JP2005247612A - Optical fiber and its manufacturing method - Google Patents
Optical fiber and its manufacturing method Download PDFInfo
- Publication number
- JP2005247612A JP2005247612A JP2004057869A JP2004057869A JP2005247612A JP 2005247612 A JP2005247612 A JP 2005247612A JP 2004057869 A JP2004057869 A JP 2004057869A JP 2004057869 A JP2004057869 A JP 2004057869A JP 2005247612 A JP2005247612 A JP 2005247612A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- preform
- profile
- refractive index
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 63
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 238000000137 annealing Methods 0.000 claims abstract description 17
- 238000009826 distribution Methods 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 235000012239 silicon dioxide Nutrition 0.000 claims description 5
- 239000006185 dispersion Substances 0.000 claims description 3
- 238000005530 etching Methods 0.000 abstract description 2
- 230000035882 stress Effects 0.000 description 10
- 239000000835 fiber Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 2
- 239000005373 porous glass Substances 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/02—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
- C03B37/025—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
- C03B37/0253—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
- C03B2201/34—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2205/00—Fibre drawing or extruding details
- C03B2205/40—Monitoring or regulating the draw tension or draw rate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
本発明は、光通信用に好適な光ファイバ及びその製造方法に関する。 The present invention relates to an optical fiber suitable for optical communication and a manufacturing method thereof.
光ファイバは、軸付け法や外付け法と呼ばれる方法で、出発母材上にガラス微粒子(スート)を堆積して多孔質ガラス母材を形成し、これを焼結・透明ガラス化した後、必要に応じて所望の径に縮径して得られたガラスロッド、いわゆる光ファイバ用プリフォーム(以下、単にプリフォームと称する)を線引きして製造される。 Optical fiber is a method called a shaft attachment method or external attachment method, in which glass fine particles (soot) are deposited on a starting base material to form a porous glass base material, which is then sintered and made into a transparent glass. It is manufactured by drawing a glass rod obtained by reducing the diameter to a desired diameter as required, a so-called optical fiber preform (hereinafter simply referred to as a preform).
このようにして得られるプリフォームには、残留歪があり、移動の際の僅かなショックや線引き工程での昇温時に、割れを発生することがある。このため特許文献1では、多孔質ガラス母材の焼結・透明ガラス化後に、特許文献2では、線引き前に歪を除去する加熱処理を行っている。 The preform obtained in this way has residual strain, which may cause a slight shock during movement and cracking during temperature rise in the drawing process. For this reason, in patent document 1, after sintering and transparent vitrification of a porous glass base material, in patent document 2, the heat processing which removes distortion is performed before drawing.
しかしながら、従来の除歪方法では、コアとクラッドとのガラス軟化点の温度差が大きいプリフォームは、その径方向への屈折率分布の状態を表すプロファイル(以下、単にプロファイルと称する)と、これを線引きして得られた光ファイバのプロファイルとで、屈折率の絶対値が変化してしまうことが、多々あった。 However, in the conventional strain relief method, a preform having a large temperature difference between the glass softening points of the core and the clad has a profile (hereinafter simply referred to as a profile) representing the state of the refractive index distribution in the radial direction. In many cases, the absolute value of the refractive index changes depending on the profile of the optical fiber obtained by drawing.
このように、コアとクラッドのガラス軟化点の差が大きいプリフォームは、製造過程での熱履歴の受け方で、製造されたプリフォームの残留応力の大きさが異なり、その大きさによってプロファイルが変化する。
その結果、使用したプリフォームによって、線引きした光ファイバのロット間にバラツキがあったり、プリフォームのプロファイルから求めた光ファイバの推定特性値と、実際に線引きして得た光ファイバの特性値とが大きく異なるということがあった。
In this way, a preform with a large difference between the glass softening point of the core and the clad has a different degree of residual stress in the manufactured preform depending on how it receives the thermal history during the manufacturing process, and the profile changes depending on the size. To do.
As a result, depending on the preform used, there was variation between the lots of the drawn optical fiber, the estimated optical fiber characteristic value obtained from the preform profile, and the optical fiber characteristic value obtained by actual drawing. There was a big difference.
そこで、本発明は、上記事情に鑑み、プリフォームのプロファイルから推定して得られる光ファイバの特性値と、実際に線引きして得られる光ファイバの特性値とで差のない特性値を有する光ファイバ及びその製造方法を提供することを目的としている。 Therefore, in view of the above circumstances, the present invention provides a light having a characteristic value that is not different between a characteristic value of an optical fiber obtained by estimation from a preform profile and a characteristic value of an optical fiber obtained by actual drawing. An object of the present invention is to provide a fiber and a manufacturing method thereof.
