JP2005247934A - Optically active polyaniline derivative and method for producing the same - Google Patents

Optically active polyaniline derivative and method for producing the same Download PDF

Info

Publication number
JP2005247934A
JP2005247934A JP2004057967A JP2004057967A JP2005247934A JP 2005247934 A JP2005247934 A JP 2005247934A JP 2004057967 A JP2004057967 A JP 2004057967A JP 2004057967 A JP2004057967 A JP 2004057967A JP 2005247934 A JP2005247934 A JP 2005247934A
Authority
JP
Japan
Prior art keywords
optically active
poly2
polyaniline derivative
spectrum
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004057967A
Other languages
Japanese (ja)
Inventor
Hiromasa Goto
博正 後藤
Kazuo Akagi
和夫 赤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004057967A priority Critical patent/JP2005247934A/en
Publication of JP2005247934A publication Critical patent/JP2005247934A/en
Pending legal-status Critical Current

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optically active polyaniline having high stability and enabling the change of color and the circular dichroism to be controlled. <P>SOLUTION: The optically active polyaniline derivative is represented by formula (I) (wherein, R is an optically active substituent; and n is an integer of ≥2 showing a polymerization degree). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この出願の発明は、光学活性ポリアニリン誘導体とその製造方法に関するものである。さらに詳しくは、この出願の発明は、側鎖に光学活性置換基を有する安定な光学活性ポリアニリン誘導体とその製造方法に関するものである。   The invention of this application relates to an optically active polyaniline derivative and a method for producing the same. More specifically, the invention of this application relates to a stable optically active polyaniline derivative having an optically active substituent in the side chain and a method for producing the same.

導電性高分子としては、各種の共役系高分子が知られているが、これらの多くはほとんどの溶媒に不溶、不融であるため、このような溶液系における電解重合方法においては、その固体構造やモルホロジーが重合時に決定されてしまうという問題があった。つまり、共役系高分子の高次構造を制御したり、導電性を保持したまま螺旋構造を持たせたりする方法や、カラム等による分離精製を経ることなく光学活性体を得る方法は知られていなかったのが実情である。   Various types of conjugated polymers are known as conductive polymers, but many of these are insoluble and infusible in most solvents, so in the electropolymerization method in such a solution system, the solid state There was a problem that the structure and morphology were determined during polymerization. In other words, there are known methods for controlling the higher order structure of a conjugated polymer, providing a helical structure while maintaining conductivity, and obtaining an optically active substance without undergoing separation and purification using a column or the like. There was no actual situation.

導電性高分子の一つであるポリアニリンは、安定性に優れ、コンデンサー、電池の電極材料、太陽電池、エレクトロクロミック材料等として広く実用化されている。ポリアニリンは、その他の導電性高分子同様に、共役π電子系の酸化−還元反応より導電性を発現するが、それに加えて、窒素原子へのプロトン付加も導電性に関与することが知られている。また、このようなポリアニリンの窒素部位に、光学活性なカンファースルホン酸を水素結合させることが検討されており、この光学活性ポリアニリン複合体が円偏光二色性を示すことが報告されている(例えば、非特許文献1〜6)。しかし、このようなポリアニリン複合体における水素結合は脆弱であり、pH等の外部環境の変化により容易に光学活性部位が解離し、光学活性が失われるという問題があった。そのため、現在まで実用化へのめどはたっていない。   Polyaniline, which is one of conductive polymers, is excellent in stability and is widely used as a capacitor, battery electrode material, solar battery, electrochromic material, and the like. Polyaniline, like other conductive polymers, exhibits conductivity through a conjugated π-electron oxidation-reduction reaction. In addition, it is known that proton addition to a nitrogen atom is also involved in conductivity. Yes. Further, it has been studied to hydrogen bond an optically active camphorsulfonic acid to the nitrogen moiety of such polyaniline, and it has been reported that this optically active polyaniline complex exhibits circular dichroism (for example, Non-patent documents 1 to 6). However, the hydrogen bond in such a polyaniline complex is fragile, and there is a problem that the optically active site is easily dissociated due to a change in the external environment such as pH and the optical activity is lost. Therefore, the prospect of practical application up to now is not standing.

ところで、光学活性な糖類を電気化学的に選択的に検出する酵素修飾電極が知られている。このような酵素修飾電極は、糖類のD体・L体を電位の変化から高感度で検出でき、生化学や医療の分野で応用されている。しかし、酵素修飾電極は、安定性が低く、人工の光学活性化合物を用いた電極は作成されていない。   By the way, an enzyme-modified electrode that selectively detects optically active sugars electrochemically is known. Such an enzyme-modified electrode can detect saccharide D-form and L-form with high sensitivity from potential changes, and is applied in the fields of biochemistry and medicine. However, the enzyme-modified electrode has low stability, and no electrode using an artificial optically active compound has been prepared.

