JP2005247773A - Method for producing 2-pyridylalanine - Google Patents

Method for producing 2-pyridylalanine Download PDF

Info

Publication number
JP2005247773A
JP2005247773A JP2004061647A JP2004061647A JP2005247773A JP 2005247773 A JP2005247773 A JP 2005247773A JP 2004061647 A JP2004061647 A JP 2004061647A JP 2004061647 A JP2004061647 A JP 2004061647A JP 2005247773 A JP2005247773 A JP 2005247773A
Authority
JP
Japan
Prior art keywords
pyridylalanine
pyridyl
optically active
formylamino
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004061647A
Other languages
Japanese (ja)
Inventor
Sumitaka Hirao
純孝 平尾
Kazuhide Tani
一英 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP2004061647A priority Critical patent/JP2005247773A/en
Publication of JP2005247773A publication Critical patent/JP2005247773A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for selectively producing an optically active 2-pyridylalanine in high yield. <P>SOLUTION: A 2-substituted amino-3-(2-pyridyl)acrylic acid derivative is reduced by asymmetric reduction with a complex of a transition metal and an optically active ligand and the produced optically active 2-pyridylalanine derivative is hydrolyzed to obtain the optically active pyridylalanine. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、NO合成阻害剤等の酵素阻害剤の原料として有用な光学活性2−ピリジルアラニンの製造方法に関する。   The present invention relates to a method for producing optically active 2-pyridylalanine useful as a raw material for enzyme inhibitors such as NO synthesis inhibitors.

高血圧、心臓病、糖尿病等の循環器の疾病の改善剤としてNO合成阻害剤等の酵素阻害剤が注目されており、かかる酵素阻害剤の1種であるアミド化合物(N−イミダゾリルメチルカルボキシアミド)は、光学活性2−ピリジルアラニン誘導体を原料とすることも知られており(例えば、特許文献1参照。)、かかる阻害剤を工業的有利に製造するためには、その出発原料である光学活性2−ピリジルアラニンの製造方法の優劣も大きな影響がある。   Enzyme inhibitors such as NO synthesis inhibitors are attracting attention as improving agents for cardiovascular diseases such as hypertension, heart disease and diabetes, and amide compounds (N-imidazolylmethylcarboxamide) which are one of such enzyme inhibitors Is also known to use an optically active 2-pyridylalanine derivative as a raw material (see, for example, Patent Document 1), and in order to produce such an inhibitor industrially advantageously, the optical activity that is a starting material thereof is used. The superiority or inferiority of the production method of 2-pyridylalanine has a great influence.

かかる2−ピリジルアラニンの光学活性体やD,L−体の製造法については、1)D,L−ピリジルメチルヒダントインを微生物の細胞の存在下で生物学的に変換させ、D−2−ピリジルアラニンを得る方法(例えば、特許文献2参照。)、2)クロロメチルピリジンとアセトアミドマロン酸ジエチルからD,L−ピリジルアラニンを合成し、N−アセチル化後、アシラーゼでL−体のみ加水分解しL−ピリジルアラニンとD−アセチルピリジルアラニンを得る方法(例えば、非特許文献1参照。)、3)L−フェニルアラニンアンモニアリアーゼの存在下、ピリジルアクリル酸とアンモニアを反応させて2−ピリジルアラニンを得る方法(例えば、特許文献3参照。)、また、D,L−体の製造方法として、4)2−ホルミルアミノ−3−(2−ピリジル)プロペン酸アルキルエステルをパラジウムカーボンで還元した後、加水分解してD,L−2−ピリジルアラニンを得る方法(例えば、特許文献4参照。)が知られている。
WO01/02387号公報 特開平3−19696号公報 特許第3121688号公報 特開2003−221382号公報 Pept.Chem.,1994,469(1995)
Regarding the method for producing such an optically active 2-pyridylalanine or D, L-isomer, 1) D-2-L-pyridylmethylhydantoin is biologically converted in the presence of microbial cells, and D-2-pyridyl is obtained. A method for obtaining alanine (for example, see Patent Document 2) 2) Synthesis of D, L-pyridylalanine from chloromethylpyridine and diethyl acetamidomalonate, N-acetylation, and hydrolysis of only the L-form with acylase A method for obtaining L-pyridylalanine and D-acetylpyridylalanine (for example, see Non-Patent Document 1), 3) In the presence of L-phenylalanine ammonia lyase, pyridylacrylic acid and ammonia are reacted to obtain 2-pyridylalanine. 4) 2-formylamino-3- (, for example, as a method for producing a D, L-isomer (see, for example, Patent Document 3). A method is known in which 2-pyridyl) propenoic acid alkyl ester is reduced with palladium carbon and then hydrolyzed to obtain D, L-2-pyridylalanine (see, for example, Patent Document 4).
WO01 / 02387 JP-A-3-19696 Japanese Patent No. 3121688 JP 2003-221382 A Pept. Chem. 1994, 469 (1995).