光ファイバの製造方法に係る第1の発明は、プリフォームを十分にアニールして除歪した後に該プリフォームの屈折率分布を測定し、該屈折率分布の形状(プロファイル)から線引きして得られる光ファイバの特性を推定した後に、該プリフォームを線引きすることを特徴としている。
第2の発明は、プリフォームを十分にアニールして除歪した後に該プリフォームの屈折率分布を測定し、該屈折率分布の形状(プロファイル)から線引きして得られる光ファイバの特性を推定し、これに基づいて該プリフォームをエッチング加工した後に、線引きすることを特徴としている。
第3の発明は、プリフォームを十分にアニールして除歪した後に該プリフォームの屈折率分布を測定し、該屈折率分布の形状(プロファイル)から線引きして得られる光ファイバの特性を推定し、これに基づいて線引き時の張力を調整して線引きすることを特徴としている。
The first invention relating to the method of manufacturing an optical fiber is obtained by measuring the refractive index distribution of the preform after sufficiently annealing and removing strain from the preform, and drawing from the shape (profile) of the refractive index distribution. After the characteristics of the optical fiber to be obtained are estimated, the preform is drawn.
In the second invention, the preform is sufficiently annealed to remove strain and then the refractive index distribution of the preform is measured, and the characteristics of the optical fiber obtained by drawing from the shape (profile) of the refractive index distribution are estimated. According to this, the preform is etched and then drawn.
According to a third aspect of the present invention, the preform is sufficiently annealed to remove strain and then the refractive index distribution of the preform is measured, and the characteristics of the optical fiber obtained by drawing from the shape (profile) of the refractive index distribution are estimated. Based on this, the drawing is characterized by adjusting the tension at the time of drawing.
本発明において、プリフォームのプロファイルの測定は、電気炉を用いて所定の温度で所定の時間アニールした後に行うのが好ましい。なお、所定の温度としては、プリフォームの最大除歪温度の±100℃の範囲内の温度で適宜設定するとよく、また上記所定の時間としては、1時間以上とするのが好ましい。
上記製造方法を用いることで、優れた光学特性を有する希土類ドープ光ファイバ、分散補償光ファイバ、純粋シリカコア光ファイバが得られる。
In the present invention, the preform profile is preferably measured after annealing at a predetermined temperature for a predetermined time using an electric furnace. The predetermined temperature may be appropriately set within a range of ± 100 ° C. of the maximum dedistortion temperature of the preform, and the predetermined time is preferably 1 hour or more.
By using the above manufacturing method, a rare earth doped optical fiber, a dispersion compensating optical fiber, and a pure silica core optical fiber having excellent optical characteristics can be obtained.
本発明は、十分にアニールして除歪した後にプリフォームのプロファイルを測定して、線引きして得られる光ファイバの特性を推定し、これに基づいて、エッチング加工してプロファイルを修正したプリフォームを線引きすることで、あるいは線引き時の張力を調整して線引きすることで、所望の特性を有する光ファイバを製造することができる。 The present invention measures the preform profile after sufficient annealing and strain removal, estimates the characteristics of the optical fiber obtained by drawing, and based on this, the preform is modified by etching. An optical fiber having desired characteristics can be manufactured by drawing the wire or by drawing the wire by adjusting the tension during drawing.
以下、図に基づいて本発明をさらに詳細に説明する。
図1は、アニール前後で測定したプリフォームのプロファイルを示すグラフであり、プリフォームのプロファイルに与えるアニール効果を示している。なお、縦軸は比屈折率差(△)、横軸はコア中心を零位置(中心)とする径方向位置である。
Hereinafter, the present invention will be described in more detail with reference to the drawings.
FIG. 1 is a graph showing the preform profile measured before and after annealing, and shows the annealing effect given to the preform profile. The vertical axis represents the relative refractive index difference (Δ), and the horizontal axis represents the radial position with the core center as the zero position (center).
図1から、アニールによって残留応力の除かれたプリフォームの真のプロファイルと、アニール前の残留応力が存在するプリフォームのプロファイルとは、大きく相違する様子が見て取れる。これから、残留応力が存在するアニール前のプリフォームのプロファイルから、線引きして得られる光ファイバの特性を推定し、これに基づいてプリフォームをエッチング加工したり、線引き時の張力を調整して線引きしても、設計値通りの特性を有する光ファイバを得ることはできないことが分かる。 From FIG. 1, it can be seen that the true profile of the preform from which the residual stress has been removed by annealing is greatly different from the profile of the preform in which the residual stress before annealing exists. From this, the properties of the optical fiber obtained by drawing are estimated from the preform profile before annealing, where residual stress exists, and the preform is etched based on this, and the drawing tension is adjusted by adjusting the tension during drawing. Even so, it can be seen that an optical fiber having characteristics as designed cannot be obtained.
図2は、アニール無しのプリフォームのプロファイルと、これを線引きして得た光ファイバ(RNF)のプロファイルとを比較したグラフであり、両者のプロファイルが異なったものとなっている。さらに、プリフォームの製造ロットによって残留応力量が異なり、アニール無しのプリフォームのプロファイルから、線引きして得られる光ファイバの特性値を正確に推定することは困難であることが分かった。 FIG. 2 is a graph comparing the profile of the preform without annealing and the profile of the optical fiber (RNF) obtained by drawing the preform, and the profiles of the two are different. Furthermore, the amount of residual stress varies depending on the preform production lot, and it has been found that it is difficult to accurately estimate the characteristic value of the optical fiber obtained by drawing from the profile of the preform without annealing.
図3は、アニール処理されたプリフォームのプロファイルと、これを線引きして得られる光ファイバ(RNF)のプロファイルとを比較したグラフであり、両者のプロファイルは極めて良く一致している。従って、十分にアニールして除歪したプリフォームのプロファイルから、線引きして得られる光ファイバの特性値を正確に推定することでき、これに基づいて、プリフォームをエッチング加工してそのプロファイルを修正することで、あるいは線引き時の張力を調整することで、設計値通りの特性を有する光ファイバを得ることができる。 FIG. 3 is a graph comparing the profile of the annealed preform with the profile of an optical fiber (RNF) obtained by drawing the preform, and the profiles of both are very well matched. Therefore, it is possible to accurately estimate the characteristic value of the optical fiber obtained by drawing from the preform profile that has been sufficiently annealed and strain-removed, and based on this, the preform is etched and the profile is modified. By adjusting the tension at the time of drawing or by adjusting the tension, an optical fiber having characteristics as designed can be obtained.
本発明は、上記知見に基づき達成されたものである。すなわち、プリフォームのプロファイルを測定する段階で、プリフォームから熱履歴による残留応力を取り除き、プリフォームの真のプロファイルを求め、これに基づいて線引きして得られる光ファイバの特性を推定し、所定の特性が得られるように、プリフォームをエッチング加工するか、あるいは線引き時の張力を調整して線引きするものである。 The present invention has been achieved based on the above findings. That is, at the stage of measuring the preform profile, the residual stress due to thermal history is removed from the preform, the true profile of the preform is obtained, and the characteristics of the optical fiber obtained by drawing based on this are estimated, In order to obtain the above characteristics, the preform is etched or the tension at the time of drawing is adjusted to draw.
これには、プリフォームの真のプロファイルを基準とし、線引き時の応力(張力)と真のプロファイルとの関係を予め把握しておくことにより、設計値通りの特性を有する光ファイバを得ることができ、また、歩留まりも向上する。 For this purpose, an optical fiber having characteristics as designed can be obtained by preliminarily grasping the relationship between the stress (tension) at the time of drawing and the true profile on the basis of the true profile of the preform. And the yield is improved.
プリフォームに存在する残留応力の影響がプロファイルに出やすい光ファイバとしては、例えば、エルビウムドープファイバ、分散補償ファイバ、ピュアシリカコアファイバ等が挙げられるが、一般的には、コアとクラッドとのガラス粘度差、軟化温度差の大きい光ファイバである。 Examples of the optical fiber in which the influence of residual stress existing in the preform is likely to appear in the profile include erbium-doped fiber, dispersion compensation fiber, pure silica core fiber, and the like. An optical fiber with a large difference in viscosity and softening temperature.
コアがピュアシリカ、クラッドがフッ素ドープ石英ガラスからなるピュアシリカコアファイバプリフォームを5本作製した。各プリフォームをそれぞれ二分割し、1本はアニールをせずに、もう1本は1000℃で3時間のアニールをした後に、それぞれプリフォームアナライザーで屈折率分布を測定してプロファイルを求めた。 Five pure silica core fiber preforms having a core made of pure silica and a clad made of fluorine-doped quartz glass were produced. Each preform was divided into two parts, one was not annealed and the other was annealed at 1000 ° C. for 3 hours, and then the refractive index distribution was measured with a preform analyzer to obtain a profile.
アニール有りとアニール無しの各プリフォームに対して、そのプロファイルから線引きしたときに得られる光ファイバの推定カットオフ波長を求め、さらに、各プリフォームを同一条件(線引き張力70g)で線引きして得た光ファイバのカットオフ波長をそれぞれ実測し、その結果を表1に推定値と実測値とのずれ(差)としてまとめて示した。 For each preform with and without annealing, the estimated cutoff wavelength of the optical fiber obtained when drawing from the profile is obtained, and each preform is drawn under the same conditions (drawing tension of 70 g). The cut-off wavelengths of the optical fibers were actually measured, and the results are summarized in Table 1 as the deviation (difference) between the estimated value and the actually measured value.
表1からは、プリフォームを十分に除歪することで、カットオフ波長の推定値と実測値のずれ(差)を極めて小さくできることが認められる。さらに、アニールした場合は、カットオフ波長の推定値と実測値のずれ量がある一定の関係にあるのに対し、アニールしていない場合は、プリフォーム製造時の熱履歴に差があるため、プリフォームの各ロット間で上記ずれ量が大きくばらついている。 From Table 1, it is recognized that the deviation (difference) between the estimated value of the cutoff wavelength and the actually measured value can be extremely reduced by sufficiently removing the distortion from the preform. Furthermore, when annealed, there is a certain relationship between the amount of deviation between the estimated value of the cutoff wavelength and the measured value, whereas when not annealed, there is a difference in the thermal history during preform manufacture, The amount of deviation varies widely between lots of preforms.
実際には、プリフォームをアニールして除歪しても、線引き時に受ける熱応力で光ファイバ中に応力が残留すると考えられるが、線引き条件が一定であれば、熱応力を受ける割合も一定となり、光ファイバ特性をばらつかせる要因をかなり小さく抑えることが可能となる。これに対して、プリフォームの段階で熱履歴の差を小さく抑えようとしても、プリフォーム径等が異なると熱履歴も変わってしまうため、プリフォームを十分にアニール処理して熱履歴の影響をなくすのが、最もロット間のばらつきを抑えるという点では有効である。 Actually, even if the preform is annealed to remove strain, it is considered that the stress remains in the optical fiber due to the thermal stress received during drawing, but if the drawing conditions are constant, the rate of receiving thermal stress will be constant. It is possible to suppress the factors that cause variations in optical fiber characteristics to be considerably small. On the other hand, even if an attempt is made to suppress the difference in thermal history at the preform stage, if the preform diameter is different, the thermal history will also change. Eliminating is effective in terms of suppressing the variation among lots most.
カットオフ波長は、コア径と屈折率の平方根に比例するため、実際に推定カットオフ波長が大きくずれてしまった原因としては、屈折率の絶対値が変動してしまったことが考えられる。そのため、プリフォームの残留応力を十分なアニールによって取り除いた基準とするプロファイルと、光ファイバ化後のプロファイルとのずれ量を予め把握しておけば、プリフォームから求めた推定光ファイバ特性と実際の光ファイバ特性とを整合させることが可能となる。 Since the cutoff wavelength is proportional to the core diameter and the square root of the refractive index, the cause of the actual deviation of the estimated cutoff wavelength may be that the absolute value of the refractive index has fluctuated. Therefore, if we know in advance the amount of deviation between the standard profile obtained by removing the residual stress of the preform by sufficient annealing and the profile after the optical fiber conversion, the estimated optical fiber characteristics obtained from the preform and the actual It becomes possible to match the optical fiber characteristics.
本発明によれば、製造コストの低減に寄与し、かつ特性の安定した光ファイバが得られる。 According to the present invention, an optical fiber that contributes to a reduction in manufacturing cost and has stable characteristics can be obtained.
Claims (7)
An optical fiber manufactured using the manufacturing method according to claim 1, wherein the optical fiber is any one of a rare earth-doped optical fiber, a dispersion compensating optical fiber, and a pure silica core optical fiber. Optical fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004057869A JP4494828B2 (en) | 2004-03-02 | 2004-03-02 | Optical fiber manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004057869A JP4494828B2 (en) | 2004-03-02 | 2004-03-02 | Optical fiber manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005247612A true JP2005247612A (en) | 2005-09-15 |
JP4494828B2 JP4494828B2 (en) | 2010-06-30 |
Family
ID=35028473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004057869A Expired - Fee Related JP4494828B2 (en) | 2004-03-02 | 2004-03-02 | Optical fiber manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4494828B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014196219A (en) * | 2013-03-29 | 2014-10-16 | 住友電気工業株式会社 | Method of producing glass preform for optical fiber, glass preform for optical fiber and method of calculating optical characteristic of optical fiber |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000290033A (en) * | 1999-04-08 | 2000-10-17 | Shin Etsu Chem Co Ltd | Optical fiber preform and production of optical fiber preform |
JP2000351644A (en) * | 1999-06-14 | 2000-12-19 | Shin Etsu Chem Co Ltd | Production of optical fiber preform |
JP2003012337A (en) * | 2001-06-28 | 2003-01-15 | Shin Etsu Chem Co Ltd | Method for designing and producing preform for optical fiber |
JP2004035367A (en) * | 2002-07-05 | 2004-02-05 | Sumitomo Electric Ind Ltd | Method and apparatus for manufacturing glass wire material |
JP2004043231A (en) * | 2002-07-10 | 2004-02-12 | Sumitomo Electric Ind Ltd | Method for manufacturing optical fiber, and optical fiber |
-
2004
- 2004-03-02 JP JP2004057869A patent/JP4494828B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000290033A (en) * | 1999-04-08 | 2000-10-17 | Shin Etsu Chem Co Ltd | Optical fiber preform and production of optical fiber preform |
JP2000351644A (en) * | 1999-06-14 | 2000-12-19 | Shin Etsu Chem Co Ltd | Production of optical fiber preform |
JP2003012337A (en) * | 2001-06-28 | 2003-01-15 | Shin Etsu Chem Co Ltd | Method for designing and producing preform for optical fiber |
JP2004035367A (en) * | 2002-07-05 | 2004-02-05 | Sumitomo Electric Ind Ltd | Method and apparatus for manufacturing glass wire material |
JP2004043231A (en) * | 2002-07-10 | 2004-02-12 | Sumitomo Electric Ind Ltd | Method for manufacturing optical fiber, and optical fiber |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014196219A (en) * | 2013-03-29 | 2014-10-16 | 住友電気工業株式会社 | Method of producing glass preform for optical fiber, glass preform for optical fiber and method of calculating optical characteristic of optical fiber |
Also Published As
Publication number | Publication date |
---|---|
JP4494828B2 (en) | 2010-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0139532B1 (en) | Method for the production of glass preform for optical fibers | |
JP5394734B2 (en) | Cage made of quartz glass for processing semiconductor wafers and method of manufacturing the cage | |
JP6764346B2 (en) | Optical fiber and preform forming method | |
JP2017027050A (en) | Optical fiber with low loss and nanoscale structurally homogeneous core | |
CN111801609B (en) | Optical fiber | |
JP2013142049A (en) | Method for producing optical fiber preform | |
EP2933240B1 (en) | Optical fiber manufacturing method and optical fiber | |
JP2010001193A (en) | Method for manufacturing optical fiber preform | |
JP4158910B2 (en) | Manufacturing method of rare earth element doped glass and optical amplification fiber using the same | |
JP4494828B2 (en) | Optical fiber manufacturing method | |
JP2013238676A (en) | Low-loss optical fiber over wide wavelength range and method of manufacturing the same | |
CN110028235B (en) | Optical fiber preform based on continuous melting quartz sleeve and manufacturing method thereof | |
JP2010070432A (en) | Method for processing highly homogenous material | |
JP5345352B2 (en) | Manufacturing method of optical fiber preform | |
JP2006030655A (en) | Optical fiber, method for evaluating and manufacturing the same | |
EP1270522B1 (en) | Method for fabricating optical fiber from preforms, using control of the partial pressure of oxygen during preform dehydration | |
CN106604899B (en) | Optical fiber preform, optical fiber and method for manufacturing optical fiber | |
EP3450409A1 (en) | Method and furnace for preparing an optical fiber preform using etchant and neutralizing gases | |
US11072560B2 (en) | Neutralizing gas system for furnace | |
JP2002047013A (en) | Method of manufacturing glass article | |
EP2497755A1 (en) | Method of manufacturing fluorine-containing optical fiber base material and fluorine-containing optical fiber base material | |
CN113105119B (en) | Lanthanum antimonate glass optical fiber and preparation method and application thereof | |
NL2019811B1 (en) | Gas system for furnace | |
JP2004345903A (en) | Method for manufacturing quartz glass, quartz glass, optic component and optical fiber | |
JP2006327858A (en) | Method of treating quartz glass base material and method of manufacturing optical fiber preform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080918 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090630 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100318 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100331 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100408 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4494828 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130416 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130416 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160416 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |