed.

しかし、上記の特許文献2には、出発原料(モノマ)を一旦アミド酸オリゴマーに変換した後ポリイミドフイルムに成形する方法について一切開示はない。しかも、上記の成形方法で得られる半導電性ポリイミドフイルムは、近年高い精度が求められるトナー複写機の中間転写ベルト等に用いる場合、電気抵抗等の特性において更なる改善の余地がある。
特開2000−263568号公報 特開平10−182820号公報
However, the above-mentioned Patent Document 2 does not disclose any method for once converting a starting material (monomer) into an amic acid oligomer and then molding it into a polyimide film. In addition, the semiconductive polyimide film obtained by the above molding method has room for further improvement in characteristics such as electric resistance when used for an intermediate transfer belt of a toner copying machine, for which high accuracy is recently required.
JP 2000-263568 A Japanese Patent Laid-Open No. 10-182820

本発明の目的は、上記の従来技術の問題点に鑑み、従来の半導電性ポリイミドフィルムに比べ、電気抵抗率の均質性に優れた高品位の半導電性ポリイミドフィルム及びその製造方法を提供することにある。   An object of the present invention is to provide a high-quality semiconductive polyimide film excellent in homogeneity of electrical resistivity and a method for manufacturing the same in comparison with the conventional semiconductive polyimide film in view of the above-described problems of the prior art. There is.

本発明者は、上記の課題を解決するため鋭意検討を行った結果、芳香族テトラカルボン酸成分と芳香族ジアミンを加熱処理して、実質的に一部を重縮合させ一旦芳香族アミド酸オリゴマー(数平均分子量が1000〜7000程度の芳香族アミド酸)を含む混合溶液とし、これに導電性カーボンブラックを混合した後、回転成形し続いてイミド化処理することにより、均質な電気抵抗率を有する半導電性ポリイミドフィルムが得られることを見出した。この知見に基づいてさらに発展させることにより本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor has heat-treated the aromatic tetracarboxylic acid component and the aromatic diamine to substantially polycondensate the aromatic amidic acid oligomer once. (Aromatic amic acid having a number average molecular weight of about 1000 to 7000), mixed with conductive carbon black, and then rotationally molded and then imidized to obtain a uniform electrical resistivity. It has been found that a semiconductive polyimide film is obtained. The present invention has been completed by further development based on this finding.

すなわち、本発明は以下の半導電性芳香族アミド酸組成物、それを用いた半導電性無端管状ポリイミドフイルム及びその製造方法を提供する。   That is, the present invention provides the following semiconductive aromatic amic acid composition, a semiconductive endless tubular polyimide film using the same, and a method for producing the same.

項1. 2種以上の芳香族テトラカルボン酸成分と芳香族ジアミンとの略等モル量を重縮合反応して得られる芳香族アミド酸オリゴマー、カーボンブラック、及び有機極性溶媒を含有してなる半導電性芳香族アミド酸組成物。   Item 1. Semiconductive fragrance comprising an aromatic amic acid oligomer obtained by polycondensation reaction of approximately equimolar amounts of two or more aromatic tetracarboxylic acid components and an aromatic diamine, carbon black, and an organic polar solvent Group amic acid composition.

項2. 前記芳香族アミド酸オリゴマーが、2種以上の芳香族テトラカルボン酸二無水物と芳香族ジアミンとの略等モル量を有機極性溶媒中80℃程度以下の温度で重縮合反応して得られる芳香族アミド酸オリゴマーである項1に記載の半導電性芳香族アミド酸組成物。   Item 2. The aromatic amic acid oligomer obtained by polycondensation of approximately equimolar amounts of two or more aromatic tetracarboxylic dianhydrides and an aromatic diamine in an organic polar solvent at a temperature of about 80 ° C. or lower. Item 2. The semiconductive aromatic amic acid composition according to item 1, which is an aromatic amide acid oligomer.

項3. 2種以上の芳香族テトラカルボン酸二無水物が、非対称性芳香族テトラカルボン酸二無水物15〜55モル%と対称性芳香族テトラカルボン酸二無水物85〜45モル%とからなる混合物である項2に記載の半導電性芳香族アミド酸組成物。   Item 3. Two or more kinds of aromatic tetracarboxylic dianhydrides are a mixture of 15 to 55 mol% of asymmetric aromatic tetracarboxylic dianhydrides and 85 to 45 mol% of symmetric aromatic tetracarboxylic dianhydrides. Item 3. The semiconductive aromatic amic acid composition according to Item 2.

項4. 前記芳香族アミド酸オリゴマーが、2種以上の芳香族テトラカルボン酸ジエステルと芳香族ジアミンとの略等モル量を有機極性溶媒中90〜120℃程度の温度で重縮合反応して得られる芳香族アミド酸オリゴマーである項1に記載の半導電性芳香族アミド酸組成物。   Item 4. The aromatic amic acid oligomer is an aromatic obtained by polycondensation reaction of approximately equimolar amounts of two or more aromatic tetracarboxylic acid diesters and an aromatic diamine in an organic polar solvent at a temperature of about 90 to 120 ° C. Item 2. The semiconductive aromatic amic acid composition according to item 1, which is an amic acid oligomer.

項5. 2種以上の芳香族テトラカルボン酸ジエステルが、非対称性芳香族テトラカルボン酸ジエステル15〜55モル%と対称性芳香族テトラカルボン酸ジエステル85〜45モル%とからなる混合物である項4に記載の半導電性芳香族アミド酸組成物。   Item 5. Item 5. The two or more kinds of aromatic tetracarboxylic acid diesters are a mixture comprising 15 to 55 mol% of asymmetric aromatic tetracarboxylic acid diesters and 85 to 45 mol% of symmetric aromatic tetracarboxylic acid diesters. Semiconductive aromatic amic acid composition.

項6. 前記芳香族アミド酸オリゴマーの数平均分子量が1000〜7000程度である項1〜5のいずれかに記載の半導電性芳香族アミド酸組成物。   Item 6. Item 6. The semiconductive aromatic amic acid composition according to any one of Items 1 to 5, wherein the aromatic amic acid oligomer has a number average molecular weight of about 1000 to 7000.

項7. カーボンブラックの配合量が、芳香族テトラカルボン酸成分と有機ジアミンの合計量100重量部に対し、3〜30重量部程度である項1〜6のいずれかに記載の半導電性芳香族アミド酸組成物。   Item 7. The semiconductive aromatic amic acid according to any one of Items 1 to 6, wherein the compounding amount of carbon black is about 3 to 30 parts by weight with respect to 100 parts by weight of the total amount of the aromatic tetracarboxylic acid component and the organic diamine. Composition.

項8. 項1〜7のいずれかに記載の半導電性芳香族アミド酸組成物を回転成形し、加熱処理することを特徴とする半導電性無端管状ポリイミドフイルムの製造方法。   Item 8. Item 8. A process for producing a semiconductive endless tubular polyimide film, comprising spin-molding and heat-treating the semiconductive aromatic amic acid composition according to any one of Items 1 to 7.

項9. 項8に記載の製造方法により製造される、電子写真方式の中間転写ベルトに用いられる半導電性無端管状ポリイミドフイルム。   Item 9. Item 10. A semiconductive endless tubular polyimide film used for an electrophotographic intermediate transfer belt manufactured by the manufacturing method according to Item 8.

項10. 表面電気抵抗率の対数換算値の標準偏差が0.2以内であり、体積電気抵抗率の対数換算値の標準偏差が0.2以内であり、表面電気抵抗率の対数換算値と裏面電気抵抗率の対数換算値との差が0.4以内である項9に記載の半導電性無端管状芳香族ポリイミドフイルム。   Item 10. The standard deviation of the logarithmic conversion value of the surface electrical resistivity is within 0.2, the standard deviation of the logarithmic conversion value of the volume resistivity is within 0.2, the logarithmic conversion value of the surface electrical resistivity and the logarithmic conversion of the back surface electrical resistivity Item 10. The semiconductive endless tubular aromatic polyimide film according to Item 9, wherein the difference from the value is within 0.4.

項11. 有機極性溶媒中で2種以上の芳香族テトラカルボン酸成分と芳香族ジアミンとの略等モル量を一部縮重合反応して芳香族アミド酸オリゴマー(数平均分子量1000〜7000程度の芳香族アミド酸)溶液とし、これと導電性カーボンブラック粉体とを均一混合することを特徴とする半導電性芳香族アミド酸組成物の製造方法。   Item 11. An aromatic amic acid oligomer (an aromatic amide having a number average molecular weight of about 1000 to 7000) is obtained by subjecting a partial condensation polymerization of approximately equimolar amounts of two or more aromatic tetracarboxylic acid components and an aromatic diamine in an organic polar solvent. Acid) solution, and this and conductive carbon black powder are uniformly mixed. A method for producing a semiconductive aromatic amic acid composition, comprising:

以下、本発明を詳述する。   The present invention is described in detail below.

本発明の半導電性無端管状ポリイミドフイルム(以下、「半導電性管状PIフィルム」とも呼ぶ)は、芳香族アミド酸オリゴマー、導電性カーボンブラック(以下、「CB」とも呼ぶ)及び極性有機溶剤を含む半導電性芳香族アミド酸組成物を、回転成形してイミド化処理することにより製造される。
I.半導電性芳香族アミド酸組成物
本発明の半導電性芳香族アミド酸組成物は、有機極性溶媒中で、2種以上の芳香族テトラカルボン酸成分と芳香族ジアミンとの略等モル量を、一部縮重合反応して芳香族アミド酸オリゴマー(数平均分子量1000〜7000程度の芳香族アミド酸)溶液とし、これと導電性カーボンブラック粉体とを均一混合して調製される。
(1)芳香族テトラカルボン酸成分
成形原料である2種以上の芳香族テトラカルボン酸成分としては、非対称性芳香族テトラカルボン酸誘導体の少なくとも1種と対称性芳香族テトラカルボン酸誘導体の少なくとも1種との混合物が用いられる。
The semiconductive endless tubular polyimide film of the present invention (hereinafter also referred to as “semiconductive tubular PI film”) comprises an aromatic amic acid oligomer, conductive carbon black (hereinafter also referred to as “CB”) and a polar organic solvent. The semiconductive aromatic amic acid composition is prepared by rotational molding and imidization treatment.
I. Semiconductive Aromatic Amic Acid Composition The semiconductive aromatic amic acid composition of the present invention has a substantially equimolar amount of two or more aromatic tetracarboxylic acid components and an aromatic diamine in an organic polar solvent. A partially polycondensation reaction is carried out to prepare an aromatic amic acid oligomer (aromatic amic acid having a number average molecular weight of about 1000 to 7000) solution, which is uniformly mixed with conductive carbon black powder.
(1) As the two or more aromatic tetracarboxylic acid components which are aromatic tetracarboxylic acid component forming raw materials, at least one of an asymmetric aromatic tetracarboxylic acid derivative and at least one of a symmetric aromatic tetracarboxylic acid derivative Mixtures with seeds are used.

非対称性芳香族テトラカルボン酸誘導体
本発明において非対称性芳香族テトラカルボン酸誘導体としては、非対称性芳香族テトラカルボン酸二無水物又は非対称性芳香族テトラカルボン酸ジエステル(ハーフエステル)が挙げられる。
Asymmetric aromatic tetracarboxylic acid derivative In the present invention, examples of the asymmetric aromatic tetracarboxylic acid derivative include asymmetric aromatic tetracarboxylic dianhydride or asymmetric aromatic tetracarboxylic acid diester (half ester).

ここで、非対称性芳香族テトラカルボン酸とは、単環若しくは多環の芳香環(ベンゼン核、ナフタレン核、ビフェニル核、アントラセン核等)に4個のカルボキシル基が点対象でない位置に結合した化合物、或いは2個の単環芳香環(ベンゼン核等)が−CO−、−CH2−、−SO2−等の基又は単結合で架橋された化合物に4個のカルボキシル基が点対象でない位置に結合した化合物が挙げられる。 Here, the asymmetric aromatic tetracarboxylic acid is a compound in which four carboxyl groups are bonded to positions that are not point targets on a monocyclic or polycyclic aromatic ring (benzene nucleus, naphthalene nucleus, biphenyl nucleus, anthracene nucleus, etc.). Or a position in which two monocyclic aromatic rings (benzene nucleus, etc.) are not point-targeted to a group in which —CO—, —CH 2 —, —SO 2 — or the like or a single bond is bridged The compound couple | bonded with is mentioned.