しかしながら、1)の方法では、多量の生物触媒が必要で、また反応時間も非常に長く、2)の方法では、アセトアミドマロン酸ジエチルと反応させているためにD,L−体(ラセミ体)しか合成できず、これからL−体を得るためにさらにアセチル化してアミラーゼでL−体のみ加水分解しているので、工程が長く、収率も50%以下にしかならず、3)の方法は、酵素反応であるので、反応液中の基質濃度を上げることができず効率が悪く、また、4)の方法でも、アクリル酸誘導体をパラジウムカーボンで還元しているためにラセミ体しか合成できず、これから光学活性体を得るには光学分割をする等の操作を行う必要があり、いずれの方法においても工業的に実施するには不利であり、より効率的に光学活性2−ピリジルアラニンを製造する方法が望まれるところである。   However, in the method 1), a large amount of biocatalyst is required and the reaction time is very long. In the method 2), since it is reacted with diethyl acetamidomalonate, the D, L-form (racemic form) is used. However, since the L-form is further acetylated and only the L-form is hydrolyzed with amylase in order to obtain an L-form from this, the process is long and the yield is only 50% or less. Since it is a reaction, the substrate concentration in the reaction solution cannot be increased and the efficiency is poor. Also, in the method 4), only the racemic body can be synthesized because the acrylic acid derivative is reduced with palladium carbon. In order to obtain an optically active substance, it is necessary to perform an operation such as optical resolution. Any of these methods is disadvantageous for industrial implementation, and optically active 2-pyridylalanine is more efficiently used. It is where the method of granulation is desired.

そこで本発明者は、上記の現状に鑑みて鋭意検討した結果、2−置換アミノ−3−(2−ピリジル)アクリル酸誘導体を遷移金属と光学活性な配位子との錯体を用いて不斉還元して得られた光学活性2−ピリジルアラニン誘導体を加水分解することにより、選択的に高収率で光学活性2−ピリジルアラニンが得られることを見出して本発明を完成するに至った。   Therefore, as a result of intensive studies in view of the above-described present situation, the present inventors have found that a 2-substituted amino-3- (2-pyridyl) acrylic acid derivative is asymmetric using a complex of a transition metal and an optically active ligand. It was found that optically active 2-pyridylalanine derivative obtained by reduction was selectively hydrolyzed to obtain optically active 2-pyridylalanine, and the present invention was completed.

また、本発明においては、光学活性な配位子が光学活性ホスフィンであること、光学活性ホスフィンが下記一般式(1)または(2)で示される化合物であること、遷移金属がロジウムであること、等が本発明の好ましい実施態様である。

Figure 2005247773

Figure 2005247773

(式中、Rは水素原子、メチル基又はtert−ブチル基のいずれかを示す。) In the present invention, the optically active ligand is an optically active phosphine, the optically active phosphine is a compound represented by the following general formula (1) or (2), and the transition metal is rhodium. Are preferred embodiments of the present invention.
Figure 2005247773

Figure 2005247773

(In the formula, R 1 represents a hydrogen atom, a methyl group or a tert-butyl group.)

本発明の製造方法によれば、NO合成阻害剤等の酵素阻害剤の原料として有用な光学活性2−ピリジルアラニンを選択的に、かつ高収率で製造することができる。   According to the production method of the present invention, optically active 2-pyridylalanine useful as a raw material for enzyme inhibitors such as NO synthesis inhibitors can be produced selectively and in high yield.

本発明を詳細に説明する。
本発明においては、まず、2−置換アミノ−3−(2−ピリジル)アクリル酸誘導体を遷移金属と光学活性な配位子との錯体を用いて不斉還元するのであるが、かかる2−置換アミノ−3−(2−ピリジル)アクリル酸誘導体とは、下記一般式(3)で示されるもので、特開2003−221382号公報に開示されるように2−ピリジルアルデヒドとイソシアノ酢酸エステルから合成する方法、もしくはAnales de Quimica, Serie C: Quimica Organicay Bioquimica(1985),81,56に開示されるように2−ピリジルアルデヒドとN―置換グリシンを用いて合成する方法などにより得ることができる。