安定性の高い光学活性ポリアニリンが実現できれば、酵素修飾電極に代わる、機械的安定性に優れ、簡便性の高い「光学活性固体電極」の実現が可能となると期待される。
Norris, Ian D.; Kane-Maguire, Leon A. P.; Wallace, Gordon G., Macromolecules (1998), 31(19), 6529-6533. Su, Shi-Jian; Kuramoto, Noriyuki., Macromolecules (2001), 34(21), 7249-7256. Su, Shi-Jian; Kuramoto, Noriyuki., Chemistry Letters (2001), (6), 504-505. Thiyagarajan, Muthiah; Samuelson, Lynne A.; Kumar, Jayant; Cholli, Ashok L., Polymer Preprints (2003), 44(2), 234-235. Havinga, E. E.; Bouman, M. M.; Meijer, E. W.; Pomp, A.; Simenon, M. M. J., Synthetic Metals (1994), 66(1), 93-7. Majidi, Mir Reza; Kane-Maguire, Leon A. P.; Wallace, Gordon G., Polymer (1995), 36(18), 3597-9.
If a highly stable optically active polyaniline can be realized, it is expected that an “optically active solid electrode” having excellent mechanical stability and high convenience can be realized instead of the enzyme-modified electrode.
Norris, Ian D .; Kane-Maguire, Leon AP; Wallace, Gordon G., Macromolecules (1998), 31 (19), 6529-6533. Su, Shi-Jian; Kuramoto, Noriyuki., Macromolecules (2001), 34 (21), 7249-7256. Su, Shi-Jian; Kuramoto, Noriyuki., Chemistry Letters (2001), (6), 504-505. Thiyagarajan, Muthiah; Samuelson, Lynne A .; Kumar, Jayant; Cholli, Ashok L., Polymer Preprints (2003), 44 (2), 234-235. Havinga, EE; Bouman, MM; Meijer, EW; Pomp, A .; Simenon, MMJ, Synthetic Metals (1994), 66 (1), 93-7. Majidi, Mir Reza; Kane-Maguire, Leon AP; Wallace, Gordon G., Polymer (1995), 36 (18), 3597-9.

そこで、この出願の発明は、以上のとおりの事情に鑑みてなされたものであり、従来技術の問題点を解消し、安定性が高く、色の変化や円偏光二色性の制御も可能な、光学活性ポリアニリンを提供することを課題としている。   Therefore, the invention of this application has been made in view of the circumstances as described above, solves the problems of the prior art, has high stability, and can control color change and circular dichroism. It is an object to provide an optically active polyaniline.

この出願の発明は、上記の課題を解決するものとして、第1には、次式(I)   In order to solve the above problems, the invention of this application includes, firstly, the following formula (I):

(ただし、Rは光学活性置換基を表し、nは重合度を示す2〜100の整数である)
で表されることを特徴とする光学活性ポリアニリン誘導体を提供する。
(However, R represents an optically active substituent, and n is an integer of 2 to 100 indicating the degree of polymerization.)
An optically active polyaniline derivative is provided.

この出願の発明は、第2には、Rが次式(II)   In the invention of this application, secondly, R is represented by the following formula (II):

(ただし、R1、R2、R3は、別異に、水素原子またはアルキル基である)
で表される光学活性ポリアニリン誘導体を、また、第3には、Rが1−メチルヘプチル基である光学活性ポリアニリンを提供する。
(However, R 1 , R 2 , and R 3 are each independently a hydrogen atom or an alkyl group)
And thirdly, an optically active polyaniline derivative in which R is a 1-methylheptyl group.

この出願の発明は、第4には、光学活性ポリアニリン誘導体の製造方法であって、2−ヒドロキシニトロベンゼンを、アゾジカルボン酸ジエチルおよびトリフェニルホスフィンの存在下に、次式(III)   The invention of this application is, fourthly, a method for producing an optically active polyaniline derivative, wherein 2-hydroxynitrobenzene is reacted with the following formula (III) in the presence of diethyl azodicarboxylate and triphenylphosphine:

(ただし、R1、R2、R3は、別異に、水素原子またはアルキル基である)
で表される光学活性な二級アルコールと反応させた後、ニトロ基をアミノ基に変換し、得られる次式(IV)
(However, R 1 , R 2 , and R 3 are each independently a hydrogen atom or an alkyl group)
After reacting with an optically active secondary alcohol represented by the formula, the nitro group is converted to an amino group, and the resulting formula (IV)

(ただし、R1、R2、R3は前記のものである)
の光学活性アニリンモノマーを、ペルオキソ二硫酸アンモニウムを用いて重合することを特徴とする光学活性ポリアニリン誘導体の製造方法をも提供する。
(However, R 1 , R 2 , and R 3 are as described above.)
There is also provided a method for producing an optically active polyaniline derivative, wherein the optically active aniline monomer is polymerized using ammonium peroxodisulfate.