非対称性芳香族テトラカルボン酸の具体例としては、1,2,3,4−ベンゼンテトラカルボン酸、1,2,6,7−ナフタレンテトラカルボン酸、2,3,3’,4’−ビフェニルテトラカルボン酸、2,3,3’,4’−ベンゾフェノンテトラカルボン酸、2,3,3’,4’−ジフェニルエーテルテトラカルボン酸、2,3,3’,4’−ジフェニルメタンテトラカルボン酸、2,3,3’,4’−ジフェニルスルフォンテトラカルボン酸等が挙げられる。   Specific examples of the asymmetric aromatic tetracarboxylic acid include 1,2,3,4-benzenetetracarboxylic acid, 1,2,6,7-naphthalenetetracarboxylic acid, 2,3,3 ′, 4′-biphenyl. Tetracarboxylic acid, 2,3,3 ′, 4′-benzophenonetetracarboxylic acid, 2,3,3 ′, 4′-diphenyl ether tetracarboxylic acid, 2,3,3 ′, 4′-diphenylmethanetetracarboxylic acid, 2 , 3,3 ′, 4′-diphenylsulfone tetracarboxylic acid and the like.

本発明で用いられる非対称性芳香族テトラカルボン酸二無水物としては、上記の非対称性芳香族テトラカルボン酸の二無水物が挙げることができ、具体的には上記の非対称性芳香族テトラカルボン酸において芳香環上の隣接するカルボキシル基同士で2個の酸無水物を形成している化合物が挙げられる。中でも、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、1,2,6,7−ナフタレンテトラカルボン酸二無水物等が好ましく、特に2,3,3’,4’−ビフェニルテトラカルボン酸二無水物が好ましく使用される。   Examples of the asymmetric aromatic tetracarboxylic dianhydride used in the present invention include the above-mentioned asymmetric aromatic tetracarboxylic dianhydrides. Specifically, the above asymmetric aromatic tetracarboxylic dianhydride And compounds in which two acid anhydrides are formed between adjacent carboxyl groups on the aromatic ring. Of these, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 1,2,6,7-naphthalenetetracarboxylic dianhydride and the like are preferable, and 2,3,3 ′, 4′- is particularly preferable. Biphenyltetracarboxylic dianhydride is preferably used.

本発明で用いられる非対称性芳香族テトラカルボン酸ジエステル(ハーフエステル)としては、上記の非対称性芳香族テトラカルボン酸のジエステル(ハーフエステル)を挙げることができ、具体的には、上記非対称性芳香族テトラカルボン酸の4個のカルボキシル基のうち2個のカルボキシル基がエステル化されており、かつ芳香環上の隣接する2個のカルボキシル基の一方がエステル化された化合物が挙げられる。   Examples of the asymmetric aromatic tetracarboxylic acid diester (half ester) used in the present invention include the above-described asymmetric aromatic tetracarboxylic acid diester (half ester). Examples include compounds in which two of the four carboxyl groups of the group tetracarboxylic acid are esterified and one of the two adjacent carboxyl groups on the aromatic ring is esterified.

上記非対称性芳香族テトラカルボン酸ジエステルにおける2個のエステルとしては、ジ低級アルキルエステル、好ましくはジメチルエステル、ジエチルエステル、ジプロピルエステル等のジC1-3アルキルエステル(特に、ジメチルエステル)が挙げられる。 Examples of the two esters in the asymmetric aromatic tetracarboxylic acid diester include di-lower alkyl esters, preferably di-C 1-3 alkyl esters (particularly dimethyl esters) such as dimethyl esters, diethyl esters, and dipropyl esters. It is done.

上記対称性芳香族テトラカルボン酸ジエステルのうち、2,3,3’,4’−ビフェニルテトラカルボン酸ジメチルエステル、2,3,3’,4’−ビフェニルテトラカルボン酸ジエチルエステルが好ましく、特に、2,3,3’,4’−ビフェニルテトラカルボン酸ジメチルエステルが好ましく使用される。   Of the symmetric aromatic tetracarboxylic acid diesters, 2,3,3 ′, 4′-biphenyltetracarboxylic acid dimethyl ester and 2,3,3 ′, 4′-biphenyltetracarboxylic acid diethyl ester are preferred, 2,3,3 ′, 4′-biphenyltetracarboxylic acid dimethyl ester is preferably used.

なお、上記対称性芳香族テトラカルボン酸ジエステルは、市販又は公知の方法により製造することができる。例えば、対応する対称性芳香族テトラカルボン酸二無水物1に対し、対応するアルコール(低級アルコール、好ましくはC1-3アルコール等)2(モル比)を反応させる等の公知の方法により容易に製造することができる。これにより、原料の酸無水物がアルコールと反応して開環して、芳香環上の隣接する炭素上にそれぞれエステル基とカルボキシル基を有するジエステル(ハーフエステル)が製造される。 In addition, the said symmetrical aromatic tetracarboxylic-acid diester can be manufactured commercially or by a well-known method. For example, the corresponding symmetrical aromatic tetracarboxylic dianhydride 1 is easily reacted with a corresponding alcohol (lower alcohol, preferably C 1-3 alcohol, etc.) 2 (molar ratio) by a known method. Can be manufactured. Thereby, the acid anhydride of a raw material reacts with alcohol, and a ring is opened, and the diester (half ester) which has an ester group and a carboxyl group, respectively on adjacent carbon on an aromatic ring is manufactured.

対称性芳香族テトラカルボン酸誘導体
本発明において対称性芳香族テトラカルボン酸誘導体としては、対称性芳香族テトラカルボン酸二無水物又は対称性芳香族テトラカルボン酸ジエステル(ハーフエステル)が挙げられる。
Symmetric aromatic tetracarboxylic acid derivative Examples of the symmetric aromatic tetracarboxylic acid derivative in the present invention include a symmetric aromatic tetracarboxylic dianhydride or a symmetric aromatic tetracarboxylic acid diester (half ester).

ここで、対称性芳香族テトラカルボン酸とは、単環若しくは多環の芳香環(ベンゼン核、ナフタレン核、ビフェニル核、アントラセン核等)に4個のカルボキシル基が点対称な位置に結合した化合物、或いは2個の単環芳香環(ベンゼン核等)が−CO−、−O−、−CH2−、−SO2−等の基又は単結合で架橋された化合物に4個のカルボキシル基が点対称な位置に結合した化合物が挙げられる。 Here, the symmetric aromatic tetracarboxylic acid is a compound in which four carboxyl groups are bonded to a point-symmetrical position on a monocyclic or polycyclic aromatic ring (benzene nucleus, naphthalene nucleus, biphenyl nucleus, anthracene nucleus, etc.). Or four carboxyl groups on a compound in which two monocyclic aromatic rings (such as a benzene nucleus) are bridged by a group such as —CO—, —O—, —CH 2 —, —SO 2 — or the like, or a single bond. A compound bonded at a point-symmetrical position can be mentioned.

対称性芳香族テトラカルボン酸の具体例としては、1,2,4,5−ベンゼンテトラカルボン酸、2,3,6,7−ナフタレンテトラカルボン酸、3,3’,4,4’−ビフェニルテトラカルボン酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸、3,3’,4,4’−ジフェニルエーテルテトラカルボン酸、3,3’,4,4’−ジフェニルメタンテトラカルボン酸、3,3’,4,4’−ジフェニルスルフォンテトラカルボン酸等が挙げられる。   Specific examples of the symmetric aromatic tetracarboxylic acid include 1,2,4,5-benzenetetracarboxylic acid, 2,3,6,7-naphthalenetetracarboxylic acid, and 3,3 ′, 4,4′-biphenyl. Tetracarboxylic acid, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid, 3,3 ′, 4,4′-diphenyl ether tetracarboxylic acid, 3,3 ′, 4,4′-diphenylmethane tetracarboxylic acid, 3 , 3 ′, 4,4′-diphenylsulfone tetracarboxylic acid and the like.

本発明で用いられる対称性芳香族テトラカルボン酸二無水物としては、上記対称性芳香族テトラカルボン酸の二無水物を挙げることができ、具体的には上記の対称性芳香族テトラカルボン酸において隣接するカルボキシル基同士で2個の酸無水物を形成する化合物が挙げられる。中でも1,2,4,5−ベンゼンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物が好ましく、特に3,3’,4,4’−ビフェニルテトラカルボン酸二無水物が好ましく使用される。これは得られるフイルムの強度形成上等の点で好ましく作用するからである。   Examples of the symmetric aromatic tetracarboxylic dianhydride used in the present invention include the above symmetric aromatic tetracarboxylic dianhydrides. Specifically, in the symmetric aromatic tetracarboxylic acid described above, The compound which forms two acid anhydrides by adjacent carboxyl groups is mentioned. Among these, 1,2,4,5-benzenetetracarboxylic dianhydride and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride are preferable, and 3,3 ′, 4,4′-biphenyltetra is particularly preferable. Carboxylic dianhydrides are preferably used. This is because it works preferably in terms of forming the strength of the obtained film.

本発明で用いられる対称性芳香族テトラカルボン酸ジエステル(ハーフエステル)としては、上記の非対称性芳香族テトラカルボン酸のジエステル(ハーフエステル)を挙げることができ、具体的には、上記対称性芳香族テトラカルボン酸の4個のカルボキシル基のうち2個のカルボキシル基がエステル化されており、かつ芳香環上の隣接する2個のカルボキシル基の一方がエステル化された化合物が挙げられる。   Examples of the symmetric aromatic tetracarboxylic acid diester (half ester) used in the present invention include the above-mentioned asymmetric aromatic tetracarboxylic acid diester (half ester). Examples include compounds in which two of the four carboxyl groups of the group tetracarboxylic acid are esterified and one of the two adjacent carboxyl groups on the aromatic ring is esterified.

上記対称性芳香族テトラカルボン酸ジエステルにおける2個のエステルとしては、ジ低級アルキルエステル、好ましくはジメチルエステル、ジエチルエステル、ジプロピルエステル等のC1-3アルキルエステル(特に、ジメチルエステル)が挙げられる。 Examples of the two esters in the symmetric aromatic tetracarboxylic acid diester include di-lower alkyl esters, preferably C 1-3 alkyl esters (particularly dimethyl esters) such as dimethyl esters, diethyl esters, and dipropyl esters. .

上記対称性芳香族テトラカルボン酸ジエステルのうち、3,3’,4,4’−ビフェニルテトラカルボン酸ジメチルエステル、3,3’,4,4’−ビフェニルテトラカルボン酸ジエチルエステル、2,3,5,6−ベンゼンテトラカルボン酸ジメチルエステルが好ましく、特に、3,3’,4,4’−ビフェニルテトラカルボン酸ジメチルエステル、が好ましく使用される。   Among the above symmetrical aromatic tetracarboxylic acid diesters, 3,3 ′, 4,4′-biphenyltetracarboxylic acid dimethyl ester, 3,3 ′, 4,4′-biphenyltetracarboxylic acid diethyl ester, 2,3, 5,6-Benzenetetracarboxylic acid dimethyl ester is preferable, and 3,3 ′, 4,4′-biphenyltetracarboxylic acid dimethyl ester is particularly preferably used.

なお、上記対称性芳香族テトラカルボン酸ジエステルは、市販又は公知の方法により製造することができる。例えば、対応する対称性芳香族テトラカルボン酸二無水物1に対し、対応するアルコール(低級アルコール、好ましくはC1-3アルコール等)2(モル比)を反応させて容易に製造することができる。これにより、原料の酸無水物がアルコールと反応して開環して、芳香環上の隣接する炭素上にそれぞれエステル基とカルボキシル基を有するジエステル(ハーフエステル)が製造される。 In addition, the said symmetrical aromatic tetracarboxylic-acid diester can be manufactured commercially or by a well-known method. For example, it can be easily produced by reacting the corresponding symmetrical aromatic tetracarboxylic dianhydride 1 with the corresponding alcohol (lower alcohol, preferably C 1-3 alcohol etc.) 2 (molar ratio). . Thereby, the acid anhydride of a raw material reacts with alcohol, and a ring is opened, and the diester (half ester) which has an ester group and a carboxyl group, respectively on adjacent carbon on an aromatic ring is manufactured.