Figure 2005247773
(式中、Rは水素原子、低級アルキル基、低級アルキル基もしくは低級アルコキシ基で置換されていてもよいフェニル基を示し、Rは水素原子、低級アルキル基、低級アルキル基もしくは低級アルコキシ基で置換されていてもよいフェニル基、または低級アルキル基もしくは低級アルコキシ基で置換されていてもよいベンジル基を示す) The present invention will be described in detail.
In the present invention, first, a 2-substituted amino-3- (2-pyridyl) acrylic acid derivative is asymmetrically reduced using a complex of a transition metal and an optically active ligand. The amino-3- (2-pyridyl) acrylic acid derivative is represented by the following general formula (3) and is synthesized from 2-pyridylaldehyde and isocyanoacetic acid ester as disclosed in JP-A-2003-221382. Or a method of synthesis using 2-pyridylaldehyde and N-substituted glycine as disclosed in Anales de Quimica, Series C: Quimica Organic Bioquimica (1985), 81, 56.
Figure 2005247773
(In the formula, R 2 represents a hydrogen atom, a lower alkyl group, a lower alkyl group or a phenyl group which may be substituted with a lower alkoxy group, and R 3 represents a hydrogen atom, a lower alkyl group, a lower alkyl group or a lower alkoxy group. A phenyl group which may be substituted with a benzyl group which may be substituted with a lower alkyl group or a lower alkoxy group)

上記誘導体としては、具体的に2−ホルミルアミノ−3−(2−ピリジル)プロペン酸メチル、2−ホルミルアミノ−3−(2−ピリジル)プロペン酸エチル、2−ホルミルアミノ−3−(2−ピリジル)プロペン酸n−プロピル、2−アセトアミノ−3−(2−ピリジル)プロペン酸、2−アセトアミノ−3−(2−ピリジル)プロペン酸メチル、2−ベンゾイルアミノ−3−(2−ピリジル)プロペン酸、2−ベンゾイルアミノ−3−(2−ピリジル)プロペン酸メチル等を挙げることができる。   Specific examples of the derivatives include methyl 2-formylamino-3- (2-pyridyl) propenoate, ethyl 2-formylamino-3- (2-pyridyl) propenoate, 2-formylamino-3- (2- N-propyl pyridyl) propenoate, 2-acetamino-3- (2-pyridyl) propenoic acid, methyl 2-acetamino-3- (2-pyridyl) propenoate, 2-benzoylamino-3- (2-pyridyl) propene And acid, methyl 2-benzoylamino-3- (2-pyridyl) propenoate, and the like.

上記の錯体としては、遷移金属の錯体と光学活性な配位子とからなるもので、かかる遷移金属の錯体としては、ロジウム、ルテニウム、イリジウム等の遷移金属の錯体を挙げることができ、具体的には下記一般式(4)で示されるロジウム系の錯体が好適に用いられる。   The complex includes a transition metal complex and an optically active ligand. Examples of the transition metal complex include transition metal complexes such as rhodium, ruthenium, and iridium. A rhodium complex represented by the following general formula (4) is preferably used.

[RhX(diene)] (4)
(式中、Xは塩素原子、臭素原子、またはヨウ素原子のいずれかで、dieneはシクロオクタジエンまたはノルボルナジエン)
[RhX (diene)] 2 (4)
(In the formula, X is a chlorine atom, bromine atom or iodine atom, and diene is cyclooctadiene or norbornadiene)

また、光学活性な配位子としては、BINAP、tol−BINAP、BIPHEMP、DIOP、CHIRAPHOS等の光学活性な配位子を挙げることができ、中でも光学活性な配位子が光学活性ホスフィンであることが好ましく、最終的に上記の遷移金属の錯体とかかる配位子からなる錯体としては、下記一般式(1)または(2)で示される化合物を用いることが選択性、TON(Turn over number)などの点で好ましい。

Figure 2005247773

Figure 2005247773

(式中、Rは水素原子、メチル基又はtert−ブチル基のいずれかを示す。) Examples of the optically active ligand include optically active ligands such as BINAP, tol-BINAP, BIPHEMP, DIOP, and CHIRAPHOS. Among them, the optically active ligand is an optically active phosphine. It is preferable to use a compound represented by the following general formula (1) or (2) as a complex consisting of the above-mentioned transition metal complex and such a ligand. TON (Turn over number) It is preferable at such points.
Figure 2005247773

Figure 2005247773

(In the formula, R 1 represents a hydrogen atom, a methyl group or a tert-butyl group.)

上記のアクリル酸誘導体を遷移金属と光学活性な配位子との錯体を用いて不斉還元するにあたっては、オートクレーブに原料である2―置換アミノ−3−(2−ピリジル)アクリル酸誘導体と等量から150倍量(重量基準)の溶媒(メタノール、エタノール等のアルコール類、ジエチルエーテル、THF等のエーテル類、アセトン等のケトン類、ベンゼン、トルエン等の芳香族炭化水素、ジクロロメタンなど)を仕込むか、あるいはかかるアクリル酸誘導体を上記の溶媒に溶かした溶液を仕込んで、そこに上記の錯体をかかるアクリル酸誘導体1モルに対し0.0001〜0.02モル加えて反応を開始すればよく、かかる反応は、水素圧0.1〜10MPa、温度20〜150℃で3〜48時間反応させることにより、下記一般式(5)で示される光学活性2−ピリジルアラニン誘導体を得ることができる。なお、上記において、かかるアクリル酸誘導体と錯体を混在させた溶液をオートクレーブに仕込んでもよいし、またオートクレーブ中にかかるアクリル誘導体及び錯体を仕込んだ後に溶媒を仕込んでもよい。

Figure 2005247773

(式中、*印は光学活性であることを示し、R、Rは上記一般式(5)と同様である。) When the above-mentioned acrylic acid derivative is asymmetrically reduced using a complex of a transition metal and an optically active ligand, the autoclave is a raw material such as a 2-substituted amino-3- (2-pyridyl) acrylic acid derivative. 150 to 150 times (by weight) of solvent (alcohols such as methanol and ethanol, ethers such as diethyl ether and THF, ketones such as acetone, aromatic hydrocarbons such as benzene and toluene, dichloromethane, etc.) Alternatively, a solution in which the acrylic acid derivative is dissolved in the above solvent is charged, and the reaction may be started by adding 0.0001 to 0.02 mol of the above complex to 1 mol of the acrylic acid derivative. This reaction is carried out at a hydrogen pressure of 0.1 to 10 MPa and a temperature of 20 to 150 ° C. for 3 to 48 hours, whereby the following general formula (5) It is possible to obtain an optical active 2-pyridyl-alanine derivative shown. In the above, a solution in which such an acrylic acid derivative and a complex are mixed may be charged into an autoclave, or a solvent may be charged after charging the acrylic derivative and the complex into the autoclave.
Figure 2005247773

(In the formula, * indicates optical activity, and R 2 and R 3 are the same as those in the general formula (5).)

このようにして得られた光学活性2−ピリジルアラニン誘導体は、次いで常法に従い通常水溶液中で塩酸等の鉱酸を用いて加水分解されて目的とする光学活性2−ピリジルアラニンが得られるのである。その後、必要に応じて濃縮、蒸留、再結晶等の常套手段で適宜精製される。   The optically active 2-pyridylalanine derivative thus obtained is then hydrolyzed with a mineral acid such as hydrochloric acid in an aqueous solution according to a conventional method to obtain the desired optically active 2-pyridylalanine. . Thereafter, it is appropriately purified by conventional means such as concentration, distillation, recrystallization and the like, if necessary.

かくして下記一般式(6)で示される目的とする光学活性2−ピリジルアラニンが得られるのである。

Figure 2005247773

(式中、*印は光学活性であることを示す) Thus, the objective optically active 2-pyridylalanine represented by the following general formula (6) is obtained.
Figure 2005247773

(In the formula, * indicates optical activity)

以下、本発明を実施例を挙げて詳述する。「%」は重量基準である。収率は液体クロマトグラフィー分析により求めた。   Hereinafter, the present invention will be described in detail with reference to examples. “%” Is based on weight. The yield was determined by liquid chromatography analysis.

参考例1
〔Z−2−ホルミルアミノ−3−(2−ピリジル)プロペン酸エチルの合成〕
2−ピリジルアルデヒド5.31g(0.05モル)、及びイソシアノ酢酸エチルエステル5.66g(0.05モル)を塩化メチレン150mlに溶解し、トリエチルアミン0.26g(0.003モル)を加えて25℃で10時間反応した。反応終了後、100mlの水で2回洗浄を行い、ジクロロメタン層を硫酸ナトリウムにより乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィーに付し、Z−2−ホルミルアミノ−3−(2−ピリジル)プロペン酸エチルを6.50g(収率59%)で得た。
Reference example 1
[Synthesis of ethyl Z-2-formylamino-3- (2-pyridyl) propenoate]
Dissolve 5.31 g (0.05 mol) of 2-pyridylaldehyde and 5.66 g (0.05 mol) of isocyanoacetic acid ethyl ester in 150 ml of methylene chloride, add 0.26 g (0.003 mol) of triethylamine and add 25 The reaction was carried out at 0 ° C. for 10 hours. After completion of the reaction, washing was performed twice with 100 ml of water, the dichloromethane layer was dried over sodium sulfate, and the solvent was distilled off under reduced pressure. The obtained residue was subjected to silica gel column chromatography to obtain 6.50 g (yield 59%) of ethyl Z-2-formylamino-3- (2-pyridyl) propenoate.