上記第1〜3の発明の光学活性ポリアニリン誘導体は、非常に安定であり、光学活性な置換基の絶対配置に依存する右あるいは左のそれぞれの片方にかたよったラセン構造の形成と、円偏光二色性を示す。また、このような光学活性ポリアニリン誘導体では、溶液中、酸-アルカリ条件下において、ドープ/脱ドープに基づく可逆的な色調変化が見られ、ドーピングにより色や円偏光二色性の制御が可能である。   The optically active polyaniline derivatives according to the first to third inventions are very stable, forming a helical structure on either the right or left side depending on the absolute configuration of the optically active substituent, and circularly polarized light. Shows color. In addition, in such optically active polyaniline derivatives, reversible color tone changes based on doping / dedoping are observed in solution and under acid-alkali conditions, and color and circular dichroism can be controlled by doping. is there.

上記第4の発明の光学活性ポリアニリン誘導体の製造方法では、比較的簡便な操作により、高収率で光学活性ポリアニリンが得られる。   In the method for producing an optically active polyaniline derivative of the fourth invention, optically active polyaniline can be obtained in a high yield by a relatively simple operation.

この出願の発明の光学活性ポリアニリン誘導体は、次式(I)   The optically active polyaniline derivative of the invention of this application has the following formula (I)

で表されるものである。 It is represented by

このとき、Rは光学活性置換基を表し、その構造はとくに限定されない。例えば、光学活性なモノテルペン類や(+)あるいは(-)−メントールが挙げられる。さらには、次式(II)   At this time, R represents an optically active substituent, and its structure is not particularly limited. Examples thereof include optically active monoterpenes and (+) or (−)-menthol. Furthermore, the following formula (II)

で表されるもののうち、R1〜R3がすべて異なる置換基であるものが挙げられる。具体的には、R1〜R3は、水素原子およびアルキル基からなる群より選択される。例えば、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル等の直鎖状または分岐状のアルキル基やシクロヘキシル、シクロヘプチル等の環状アルキル基が例示される。中でも、Rがメチル(CH3)基、R2がヘキシル(C6H13)基、R3が水素原子のものが好ましい。 Among them, those in which R 1 to R 3 are all different substituents are exemplified. Specifically, R 1 to R 3 are selected from the group consisting of a hydrogen atom and an alkyl group. Examples thereof include linear or branched alkyl groups such as methyl, ethyl, propyl, butyl, pentyl and hexyl, and cyclic alkyl groups such as cyclohexyl and cycloheptyl. Among them, it is preferable that R 1 is a methyl (CH 3 ) group, R 2 is a hexyl (C 6 H 13 ) group, and R 3 is a hydrogen atom.

一方、nは重合度を示す2〜100の整数であり、好ましくは、10〜100の整数である。   On the other hand, n is an integer of 2 to 100 indicating the degree of polymerization, and preferably an integer of 10 to 100.

このような光学活性ポリアニリン誘導体は、どのような方法により製造されるものであってもよい。例えば、2−ヒドロキシニトロベンゼンを、アゾジカルボン酸ジエチルおよびトリフェニルホスフィンの存在下に、次式(III)   Such an optically active polyaniline derivative may be produced by any method. For example, 2-hydroxynitrobenzene in the presence of diethyl azodicarboxylate and triphenylphosphine has the formula (III)

(ただし、R1、R2、R3は、前記のとおりである)
で表される光学活性な二級アルコールと反応させた後、ニトロ基をアミノ基に変換し、次式(IV)
(However, R 1 , R 2 and R 3 are as described above.)
After reacting with the optically active secondary alcohol represented by the formula (IV), the nitro group is converted to an amino group.

(ただし、R1、R2、R3は前記のものである)
の光学活性アニリンモノマーを得ることができ、これをペルオキソ二硫酸アンモニウムを用いて重合することにより、前記式(I)の光学活性ポリアニリン誘導体が得られる。
(However, R 1 , R 2 , and R 3 are as described above.)
The optically active aniline monomer of the formula (I) can be obtained by polymerizing the optically active aniline monomer with ammonium peroxodisulfate.