混合比
非対称性及び対称性の芳香族テトラカルボン酸誘導体の混合比は、非対称性芳香族テトラカルボン酸誘導体が15〜55モル%(好ましくは20〜50モル%)程度であり、対称性芳香族テトラカルボン酸誘導体が85〜45モル%(好ましくは80〜50モル%)程度で特定される。特に、非対称性及テトラカルボン酸二無水物を20〜50モル%程度、対称性芳香族テトラカルボン酸二無水物を80〜50モル%程度用いるのが好適である。
The mixing ratio of the asymmetric and symmetric aromatic tetracarboxylic acid derivative is about 15 to 55 mol% (preferably 20 to 50 mol%) of the asymmetric aromatic tetracarboxylic acid derivative. The tetracarboxylic acid derivative is specified at about 85 to 45 mol% (preferably 80 to 50 mol%). In particular, it is preferable to use about 20 to 50 mol% of the asymmetry and tetracarboxylic dianhydride and about 80 to 50 mol% of the symmetric aromatic tetracarboxylic dianhydride.

なお、前記の対称性及び非対称性の芳香族テトラカルボン酸成分を配合することを必須とするのは、次の理由による。対称性の芳香族テトラカルボン酸誘導体のみでは、ポリイミドフイルムが結晶性を発現するため加熱処理中に被膜が粉化してしまいフイルム化することが出来ない。一方、非対称性の芳香族テトラカルボン酸誘導体のみでは、無端管状PIフイルムとして成形はされるが、得られた該フイルムの降伏強度と弾性率が弱く、回転ベルトとして使用した場合、駆動での応答性が悪いだけでなく、初期の段階でベルト伸びが発生してしまうなどの問題がある。   In addition, it becomes essential to mix | blend the said symmetrical and asymmetrical aromatic tetracarboxylic acid component for the following reason. Only with a symmetric aromatic tetracarboxylic acid derivative, the polyimide film exhibits crystallinity, so that the film is pulverized during the heat treatment and cannot be formed into a film. On the other hand, an asymmetric aromatic tetracarboxylic acid derivative alone is formed into an endless tubular PI film, but the yield strength and elastic modulus of the obtained film are weak, and when used as a rotating belt, the response in driving In addition to the poor properties, there are problems such as belt elongation occurring at an early stage.

これに対し、上記混合比からなる芳香族テトラカルボン酸誘導体を使用すると、極めて高い製膜性(成形性)が可能であり、しかも高い降伏強度と弾性率を有する半導電性の無端管状PIフイルムが得られる。   On the other hand, when an aromatic tetracarboxylic acid derivative having the above-mentioned mixing ratio is used, a semiconductive endless tubular PI film having an extremely high film forming property (moldability) and having a high yield strength and elastic modulus. Is obtained.

また、非対称性芳香族テトラカルボン酸誘導体を添加することによりポリアミド酸分子が曲がって、フレキシブル性が生まれると考えられる。   In addition, it is considered that the addition of an asymmetric aromatic tetracarboxylic acid derivative bends the polyamic acid molecule, thereby creating flexibility.

そして、前記の対称性と非対称性の芳香族テトラカルボン酸誘導体の共存効果は、両者が前記に示した混合比の場合に最も有効に発揮される。
(2)芳香族ジアミン
芳香族ジアミンとしては、1つの芳香環上に2個のアミノ基を有する化合物、又は2つ以上の芳香環(ベンゼン核等)が−O−、−S−、−CO−、−CH2−、−SO−、−SO2−等の基若しくは単結合で架橋された2個のアミノ基を有する化合物が挙げられる。具体的には、例えば、p−フェニレンジアミン、o−フェニレンジアミン、m−フェニレンジアミン、4,4’―ジアミノジフェニルエーテル、4,4’―ジアミノジフェニルチオエーテル、4,4’―ジアミノジフェニルカルボニル、4,4’―ジアミノジフェニルメタン、1,4―ビス(4―アミノフェノキシ)ベンゼン等が挙げられる。中でも、4,4’―ジアミノジフェニルエーテルが特に好ましい。これらの芳香族ジアミンを用いることにより、反応がより円滑に進行すると共に、より強靭かつ高い耐熱性のフイルムを製造することができるからである。
(3)有機極性溶媒
用いる有機極性溶媒としては、非プロトン系有機極性溶媒が好ましく、例えばN−メチル−2−ピロリドン(以下、「NMP」と呼ぶ。)、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホアミド、1,3−ジメチル−2−イミダゾリジノン等が使用される。これらのうちの1種又は2種以上の混合溶媒であってもよい。特に、NMPが好ましい。有機極性溶媒の使用量は、原料の芳香族テトラカルボン酸成分と芳香族ジアミンの合計量100重量部に対し、100〜300重量部程度(好ましくは、150〜250重量部程度)になるように決めればよい。製造される芳香族アミド酸オリゴマーは、上記有機極性溶媒に比較的溶解しやすい為、使用する溶媒の量を極力低減できるというメリットがある。
(4)芳香族アミド酸オリゴマー溶液の調製
上記の2種以上の混合芳香族テトラカルボン酸成分及び有機ジアミン成分を有機極性溶媒中で一部を縮重合反応して、芳香族アミド酸オリゴマー(数平均分子量1000〜7000程度)を調製する方法を、以下例示する。
And the coexistence effect of the said symmetrical and asymmetrical aromatic tetracarboxylic acid derivative is most effectively exhibited when both have the mixing ratio shown above.
(2) Aromatic diamine As the aromatic diamine, a compound having two amino groups on one aromatic ring, or two or more aromatic rings (such as a benzene nucleus) are —O—, —S—, —CO. Examples thereof include a compound such as —, —CH 2 —, —SO—, —SO 2 — or the like, or a compound having two amino groups bridged by a single bond. Specifically, for example, p-phenylenediamine, o-phenylenediamine, m-phenylenediamine, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylthioether, 4,4′-diaminodiphenylcarbonyl, 4, Examples include 4′-diaminodiphenylmethane, 1,4-bis (4-aminophenoxy) benzene, and the like. Among these, 4,4′-diaminodiphenyl ether is particularly preferable. This is because by using these aromatic diamines, the reaction proceeds more smoothly and a tougher and higher heat-resistant film can be produced.
(3) Organic polar solvent The organic polar solvent used is preferably an aprotic organic polar solvent such as N-methyl-2-pyrrolidone (hereinafter referred to as “NMP”), N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoamide, 1,3-dimethyl-2-imidazolidinone and the like are used. One or two or more of these solvents may be used. In particular, NMP is preferable. The amount of the organic polar solvent used is about 100 to 300 parts by weight (preferably about 150 to 250 parts by weight) with respect to 100 parts by weight of the total amount of the raw material aromatic tetracarboxylic acid component and aromatic diamine. Just decide. Since the produced aromatic amic acid oligomer is relatively easily dissolved in the organic polar solvent, there is an advantage that the amount of the solvent to be used can be reduced as much as possible.
(4) Preparation of aromatic amic acid oligomer solution A part of the above-mentioned two or more mixed aromatic tetracarboxylic acid components and organic diamine components are subjected to polycondensation reaction in an organic polar solvent to obtain an aromatic amic acid oligomer (number A method for preparing an average molecular weight of about 1000 to 7000) is exemplified below.

第1の芳香族アミド酸オリゴマーの調製方法として、2種以上の芳香族テトラカルボン酸二無水物と芳香族ジアミンとの略等モル量を有機極性溶媒中80℃程度以下の温度で重縮合反応することにより、芳香族アミド酸オリゴマー(数平均分子量1000〜7000程度)を製造することができる。   As a method for preparing the first aromatic amic acid oligomer, a polycondensation reaction is carried out using an approximately equimolar amount of two or more aromatic tetracarboxylic dianhydrides and an aromatic diamine in an organic polar solvent at a temperature of about 80 ° C. or less. By doing so, an aromatic amic acid oligomer (number average molecular weight of about 1000 to 7000) can be produced.

具体的には、非対称性芳香族テトラカルボン酸二無水物15〜55モル%(好ましくは20〜50モル%)程度と対称性芳香族テトラカルボン酸二無水物85〜45モル%(好ましくは80〜50モル%)程度とからなる混合物を縮重合反応に供する。有機極性溶媒は、上述のものが採用され、特にNMPが好ましい。   Specifically, the asymmetric aromatic tetracarboxylic dianhydride is about 15 to 55 mol% (preferably 20 to 50 mol%) and the symmetrical aromatic tetracarboxylic dianhydride is 85 to 45 mol% (preferably 80 (About 50 mol%) is subjected to a polycondensation reaction. As the organic polar solvent, those described above are employed, and NMP is particularly preferable.

反応温度を80℃程度以下としたのは、芳香族アミド酸オリゴマーを形成するときにイミド化反応が起こるのを抑制するためである。より好ましい反応温度は30〜70℃である。反応温度が80℃を越えると、イミド化反応によってポリイミドが形成され易くなるので好ましくない。反応時間は、反応温度等により変化するが、通常数時間〜72時間程度である。なお、芳香族アミド酸オリゴマーの分子量の調節は、公知のいずれの方法を用いても構わない。例えば、芳香族テトラカルボン酸成分/芳香族ジアミンのモル比を0.5〜0.95で重合して所定の分子量の芳香族アミド酸オリゴマーを形成した後で、必要に応じて芳香族テトラカルボン酸成分/芳香族ジアミンが略等モルになるように芳香族テトラカルボン酸成分を添加する方法(特公平1−22290号公報参照)や、芳香族テトラカルボン酸成分/芳香族ジアミンを略等モルで反応するに際して、水のような高分子量化を抑制する化合物を所定量共存させる方法(特公平2−3820号公報参照)等により、好適に行うことができる。   The reason for setting the reaction temperature to about 80 ° C. or less is to prevent the imidization reaction from occurring when the aromatic amic acid oligomer is formed. A more preferable reaction temperature is 30 to 70 ° C. When the reaction temperature exceeds 80 ° C., it is not preferable because polyimide is easily formed by imidization reaction. Although reaction time changes with reaction temperature etc., it is about several hours-about 72 hours normally. It should be noted that any known method may be used to adjust the molecular weight of the aromatic amic acid oligomer. For example, after polymerizing at a molar ratio of aromatic tetracarboxylic acid component / aromatic diamine of 0.5 to 0.95 to form an aromatic amic acid oligomer having a predetermined molecular weight, an aromatic tetracarboxylic acid is formed as necessary. A method of adding an aromatic tetracarboxylic acid component so that the acid component / aromatic diamine is approximately equimolar (see Japanese Examined Patent Publication No. 1-2222), or approximately equimolar aromatic tetracarboxylic acid component / aromatic diamine. The reaction can be suitably performed by a method in which a predetermined amount of a compound that suppresses high molecular weight such as water is present (see Japanese Patent Publication No. 2-3820).

第2の芳香族アミド酸オリゴマーの調製方法として、2種以上の芳香族テトラカルボン酸ジエステルと芳香族ジアミンとの略等モル量を、有機極性溶媒中90〜120℃程度の温度で縮重合反応することにより、芳香族アミド酸オリゴマー(数平均分子量1000〜7000程度)を製造することができる。   As a method for preparing the second aromatic amic acid oligomer, a polycondensation reaction is carried out using an approximately equimolar amount of two or more aromatic tetracarboxylic acid diesters and an aromatic diamine at a temperature of about 90 to 120 ° C. in an organic polar solvent. By doing so, an aromatic amic acid oligomer (number average molecular weight of about 1000 to 7000) can be produced.

具体的には、非対称性芳香族テトラカルボン酸ジエステル15〜55モル%(好ましくは20〜50モル%)程度と対称性芳香族テトラカルボン酸ジエステル85〜45モル%(好ましくは80〜50モル%)程度とからなる混合物を縮重合反応に供する。有機極性溶媒は、上述のものが採用され、特にNMPが好ましい。   Specifically, the asymmetric aromatic tetracarboxylic acid diester is about 15 to 55 mol% (preferably 20 to 50 mol%) and the symmetrical aromatic tetracarboxylic acid diester is 85 to 45 mol% (preferably 80 to 50 mol%). ) To a polycondensation reaction. As the organic polar solvent, those described above are employed, and NMP is particularly preferable.