実施例1
窒素雰囲気下で、[RhCl(cod)]25mg(0.05mmol)(cod:シクロオクタジエン)と(R)−BINAP70mg(0.12mmol)にトルエン30mlを加えた後25℃で30分攪拌して触媒溶液を調製した。
次に、上記参考例1で合成したZ−2−ホルミルアミノ−3−(2−ピリジル)プロペン酸エチル2.2g(10mmol)に、上記の触媒溶液を加えた後、窒素置換した100mlオートクレーブ中に仕込み、水素置換した後、水素圧7MPa、100℃で8時間反応させ、得られた反応液の溶媒を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン/酢酸エチル=4/6)に付し、(S)−2−ホルミルアミノ−3−(2−ピリジル)プロピオン酸エチルを2.1g得た。このときの収率は95%で、光学純度99.5%eeであった。なお、光学純度は高速液体クロマトグラフィー(ダイセル社製:CHIRACEL AD)を用いて測定した。
Example 1
Under a nitrogen atmosphere, 30 ml of toluene was added to 25 mg (0.05 mmol) (cod: cyclooctadiene) [RhCl (cod)] 2 and 70 mg (0.12 mmol) of (R) -BINAP, followed by stirring at 25 ° C. for 30 minutes. A catalyst solution was prepared.
Next, in a 100 ml autoclave purged with nitrogen after adding the above catalyst solution to 2.2 g (10 mmol) of ethyl Z-2-formylamino-3- (2-pyridyl) propenoate synthesized in Reference Example 1 above. The reaction solution was reacted at a hydrogen pressure of 7 MPa and 100 ° C. for 8 hours, the solvent of the resulting reaction solution was distilled off under reduced pressure, and the residue was subjected to silica gel column chromatography (n-hexane / ethyl acetate = 4 / 6), 2.1 g of ethyl (S) -2-formylamino-3- (2-pyridyl) propionate was obtained. The yield at this time was 95%, and the optical purity was 99.5% ee. The optical purity was measured using high performance liquid chromatography (manufactured by Daicel Corporation: CHIRACEL AD).

次いで、上記の(S)−2−ホルミルアミノ−3−(2−ピリジル)プロピオン酸エチル310mg(1.4mmol)に6N塩酸50mlを加え、5時間加熱還流して、冷却後、減圧下溶媒を留去し、残渣をイオン交換クロマトグラフィー(「ダイヤイオンSK−1B」、溶出液10%アンモニア水溶液)に付し、(S)−2−ピリジルアラニンを200mgを得た。このときの収率は86%であった。また、光学純度は99.5%eeで加水分解による光学純度の低下は見られなかった。なお、光学純度は高速液体クロマトグラフィー(住化分析センター社製『Sumichiral OA−5000』)を用いて測定した。   Next, 50 ml of 6N hydrochloric acid was added to 310 mg (1.4 mmol) of ethyl (S) -2-formylamino-3- (2-pyridyl) propionate, and the mixture was heated to reflux for 5 hours. After cooling, the solvent was removed under reduced pressure. The residue was subjected to ion exchange chromatography ("Diaion SK-1B", eluent 10% aqueous ammonia) to obtain 200 mg of (S) -2-pyridylalanine. The yield at this time was 86%. The optical purity was 99.5% ee, and no decrease in optical purity due to hydrolysis was observed. The optical purity was measured by using high performance liquid chromatography (“Sumichiral OA-5000” manufactured by Sumika Chemical Analysis Co., Ltd.).

実施例2
窒素雰囲気下で、[RhCl(cod)]25mg(0.05mmol)、(R)−BINAP70mg(0.12mmol)及び上記参考例1で合成したZ−2−ホルミルアミノ−3−(2−ピリジル)プロペン酸エチル2.2g(10mmol)を100mlオートクレーブ中に仕込み、窒素置換した後、トルエン30mlを加え、25℃で30分攪拌し、これを水素置換した後、水素圧7MPa、100℃で8時間反応させ、得られた反応液の溶媒を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィーに付し、(S)−2−ホルミルアミノ−3−(2−ピリジル)プロピオン酸エチルを2.1g得た。このときの収率は95%で、光学純度は99.0%eeであった。
Example 2
Under a nitrogen atmosphere, [RhCl (cod)] 2 25 mg (0.05 mmol), (R) -BINAP 70 mg (0.12 mmol) and Z-2-formylamino-3- (2-pyridyl) synthesized in Reference Example 1 above. ) After charging 2.2 g (10 mmol) of ethyl propenoate into a 100 ml autoclave and substituting with nitrogen, 30 ml of toluene was added and stirred at 25 ° C. for 30 minutes. The reaction mixture was allowed to react for a period of time, the solvent of the resulting reaction solution was distilled off under reduced pressure, the residue was subjected to silica gel column chromatography, and ethyl (S) -2-formylamino-3- (2-pyridyl) propionate was added in 2. 1 g was obtained. The yield at this time was 95%, and the optical purity was 99.0% ee.

次いで、上記の(S)−2−ホルミルアミノ−3−(2−ピリジル)プロピオン酸エチルを実施例1と同様に加水分解を行い(S)−2−ピリジルアラニンを収率86%で得た。このときの光学純度は99.0%eeであった。   Next, the above ethyl (S) -2-formylamino-3- (2-pyridyl) propionate was hydrolyzed in the same manner as in Example 1 to obtain (S) -2-pyridylalanine in a yield of 86%. . The optical purity at this time was 99.0% ee.

実施例3
実施例1において、Z−2−ホルミルアミノ−3−(2−ピリジル)プロぺン酸エチルに代えてZ−2−ホルミルアミノ−3−(2−ピリジル)プロペン酸メチルを用いた以外は実施例1と同様の操作を行い、(S)−2−ホルミルアミノ−3−(2−ピリジル)プロピオン酸メチルを得た。このときの収率は93%で、光学純度は97.5%eeであった。
Example 3
In Example 1, except that methyl Z-2-formylamino-3- (2-pyridyl) propenoate was used instead of ethyl Z-2-formylamino-3- (2-pyridyl) propenoate The same operation as in Example 1 was performed to obtain methyl (S) -2-formylamino-3- (2-pyridyl) propionate. The yield at this time was 93%, and the optical purity was 97.5% ee.

次いで、上記の(S)−2−ホルミルアミノ−3−(2−ピリジル)プロピオン酸メチルを実施例1と同様に加水分解を行い、(S)−2−ピリジルアラニンを収率86%で得た。このときの光学純度は97.5%eeであった。   Subsequently, the above methyl (S) -2-formylamino-3- (2-pyridyl) propionate was hydrolyzed in the same manner as in Example 1 to obtain (S) -2-pyridylalanine in a yield of 86%. It was. The optical purity at this time was 97.5% ee.

実施例4
実施例1において、Z−2−ホルミルアミノ−3−(2−ピリジル)プロぺン酸エチルに代えてZ−2−ホルミルアミノ−3−(2−ピリジル)プロペン酸n−プロピルを用いた以外は実施例1と同様の操作を行い、(S)−2−ホルミルアミノ−3−(2−ピリジル)プロピオン酸n−プロピルを得た。このときの収率は94%で、光学純度は98.0%eeであった。
Example 4
In Example 1, instead of using ethyl Z-2-formylamino-3- (2-pyridyl) propenoate, n-propyl Z-2-formylamino-3- (2-pyridyl) propenoate was used. Were the same as in Example 1 to obtain n-propyl (S) -2-formylamino-3- (2-pyridyl) propionate. The yield at this time was 94%, and the optical purity was 98.0% ee.

次いで、上記の(S)−2−ホルミルアミノ−3−(2−ピリジル)プロピオン酸n−プロピルを実施例1と同様に加水分解を行い、(S)−2−ピリジルアラニンを収率86%で得た。このときの光学純度は98.0%eeであった。   Subsequently, n-propyl (S) -2-formylamino-3- (2-pyridyl) propionate was hydrolyzed in the same manner as in Example 1 to obtain 86% yield of (S) -2-pyridylalanine. Got in. The optical purity at this time was 98.0% ee.

実施例5
実施例1において、Z−2−ホルミルアミノ−3−(2−ピリジル)プロペン酸エチルに代えてZ−2−アセトアミノ−3−(2−ピリジル)プロペン酸メチルを用いた以外は実施例1と同様の操作を行い、(S)−2−アセトアミノ−3−(2−ピリジル)−プロピオン酸メチルを得た。このときの収率は93%で、光学純度は96.0%eeであった。
Example 5
Example 1 is the same as Example 1 except that methyl Z-2-acetamino-3- (2-pyridyl) propenoate was used instead of ethyl Z-2-formylamino-3- (2-pyridyl) propenoate. The same operation was performed to obtain methyl (S) -2-acetamino-3- (2-pyridyl) -propionate. The yield at this time was 93%, and the optical purity was 96.0% ee.

次いで、上記の(S)−2−アセトアミノ−3−(2−ピリジル)プロピオン酸メチルを実施例1と同様に加水分解を行い、(S)−2−ピリジルアラニンを収率86%で得た。このときの光学純度は96.0%eeであった。   Subsequently, the above methyl (S) -2-acetamino-3- (2-pyridyl) propionate was hydrolyzed in the same manner as in Example 1 to obtain (S) -2-pyridylalanine in a yield of 86%. . The optical purity at this time was 96.0% ee.

実施例6
実施例1において、Z−2−ホルミルアミノ−3−(2−ピリジル)プロペン酸エチルに代えてZ−2−ベンジルアミノ−3−(2−ピリジル)プロペン酸を用いた以外は実施例1と同様の操作を行い、(S)−2−ベンジルアミノ−3−(2−ピリジル)プロピオン酸を収率90%で得た。このときの光学純度は97.0%eeであった。
Example 6
Example 1 is the same as Example 1 except that Z-2-benzylamino-3- (2-pyridyl) propenoic acid was used instead of ethyl Z-2-formylamino-3- (2-pyridyl) propenoate. The same operation was performed to obtain (S) -2-benzylamino-3- (2-pyridyl) propionic acid in a yield of 90%. The optical purity at this time was 97.0% ee.

次いで、上記のZ−2−ベンジルアミノ−3−(2−ピリジル)プロピオン酸を実施例1と同様に加水分解を行い、(S)−2−ピリジルアラニンを収率86%で得た。このときの光学純度は97.0%eeであった。   Next, the above Z-2-benzylamino-3- (2-pyridyl) propionic acid was hydrolyzed in the same manner as in Example 1 to obtain (S) -2-pyridylalanine in a yield of 86%. The optical purity at this time was 97.0% ee.

実施例7
実施例1において、(R)−BINAPに代えて(S)−BINAPを用いた以外は実施例1と同様の操作を行い、(R)−2−ホルミルアミノ−3−(2−ピリジル)プロピオン酸エチルを得た。このときの収率は95%で、光学純度は99.2%eeであった。
Example 7
The same operation as in Example 1 was performed except that (S) -BINAP was used instead of (R) -BINAP in Example 1, and (R) -2-formylamino-3- (2-pyridyl) propion was obtained. Ethyl acid was obtained. The yield at this time was 95%, and the optical purity was 99.2% ee.

次いで、上記の(R)−2−ホルミルアミノ−3−(2−ピリジル)プロピオン酸エチルを実施例1と同様に加水分解を行い、(S)−2−ピリジルアラニンを収率86%で得
た。このときの光学純度は99.2%eeであった。
Next, the above (R) -2-formylamino-3- (2-pyridyl) propionate was hydrolyzed in the same manner as in Example 1 to obtain (S) -2-pyridylalanine in a yield of 86%. It was. The optical purity at this time was 99.2% ee.

実施例8
実施例1において、(R)−BINAPに代えて(R)−BIPHEMPを用いた以外は実施例1と同様の操作を行い、(R)−2−ホルミルアミノ−3−(2−ピリジル)プロピオン酸エチルを得た。このときの収率は94%で、光学純度は98.0%eeであった。
Example 8
In Example 1, (R) -2-formylamino-3- (2-pyridyl) propion was carried out in the same manner as in Example 1, except that (R) -BIPEMP was used instead of (R) -BINAP. Ethyl acid was obtained. The yield at this time was 94%, and the optical purity was 98.0% ee.

次いで、上記の(R)−2−ホルミルアミノ−3−(2−ピリジル)プロピオン酸エチルを実施例1と同様に加水分解を行い、(S)−2−ピリジルアラニンを収率86%で得
た。このときの光学純度は98.0%eeであった。
Next, the above (R) -2-formylamino-3- (2-pyridyl) propionate was hydrolyzed in the same manner as in Example 1 to obtain (S) -2-pyridylalanine in a yield of 86%. It was. The optical purity at this time was 98.0% ee.

比較例1
参考例1で合成したZ−2−ホルミルアミノ−3−(2−ピリジル)プロペン酸エチル6.6gをメタノール50mlに溶解して、オートクレーブに仕込み、更に10%パラジウムカーボン(50%含水品)を1.5gを加え、水素圧0.5MPa、25℃で6時間反応を実施した。反応終了後、反応液を濾過して触媒を除去し濃縮して2−ホルミルアミノ−3−(2−ピリジル)プロピオン酸エチルを4.8g得た。このときの収率は72.1%で、得られた化合物はラセミ体であった。
Comparative Example 1
6.6 g of ethyl Z-2-formylamino-3- (2-pyridyl) propenoate synthesized in Reference Example 1 was dissolved in 50 ml of methanol, charged into an autoclave, and further 10% palladium carbon (50% water-containing product) was added. 1.5 g was added, and the reaction was carried out at a hydrogen pressure of 0.5 MPa and 25 ° C. for 6 hours. After completion of the reaction, the reaction solution was filtered to remove the catalyst and concentrated to obtain 4.8 g of ethyl 2-formylamino-3- (2-pyridyl) propionate. The yield at this time was 72.1%, and the obtained compound was a racemate.

次いで、上記の2−ホルミルアミノ−3−(2−ピリジル)プロピオン酸エチルを実施例1と同様に加水分解を行い、2−ピリジルアラニンを収率86%で得られたが、ラセミ体しか得ることができず、光学活性な2−ピリジルアラニンを得ることはできなかった。   Subsequently, the above-mentioned ethyl 2-formylamino-3- (2-pyridyl) propionate was hydrolyzed in the same manner as in Example 1, and 2-pyridylalanine was obtained in a yield of 86%, but only the racemic body was obtained. And optically active 2-pyridylalanine could not be obtained.

本発明の方法で得られた光学活性2−ピリジルアラニンは、NO合成阻害剤等の酵素阻害剤の原料として有用である。   The optically active 2-pyridylalanine obtained by the method of the present invention is useful as a raw material for enzyme inhibitors such as NO synthesis inhibitors.

Claims (4)

2−置換アミノ−(2−ピリジル)アクリル酸誘導体を遷移金属と光学活性な配位子との錯体を用いて不斉還元して得られた光学活性2−ピリジルアラニン誘導体を加水分解することを特徴とする2−ピリジルアラニンの製造方法。   Hydrolysis of an optically active 2-pyridylalanine derivative obtained by asymmetric reduction of a 2-substituted amino- (2-pyridyl) acrylic acid derivative with a complex of a transition metal and an optically active ligand. A method for producing 2-pyridylalanine, which is characterized. 光学活性な配位子が光学活性ホスフィンであることを特徴とする請求項1記載の2−ピリジルアラニンの製造方法。   The method for producing 2-pyridylalanine according to claim 1, wherein the optically active ligand is an optically active phosphine. 光学活性ホスフィンが下記一般式(1)または(2)で示される化合物であることを特徴とする請求項2記載の2−ピリジルアラニンの製造方法。
Figure 2005247773

Figure 2005247773

(式中、Rは水素原子、メチル基又はtert−ブチル基のいずれかを示す。)
The method for producing 2-pyridylalanine according to claim 2, wherein the optically active phosphine is a compound represented by the following general formula (1) or (2).
Figure 2005247773

Figure 2005247773

(In the formula, R 1 represents a hydrogen atom, a methyl group or a tert-butyl group.)
遷移金属がロジウムであることを特徴とする請求項1〜3いずれか記載の2−ピリジルアラニンの製造方法。   The method for producing 2-pyridylalanine according to any one of claims 1 to 3, wherein the transition metal is rhodium.
JP2004061647A 2004-03-05 2004-03-05 Method for producing 2-pyridylalanine Pending JP2005247773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004061647A JP2005247773A (en) 2004-03-05 2004-03-05 Method for producing 2-pyridylalanine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004061647A JP2005247773A (en) 2004-03-05 2004-03-05 Method for producing 2-pyridylalanine

Publications (1)

Publication Number Publication Date
JP2005247773A true JP2005247773A (en) 2005-09-15

Family

ID=35028609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004061647A Pending JP2005247773A (en) 2004-03-05 2004-03-05 Method for producing 2-pyridylalanine

Country Status (1)

Country Link
JP (1) JP2005247773A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9041945B2 (en) 2011-12-27 2015-05-26 Canon Kabushiki Kaisha System, method and program for controlling setting values in an image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9041945B2 (en) 2011-12-27 2015-05-26 Canon Kabushiki Kaisha System, method and program for controlling setting values in an image forming apparatus

Similar Documents

Publication Publication Date Title
US7772426B2 (en) Method for producing L-2-amino-4-(hydroxymethylphosphinyl)-butanoic acid
NO327958B1 (en) Pregabalin and method for preparing such compounds
JPH0678277B2 (en) Process for producing optically active alcohol and its derivative
JP4018132B2 (en) Production of optically active hydrazine and amine
US7893296B2 (en) Method for producing an optically active β-amino acid
EP2560493B1 (en) An enantioselective process for cycloalkenyl b-substituted alanines
CN1228078A (en) Catalytic preparation process of N-acylglycine derivatives
CN101391960A (en) Method for preparing optically pure 2-hydroxyl-4-aryl-butyric ether
JP5147410B2 (en) A transition metal catalyzed asymmetric hydrogenation method of acrylic acid derivatives and a novel catalyst system for asymmetric transition metal catalyzed reactions
Michaut et al. Ethyl-4, 4, 4-trifluoroacetoacetate (ETFAA), a powerful building block for enantiopure chirons in trifluoromethyl-β-amino acid series
JP2005247773A (en) Method for producing 2-pyridylalanine
JP3493206B2 (en) Process for producing optically active β-amino acids
JP4368632B2 (en) Process for producing optically active β-amino acids
JPWO2012176715A1 (en) 1-amino-2-vinylcyclopropanecarboxylic acid amide and salt thereof, and production method thereof
JP2003261522A (en) Method for producing optically active phenylalanine derivative
JPH09208558A (en) Production of optically active 4-hydroxy-2-pyrrolidone
US6610855B2 (en) Synthesis of 3-amino-3-aryl propanoates
US20070142472A1 (en) Process for producing optically active 3-(4-hydroxyphenyl)proprionic acids
JP2008260755A (en) Method for retrieving l-biphenylalanine compound salt, and method for retrieving biphenylalanine ester compound using the same
JP4658289B2 (en) Process for producing optically active fluorinated amino acid derivative
JPH0641444B2 (en) Method for producing optically active threonine
JPH0967316A (en) Production of optically active 1-arylalkylamine
JPH0791223B2 (en) Process for producing optically active 6-t-butoxy-3,5-dihydroxyhexanoic acid ester
JP2001288153A (en) Method for racemizing optically active amino acid amide
JP2001226333A (en) Method for producing optically active aminoindane derivative and its intermediate