以上のとおりのこの出願の発明の光学活性ポリアニリン誘導体は、後述の実施例からも明らかなように、光学活性を有し、ドーピングにより円偏光二色性スペクトルにポリマー主鎖のπ→π*遷移に由来する吸収帯でのコットン効果を示す。このように、ドーピングによりコットン効果を変調させることのできる光学活性導電性高分子はこれまで知られていない。   The optically active polyaniline derivative of the invention of this application as described above has optical activity, as will be apparent from the examples described later, and a π → π * transition of the polymer main chain to the circular dichroism spectrum by doping. The cotton effect in the absorption band derived from is shown. Thus, no optically active conductive polymer that can modulate the Cotton effect by doping has been known so far.

したがって、この出願の発明の光学活性ポリアニリン誘導体は、酵素等の生体分子を含む様々な光学活性化合物を高感度に認識できるバイオセンサ用素子として有用なものである。   Therefore, the optically active polyaniline derivative of the invention of this application is useful as a biosensor element that can recognize various optically active compounds including biomolecules such as enzymes with high sensitivity.

以下、実施例を示し、この発明の実施の形態についてさらに詳しく説明する。もちろん、この発明は以下の例に限定されるものではなく、細部については様々な態様が可能であることは言うまでもない。   Hereinafter, examples will be shown, and the embodiments of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail.

<実施例1> 合成
(1) o-位にキラル置換基を有するニトロベンゼン(化合物1)の合成
アルゴン置換した三口フラスコ中、THF 50 ml に溶解したアゾジカルボン酸ジエチル(以下、DEADとする)10.03 g(23 mmol)とニトロフェノール 3.2 g(23 mmol)を室温で10分間撹拌し、その後トリフェニルホスフィン 6.03 g(23 mmol)と(R)-(-)-2-オクタノール 3.0 g (23 mmol)をTHF 20 mLに溶解し、滴下した。24 h後、減圧下で溶媒を除いた。
<Example 1> Synthesis (1) Synthesis of nitrobenzene having a chiral substituent at o-position (Compound 1) Diethyl azodicarboxylate (hereinafter referred to as DEAD) 10.03 dissolved in 50 ml of THF in an argon-substituted three-necked flask g (23 mmol) and 3.2 g (23 mmol) of nitrophenol are stirred at room temperature for 10 minutes, and then 6.03 g (23 mmol) of triphenylphosphine and 3.0 g (23 mmol) of (R)-(-)-2-octanol Was dissolved in 20 mL of THF and added dropwise. After 24 h, the solvent was removed under reduced pressure.

これをジクロロメタンで抽出し、シリカゲル・カラムクロマトグラフィー(ジクロロメタン)により精製した。さらに真空乾燥し、2.8 g(収率48 %)の目的物を得た。   This was extracted with dichloromethane and purified by silica gel column chromatography (dichloromethane). Furthermore, it vacuum-dried and obtained 2.8 g (yield 48%) of the target object.

また、S体においても同様の合成を行い、3.9 g(収率74 %)の目的物を得た。   In addition, the same synthesis was performed for the S form to obtain 3.9 g (yield 74%) of the target product.

表1に、R体およびS体の同定結果を示した。   Table 1 shows the identification results of R-form and S-form.

(2) o-位にキラル置換基を有するアニリンモノマーの合成
アルゴン置換した三口フラスコに化合物1(R)(3.5 g, 14 mmol)と銅(II)アセチル
アセトネート(0.35 g, 14 mmol)をエタノール60 mLに溶解し、NaBH4(1.575 g, 42 mmol)を少しずつ加えた。24 h後、大過剰の水に注ぎ、これをジクロロメタンで抽出し、エバポレーションにより溶媒を除いて目的物を得た。
(2) Synthesis of aniline monomer having chiral substituent at o-position Compound 1 (R) (3.5 g, 14 mmol) and copper (II) acetylacetonate (0.35 g, 14 mmol) were placed in an argon-substituted three-necked flask. was dissolved in ethanol 60 mL, was added NaBH 4 a (1.575 g, 42 mmol) portionwise. After 24 hours, the mixture was poured into a large excess of water, extracted with dichloromethane, and the solvent was removed by evaporation to obtain the desired product.

表2に、得られたmono(R)およびmono(S)の同定結果を示した。   Table 2 shows the identification results of mono (R) and mono (S) obtained.

(3) 重合
0℃において、mono(R)(0.5 g, 2.25 m mol)をCH3Cl 2 mLに溶解した。これに(NH4)2S2O8(0.26 g , 1.13 m mol)を水1 mLおよび過塩素酸 1 mLに溶解した溶液を加え、撹拌した。2 h 後、この反応溶液を最小量のTHFに溶解した後、大過量のメタノールに加え72 h洗浄した後、吸引ろ過し、poly1(oxidized form)を得た。
(3) Polymerization
At 0 ° C., mono (R) (0.5 g, 2.25 mmol) was dissolved in 2 mL of CH 3 Cl. To this was added a solution of (NH 4 ) 2 S 2 O 8 (0.26 g, 1.13 mmol) dissolved in 1 mL of water and 1 mL of perchloric acid and stirred. After 2 h, the reaction solution was dissolved in a minimum amount of THF, added to a large excess of methanol, washed for 72 h, and then suction filtered to obtain poly1 (oxidized form).

次にpoly1(oxidized form)(0.09 g)を少量のTHFに溶解した後、これをアンモニアを含むメタノール 50 mLに加え、24 h撹拌した。これをろ別し、真空乾燥することによりpoly2(reduced form)を得た。また、分光学測定に伴い、クロロホルム溶液に溶解したpoly2(reduced form)に少量の塩酸を加え、 poly2(oxidized form)を得た。   Next, poly1 (oxidized form) (0.09 g) was dissolved in a small amount of THF, and this was added to 50 mL of methanol containing ammonia and stirred for 24 h. This was filtered off and vacuum dried to obtain poly2 (reduced form). Along with the spectroscopic measurement, a small amount of hydrochloric acid was added to poly2 (reduced form) dissolved in chloroform solution to obtain poly2 (oxidized form).

poly1(oxidized form)の溶液への溶解性が悪いことを考慮し、再度、酸化状態のポリマーを作る操作を行った。すなわち、一度poly2(reduced form)にし、溶液に溶解した状態で、塩酸を少量加えることによりoxidized formの測定を可能にした。R体、S体のいずれについても同様の方法で合成を行った。   In consideration of the poor solubility of poly1 (oxidized form) in the solution, an operation to make an oxidized polymer was performed again. In other words, once it was made into poly2 (reduced form) and dissolved in a solution, it was possible to measure oxidized form by adding a small amount of hydrochloric acid. For both R and S forms, synthesis was performed in the same manner.

表3にpoly1およびpoly2の同定結果を示した。   Table 3 shows the identification results of poly1 and poly2.

また、表4に重合結果をまとめた。 Table 4 summarizes the polymerization results.

<実施例2> 光学活性ポリアニリンの評価
(1)化合物1およびmonoの比較
クロロホルム溶液中での化合物1とmono(R)のUV-Visスペクトル、CDスペクトル、およびORDスペクトルをそれぞれ、図1a〜cおよび図2a〜cに示した。
<Example 2> Evaluation of optically active polyaniline (1) Comparison of compound 1 and mono The UV-Vis spectrum, CD spectrum, and ORD spectrum of compound 1 and mono (R) in chloroform solution were respectively shown in Figs. And shown in FIGS.

化合物1はUV-Visスペクトルにおいて、330 nmに吸収ピークを示し、CDスペクトルでは、315 nm付近に(R), (S)にそれぞれ負と正のコットン効果を示した。また、ORDスペクトルでは、化合物1(R)は負から正のコットン効果を示し、化合物1(S)はその逆を示した。   Compound 1 showed an absorption peak at 330 nm in the UV-Vis spectrum, and negative and positive Cotton effects in (R) and (S) around 315 nm in the CD spectrum, respectively. In the ORD spectrum, compound 1 (R) showed a negative to positive cotton effect, and compound 1 (S) showed the opposite.

一方、Monoは、UV-Visスペクトルにおいて、292 nmに吸収ピークを示した。CDスペクトルにおいては、288 nm付近に、化合物1と同様に、(R)、(S)にそれぞれ正負のコットン効果を示した。ORDスペクトルでは、CDスペクトルと同様に、(R)、(S)でそれぞれ正負のコットン効果を示した。化合物1のUV-Visスペクトルがmonoより、やや長波長側にシフトしたことは、NO2の電子供与性により化合物1の主鎖のπ→π*遷移が起こったためと考えられる。
(2) poly2 (reduced form)およびpoly2 (oxidized form)の比較
クロロホルム溶液中でのpoly2 (reduced form)とpoly2 (oxidized form)のUV-Visスペクトルを図3に、CDスペクトルを図4に、ORDスペクトルを図5に示した。
On the other hand, Mono showed an absorption peak at 292 nm in the UV-Vis spectrum. In the CD spectrum, as in the case of Compound 1, positive and negative cotton effects were shown in (R) and (S), respectively, at around 288 nm. In the ORD spectrum, as in the CD spectrum, positive and negative cotton effects were shown in (R) and (S), respectively. The fact that the UV-Vis spectrum of Compound 1 shifted slightly from mono to a longer wavelength is considered to be due to the π → π * transition of the main chain of Compound 1 due to the electron donating property of NO 2 .
(2) Comparison of poly2 (reduced form) and poly2 (oxidized form) The UV-Vis spectrum of poly2 (reduced form) and poly2 (oxidized form) in chloroform solution is shown in Fig. 3, the CD spectrum is shown in Fig. 4, and ORD The spectrum is shown in FIG.

ドープ後のポリマーのUV-Visスペクトルにおいては、長波長側にドーピングバンド(ポーラロンバンド)に由来する大きな吸収ピークが見られた。   In the UV-Vis spectrum of the polymer after doping, a large absorption peak derived from the doping band (polaron band) was observed on the long wavelength side.

また、poly2(R)(reduced form)ではCDスペクトル、ORDスペクトルともに正から負のコットン効果を示した。   Poly2 (R) (reduced form) showed a positive to negative cotton effect in both the CD spectrum and the ORD spectrum.

一方、ドープ後であるpoly2(oxidized form)は、CDにおいて、(R)で長波長側から正→負→正→負のコットン効果を示した。また、ORDでは、(R)が負のコットン効果を示した。
(3) 電気化学測定
poly2(reduced form)の(R)、(S)体をそれぞれTHFに溶解し、作用電極表面にそれぞれキャストして修飾電極を作成した。
On the other hand, poly2 (oxidized form) after doping showed a cotton effect of positive → negative → positive → negative from the long wavelength side in CD in (R). In ORD, (R) showed a negative cotton effect.
(3) Electrochemical measurement
The modified (R) and (S) isomers of poly2 (reduced form) were dissolved in THF and cast on the working electrode surface to prepare modified electrodes.

図6に修飾電極の0.1 M TBAPのアセトニトリル中におけるサイクリックボルタンメトリー(以下、CVとする)の結果を示した。   FIG. 6 shows the results of cyclic voltammetry (hereinafter referred to as CV) in 0.1 M TBAP of the modified electrode in acetonitrile.

次に、0.1 M TBAP, 10 mlアセトニトリル溶液に3,3-Dimethyl-2-butylamine (以下、DBAとする)の(R)、(S)体をそれぞれ微少量加えた溶液で、前述と同様の電極を使用してCVを測定し、結果を図7に示した。   Next, a solution obtained by adding a small amount of (R) and (S) isomers of 3,3-Dimethyl-2-butylamine (hereinafter referred to as DBA) to 0.1 M TBAP, 10 ml acetonitrile solution, respectively, CV was measured using the electrode, and the result is shown in FIG.

DBAの(R)、(S)体によるポテンシャルの変化はなかったが、poly2(R)(reduced form)とDBA(R)のように電極と絶対配置が同様の化合物を混入した時に強い還元波ピーク(6.36 ×10-5 A)を示した。poly 3-2(R)(reduced form)を用いた修飾電極で絶対配置の異なるDBA (S)を測定した場合には、還元波(1.93×10-7)が減少した。 There was no change in potential due to the (R) and (S) isomers of DBA, but a strong reduction wave when a compound with the same electrode and absolute configuration, such as poly2 (R) (reduced form) and DBA (R), was mixed. A peak (6.36 × 10 −5 A) was shown. When DBA (S) with different absolute configuration was measured with a modified electrode using poly 3-2 (R) (reduced form), the reduction wave (1.93 × 10 -7 ) decreased.

poly2(S)(reduced form)を電極としてCVを行った場合もpoly2(R)と同様の結果が得られた。これは DBA (R), (S)体のそれぞれの鏡像異性体による立体的形状の差により、同じ絶対配置をもつポリマー修飾電極への吸着性の差によるものと考えられる。   When CV was performed using poly2 (S) (reduced form) as an electrode, the same results as poly2 (R) were obtained. This is thought to be due to the difference in the adsorptivity to the polymer-modified electrode having the same absolute configuration due to the difference in the steric shapes of the DBA (R) and (S) isomers.

また、酸化波がはっきりと観察されなかったのは、P型ドーピングが生じた結果、伝導度が上昇し、本来酸化波のピークが出る付近で、酸化波とは別の大きなピークが観測されたためと考えられる。また、N型ドーピングは本ポリマーでは生じにくいため、還元波側で明確にDBAに由来するシグナルが現れたと思われる。   Also, the oxidation wave was not clearly observed because the conductivity increased as a result of the P-type doping, and a large peak separate from the oxidation wave was observed near the peak of the oxidation wave. it is conceivable that. In addition, N-type doping is unlikely to occur in this polymer, so a signal derived from DBA appears clearly on the reduction wave side.

以上より、この出願の発明の光学活性ポリアニリンにより、キラル化合物を認識できる固体不斉電極が得られることが確認された。   From the above, it was confirmed that a solid asymmetric electrode capable of recognizing a chiral compound can be obtained by the optically active polyaniline of the invention of this application.

この出願の発明の実施例において合成された化合物1の評価結果を示した図である。(a:UV-Visスペクトル、b:CDスペクトル、c:ORDスペクトル)FIG. 5 is a diagram showing the evaluation results of Compound 1 synthesized in the examples of the invention of this application. (A: UV-Vis spectrum, b: CD spectrum, c: ORD spectrum) この出願の発明の実施例において合成されたmono(R)の評価結果を示した図である。(a:UV-Visスペクトル、b:CDスペクトル、c:ORDスペクトル)It is the figure which showed the evaluation result of mono (R) synthesize | combined in the Example of invention of this application. (A: UV-Vis spectrum, b: CD spectrum, c: ORD spectrum) この出願の発明の実施例において合成されたpoly2 (reduced form)とpoly2 (oxidized form)のクロロホルム溶液中でのUV-Visスペクトルを示した図である。(a:poly2 (reduced form)、b:poly2 (oxidized form))It is the figure which showed the UV-Vis spectrum in the chloroform solution of poly2 (reduced form) and poly2 (oxidized form) synthesize | combined in the Example of invention of this application. (A: poly2 (reduced form), b: poly2 (oxidized form)) この出願の発明の実施例において合成されたpoly2 (reduced form)とpoly2 (oxidized form)のクロロホルム溶液中でのCDスペクトルを示した図である。(a:poly2 (reduced form)、b:poly2 (oxidized form))It is the figure which showed CD spectrum in the chloroform solution of poly2 (reduced form) and poly2 (oxidized form) synthesize | combined in the Example of invention of this application. (A: poly2 (reduced form), b: poly2 (oxidized form)) この出願の発明の実施例において合成されたpoly2 (reduced form)とpoly2 (oxidized form)のクロロホルム溶液中でのORDスペクトルを示した図である。(a:poly2 (reduced form)、b:poly2 (oxidized form))It is the figure which showed the ORD spectrum in the chloroform solution of poly2 (reduced form) and poly2 (oxidized form) synthesize | combined in the Example of invention of this application. (A: poly2 (reduced form), b: poly2 (oxidized form)) この出願の発明の実施例において合成されたpoly2(reduced form)の(R)、(S)体により修飾された電極のサイクリックボルタモグラムを示した図である。(a:poly2 (reduced form)(R)、b:poly2 (reduced form)(S))It is the figure which showed the cyclic voltammogram of the electrode modified by the (R) and (S) body of poly2 (reduced form) synthesize | combined in the Example of invention of this application. (A: poly2 (reduced form) (R), b: poly2 (reduced form) (S)) この出願の発明の実施例において合成されたpoly2(reduced form)の(R)、(S)体で修飾した電極を用いた、DBAの(R)、(S)体のサイクリックボルタモグラムを示す図である。(a:poly2 (reduced form)(R)電極、b:poly2 (reduced form)(S)電極)The figure which shows the cyclic voltammogram of (R) and (S) body of DBA using the electrode modified by the (R) and (S) body of poly2 (reduced form) synthesize | combined in the Example of invention of this application. It is. (A: poly2 (reduced form) (R) electrode, b: poly2 (reduced form) (S) electrode)

Claims (4)

次式(I)
(ただし、Rは光学活性置換基を表し、nは重合度を示す2〜100の整数である)
で表されることを特徴とする光学活性ポリアニリン誘導体。
Formula (I)
(However, R represents an optically active substituent, and n is an integer of 2 to 100 indicating the degree of polymerization)
An optically active polyaniline derivative represented by the formula:
Rは次式(II)
(ただし、R1、R2、R3は、別異に、水素原子またはアルキル基である)
で表される請求項1の光学活性ポリアニリン誘導体。
R is the following formula (II)
(However, R 1 , R 2 , and R 3 are each independently a hydrogen atom or an alkyl group)
The optically active polyaniline derivative of Claim 1 represented by these.
Rは、1−メチルヘプチル基である請求項1の光学活性ポリアニリン。 The optically active polyaniline according to claim 1, wherein R is a 1-methylheptyl group. 請求項1ないし3の光学活性ポリアニリン誘導体の製造方法であって、2−ヒドロキシニトロベンゼンを、アゾジカルボン酸ジエチルおよびトリフェニルホスフィンの存在下に、次式(III)
(ただし、R1、R2、R3は、別異に、水素原子またはアルキル基である)
で表される光学活性な二級アルコールと反応させた後、ニトロ基をアミノ基に変換し、得られる次式(IV)
(ただし、R1、R2、R3は前記のものである)
の光学活性アニリンモノマーを、ペルオキソ二硫酸アンモニウムを用いて重合することを特徴とする光学活性ポリアニリン誘導体の製造方法。
A process for producing an optically active polyaniline derivative according to claims 1 to 3, wherein 2-hydroxynitrobenzene is converted to the following formula (III) in the presence of diethyl azodicarboxylate and triphenylphosphine:
(However, R 1 , R 2 , and R 3 are each independently a hydrogen atom or an alkyl group)
After reacting with the optically active secondary alcohol represented by the formula (IV), the nitro group is converted to an amino group.
(However, R 1 , R 2 , and R 3 are as described above.)
A method for producing an optically active polyaniline derivative, wherein the optically active aniline monomer is polymerized using ammonium peroxodisulfate.
JP2004057967A 2004-03-02 2004-03-02 Optically active polyaniline derivative and method for producing the same Pending JP2005247934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004057967A JP2005247934A (en) 2004-03-02 2004-03-02 Optically active polyaniline derivative and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004057967A JP2005247934A (en) 2004-03-02 2004-03-02 Optically active polyaniline derivative and method for producing the same

Publications (1)

Publication Number Publication Date
JP2005247934A true JP2005247934A (en) 2005-09-15

Family

ID=35028730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004057967A Pending JP2005247934A (en) 2004-03-02 2004-03-02 Optically active polyaniline derivative and method for producing the same

Country Status (1)

Country Link
JP (1) JP2005247934A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1865310A1 (en) * 2006-06-10 2007-12-12 ETH Zürich Enantioselective capacitive sensor
CN115999522A (en) * 2023-01-05 2023-04-25 昆明医科大学 Silica gel @ polyaniline @ polysaccharide derivative CSP filler and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1865310A1 (en) * 2006-06-10 2007-12-12 ETH Zürich Enantioselective capacitive sensor
WO2007141042A1 (en) * 2006-06-10 2007-12-13 Eth, Zurich Enantioselective capacitive sensor
CN115999522A (en) * 2023-01-05 2023-04-25 昆明医科大学 Silica gel @ polyaniline @ polysaccharide derivative CSP filler and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Tran-Van et al. Fully undoped and soluble oligo (3, 4-ethylenedioxythiophene) s: spectroscopic study and electrochemical characterization
US8034895B2 (en) Conjugated thiophenes having conducting properties and synthesis of same
Wei et al. Low-potential electrochemical polymerization of carbazole and its alkyl derivatives
Förtsch et al. Synthesis and characterization of two isomeric dithienopyrrole series and the corresponding electropolymers
Wagner et al. Indanedione-substituted poly (terthiophene) s: Processable conducting polymers with intramolecular charge transfer interactions
Jähnert et al. Synthesis and Charge–Discharge Studies of Poly (ethynylphenyl) galvinoxyles and Their Use in Organic Radical Batteries with Aqueous Electrolytes
Caras-Quintero et al. Synthesis of the first enantiomerically pure and chiral, disubstituted 3, 4-ethylenedioxythiophenes (EDOTs) and corresponding stereo-and regioregular PEDOTs
Barik et al. Conjugated thiophenoazomethines: electrochromic materials exhibiting visible-to-near-IR color changes
KR100996257B1 (en) Method for preparing poly(5-aminoquinoxalines)
CN109232431B (en) Triphenylamine derivative modified based on imidazole type ionic liquid and preparation method and application thereof
WO2005068439A1 (en) Aminoquinoxaline compound, polyaminoquinoxaline compound, and use thereof
Wang et al. Synthesis of triazole-dendronized polyacetylenes by metathesis cyclopolymerization and their conductivity
Grigoras et al. Tuning optical and electronic properties of poly (4, 4'-triphenylamine vinylene) s by post-modification reactions
JP2005247934A (en) Optically active polyaniline derivative and method for producing the same
KR20120110137A (en) Novel polyazomethine
KR20120101119A (en) Novel azomethine oligomer
WO2010123079A1 (en) Electrically conductive polyrotaxane
JP4479879B2 (en) Poly (5-aminoquinoxaline) and use thereof
Zhou et al. Synthesis and characterization of tris (2, 2′‐bipyridine) ruthenium‐cored star‐shaped polymers via RAFT polymerization
CN110903468B (en) Polythiophene with side chain containing nitroxide free radical, and preparation method and application thereof
Yamaguchi et al. Eco-friendly synthesis of ionic helical polymers and their chemical properties and reactivity
Jin et al. Synthesis of conjugated polymers bearing pendant bipyridine ruthenium complexes
Yamaguchi et al. Uncatalyzed synthesis of polyacetylene with viologen side groups and their chemical properties
Yamaguchi et al. Chiral-phosphate anion-containing polymers with expanded π-conjugation systems derived from through-space interactions in the piperazinium ring
WANG et al. Ureidopyrimidinone quadruple hydrogen-bonded ferrocene dimer: Control of electronic communication

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051220

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080416

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Effective date: 20080819

Free format text: JAPANESE INTERMEDIATE CODE: A02