所望の分子量を有する芳香族アミド酸オリゴマーを調整するためには、その反応温度と反応時間が密接に関連する。加熱温度は、通常90〜120℃程度であればよいが、反応温度が高温域にある場合は、イミド体の生成量(イミド化率)や高分子量化を抑えるために反応時間を短くするのが好ましい。また、加熱処理は、所定温度まで徐々に昇温していき、所定温度で1〜3時間程度反応させて、その後冷却すればよい。例えば、1時間〜4時間程度かけて90〜120℃程度に昇温し、同温度で30分〜2時間程度反応させて冷却すればよい。   In order to prepare an aromatic amic acid oligomer having a desired molecular weight, its reaction temperature and reaction time are closely related. The heating temperature is usually about 90 to 120 ° C. However, when the reaction temperature is in a high temperature range, the reaction time is shortened in order to suppress the production amount of imide (imidation rate) and high molecular weight. Is preferred. In addition, the heat treatment may be performed by gradually raising the temperature to a predetermined temperature, reacting at the predetermined temperature for about 1 to 3 hours, and then cooling. For example, the temperature may be raised to about 90 to 120 ° C. over about 1 to 4 hours, and reacted at the same temperature for about 30 minutes to 2 hours and then cooled.

上記第1及び第2の調製方法において、略等モル量とは、所定のオリゴマー程度の芳香族アミド酸を調製でき、ひいては目的とする半導電性管状PIフィルムが得られる反応比を意味する。なお、両成分を有機極性溶媒に均一に溶解させる場合に、必要に応じ加熱(例えば、40〜70℃程度)してもよい。   In the first and second preparation methods, the substantially equimolar amount means a reaction ratio that can prepare an aromatic amic acid of a predetermined oligomer level and thus obtain a target semiconductive tubular PI film. In addition, when dissolving both components uniformly in an organic polar solvent, you may heat (for example, about 40-70 degreeC) as needed.

上記第1及び第2の調製方法により芳香族アミド酸オリゴマー溶液が調製されるが、その数平均分子量(Mn)は、1000〜7000程度(好ましくは3000〜7000程度)に調製される。この範囲に特定する意義は、数平均分子量が1000以下(すなわち、モノマー、バイマー程度)では導電特性への効果が得られないからであり(例えば、比較例1)、数平均分子量が7000以上ではオリゴマーの溶解度が極度に低下するため溶液がゲル化するなどして使用できなくなってしまうからである(例えば、比較例3を参照)。なお、数平均分子量は、例えば、実施例に記載の方法により測定することができる。   The aromatic amic acid oligomer solution is prepared by the above first and second preparation methods, and the number average molecular weight (Mn) thereof is prepared to about 1000 to 7000 (preferably about 3000 to 7000). The significance of specifying this range is that when the number average molecular weight is 1000 or less (that is, about monomer or bimer), the effect on the conductive properties cannot be obtained (for example, Comparative Example 1), and when the number average molecular weight is 7000 or more. This is because the solubility of the oligomer is extremely reduced, and the solution becomes unusable due to gelation or the like (for example, see Comparative Example 3). In addition, a number average molecular weight can be measured by the method as described in an Example, for example.

本発明の数平均分子量(Mn)が1000〜7000程度に調製された芳香族アミド酸オリゴマーは、通常は重量平均分子量(Mw)との比(Mw/Mn)が2以下である。   The aromatic amic acid oligomer prepared in the present invention having a number average molecular weight (Mn) of about 1000 to 7000 usually has a ratio (Mw / Mn) of 2 or less to the weight average molecular weight (Mw).

この加熱処理により製造される芳香族アミド酸オリゴマー溶液は、主成分は芳香族アミド酸オリゴマーであるが、その一部がさらに反応が進行したイミド化されたもの等を含有していてもよい。しかし、芳香族アミド酸オリゴマー中のイミド体の生成率(イミド化率)は、30%以下、好ましくは25%以下、特に20%以下であることが好ましい。なお、副生するイミド体の生成量(イミド化率)は、例えば、実施例に記載の方法により測定することができる。   The main component of the aromatic amic acid oligomer solution produced by this heat treatment is an aromatic amic acid oligomer, but a part thereof may contain an imidized product in which the reaction further proceeds. However, the production rate (imidation rate) of the imide in the aromatic amic acid oligomer is 30% or less, preferably 25% or less, and particularly preferably 20% or less. In addition, the production amount (imidization rate) of the imide body by-produced can be measured by, for example, the method described in the examples.

また、芳香族アミド酸オリゴマー溶液中の不揮発分濃度を、30〜45重量%程度の高い濃度に調製することができる。このように高い不揮発分濃度に調製できるのは、高分子量化していないオリゴマーであるために溶媒に溶解しやすいからである。そのため、容易に膜厚のあるフィルムを製造することができ、使用する溶媒の量が少ないためコストが抑えられ溶媒の蒸発除去が簡便になる。なお、本明細書で用いる「不揮発分濃度」とは、実施例1に記載の方法により測定された濃度を意味する。
(5)半導電性芳香族アミド酸組成物の調製
かくして得られる芳香族アミド酸オリゴマー溶液は、導電性CB粉体と均一に混合されて、半導電性芳香族アミド組成物が調製される。
Moreover, the non-volatile content concentration in the aromatic amic acid oligomer solution can be adjusted to a high concentration of about 30 to 45% by weight. The reason why such a high non-volatile content concentration can be prepared is that the polymer is easily dissolved in a solvent because it is an oligomer having no high molecular weight. Therefore, a film having a film thickness can be easily produced, and since the amount of the solvent used is small, the cost can be suppressed and the solvent can be easily removed by evaporation. The “nonvolatile content concentration” used in the present specification means a concentration measured by the method described in Example 1.
(5) Preparation of Semiconductive Aromatic Amide Acid Composition The aromatic amic acid oligomer solution thus obtained is uniformly mixed with the conductive CB powder to prepare a semiconductive aromatic amide composition.

電気抵抗特性付与のためにCB粉体が使用される理由は、他の一般に知られている金属や金属酸化物の導電材と比較して)調製されたモノマ混合溶液との混合分散性と安定性(混合分散後の経時変化)に優れ、且つ重縮合反応への悪影響がないことによる。   The reason why CB powder is used for imparting electrical resistance characteristics is that it is mixed and dispersible and stable with the prepared monomer mixed solution (compared to other commonly known metal and metal oxide conductive materials). This is because of excellent properties (change with time after mixing and dispersion) and no adverse effects on the polycondensation reaction.

このCB粉体は、その製造原料(天然ガス、アセチレンガス、コ−ルタ−ル等)と製造条件(燃焼条件)とによって種々の物性(電気抵抗、揮発分、比表面積、粒径、PH値、DBP吸油量等)を有したものがある。可能なかぎり少量の混合分散でもって、所望する電気抵抗がバラツクこともなく、安定して得られ易いものを選ぶのが良い。   This CB powder has various physical properties (electrical resistance, volatile content, specific surface area, particle size, pH value) depending on its production raw materials (natural gas, acetylene gas, coal tar, etc.) and production conditions (combustion conditions). , DBP oil absorption, etc.). It is preferable to select a material that can be obtained stably and stably with the smallest possible amount of mixing and dispersion without variation in the desired electrical resistance.

この導電性CB粉体は、通常平均粒子径が15〜65nm程度であり、特にトナー複写機、カラー複写機、電子写真方式等の中間転写用ベルト用フィルム用途に用いる場合、平均粒子径20〜40nm程度のものが好適である。   This conductive CB powder usually has an average particle size of about 15 to 65 nm. Especially when used for film for belts for intermediate transfer such as toner copying machines, color copying machines, and electrophotographic systems, the average particle size is 20 to 20 nm. A thing of about 40 nm is suitable.

例えば、チャンネルブラック、酸化処理したファーネスブラック等が挙げられる。具体的には、デグサ社製のスペシャルブラック4(PH3、揮発分14%、粒子径25nm)やスペシャルブラック5(PH3、揮発分15%、粒子径20nm)などが例示される。   For example, channel black, oxidized furnace black, and the like can be given. Specific examples include Special Black 4 (PH3, volatile content 14%, particle size 25 nm) and Special Black 5 (PH3, volatile content 15%, particle size 20 nm) manufactured by Degussa.

CB粉体を芳香族アミド酸オリゴマー溶液に混合する方法は、CB粉体が芳香族アミド酸オリゴマー溶液中に均一に混合、分散される方法であれば特に制限はない。例えば、ボールミル、サンドミル、超音波ミル等が用いられる。   The method for mixing the CB powder into the aromatic amic acid oligomer solution is not particularly limited as long as the CB powder is uniformly mixed and dispersed in the aromatic amic acid oligomer solution. For example, a ball mill, a sand mill, an ultrasonic mill or the like is used.

添加されるCB粉体の量は、芳香族アミド酸オリゴマーの原料である芳香族テトラカルボン酸成分と有機ジアミンの合計量100重量部に対し、3〜30重量部程度(好ましくは10〜25重量部程度)用いるのが好ましい。   The amount of CB powder added is about 3 to 30 parts by weight (preferably 10 to 25 parts by weight with respect to 100 parts by weight of the total amount of the aromatic tetracarboxylic acid component and the organic diamine, which are raw materials for the aromatic amic acid oligomer. It is preferable to use about 1 part).

ここでCB粉体を上記の範囲で用いるのは、フィルムに半導電領域にある体積抵抗率(VR)及び表面抵抗率(SR)を付与するためである。なお、下限が3重量部程度以上であるのは十分な導電性を得るためにはこの程度の量が必要であるためであり、上限が30重量部程度以下であるのは、より低い抵抗を発現するとともに、成形性を維持しフイルム自身の物性の低下を防ぐためである。   The reason why the CB powder is used in the above range is to give the film volume resistivity (VR) and surface resistivity (SR) in the semiconductive region. The lower limit is about 3 parts by weight or more because this amount is necessary to obtain sufficient conductivity, and the upper limit is about 30 parts by weight or less for lower resistance. This is for the purpose of maintaining the moldability and preventing the physical properties of the film from being lowered.

半導電性芳香族アミド酸組成物における不揮発分濃度は、30〜45重量%程度であり、該不揮発分中のCB粉体の濃度は3〜25重量%程度(好ましくは10〜20重量%程度)、芳香族アミド酸オリゴマー由来の不揮発分の濃度は75〜97重量%程度(好ましくは80〜90重量%程度)含有する。   The non-volatile content in the semiconductive aromatic amic acid composition is about 30 to 45% by weight, and the concentration of the CB powder in the non-volatile content is about 3 to 25% by weight (preferably about 10 to 20% by weight). ), The concentration of the nonvolatile content derived from the aromatic amic acid oligomer is about 75 to 97% by weight (preferably about 80 to 90% by weight).

なお、本発明の効果に悪影響を与えない範囲で、上記組成物中にイミダゾール系化合物(2-メチルイミダゾール、1,2−ジメチルイミダゾール、2-メチル-4-メチルイミダゾール、2-エチル-4-エチルイミダゾール、2-フェニルイミダゾール)、界面活性剤(フッ素系界面活性剤等)等の添加剤を加えてもよい。   It should be noted that imidazole compounds (2-methylimidazole, 1,2-dimethylimidazole, 2-methyl-4-methylimidazole, 2-ethyl-4-ethylimidazole) are contained in the composition within a range that does not adversely affect the effects of the present invention. Additives such as ethyl imidazole, 2-phenyl imidazole) and surfactants (fluorine surfactants, etc.) may be added.

かくしてCB粉体が均一に分散された成形用の半導電性芳香族アミド酸組成物が製造される。
II.半導電性無端管状ポリイミドフイルム
次に、前記調製された半導電性芳香族アミド酸組成物を使った半導電性無端管状ポリイミドフイルムの成形手段について説明する。
Thus, a semiconductive aromatic amic acid composition for molding in which CB powder is uniformly dispersed is produced.
II. Semiconductive Endless Tubular Polyimide Film Next, a means for forming a semiconductive endless tubular polyimide film using the prepared semiconductive aromatic amic acid composition will be described.

この成形手段は、回転ドラムを使う回転成形方法が採用される。まず半導電性芳香族アミド酸組成物を回転ドラムの内面に注入し、内面全体に均一に流延する。   As this molding means, a rotational molding method using a rotary drum is adopted. First, the semiconductive aromatic amic acid composition is injected into the inner surface of the rotating drum and uniformly cast over the entire inner surface.

注入・流延の方法は、例えば停止している回転ドラムに、最終フイルム厚さを得るに相当する量の半導電性芳香族アミド酸組成物を注入した後、遠心力が働く速度にまで徐々に回転速度を上げる。遠心力でもって内面全体に均一に流延する。或いは注入・流延は遠心力を使わなくてもできる。例えば、横長のスリット状のノズルを回転ドラム内面に配置し、該ドラムをゆっくりと回転しつつ、(その回転速度よりも速い速度で)該ノズルも回転する。そして成形用の半導電性芳香族アミド酸組成物を該ノズルから該ドラム内面に向って全体に均一に噴射する方法である。   The injection / casting method is performed by, for example, injecting a semiconductive aromatic amic acid composition in an amount equivalent to obtaining the final film thickness into a rotating drum that is stopped, and then gradually to a speed at which centrifugal force works. Increase the rotation speed. Cast uniformly over the entire inner surface with centrifugal force. Alternatively, injection and casting can be performed without using centrifugal force. For example, a horizontally long slit-like nozzle is arranged on the inner surface of the rotating drum, and the nozzle is rotated (at a speed higher than the rotating speed) while the drum is slowly rotated. In this method, the semiconductive aromatic amic acid composition for molding is uniformly sprayed from the nozzle toward the inner surface of the drum.

尚、いずれの方法も回転ドラムは、内面が鏡面仕上げされ、両端縁には、液モレ防止のためのバリヤーが周設される。該ドラムは、回転ローラ上に載置し、該ローラの回転により間接的に回転が行われる。   In both methods, the inner surface of the rotating drum is mirror-finished, and barriers for preventing liquid leakage are provided around both ends. The drum is placed on a rotating roller and indirectly rotated by the rotation of the roller.

また加熱は、該ドラムの周囲に例えば遠赤外線ヒータ等の熱源が配置され外側からの間接加熱が行われる。また該ドラムの大きさは、所望する半導電管状PIフイルムの大きさにより決まる。   For heating, a heat source such as a far infrared heater is disposed around the drum, and indirect heating from the outside is performed. The size of the drum is determined by the size of the desired semiconductive tubular PI film.

加熱は、ドラム内面を徐々に昇温し、まず100〜190℃程度、好ましくは110℃〜130℃程度に到達せしめる(第1加熱段階)。昇温速度は、例えば、1〜2℃/min程度であればよい。上記の温度で1〜2時間維持し、およそ半分以上の溶剤を揮発させて自己支持性のある管状フイルムを成形する。イミド化を行うためには280℃以上の温度まで達する必要があるが、最初からこのような高温で加熱するとポリイミドが高い結晶化を発現し、CBの分散状態に影響を与えるだけでなく、強靭な被膜が形成されないなどの問題がある。そのため、第1加熱段階として、せいぜい上限温度を190℃程度に押え、この温度で重縮合反応を終了させて強靭な管状PIフイルムを得る。   In the heating, the inner surface of the drum is gradually heated to first reach about 100 to 190 ° C., preferably about 110 to 130 ° C. (first heating stage). The temperature increase rate may be about 1 to 2 ° C./min, for example. It is maintained at the above temperature for 1-2 hours, and approximately half or more of the solvent is volatilized to form a self-supporting tubular film. In order to perform imidization, it is necessary to reach a temperature of 280 ° C. or higher. However, when heated at such a high temperature from the beginning, the polyimide exhibits high crystallization, which not only affects the dispersion state of CB, but also is tough. There is a problem that a thick film is not formed. Therefore, as the first heating stage, the upper limit temperature is suppressed to about 190 ° C. at most, and the polycondensation reaction is terminated at this temperature to obtain a tough tubular PI film.

この段階が終了したら次に第2段階加熱としてイミド化を完結するため加熱を行うが、その温度は280〜400℃程度(好ましくは300〜380℃程度)である。この場合も、第1段階加熱温度から一挙にこの温度に到達するのではなく、徐々に昇温して、その温度に達するようにするのが良い。   When this stage is completed, the second stage heating is followed by heating to complete imidation, and the temperature is about 280 to 400 ° C. (preferably about 300 to 380 ° C.). Also in this case, it is preferable not to reach this temperature from the first stage heating temperature all at once, but to gradually increase the temperature to reach that temperature.

なお、第2段階加熱は、無端管状フイルムを回転ドラムの内面に付着したまま行っても良いし、第1加熱段階を終わったら、回転ドラムから無端管状フイルムを剥離し、取出して別途イミド化のための加熱手段に供して、280〜400℃に加熱してもよい。このイミド化の所用時間は、通常約2〜3時間程度である。従って、第1及び第2加熱段階の全工程の所要時間は、通常4〜7時間程度となる。   The second stage heating may be performed while the endless tubular film is adhered to the inner surface of the rotating drum. When the first heating stage is finished, the endless tubular film is peeled off from the rotating drum, taken out, and separately imidized. For heating to 280 to 400 ° C. The time required for this imidization is usually about 2 to 3 hours. Therefore, the time required for all the steps of the first and second heating stages is usually about 4 to 7 hours.

かくして本発明の半導電性無端管状PIフイルムが製造される。このフィルムの厚みは特に限定はないが、通常50〜150μm程度、好ましくは60〜120μm程度である。特に、電子写真方式の中間転写ベルトとして用いる場合は、75〜100μm程度が好ましい。   Thus, the semiconductive endless tubular PI film of the present invention is produced. The thickness of this film is not particularly limited, but is usually about 50 to 150 μm, preferably about 60 to 120 μm. In particular, when used as an electrophotographic intermediate transfer belt, about 75 to 100 μm is preferable.

このフィルムの半導電性は、体積抵抗率(Ω・cm)(以下、「VR」と呼ぶ。)と表面抵抗率(Ω/□)(以下、「SR」と呼ぶ。)との両立によって決まる電気抵抗特性であり、この特性は、CB粉体の混合分散により付与される。そしてこの抵抗率の範囲は、基本的には該CB粉体の混合量によって自由に変えられる。本発明のフィルムにおける抵抗率の範囲としては、VR:102〜1014、SR:103〜1015であり、好ましい範囲としては、VR:106〜1013、SR:107〜1014が例示できる。これらの抵抗率の範囲は、上述のCB粉体の配合量を採用することにより容易に達成することができる。なお、本発明のフィルム中におけるCBの含有量は、通常3〜25重量%程度、好ましくは10〜20重量%程度となる。 The semiconductivity of this film is determined by coexistence of volume resistivity (Ω · cm) (hereinafter referred to as “VR”) and surface resistivity (Ω / □) (hereinafter referred to as “SR”). It is an electric resistance characteristic, and this characteristic is imparted by mixing and dispersing CB powder. The resistivity range can be freely changed basically depending on the mixing amount of the CB powder. The resistivity ranges in the film of the present invention are VR: 10 2 to 10 14 and SR: 10 3 to 10 15. Preferred ranges are VR: 10 6 to 10 13 , SR: 10 7 to 10 14. Can be illustrated. These resistivity ranges can be easily achieved by adopting the blending amount of the above-mentioned CB powder. The content of CB in the film of the present invention is usually about 3 to 25% by weight, preferably about 10 to 20% by weight.

本発明の半導電性PIフィルムは、極めて均質な電気抵抗率を有している。すなわち、本発明の半導電性PIフィルムは、表面抵抗率SR及び体積抵抗率VRの対数換算値のバラツキが小さいという特徴を有し、それぞれフィルム内全測定点の対数換算値の標準偏差が0.2以内、好ましくは、0.15以内である。また、フィルム表面と裏面の表面抵抗率(対数換算値)の差が小さいという特徴を有し、その差は0.4以内、好ましくは0.2以内である。さらに、表面抵抗率の対数換算値LogSRから体積抵抗率の対数換算値LogVRを引いた値が、1.0〜3.0、好ましくは1.3〜3.0と高い値に維持できるという特徴を備えている。   The semiconductive PI film of the present invention has a very uniform electrical resistivity. That is, the semiconductive PI film of the present invention is characterized by small variations in logarithmically converted values of the surface resistivity SR and the volume resistivity VR, and the standard deviation of logarithmically converted values of all measurement points in the film is 0.2. Within 0.15, preferably within 0.15. Moreover, it has the characteristics that the difference of the surface resistivity (logarithm conversion value) of a film surface and a back surface is small, The difference is within 0.4, Preferably it is within 0.2. Furthermore, the value obtained by subtracting the logarithmic conversion value LogVR of the volume resistivity from the logarithmic conversion value LogSR of the surface resistivity can be maintained at a high value of 1.0 to 3.0, preferably 1.3 to 3.0.

本発明のPIフィルムが上記の優れた電気的特性を有するのは、該フィルムの製造工程で、「芳香族アミド酸オリゴマー」とCB粉体とが混合された半導電性芳香族アミド酸組成物を採用しているためであると考えられる。すなわち、該組成物ではCB粉体が芳香族アミド酸オリゴマー中に均一に分散しているが、フィルム製造工程においてその均一分散性を保持したま高分子量化することができるため、本発明のPIフィルムには優れた特性が付与されたと考えられる。   The PI film of the present invention has the above-mentioned excellent electrical characteristics because a semiconductive aromatic amic acid composition in which “aromatic amic acid oligomer” and CB powder are mixed in the production process of the film. This is thought to be due to the adoption of That is, in the composition, the CB powder is uniformly dispersed in the aromatic amic acid oligomer, but it can be increased in molecular weight while maintaining the uniform dispersibility in the film production process. It is considered that excellent properties were imparted to the film.

本発明のPIフィルムはその優れた電気抵抗特性等の機能によって、その用途は多岐にわたる。例えば、帯電特性を必要とする重要な用途として、カラー複写機、トナー複写機、電子写真方式等の中間転写ベルト等が挙げられる。該ベルトとして必要な半導電性(抵抗率)は、例えばVR109〜1012、SR1010〜1013であり、本発明の半導電性無端管状PIフィルムを好適に用いることができる。 The PI film of the present invention has a wide variety of uses depending on functions such as excellent electrical resistance characteristics. For example, important applications requiring charging characteristics include color copying machines, toner copying machines, electrophotographic intermediate transfer belts, and the like. The semiconductivity (resistivity) necessary for the belt is, for example, VR10 9 to 10 12 or SR10 10 to 10 13 , and the semiconductive endless tubular PI film of the present invention can be suitably used.

本発明の半導電性ポリイミドフィルムは、芳香族テトラカルボン酸成分と芳香族ジアミン成分とを重縮合して得られる所定の芳香族アミド酸オリゴマーを成形原料として用いているため、均質な電気抵抗率を有している。すなわち、本発明の半導電性ポリイミドフィルムは、表面抵抗率及び体積抵抗率のバラツキが小さい、またフィルム表面と裏面の表面抵抗率(対数換算値)の差が小さい、さらに表面抵抗率の対数換算値LogSRから体積抵抗率の対数換算値LogVRを引いた値を高い値(1.0〜3.0)に維持できるという優れた特性を備えている。すなわち、例えば転写ベルト等として使用した場合、電荷の徐電、帯電を適切に行うことができ、優れた画像処理が可能となる。   Since the semiconductive polyimide film of the present invention uses a predetermined aromatic amic acid oligomer obtained by polycondensation of an aromatic tetracarboxylic acid component and an aromatic diamine component as a molding raw material, it has a uniform electrical resistivity. have. That is, the semiconductive polyimide film of the present invention has a small variation in surface resistivity and volume resistivity, a small difference in surface resistivity (logarithmic conversion value) between the film surface and the back surface, and a logarithmic conversion of surface resistivity. It has an excellent characteristic that the value obtained by subtracting the logarithm conversion value LogVR of the volume resistivity from the value LogSR can be maintained at a high value (1.0 to 3.0). That is, for example, when used as a transfer belt or the like, it is possible to appropriately charge and charge the charge, and to perform excellent image processing.

このようにして得られる本発明の半導電性ポリイミドフィルムは、カラー複写機用等の中間転写ベルトとしてより好適に用いられる。   The semiconductive polyimide film of the present invention thus obtained is more suitably used as an intermediate transfer belt for color copying machines.

次に本発明を、比較例と共に実施例によって更に詳述する。   Next, the present invention will be described in more detail by way of examples together with comparative examples.

実施例1
2,3,3',4'−ビフェニルテトラカルボン酸ジメチルエステル(1モルの2,3,3',4'−ビフェニルテトラカルボン酸テトラカルボン酸二無水物と2モルのメチルアルコールとの反応物でジエステル)358.0g(1.0モル)と3,3',4,4'−ビフェニルテトラカルボン酸ジメチルエステル(1モルの3,3',4,4'−ビフェニルテトラカルボン酸テトラカルボン酸二無水物と2モルのメチルアルコールとの反応物でジエステル)358.0(1.0モル)と4,4'−ジアミノジフェニルエーテル400g(2モル)とを1674gのNMP溶媒の中に60℃で混合し均一に溶解し、続いて100℃まで1hrかけて昇温、100℃にて1hr加熱後冷却した。この溶液は不揮発分濃度32.9重量%で、数平均分子量2000のオリゴマー状の溶液となっていた。以下これを「オリゴマー混合溶液A」と呼ぶ。
Example 1
2,3,3 ', 4'-biphenyltetracarboxylic acid dimethyl ester (reaction product of 1 mol of 2,3,3', 4'-biphenyltetracarboxylic acid tetracarboxylic dianhydride and 2 mol of methyl alcohol And 358.0 g (1.0 mol) and 3,3 ', 4,4'-biphenyltetracarboxylic acid dimethyl ester (1 mol of 3,3', 4,4'-biphenyltetracarboxylic acid tetracarboxylic dianhydride) And 2 mol of methyl alcohol as a diester) 358.0 (1.0 mol) and 4,4′-diaminodiphenyl ether 400 g (2 mol) mixed in 1674 g of NMP solvent at 60 ° C. and uniformly dissolved, Subsequently, the temperature was raised to 100 ° C. over 1 hour, heated at 100 ° C. for 1 hour, and then cooled. This solution was an oligomer solution having a nonvolatile content concentration of 32.9% by weight and a number average molecular weight of 2000. Hereinafter, this is referred to as “oligomer mixed solution A”.

このオリゴマー混合溶液A1000gに、カーボンブラック(CB)粉体(PH3、粒径23nm)71.7gとNMP142.5g添加し、ボールミル機で充分に混合分散し最後に脱泡した。これを成形用半導電性オリゴマー溶液とした。該半導電性オリゴマー溶液中の不揮発分濃度は、33.0重量%であり、該不揮発分中のCB濃度は17.89重量%であった。   71.7 g of carbon black (CB) powder (PH3, particle size 23 nm) and 142.5 g of NMP were added to 1000 g of this oligomer mixed solution A, and thoroughly mixed and dispersed by a ball mill machine, and finally defoamed. This was used as a molding semiconductive oligomer solution. The non-volatile component concentration in the semiconductive oligomer solution was 33.0% by weight, and the CB concentration in the non-volatile component was 17.89% by weight.

そして該溶液から109gを採取し、回転ドラム内に注入し、次の条件で各々成形した。   Then, 109 g was collected from the solution, poured into a rotating drum, and molded under the following conditions.

回転ドラム・・・内径175mm、幅540mmの内面鏡面仕上げの金属ドラムが2本の回転ロー
ラー上に載置され、該ローラーの回転とともに回転する状態に配置した。
Rotating drum: An internal mirror finished metal drum having an inner diameter of 175 mm and a width of 540 mm was placed on two rotating rollers, and was placed in a state of rotating with the rotation of the rollers.

加熱温度・・・該ドラムの外側面に遠赤外線ヒータを配置し、該ドラムの内面m温度が120℃に制御されるようにした。   Heating temperature: A far-infrared heater was disposed on the outer surface of the drum so that the inner surface m temperature of the drum was controlled at 120 ° C.

まず回転ドラムを回転した状態で109gの該溶液をドラム内面に均一に塗布し、加熱を開始した。加熱は2℃/minで昇温して120℃に達して、その温度で90分間その回転を維持しつつ加熱した。   First, 109 g of the solution was uniformly applied to the drum inner surface while rotating the rotating drum, and heating was started. Heating was performed at a rate of 2 ° C./min, reaching 120 ° C., and heated at that temperature for 90 minutes while maintaining its rotation.

回転、加熱が終了した後、冷却せずそのまま回転ドラムを離脱して熱風滞留式オーブン中に静置してイミド化のための加熱を開始した。この加熱も徐々に昇温しつつ320℃に達した。そしてこの温度で30分間加熱したら常温に冷却して該ドラム内面に形成された半導電性管状PIフィルムを剥離し取り出した。なお、該フィルムの厚さは90μmであった。   After completion of the rotation and heating, the rotating drum was removed as it was without cooling, and was left in a hot-air residence type oven to start heating for imidization. This heating also reached 320 ° C. while gradually raising the temperature. Then, after heating at this temperature for 30 minutes, it was cooled to room temperature, and the semiconductive tubular PI film formed on the inner surface of the drum was peeled off and taken out. The film thickness was 90 μm.

なお、本明細書における「不揮発分濃度」とは次のように算出された値である。試料(半導電性オリゴマー溶液等)を金属カップ等の耐熱性容器で精秤しこの時の試料の重量をAgとする。試料を入れた耐熱性容器を電気オーブンに入れて、120℃×12分、180℃×12分、260℃×30分、及び300℃×30分で順次昇温しながら加熱、乾燥し、得られる固形分の重量(不揮発分重量)をBgとする。同一試料について5個のサンプルのA及びBの値を測定し(n=5)、次式(I)にあてはめて不揮発分濃度を求めた。その5個のサンプルの平均値を、本発明における不揮発分濃度として採用した。   The “nonvolatile content concentration” in this specification is a value calculated as follows. A sample (semiconductive oligomer solution or the like) is precisely weighed in a heat-resistant container such as a metal cup, and the weight of the sample at this time is Ag. Put the heat-resistant container containing the sample in an electric oven, heat and dry while heating up in order of 120 ℃ × 12min, 180 ℃ × 12min, 260 ℃ × 30min, and 300 ℃ × 30min. The weight of the solid content (non-volatile content weight) is Bg. The values of A and B of five samples of the same sample were measured (n = 5), and applied to the following formula (I) to determine the nonvolatile content concentration. The average value of the five samples was adopted as the nonvolatile content concentration in the present invention.

不揮発分濃度=B/A×100(%) (I)
比較例1
実施例1と同一の量比でカルボン酸ジメチルエステルとジアミノジフェニルエーテルを混合し、60℃で溶解した溶液をそのまま冷却した。この溶液は不揮発分濃度32.9 重量%で、実質モノマ状態の溶液となっていた。以下これを「モノマ溶液A」と呼ぶ。
Nonvolatile content concentration = B / A x 100 (%) (I)
Comparative Example 1
Carboxylic acid dimethyl ester and diaminodiphenyl ether were mixed in the same amount ratio as in Example 1, and the solution dissolved at 60 ° C. was cooled as it was. This solution had a nonvolatile concentration of 32.9% by weight and was a substantially monomeric solution. Hereinafter, this is referred to as “monomer solution A”.

このモノマ溶液A1000gにCB粉体(PH3、粒径23nm)31.0gとNMP60.0
g添加し、ボールミル機で充分に混合分散し最後に脱泡した。これを成形用半導電性モノマ溶液とした。該半導電性オリゴマー溶液中の不揮発分の濃度は、33.0重量%であり、該不揮発分中のCB濃度は8.61重量%であった。
To this monomer solution A1000g, CB powder (PH3, particle size 23nm) 31.0g and NMP60.0
g was added, thoroughly mixed and dispersed with a ball mill, and finally defoamed. This was used as a semiconductive monomer solution for molding. The concentration of nonvolatile components in the semiconductive oligomer solution was 33.0% by weight, and the concentration of CB in the nonvolatile components was 8.61% by weight.

そして該溶液から109gを採取し、以下、実施例1と同様に加熱成形し半導電性管状PIフィルムを剥離し取り出した。なお、該フィルムの厚さは92μmであった。   Then, 109 g was collected from the solution, and then thermoformed in the same manner as in Example 1 to peel off and remove the semiconductive tubular PI film. The thickness of the film was 92 μm.

実施例2
2,3,3',4'−ビフェニルテトラカルボン酸ジメチルエステル(1モルの2,3,3',4'−ビフェニルテトラカルボン酸テトラカルボン酸二無水物と2モルのメチルアルコールとの反応物でジエステル)143.2g(0.4モル)と3,3',4,4'−ビフェニルテトラカルボン酸ジメチルエステル(1モルの3,3',4,4'−ビフェニルテトラカルボン酸テトラカルボン酸二無水物と2モルのメチルアルコールとの反応物でジエステル)572.8(1.6モル)と4,4'−ジアミノジフェニルエーテル400g(2モル)とを1674gのNMP溶媒の中に60℃で混合し均一に溶解し、続いて110℃まで1hrかけて昇温、110℃にて1hr加熱後冷却した。この溶液は不揮発分濃度32.9重量%で、数平均分子量4000のオリゴマー状の溶液となっていた。以下これを「オリゴマー混合溶液B」と呼ぶ。
Example 2
2,3,3 ', 4'-biphenyltetracarboxylic acid dimethyl ester (reaction product of 1 mol of 2,3,3', 4'-biphenyltetracarboxylic acid tetracarboxylic dianhydride and 2 mol of methyl alcohol 143.2 g (0.4 mol) and 3,3 ', 4,4'-biphenyltetracarboxylic acid dimethyl ester (1 mol of 3,3', 4,4'-biphenyltetracarboxylic acid tetracarboxylic dianhydride) And 2 mol of methyl alcohol as a diester) 572.8 (1.6 mol) and 4,4′-diaminodiphenyl ether 400 g (2 mol) mixed in 1674 g of NMP solvent at 60 ° C. and uniformly dissolved, Subsequently, the temperature was raised to 110 ° C. over 1 hour, heated at 110 ° C. for 1 hour, and then cooled. This solution was an oligomer solution having a nonvolatile content concentration of 32.9% by weight and a number average molecular weight of 4000. Hereinafter, this is referred to as “oligomer mixed solution B”.

このオリゴマー混合溶液B1000gに、CB粉体(PH3、粒径23nm)78.9gとNMP157.1gを添加し、ボールミル機で充分に混合分散し最後に脱泡した。これを成形用半導電性オリゴマー溶液とした。該半導電性オリゴマー溶液中の不揮発分の濃度は、33.0重量%であり、該不揮発分中のCB濃度は19.34重量%であった。   78.9 g of CB powder (PH3, particle size 23 nm) and 157.1 g of NMP were added to 1000 g of this oligomer mixed solution B, thoroughly mixed and dispersed with a ball mill, and finally defoamed. This was used as a molding semiconductive oligomer solution. The concentration of nonvolatile components in the semiconductive oligomer solution was 33.0% by weight, and the concentration of CB in the nonvolatile components was 19.34% by weight.

そして該溶液から109gを採取し、回転ドラム内に注入し、以下、実施例1と同様に加熱成形し半導電性管状PIフィルムを剥離し取り出した。なお、該フィルムの厚さは89μmであった。   Then, 109 g was collected from the solution, poured into a rotating drum, and thereafter thermoformed in the same manner as in Example 1 to peel off and remove the semiconductive tubular PI film. The thickness of the film was 89 μm.

比較例2
実施例2と同一の量比でカルボン酸ジメチルエステルとジアミノジフェニルエーテルを混合し、60℃で溶解し、続いて85℃まで1hrかけて昇温、85℃にて1hr加熱後冷却した。この溶液は不揮発分濃度32.9重量%で、数平均分子量500のオリゴマー状の溶液となっていた。以下これを「オリゴマー混合溶液C」と呼ぶ。
Comparative Example 2
Carboxylic acid dimethyl ester and diaminodiphenyl ether were mixed at the same quantitative ratio as in Example 2, dissolved at 60 ° C., then heated to 85 ° C. over 1 hr, heated at 85 ° C. for 1 hr and cooled. This solution was an oligomer solution having a nonvolatile content concentration of 32.9% by weight and a number average molecular weight of 500. Hereinafter, this is referred to as “oligomer mixed solution C”.

このオリゴマー溶液C1000gに、CB粉体(PH3、粒径23nm)31.0gとNMP60g添加し、ボールミル機で充分に混合分散し最後に脱泡した。これを成形用半導電性モノマ溶液とした。該半導電性オリゴマー溶液中の不揮発分の濃度は、33.0重量%であり、該不揮発分中のCB濃度は8.62重量%であった。   To 1000 g of this oligomer solution, 31.0 g of CB powder (PH3, particle size 23 nm) and 60 g of NMP were added, thoroughly mixed and dispersed with a ball mill, and finally defoamed. This was used as a semiconductive monomer solution for molding. The concentration of nonvolatile components in the semiconductive oligomer solution was 33.0% by weight, and the concentration of CB in the nonvolatile components was 8.62% by weight.

そして該溶液から109gを採取し、以下、実施例1と同様に加熱成形し半導電性管状PIフィルムを剥離し取り出した。なお、該フィルムの厚さは92μmであった。   Then, 109 g was collected from the solution, and then thermoformed in the same manner as in Example 1 to peel off and remove the semiconductive tubular PI film. The thickness of the film was 92 μm.

比較例3
実施例1と同一の量比でカルボン酸ジメチルエステルとジアミノジフェニルエーテルを混合し、60℃で溶解し、続いて130℃まで1hrかけて昇温、130℃にて1hr加熱後冷却した。しかし、冷却後のこの溶液は濁りの生じたゲル状の固体となり、成形には使用不可であった。
Comparative Example 3
Carboxylic acid dimethyl ester and diaminodiphenyl ether were mixed at the same quantitative ratio as in Example 1, dissolved at 60 ° C., then heated to 130 ° C. over 1 hr, heated at 130 ° C. for 1 hr and cooled. However, this solution after cooling became a turbid gel-like solid and could not be used for molding.

このゲルは溶剤で希釈しても再溶解になかった。得られたゲルのイミド化率を測定したところ35%程度イミド化反応が進行していることが確認された。つまり、加熱温度が高くイミド化反応が進行しすぎたことにより溶解度が低下、樹脂分が析出したと考えられる。   This gel was not redissolved even when diluted with a solvent. When the imidation rate of the obtained gel was measured, it was confirmed that the imidization reaction was progressing by about 35%. That is, it is considered that the heating temperature is high and the imidization reaction proceeds too much, so that the solubility is lowered and the resin component is precipitated.

実験例
上記実施例1〜2、及び比較例1〜3のフィルム製造条件及び得られるフィルムの電気抵抗値の測定結果を表1に示す。表1中の表面抵抗率、体積抵抗率の平均、標準偏差は、いずれも対数換算値で示される。
[数平均分子量]
数平均分子量はGPC法(溶媒:NMP、ポリエチレンオキサイド換算)により測定した。
[イミド化率]
赤外分光高度計にてイミド基由来の吸収(1780cm-1)とベンゼン環由来の吸収(1510cm-1)の強度の比率により算出した。ベンゼン環の吸収は、前駆体でもイミド化後でも変化しないため、これを対照として用いた。
[表面抵抗率(SR)及び体積抵抗率(VR)の測定]
得られた管状フイルムを長さ400mmにカットしたものをサンプルとして、三菱化学株式会社製の抵抗測定器“ハイレスタIP・URプロ−ブ”を使って、幅方向に等ピッチで3カ所と縦(周)方向に4カ所の合計12ヶ所について各々測定し、全体の平均値で示した。
Experimental Example Table 1 shows the film production conditions of the above Examples 1 and 2 and Comparative Examples 1 to 3, and the measurement results of the electrical resistance values of the obtained films. The surface resistivity, volume resistivity average, and standard deviation in Table 1 are all expressed in logarithmically converted values.
[Number average molecular weight]
The number average molecular weight was measured by the GPC method (solvent: NMP, converted to polyethylene oxide).
[Imidation rate]
It was calculated by the ratio of the intensity of absorption from the imide groups in an infrared spectrophotometer (1780 cm -1) and absorption attributable to benzene rings (1510 cm -1). The absorption of the benzene ring did not change either after the precursor or after imidization and was used as a control.
[Measurement of surface resistivity (SR) and volume resistivity (VR)]
The obtained tubular film was cut into a length of 400 mm as a sample, and a resistance measuring device “HIRESTA IP / UR probe” manufactured by Mitsubishi Chemical Corporation was used to make three vertical and vertical ( A total of twelve locations in the four (circumferential) directions were measured, and the average value was shown.

体積抵抗率(VR)は電圧100V印加の下10秒経過後に、表面抵抗率(SR)は電圧500V印加の下10秒経過後に測定した。   The volume resistivity (VR) was measured after 10 seconds had elapsed under application of a voltage of 100 V, and the surface resistivity (SR) was measured after 10 seconds had elapsed under application of a voltage of 500 V.

Figure 2005247986
表1によれば、実施例のフィルムでは、比較例に対し、表面抵抗率及び体積抵抗率の標準偏差が非常に小さい、すなわちバラツキが小さいことが分かった。
Figure 2005247986
According to Table 1, in the film of an Example, it turned out that the standard deviation of surface resistivity and volume resistivity is very small with respect to a comparative example, ie, variation is small.

また、実施例のフィルムでは、比較例に対し、フィルム表面側及び裏面側の表面抵抗率(対数換算値)の差が極めて小さく、カラー複写機用の中間転写ベルトとして好ましい特性を有している。   Further, the film of the example has a very small difference in surface resistivity (logarithmic conversion value) between the film surface side and the back surface side as compared with the comparative example, and has preferable characteristics as an intermediate transfer belt for a color copying machine. .

さらに、一般に成形中の加熱昇温速度を早くすると、表面抵抗率の対数換算値LogSRから体積抵抗率の対数換算値LogVRを引いた値(Log(SR/VR))が低くなるため、転写ベルトとして使用した場合、電荷の徐電、帯電が適切に行えず、画像不良の原因となる問題があった。しかし、オリゴマー混合溶液を用いることによりこの値を高い値(1.0〜3.0)に維持できることが分かり、これによりフィルムの生産性もさらに向上できることが分かった。   In general, if the heating rate during heating is increased, the value obtained by subtracting the logarithm converted value LogVR of the volume resistivity from the logarithm converted value LogSR of the surface resistivity (Log (SR / VR)) becomes lower. As a result, there has been a problem that the slow charge and charge of the charge cannot be performed properly, causing image defects. However, it was found that this value can be maintained at a high value (1.0 to 3.0) by using the oligomer mixed solution, and thus the productivity of the film can be further improved.

Claims (11)

2種以上の芳香族テトラカルボン酸成分と芳香族ジアミンとの略等モル量を重縮合反応して得られる芳香族アミド酸オリゴマー、カーボンブラック、及び有機極性溶媒を含有してなる半導電性芳香族アミド酸組成物。 Semiconductive fragrance comprising an aromatic amic acid oligomer obtained by polycondensation reaction of approximately equimolar amounts of two or more aromatic tetracarboxylic acid components and an aromatic diamine, carbon black, and an organic polar solvent Group amic acid composition. 前記芳香族アミド酸オリゴマーが、2種以上の芳香族テトラカルボン酸二無水物と芳香族ジアミンとの略等モル量を有機極性溶媒中80℃程度以下の温度で重縮合反応して得られる芳香族アミド酸オリゴマーである請求項1に記載の半導電性芳香族アミド酸組成物。 The aromatic amic acid oligomer obtained by polycondensation of approximately equimolar amounts of two or more aromatic tetracarboxylic dianhydrides and an aromatic diamine in an organic polar solvent at a temperature of about 80 ° C. or lower. The semiconductive aromatic amic acid composition according to claim 1, which is an aromatic amide acid oligomer. 2種以上の芳香族テトラカルボン酸二無水物が、非対称性芳香族テトラカルボン酸二無水物15〜55モル%と対称性芳香族テトラカルボン酸二無水物85〜45モル%とからなる混合物である請求項2に記載の半導電性芳香族アミド酸組成物。 Two or more kinds of aromatic tetracarboxylic dianhydrides are a mixture of 15 to 55 mol% of asymmetric aromatic tetracarboxylic dianhydrides and 85 to 45 mol% of symmetric aromatic tetracarboxylic dianhydrides. The semiconductive aromatic amic acid composition according to claim 2. 前記芳香族アミド酸オリゴマーが、2種以上の芳香族テトラカルボン酸ジエステルと芳香族ジアミンとの略等モル量を有機極性溶媒中90〜120℃程度の温度で重縮合反応して得られる芳香族アミド酸オリゴマーである請求項1に記載の半導電性芳香族アミド酸組成物。 The aromatic amic acid oligomer is an aromatic obtained by polycondensation reaction of approximately equimolar amounts of two or more aromatic tetracarboxylic acid diesters and an aromatic diamine in an organic polar solvent at a temperature of about 90 to 120 ° C. The semiconductive aromatic amic acid composition according to claim 1, which is an amic acid oligomer. 2種以上の芳香族テトラカルボン酸ジエステルが、非対称性芳香族テトラカルボン酸ジエステル15〜55モル%と対称性芳香族テトラカルボン酸ジエステル85〜45モル%とからなる混合物である請求項4に記載の半導電性芳香族アミド酸組成物。 The two or more kinds of aromatic tetracarboxylic acid diesters are a mixture comprising 15 to 55 mol% of an asymmetric aromatic tetracarboxylic acid diester and 85 to 45 mol% of a symmetric aromatic tetracarboxylic acid diester. A semiconductive aromatic amic acid composition. 前記芳香族アミド酸オリゴマーの数平均分子量が1000〜7000程度である請求項1〜5のいずれかに記載の半導電性芳香族アミド酸組成物。 The semiconductive aromatic amic acid composition according to any one of claims 1 to 5, wherein the aromatic amic acid oligomer has a number average molecular weight of about 1000 to 7000. カーボンブラックの配合量が、芳香族テトラカルボン酸成分と有機ジアミンの合計量100重量部に対し、3〜30重量部程度である請求項1〜6のいずれかに記載の半導電性芳香族アミド酸組成物。 The semiconductive aromatic amide according to any one of claims 1 to 6, wherein the compounding amount of the carbon black is about 3 to 30 parts by weight with respect to 100 parts by weight of the total amount of the aromatic tetracarboxylic acid component and the organic diamine. Acid composition. 請求項1〜7のいずれかに記載の半導電性芳香族アミド酸組成物を回転成形し、加熱処理することを特徴とする半導電性無端管状ポリイミドフイルムの製造方法。 A method for producing a semiconductive endless tubular polyimide film, comprising subjecting the semiconductive aromatic amic acid composition according to any one of claims 1 to 7 to rotational molding and heat treatment. 請求項8に記載の製造方法により製造される、電子写真方式の中間転写ベルトに用いられる半導電性無端管状ポリイミドフイルム。 A semiconductive endless tubular polyimide film used for an electrophotographic intermediate transfer belt manufactured by the manufacturing method according to claim 8. 表面電気抵抗率の対数換算値の標準偏差が0.2以内であり、体積電気抵抗率の対数換算値の標準偏差が0.2以内であり、表面電気抵抗率の対数換算値と裏面電気抵抗率の対数換算値との差が0.4以内である請求項9に記載の半導電性無端管状芳香族ポリイミドフイルム。 The standard deviation of the logarithmic conversion value of the surface electrical resistivity is within 0.2, the standard deviation of the logarithmic conversion value of the volume resistivity is within 0.2, the logarithmic conversion value of the surface electrical resistivity and the logarithmic conversion of the back surface electrical resistivity The semiconductive endless tubular aromatic polyimide film according to claim 9, wherein a difference from the value is within 0.4. 有機極性溶媒中で2種以上の芳香族テトラカルボン酸成分と芳香族ジアミンとの略等モル量を一部縮重合反応して芳香族アミド酸オリゴマー溶液とし、これと導電性カーボンブラック粉体とを均一混合することを特徴とする半導電性芳香族アミド酸組成物の製造方法。 In an organic polar solvent, an approximately equimolar amount of two or more aromatic tetracarboxylic acid components and an aromatic diamine are partially subjected to a polycondensation reaction to obtain an aromatic amic acid oligomer solution, which is electrically conductive carbon black powder. A method for producing a semiconductive aromatic amic acid composition, characterized by uniformly mixing.
JP2004059582A 2004-03-03 2004-03-03 Semiconductive aromatic amic acid composition and process for producing semiconductive endless tubular polyimide film using the same Expired - Lifetime JP5175021B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2004059582A JP5175021B2 (en) 2004-03-03 2004-03-03 Semiconductive aromatic amic acid composition and process for producing semiconductive endless tubular polyimide film using the same
CN2009101590363A CN101638480B (en) 2004-03-03 2004-10-08 Aromatic amic acid composition and a preparing method thereof, and a seamless tubular polyimide film and a preparing method thereof
KR1020117021427A KR101443830B1 (en) 2004-03-03 2004-10-08 Endless tubular polyimide film
PCT/JP2004/015309 WO2005085324A1 (en) 2004-03-03 2004-10-08 Endless tubular polyimide film
KR1020067020029A KR20060134129A (en) 2004-03-03 2004-10-08 Endless tubular polyimide film
KR1020137009810A KR101544112B1 (en) 2004-03-03 2004-10-08 Endless tubular polyimide film
US10/591,326 US8097693B2 (en) 2004-03-03 2004-10-08 Endless tubular polyimide film
EP04773760.6A EP1721924B1 (en) 2004-03-03 2004-10-08 Endless tubular polyimide film
HK07110940.3A HK1105650A1 (en) 2004-03-03 2007-10-10 Endless tubular polyimide film
HK10104420.0A HK1138302A1 (en) 2004-03-03 2010-05-05 Aromatic amic acid composition and method of preparing the same, and endless tubular polyimide film and method of preparing the same
US13/280,713 US8314204B2 (en) 2004-03-03 2011-10-25 Endless tubular polyimide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004059582A JP5175021B2 (en) 2004-03-03 2004-03-03 Semiconductive aromatic amic acid composition and process for producing semiconductive endless tubular polyimide film using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010177303A Division JP5175318B2 (en) 2010-08-06 2010-08-06 Semiconductive aromatic amic acid composition and process for producing semiconductive endless tubular polyimide film using the same

Publications (2)

Publication Number Publication Date
JP2005247986A true JP2005247986A (en) 2005-09-15
JP5175021B2 JP5175021B2 (en) 2013-04-03

Family

ID=35028779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004059582A Expired - Lifetime JP5175021B2 (en) 2004-03-03 2004-03-03 Semiconductive aromatic amic acid composition and process for producing semiconductive endless tubular polyimide film using the same

Country Status (1)

Country Link
JP (1) JP5175021B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333904A (en) * 2006-06-13 2007-12-27 Fuji Xerox Co Ltd Polyamic acid composition, method for preparing the same, polyimide endless belt and image forming apparatus equipped with polyimide endless belt
JP2009138103A (en) * 2007-12-06 2009-06-25 Gunze Ltd Semiconductive copolymerized polyimide belt, its production method and intermediate transfer belt
JP2010256390A (en) * 2009-04-21 2010-11-11 Ricoh Co Ltd Electrophotographic intermediate transfer belt and electrophotographic device
JP2013181136A (en) * 2012-03-02 2013-09-12 Fuji Xerox Co Ltd Polyimide precursor composition, production method of endless belt, and image forming device
JP2016164279A (en) * 2016-05-31 2016-09-08 富士ゼロックス株式会社 Polyimide precursor composition, polyimide molded product, and image formation device
WO2017069165A1 (en) * 2015-10-19 2017-04-27 宇部興産株式会社 Polyimide precursor, polyimide having crosslinked structure, and production method therefor

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638324A (en) * 1979-09-06 1981-04-13 Ube Ind Ltd Preparation of polyimide solution
JPH10182820A (en) * 1996-10-29 1998-07-07 Ube Ind Ltd Polyimide precursor composition and polyimide film
JPH10282712A (en) * 1997-04-04 1998-10-23 Dainippon Printing Co Ltd Image receiving sheet and its surface resistance value controlling method
JP2001047451A (en) * 1999-08-12 2001-02-20 Gunze Ltd Endless tubular semiconductive aromatic polyimide film and its manufacture
JP2001142313A (en) * 1999-11-15 2001-05-25 Nitto Denko Corp Electrically semiconductive belt
JP2001241313A (en) * 2000-02-29 2001-09-07 Yanmar Diesel Engine Co Ltd Lubricating oil supplying device of internal combustion engine
JP2001277264A (en) * 2000-03-30 2001-10-09 Unitika Ltd Polyimide seamless tube and method for preparing it
JP2002292656A (en) * 2001-03-29 2002-10-09 Nitto Denko Corp Method for manufacturing semiconductive polyimide belt
JP2003213014A (en) * 2002-01-17 2003-07-30 Gunze Ltd Tubular film of semiconductive wholly aromatic polyimide and method for producing the same
JP2003261768A (en) * 2002-03-12 2003-09-19 Hitachi Chem Co Ltd Semiconductive tubular polyamide-imide film and method for producing the same
JP2003277502A (en) * 2002-03-27 2003-10-02 Nitto Denko Corp Process for preparing polyamic acid solution having carbon black dispersed therein and electrically semiconductor polyimide belt using it
JP2004323834A (en) * 2003-04-10 2004-11-18 Gunze Ltd Method for manufacturing seamless tubular polyimide film
JP2005025052A (en) * 2003-07-04 2005-01-27 Fuji Xerox Co Ltd Semiconductive belt, its manufacturing method, and intermediate transfer belt and image forming apparatus using the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638324A (en) * 1979-09-06 1981-04-13 Ube Ind Ltd Preparation of polyimide solution
JPH10182820A (en) * 1996-10-29 1998-07-07 Ube Ind Ltd Polyimide precursor composition and polyimide film
JPH10282712A (en) * 1997-04-04 1998-10-23 Dainippon Printing Co Ltd Image receiving sheet and its surface resistance value controlling method
JP2001047451A (en) * 1999-08-12 2001-02-20 Gunze Ltd Endless tubular semiconductive aromatic polyimide film and its manufacture
JP2001142313A (en) * 1999-11-15 2001-05-25 Nitto Denko Corp Electrically semiconductive belt
JP2001241313A (en) * 2000-02-29 2001-09-07 Yanmar Diesel Engine Co Ltd Lubricating oil supplying device of internal combustion engine
JP2001277264A (en) * 2000-03-30 2001-10-09 Unitika Ltd Polyimide seamless tube and method for preparing it
JP2002292656A (en) * 2001-03-29 2002-10-09 Nitto Denko Corp Method for manufacturing semiconductive polyimide belt
JP2003213014A (en) * 2002-01-17 2003-07-30 Gunze Ltd Tubular film of semiconductive wholly aromatic polyimide and method for producing the same
JP2003261768A (en) * 2002-03-12 2003-09-19 Hitachi Chem Co Ltd Semiconductive tubular polyamide-imide film and method for producing the same
JP2003277502A (en) * 2002-03-27 2003-10-02 Nitto Denko Corp Process for preparing polyamic acid solution having carbon black dispersed therein and electrically semiconductor polyimide belt using it
JP2004323834A (en) * 2003-04-10 2004-11-18 Gunze Ltd Method for manufacturing seamless tubular polyimide film
JP2005025052A (en) * 2003-07-04 2005-01-27 Fuji Xerox Co Ltd Semiconductive belt, its manufacturing method, and intermediate transfer belt and image forming apparatus using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6010033304; Masatoshi Hasegawa et al.: 'Improvement of Thermoplasticity for s-BPDA/PDA by Copolymerizaion and Blend with Novel Asymmetric BP' Journal of Polymer Science Vol.37 No.17, 1999, p.2499-2511 *
JPN6010033307; Masatoshi Hasegawa et al.: 'Structure and Properties of Novel Asymmetric Biphenyl Type Polyimides. Homo- and Copolymers and Blen' Macromolecules Vol.32, No.2, 1999, p.387-396 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333904A (en) * 2006-06-13 2007-12-27 Fuji Xerox Co Ltd Polyamic acid composition, method for preparing the same, polyimide endless belt and image forming apparatus equipped with polyimide endless belt
JP2009138103A (en) * 2007-12-06 2009-06-25 Gunze Ltd Semiconductive copolymerized polyimide belt, its production method and intermediate transfer belt
JP2010256390A (en) * 2009-04-21 2010-11-11 Ricoh Co Ltd Electrophotographic intermediate transfer belt and electrophotographic device
JP2013181136A (en) * 2012-03-02 2013-09-12 Fuji Xerox Co Ltd Polyimide precursor composition, production method of endless belt, and image forming device
US9193828B2 (en) 2012-03-02 2015-11-24 Fuji Xerox Co., Ltd. Polyimide precursor composition, polyimide-molded product, and image forming apparatus
WO2017069165A1 (en) * 2015-10-19 2017-04-27 宇部興産株式会社 Polyimide precursor, polyimide having crosslinked structure, and production method therefor
KR20180073610A (en) * 2015-10-19 2018-07-02 우베 고산 가부시키가이샤 Polyimide precursor, polyimide having a crosslinked structure, and process for producing the same
KR102697651B1 (en) * 2015-10-19 2024-08-23 유비이 가부시키가이샤 Polyimide precursor, polyimide having a cross-linked structure and method for producing the same
JP2016164279A (en) * 2016-05-31 2016-09-08 富士ゼロックス株式会社 Polyimide precursor composition, polyimide molded product, and image formation device

Also Published As

Publication number Publication date
JP5175021B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
US8314204B2 (en) Endless tubular polyimide film
US9988534B2 (en) Polyimide precursor composition and method for producing polyimide precursor composition
JP4993845B2 (en) Semiconductive high concentration polyimide precursor composition and semiconductive polyimide tubular product using the same
JP6082761B2 (en) Black polyimide film
JP2017052877A (en) Polyimide precursor composition, manufacturing method of polyimide precursor composition and manufacturing method of polyimide molded body
WO2010050491A1 (en) Polyimide precursor solution composition
JP5136441B2 (en) Method for producing polyimide film using amido acid oligomer solution composition, and amido acid oligomer solution composition
JP5175021B2 (en) Semiconductive aromatic amic acid composition and process for producing semiconductive endless tubular polyimide film using the same
JP4993846B2 (en) Method for producing endless tubular polyimide film
JP4803963B2 (en) Semiconductive polyimide precursor composition and method for producing semiconductive polyimide tubular product using the same
JP5428172B2 (en) Method for producing polyimide film
JP2010085450A (en) Seamless belt and method of manufacturing the same
JP2006016592A (en) Polyamic acid composition, polyimide endless belt and method for producing the same, and image formation equipment
JP5175318B2 (en) Semiconductive aromatic amic acid composition and process for producing semiconductive endless tubular polyimide film using the same
JP2006133510A (en) Semiconductive polyimide belt and its production method
JP5233344B2 (en) Method for producing polyamic acid solution
JPH09227697A (en) Preparation of heat-resistant polyimide film through gel
JP5121426B2 (en) Semiconductive copolymer polyimide belt, method for producing the same, and intermediate transfer belt
JP5171000B2 (en) Semiconductive polyimide resin belt and method for manufacturing the same
KR101157321B1 (en) Intermediate transfer belt and manufacturing method thereof
CN102902185B (en) Semiconductive seamless belt
JP2001260151A (en) Endless tubular film and use thereof
JPH09328549A (en) Polyimide composition
JPH08100062A (en) Novel aromatic polyimide powder and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130104

R150 Certificate of patent or registration of utility model

Ref document number: 5175021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees