JP2005246587A - Polishing apparatus, polishing method, optical element, and semicondutor exposure apparatus - Google Patents

Polishing apparatus, polishing method, optical element, and semicondutor exposure apparatus Download PDF

Info

Publication number
JP2005246587A
JP2005246587A JP2004064247A JP2004064247A JP2005246587A JP 2005246587 A JP2005246587 A JP 2005246587A JP 2004064247 A JP2004064247 A JP 2004064247A JP 2004064247 A JP2004064247 A JP 2004064247A JP 2005246587 A JP2005246587 A JP 2005246587A
Authority
JP
Japan
Prior art keywords
polishing
gas
polishing liquid
liquid
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004064247A
Other languages
Japanese (ja)
Other versions
JP4474950B2 (en
Inventor
Terunori Kobayashi
輝紀 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004064247A priority Critical patent/JP4474950B2/en
Publication of JP2005246587A publication Critical patent/JP2005246587A/en
Application granted granted Critical
Publication of JP4474950B2 publication Critical patent/JP4474950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing apparatus and a polishing method, which keeps the polishing speed constant by suppressing variations in chemical properties of a polishing fluid, and further to provide an optical element polished by this polishing method, and also to provide a semicondutor exposure apparatus having this optical element. <P>SOLUTION: The polishing apparatus 8 comprises the polishing fluid 3 filling a vessel 13, and an injection nozzle 1 for introducing gas 4 in the polishing fluid 3, and polishes an object 2 to be polished by blowing the polishing fluid 3 and the gas 4 against the object 2 to be polished. A polishing fluid adjusting means is provided to keep the polishing speed by the polishing fluid 3 constant while monitoring physical properties of the polishing fluid 3 during polishing the object 2 to be polished. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、研磨液に研磨対象物を浸して、この研磨対象物の表面に気体を噴射することにより、研磨を行う研磨装置及び研磨方法、この研磨方法により研磨された光学素子、更に、この光学素子を搭載した半導体露光装置に関するものである。   The present invention includes a polishing apparatus and a polishing method for polishing by immersing a polishing object in a polishing liquid and injecting a gas onto the surface of the polishing object, an optical element polished by the polishing method, The present invention relates to a semiconductor exposure apparatus equipped with an optical element.

従来、水等の液体と研磨材とを混合した研磨液を噴射ノズルから噴射させて研磨対象物の表面を研磨する、という方法が知られている。この場合には、研磨材が直接噴射ノズルの通路中を通過するので、噴射ノズルの先端に研磨材が付着して目詰まりを起こすという問題がある。また、研磨材が高速で噴射ノズルの細い通路を通過することになるので、通路内壁の摩耗の原因になり、通路内壁が摩耗すると、噴射ノズルの通路の径が変わることになり、このような状況で研磨を実施すると、研磨液の流量変化に伴う研磨速度の変化により、研磨対象物の表面にむらができる原因になる。   Conventionally, a method of polishing a surface of an object to be polished by spraying a polishing liquid obtained by mixing a liquid such as water and an abrasive from an injection nozzle is known. In this case, since the abrasive directly passes through the passage of the injection nozzle, there is a problem that the abrasive adheres to the tip of the injection nozzle and causes clogging. In addition, since the abrasive passes through the narrow passage of the injection nozzle at a high speed, it causes wear of the inner wall of the passage, and when the inner wall of the passage is worn, the diameter of the passage of the injection nozzle changes. When polishing is performed under such circumstances, the surface of the object to be polished becomes uneven due to a change in the polishing rate accompanying a change in the flow rate of the polishing liquid.

一方、被加工物のバリ取りを行う装置として特許文献1に記載の液中表面加工装置が公開されている。ここでは、この装置は、タンク内の研磨剤混入液中に被加工物が載置され、この被加工物の加工対象表面へ向けてノズル装置から加工流体が高圧噴射されるようになっており、この加工流体として各種液体及び気体が利用可能である旨記載されている。但し、この特許文献1では、加工流体として気体を用いた実施形態は記載されていないものである。
特開2002−113663号公報
On the other hand, a liquid surface processing apparatus described in Patent Document 1 is disclosed as an apparatus for deburring a workpiece. Here, in this apparatus, a workpiece is placed in an abrasive mixed liquid in a tank, and a machining fluid is jetted from a nozzle device toward the surface of the workpiece to be processed at a high pressure. It is described that various liquids and gases can be used as the processing fluid. However, in this patent document 1, the embodiment using gas as a processing fluid is not described.
JP 2002-113663 A

しかし、この特許文献1に記載のものは、バリ取りを行う装置であるため、高精度の表面研磨が要求される光学素子等の研磨に適用するのは難しいものである。   However, since the device described in Patent Document 1 is a deburring device, it is difficult to apply it to polishing of optical elements and the like that require high-precision surface polishing.

そこで、本発明者らは、研磨材と水などの液体からなる研磨液で満たした研磨液槽内に研磨対象物を浸して噴射ノズルから気体を噴射する研磨装置を特許出願している(但し、現時点では未公開)。この噴射ノズルから気体を噴射することにより、この気体に巻き込まれた研磨液が、研磨対象物の表面に衝突することにより、この表面が研磨されるのである。   Therefore, the inventors have applied for a patent on a polishing apparatus that immerses a polishing object in a polishing liquid tank filled with a polishing liquid consisting of a polishing material and a liquid such as water and injects a gas from an injection nozzle (however, , Not yet published). By injecting the gas from the injection nozzle, the polishing liquid entrained in the gas collides with the surface of the object to be polished, whereby the surface is polished.

この際には、研磨液中の研磨材粒子の材料や粒径、噴射する研磨材粒子のエネルギー等の諸条件により、研磨材粒子の衝突による機械的な磨耗作用から、研磨対象物の表面と研磨材粒子の表面との固相反応に起因する化学反応性の高い作用まで、種々の研磨作用を研磨対象物の表面に及ぼすことができ、広範な分野に適用可能な、柔軟性の高い研磨が実施できることが本発明者により研究されている。   At this time, depending on various conditions such as the material and particle size of the abrasive particles in the polishing liquid and the energy of the abrasive particles to be sprayed, the surface of the object to be polished is affected by the mechanical wear action caused by the collision of the abrasive particles. Highly flexible polishing that can be applied to a wide range of fields, allowing various polishing effects to be exerted on the surface of the object to be polished, up to the action of high chemical reactivity resulting from the solid-phase reaction with the surface of the abrasive particles Has been studied by the present inventors.

特に、半導体露光装置に使用される精密光学部品の加工など、高精度な形状加工と良好な表面粗さとが必要とされる研磨加工では、化学反応性の高い研磨作用を主因として研磨加工を進めることが好適とされる。   In particular, in polishing processing that requires high-precision shape processing and good surface roughness, such as processing of precision optical components used in semiconductor exposure equipment, the polishing processing proceeds mainly due to a highly reactive polishing action. Is preferred.

しかしながら、このようなものでは、化学反応を主因として研磨を進めるため、研磨液の化学的特性が研磨工程の間に変化しまうと、これに応じて研磨速度も変化してしまうという問題があった。特に、研磨液の粘性(研磨材粒子の濃度)及び研磨液のPH値が研磨工程の間に変化することによって、研磨速度が大きく変化していた。このように、研磨速度が研磨工程の間に次第に変化してしまうことは、光学素子の、高精度の形状創成研磨加工を行う場合、大きな加工誤差をもたらしてしまうということを発明者は見出した。   However, in such a case, since polishing proceeds mainly due to a chemical reaction, there is a problem that if the chemical characteristics of the polishing liquid change during the polishing process, the polishing rate also changes accordingly. . In particular, the polishing rate was greatly changed by the change in the viscosity of the polishing liquid (the concentration of abrasive particles) and the PH value of the polishing liquid during the polishing process. Thus, the inventors have found that the fact that the polishing rate gradually changes during the polishing process results in a large processing error when performing high-precision shape creation polishing of the optical element. .

かかる状況を鑑みて、本発明は、化学的特性の変化を抑制することにより、研磨速度を一定に保つことができる研磨装置及び研磨方法、この研磨方法により研磨された光学素子、更に、この光学素子を搭載した半導体露光装置を提供することを目的とする。   In view of such circumstances, the present invention provides a polishing apparatus and a polishing method capable of keeping the polishing rate constant by suppressing changes in chemical characteristics, an optical element polished by this polishing method, and an optical An object of the present invention is to provide a semiconductor exposure apparatus equipped with an element.

請求項1に記載の発明は、容器の中に満たされた研磨液と、前記研磨液中に気体を導入する噴射ノズルとを備え、研磨対象物に前記研磨液及び前記気体を衝突させることによって、前記研磨対象物を研磨する研磨装置であって、前記研磨対象物の研磨中に、前記研磨液の物性値をモニターしながら、該物性値を一定に保つための研磨液調整手段を備えた研磨装置としたことを特徴とする。   The invention according to claim 1 includes a polishing liquid filled in a container, and an injection nozzle that introduces a gas into the polishing liquid, and causes the polishing liquid and the gas to collide with an object to be polished. A polishing apparatus for polishing the object to be polished, comprising polishing liquid adjusting means for keeping the physical property value constant while monitoring the physical property value of the polishing liquid during polishing of the polishing object. A polishing apparatus is provided.

請求項2に記載の発明は、請求項1の構成に加えて、前記物性値は、粘性値又はPH値であることを特徴とする。   According to a second aspect of the present invention, in addition to the configuration of the first aspect, the physical property value is a viscosity value or a PH value.

請求項3に記載の発明は、請求項1又は2の構成に加えて、前記研磨液調整手段として、前記粘性値をモニターしながら、粘性調整剤を添加して所望の粘性値に調整する粘性調整手段を備えていることを特徴とする。   In addition to the configuration of claim 1 or 2, the invention described in claim 3 is a viscosity that adjusts to a desired viscosity value by adding a viscosity adjusting agent as the polishing liquid adjusting means while monitoring the viscosity value. An adjusting means is provided.

請求項4に記載の発明は、請求項1又は2の構成に加えて、前記研磨液調整手段として、前記PH値をモニターしながら、PH調整剤を添加して所望のPH値に調整するPH調整手段を備えていることを特徴とする。   In addition to the structure of claim 1 or 2, the invention described in claim 4 is a PH that adjusts to a desired PH value by adding a PH adjusting agent as the polishing liquid adjusting means while monitoring the PH value. An adjusting means is provided.

請求項5に記載の発明は、容器の中に満たされた研磨液と、前記研磨液中に気体を導入する噴射ノズルとを備え、研磨対象物に前記研磨液及び前記気体を衝突させることによって、前記研磨対象物を研磨する研磨装置であって、前記気体として、不活性ガスを導入することが可能なガス供給手段を備えた研磨装置としたことを特徴とする。   The invention according to claim 5 is provided with a polishing liquid filled in a container and an injection nozzle for introducing a gas into the polishing liquid, and by causing the polishing liquid and the gas to collide with an object to be polished. A polishing apparatus for polishing the object to be polished, wherein the polishing apparatus includes a gas supply unit capable of introducing an inert gas as the gas.

請求項6に記載の発明は、請求項5の構成に加えて、前記不活性ガスは、窒素ガス、ヘリウムガス、アルゴンガス、クリプトンガス、キセノンガスから選ばれる一つであることを特徴とする。   According to a sixth aspect of the invention, in addition to the configuration of the fifth aspect, the inert gas is one selected from nitrogen gas, helium gas, argon gas, krypton gas, and xenon gas. .

請求項7に記載の発明は、容器の中に満たされた研磨液と、前記研磨液中に気体を導入する噴射ノズルとを備え、研磨対象物に前記研磨液及び前記気体を衝突させることによって、前記研磨対象物を研磨する研磨装置であって、研磨特性を悪化させる成分を前記気体から除去する気体成分除去機構を備えた研磨装置としたことを特徴とする。   The invention according to claim 7 includes a polishing liquid filled in a container, and an injection nozzle that introduces a gas into the polishing liquid, and causes the polishing liquid and the gas to collide with an object to be polished. A polishing apparatus for polishing the object to be polished, the polishing apparatus including a gas component removal mechanism for removing a component that deteriorates polishing characteristics from the gas.

請求項8に記載の発明は、請求項7の構成に加えて、前記研磨特性を悪化させる成分は、二酸化炭素ガスであることを特徴とする。   According to an eighth aspect of the invention, in addition to the configuration of the seventh aspect, the component that deteriorates the polishing characteristics is carbon dioxide gas.

請求項9に記載の発明は、請求項7の構成に加えて、前記気体成分除去機構はフィルターであることを特徴とする。   According to a ninth aspect of the present invention, in addition to the configuration of the seventh aspect, the gas component removing mechanism is a filter.

請求項10に記載の発明は、容器の中に満たされた研磨液と、前記研磨液中に気体を導入する噴射ノズルとを備え、研磨対象物に前記研磨液及び前記気体を衝突させることによって、前記研磨対象物を研磨する研磨方法であって、前記研磨対象物の研磨中に、前記研磨液の物性値をモニターしながら、該物性値を一定に保った状態で研磨する研磨方法としたことを特徴とする。   The invention according to claim 10 includes a polishing liquid filled in a container, and an injection nozzle that introduces a gas into the polishing liquid, and causes the polishing liquid and the gas to collide with an object to be polished. A polishing method for polishing the polishing object, wherein the polishing object is polished while the physical property value is kept constant while monitoring the physical property value of the polishing liquid during polishing of the polishing object. It is characterized by that.

請求項11に記載の発明は、請求項10に記載の研磨方法により研磨された光学素子としたことを特徴とする。   The invention according to claim 11 is an optical element polished by the polishing method according to claim 10.

請求項12に記載の発明は、請求項11に記載の光学素子を光学系に配置した半導体露光装置としたことを特徴とする。   A twelfth aspect of the present invention is a semiconductor exposure apparatus in which the optical element according to the eleventh aspect is arranged in an optical system.

請求項1に記載の発明によれば、容器の中に満たされた研磨液と、前記研磨液中に気体を導入する噴射ノズルとを備え、研磨対象物に前記研磨液及び前記気体を衝突させることによって、前記研磨対象物を研磨する研磨装置であって、前記研磨対象物の研磨中に、前記研磨液の物性値をモニターしながら、該物性値を一定に保つための研磨液調整手段を備えているので、研磨工程の間、研磨速度を一定に保持することができるので、高精度の研磨が可能となる。   According to the first aspect of the present invention, the apparatus includes a polishing liquid filled in a container and an injection nozzle that introduces a gas into the polishing liquid, and causes the polishing liquid and the gas to collide with an object to be polished. A polishing apparatus for polishing the object to be polished, comprising: a polishing liquid adjusting means for keeping the physical property value constant while monitoring the physical property value of the polishing liquid during polishing of the polishing object Since it is provided, the polishing rate can be kept constant during the polishing step, so that high-precision polishing is possible.

請求項2に記載の発明によれば、請求項1の効果に加えて、前記物性値は、粘性値又はPH値であるので、研磨工程の間研磨液の粘性値又はPH値を一定に保つことにより、研磨速度をより一定に保持することができる。   According to the second aspect of the invention, in addition to the effect of the first aspect, the physical property value is a viscosity value or a PH value, so that the viscosity value or the PH value of the polishing liquid is kept constant during the polishing process. As a result, the polishing rate can be kept more constant.

請求項3に記載の発明によれば、請求項1又は2の効果に加えて、前記研磨液調整手段として、前記粘性値をモニターしながら、粘性調整剤を添加して所望の粘性値に調整する粘性調整手段を備えているので、研磨工程の間、研磨液の粘性値を一定値に保つことができ、研磨速度を一定に保持することができるので、高精度の研磨が可能となる。   According to the third aspect of the present invention, in addition to the effect of the first or second aspect, as the polishing liquid adjusting means, a viscosity adjusting agent is added to adjust to a desired viscosity value while monitoring the viscosity value. Since the viscosity adjusting means is provided, the viscosity value of the polishing liquid can be kept constant during the polishing step, and the polishing speed can be kept constant, so that highly accurate polishing is possible.

請求項4に記載の発明によれば、請求項1又は2の効果に加えて、前記研磨液調整手段として、前記PH値をモニターしながら、PH調整剤を添加して所望のPH値に調整するPH調整手段を備えているので、研磨工程の間、研磨液のPH値を一定値に保つことができ、研磨速度を一定に保持することができるので、高精度の研磨が可能となる。   According to the invention described in claim 4, in addition to the effect of claim 1 or 2, as the polishing liquid adjusting means, a pH adjusting agent is added to adjust to a desired PH value while monitoring the PH value. Since the pH adjusting means is provided, the PH value of the polishing liquid can be kept constant during the polishing step, and the polishing speed can be kept constant, so that highly accurate polishing is possible.

請求項5に記載の発明によれば、容器の中に満たされた研磨液と、前記研磨液中に気体を導入する噴射ノズルとを備え、研磨対象物に前記研磨液及び前記気体を衝突させることによって、前記研磨対象物を研磨する研磨装置であって、前記気体として、不活性ガスを導入することが可能なガス供給手段を備えているので、研磨工程の間、研磨液のPH値が変動せず、従って研磨速度が変動しないので、高精度の研磨が可能であり、更に、請求項4に記載の発明に比べて装置の構成が簡略になるという利点がある。   According to the fifth aspect of the present invention, the apparatus includes a polishing liquid filled in a container, and an injection nozzle that introduces a gas into the polishing liquid, and causes the polishing liquid and the gas to collide with an object to be polished. Thus, the polishing apparatus for polishing the object to be polished is provided with a gas supply means capable of introducing an inert gas as the gas, so that the polishing solution has a PH value during the polishing step. Since it does not fluctuate and therefore the polishing speed does not fluctuate, high-precision polishing is possible, and further, there is an advantage that the configuration of the apparatus is simplified compared to the invention described in claim 4.

請求項6に記載の発明によれば、請求項5の効果に加えて、前記不活性ガスは、窒素ガス、ヘリウムガス、アルゴンガス、クリプトンガス、キセノンガスから選ばれる一つであるので、より研磨液のPH値が変動せず、研磨速度を一定に保持することができる。   According to the invention described in claim 6, in addition to the effect of claim 5, the inert gas is one selected from nitrogen gas, helium gas, argon gas, krypton gas, and xenon gas. The PH value of the polishing liquid does not vary, and the polishing rate can be kept constant.

請求項7に記載の発明によれば、容器の中に満たされた研磨液と、前記研磨液中に気体を導入する噴射ノズルとを備え、研磨対象物に前記研磨液及び前記気体を衝突させることによって、前記研磨対象物を研磨する研磨装置であって、研磨特性を悪化させる成分を前記気体から除去する気体成分除去機構を備えているので、研磨工程の間、研磨液のPH値が変動せず、従って研磨速度が変動しないので、高精度の研磨が可能であり、更に、請求項4に記載の発明に比べて装置の構成が簡略になるという利点がある。   According to invention of Claim 7, it is equipped with the polishing liquid with which the container was filled, and the injection nozzle which introduce | transduces gas in the said polishing liquid, and makes the said polishing liquid and said gas collide with a grinding | polishing target object. Thus, the polishing apparatus for polishing the object to be polished is equipped with a gas component removing mechanism for removing components that deteriorate polishing characteristics from the gas, so that the PH value of the polishing liquid fluctuates during the polishing process. Therefore, since the polishing rate does not fluctuate, high-accuracy polishing is possible, and further, there is an advantage that the configuration of the apparatus is simplified compared to the invention according to claim 4.

請求項8に記載の発明によれば、請求項7の効果に加えて、前記研磨特性を悪化させる成分は、二酸化炭素ガスであるので、気体成分除去機構を用いて二酸化炭素ガスを確実に除去することができる。   According to the eighth aspect of the invention, in addition to the effect of the seventh aspect, since the component that deteriorates the polishing characteristics is carbon dioxide gas, the gas component removal mechanism is used to reliably remove the carbon dioxide gas. can do.

請求項9に記載の発明によれば、請求項7の効果に加えて、前記気体成分除去機構はフィルターであるので、構成が単純であり低コストな研磨装置を提供できる。   According to the ninth aspect of the present invention, in addition to the effect of the seventh aspect, the gas component removing mechanism is a filter, so that it is possible to provide a polishing apparatus having a simple configuration and a low cost.

請求項10に記載の発明によれば、容器の中に満たされた研磨液と、前記研磨液中に気体を導入する噴射ノズルとを備え、研磨対象物に前記研磨液及び前記気体を衝突させることによって、前記研磨対象物を研磨する研磨方法であって、前記研磨対象物の研磨中に、前記研磨液の物性値をモニターしながら、該物性値を一定に保った状態で研磨する研磨方法としたため、研磨工程の間、研磨速度を一定に保持することができるので、高精度の研磨が可能となる。   According to the tenth aspect of the present invention, the apparatus includes a polishing liquid filled in a container and an injection nozzle that introduces a gas into the polishing liquid, and causes the polishing liquid and the gas to collide with an object to be polished. A polishing method for polishing the polishing object, wherein the polishing object is polished while the physical property value is kept constant while monitoring the physical property value of the polishing liquid during polishing of the polishing object. Therefore, since the polishing rate can be kept constant during the polishing process, high-precision polishing is possible.

請求項11に記載の発明によれば、請求項10に記載の研磨方法により研磨されたため、より高精度の研磨面を有する光学素子を得ることができる。   According to the eleventh aspect of the invention, since it is polished by the polishing method according to the tenth aspect, it is possible to obtain an optical element having a highly accurate polished surface.

請求項12に記載の発明によれば、請求項11の研磨方法により研磨された光学素子を搭載したので、露光を高精度に実施することが可能な半導体露光装置を提供できる。   According to the twelfth aspect of the invention, since the optical element polished by the polishing method of the eleventh aspect is mounted, a semiconductor exposure apparatus capable of performing exposure with high accuracy can be provided.

以下、本発明の実施の形態について説明する。
[発明の実施の形態1]
Embodiments of the present invention will be described below.
Embodiment 1 of the Invention

以下、本発明の実施の形態1について、図1及び図2を参照して説明する。   Hereinafter, Embodiment 1 of the present invention will be described with reference to FIG. 1 and FIG.

図1は、本発明の実施の形態1に係る研磨装置10の概略図である。   FIG. 1 is a schematic diagram of a polishing apparatus 10 according to Embodiment 1 of the present invention.

まず、構成を説明する。研磨装置8は、容器13の中に満たされた研磨液3と、研磨液3中に気体4を導入するための噴射ノズル1と、研磨液調整手段として羽根7を有する粘性センサー5及び粘性調整液装置とを備えている。   First, the configuration will be described. The polishing apparatus 8 includes a polishing liquid 3 filled in a container 13, a jet nozzle 1 for introducing a gas 4 into the polishing liquid 3, a viscosity sensor 5 having blades 7 as polishing liquid adjusting means, and viscosity adjustment. And a liquid device.

その容器13は、所定の容量の研磨液3が貯留可能な大きさの四角形の箱形状を呈し、内部の略中央部に設けられた載置台14上に研磨対象物2が載置されて、この研磨対象物2が研磨液3に浸されるように構成されている。   The container 13 has a rectangular box shape with a size capable of storing a predetermined volume of the polishing liquid 3, and the polishing object 2 is placed on a mounting table 14 provided in a substantially central portion inside the container 13. The polishing object 2 is configured to be immersed in the polishing liquid 3.

その研磨液3は、研磨材粒子と純水との混合物であり、この研磨材粒子としては、ここでは、コロイダルシリカを用いた。なお、酸化物系(CeO、ZrO、Al)の研磨材等を用いることもできる。また、この溶媒としては、純水以外に、アルコールを用いても良い。 The polishing liquid 3 is a mixture of abrasive particles and pure water. Here, colloidal silica was used as the abrasive particles. Note that an oxide-based (CeO 2 , ZrO 2 , Al 2 O 3 ) abrasive or the like can also be used. In addition to pure water, alcohol may be used as the solvent.

また、研磨対象物2としては、蛍石、石英、紫外線用多成分ガラス、低熱膨張ガラス、シリコン、無電解ニッケル等が用いられる。   As the polishing object 2, fluorite, quartz, multicomponent glass for ultraviolet rays, low thermal expansion glass, silicon, electroless nickel, or the like is used.

さらに、噴射ノズル1は、不図示のタンクに接続され、このタンクから圧縮された気体4が送られて、この噴射ノズル1の噴射口1aから、研磨液3中の研磨対象物2の表面に向けて噴射されるように構成されている。   Further, the injection nozzle 1 is connected to a tank (not shown), and a compressed gas 4 is sent from the tank to the surface of the polishing object 2 in the polishing liquid 3 from the injection port 1a of the injection nozzle 1. It is comprised so that it may inject toward.

なお、この噴射ノズル1を、不図示の噴射ノズル移動機構により、図中において上下、左右、前後とNC(Numerical Control)を駆動することで形状創成研磨加工も可能な構成とすることもできる。   The injection nozzle 1 can also be configured to perform shape generating polishing by driving an NC (Numerical Control) up and down, left and right, front and back in the drawing by an injection nozzle moving mechanism (not shown).

さらにまた、粘性センサー5は、回転可能な羽根7を備えており、所定の回転数で羽根7を回転させることにより、この羽根7に掛かるトルクを検出して、このトルク値を基に研磨液3の粘性値(=粘度)を算出するように構成されている。   Furthermore, the viscosity sensor 5 is provided with a rotatable blade 7, detects the torque applied to the blade 7 by rotating the blade 7 at a predetermined rotational speed, and based on this torque value, the polishing liquid The viscosity value of 3 (= viscosity) is calculated.

このような構成では、羽根7によって研磨液3が攪拌されるという利点があるが、この構成に限らず、粘性測定に用いられる公知の技術を用いて研磨液3の粘性を測定しても良い。   In such a configuration, there is an advantage that the polishing liquid 3 is agitated by the blades 7. However, the present invention is not limited to this configuration, and the viscosity of the polishing liquid 3 may be measured using a known technique used for viscosity measurement. .

また、粘性調整液添加装置6は、その粘性センサー5による測定結果を基に、研磨液3の粘性値を一定に保つ為の粘性調整剤を適宜、研磨液3に添加するように構成されている。   Further, the viscosity adjusting liquid adding device 6 is configured to appropriately add a viscosity adjusting agent for keeping the viscosity value of the polishing liquid 3 constant based on the measurement result by the viscosity sensor 5. Yes.

このようなものにあっては、噴射ノズル1から気体4が噴射され、その気体4に巻き込まれた研磨液3が、研磨対象物12の表面に衝突することにより、この研磨対象物12の表面が研磨される。   In such a case, the gas 4 is injected from the injection nozzle 1, and the polishing liquid 3 entrained in the gas 4 collides with the surface of the polishing object 12, whereby the surface of the polishing object 12. Is polished.

この際には、気体4として、装置周辺の空気等が用いられ、コンプレッサー等で圧縮された空気の湿度は、通常の空気に比較して著しく低くなる。そのため、この湿度の低い空気(気体4)が研磨液3中に噴射されると、この気体4は、研磨液3から水分を奪う。水分が奪われることにより研磨液3の研磨材粒子の濃度が高くなり、研磨液3の粘度が増加する。   At this time, the air around the apparatus is used as the gas 4, and the humidity of the air compressed by the compressor or the like is significantly lower than that of normal air. Therefore, when the low humidity air (gas 4) is injected into the polishing liquid 3, the gas 4 deprives the polishing liquid 3 of moisture. Deprivation of moisture increases the concentration of abrasive particles in the polishing liquid 3 and increases the viscosity of the polishing liquid 3.

図2は、研磨液の粘度と研磨速度の関係を示す図である。この図2に示すように、粘度が増加すると研磨速度が増加することがわかった。すなわち、研磨液の粘度がおよそ1.8cstから3.4cstに増加する間に、研磨速度はおよそ50nm/minから118nm/minに増加する。このように、研磨液3の粘度が増加すると、研磨速度が増加し、高精度修正研磨において所定の精度が保てなくなるという問題が生ずる。また、粘度の増加によって加工面の表面粗さが悪化する場合もある。そこで、研磨装置8は、研磨工程の間、研磨液3の粘度を一定に保持するために、粘性センサー5と、これと連動する粘性調整剤添加装置6とを備える構成にした。   FIG. 2 is a diagram showing the relationship between the viscosity of the polishing liquid and the polishing rate. As shown in FIG. 2, it was found that the polishing rate increases as the viscosity increases. That is, the polishing rate increases from about 50 nm / min to about 118 nm / min while the viscosity of the polishing liquid increases from about 1.8 cst to 3.4 cst. As described above, when the viscosity of the polishing liquid 3 increases, the polishing rate increases, and there arises a problem that a predetermined accuracy cannot be maintained in the high-precision correction polishing. Moreover, the surface roughness of a processed surface may deteriorate with the increase in a viscosity. Therefore, the polishing apparatus 8 is configured to include a viscosity sensor 5 and a viscosity adjusting agent adding apparatus 6 that works in conjunction with the viscosity sensor 5 in order to keep the viscosity of the polishing liquid 3 constant during the polishing process.

してみれば、研磨工程の間、研磨液3の粘性が一定に保たれて、研磨速度が一定に保持されるので、表面粗さの良好な高精度研磨面が得られ、更に、NCを駆動と組み合わせることで高精度の形状創成研磨加工が可能となる。   Thus, during the polishing process, the viscosity of the polishing liquid 3 is kept constant, and the polishing speed is kept constant, so that a highly accurate polishing surface with good surface roughness can be obtained. Combining with driving enables highly accurate shape creation polishing.

なお、研磨材粒子と純水との混合物である研磨液3を使用する場合には、粘性調整剤添加装置6によって添加する粘性調整剤は純水とするが、研磨液3が他の物質から成る場合にはこの限りではなく、研磨液3の特性に合わせて最も好適な粘性調整剤を選択する。   In addition, when using the polishing liquid 3 which is a mixture of abrasive particles and pure water, the viscosity adjusting agent added by the viscosity adjusting agent adding device 6 is pure water, but the polishing liquid 3 is made of other substances. In this case, the present invention is not limited to this, and the most suitable viscosity adjusting agent is selected in accordance with the characteristics of the polishing liquid 3.

また、以上の説明では、研磨工程の間に研磨液3の粘性が増加する場合について述べてきたのであるが、これとは逆に経時的に研磨液3の粘性が低下する場合がある。この場合には、粘性が高い溶媒を粘性調整剤として添加すればよい。
[発明の実施の形態2]
In the above description, the case where the viscosity of the polishing liquid 3 increases during the polishing step has been described. On the contrary, the viscosity of the polishing liquid 3 may decrease with time. In this case, a highly viscous solvent may be added as a viscosity modifier.
[Embodiment 2 of the Invention]

以下、本発明の実施の形態2について、図3及び図4を参照して説明する。   The second embodiment of the present invention will be described below with reference to FIGS.

図3は、本発明の実施の形態2に係る研磨装置の概略図である。   FIG. 3 is a schematic view of a polishing apparatus according to Embodiment 2 of the present invention.

本発明の実施の形態2は、本発明の実施の形態1と比較すると、粘性センサー5の替りにPHセンサー9を、粘性調整剤添加装置6の替りにPH調整剤添加装置10を備えている点で相違している。他の構成要素は本発明の実施の形態1と同様であるので、同一の構成要素には同一の符号を付して、その説明は省略する。   The second embodiment of the present invention includes a PH sensor 9 instead of the viscosity sensor 5 and a PH adjuster addition device 10 instead of the viscosity adjuster addition device 6 as compared with the first embodiment of the present invention. It is different in point. Since other components are the same as those of the first embodiment of the present invention, the same components are denoted by the same reference numerals, and description thereof is omitted.

不図示のコンプレッサーで外部の空気を圧縮して得られる気体4には、微量ではあるが二酸化炭素(CO)ガスが含まれている。この気体4が研磨液3中に噴射されると、気体4に含まれる二酸化炭素ガスが研磨液3中に溶け込むので、研磨液3のPHが次第に酸性側に変化してしまう。 The gas 4 obtained by compressing external air with a compressor (not shown) contains carbon dioxide (CO 2 ) gas, though in a small amount. When the gas 4 is injected into the polishing liquid 3, the carbon dioxide gas contained in the gas 4 dissolves into the polishing liquid 3, so that the pH of the polishing liquid 3 gradually changes to the acidic side.

図4は、研磨液のPH値と研磨速度の関係を示す図である。図4に示すように、PHがおよそ10.16から9.25に酸性側に変化すると、研磨速度はおよそ55nm/minから118nm/minへ増加する。精密光学素子の加工に適用される、化学反応を主因とする研磨では、研磨液3のPHの変化により、研磨速度が大きく変化してしまい、研磨加工の精度に対する重大な誤差要因となる。   FIG. 4 is a diagram showing the relationship between the PH value of the polishing liquid and the polishing rate. As shown in FIG. 4, when PH changes from 10.16 to 9.25 on the acidic side, the polishing rate increases from approximately 55 nm / min to 118 nm / min. In polishing applied mainly to the processing of precision optical elements mainly due to chemical reaction, the polishing rate is greatly changed due to the change in PH of the polishing liquid 3, which becomes a significant error factor for the accuracy of polishing processing.

また、ある種の研磨液3においては、研磨液3のPHを所定の値に設定することで研磨材粒子の研磨液3中での分散状態を安定化できる。このような研磨液3を使用する場合には、研磨液3のPHが変化すると、研磨材粒子の分散状態が変化して、加工面の表面粗さが悪化する場合がある。   Moreover, in a certain kind of polishing liquid 3, the dispersion state of the abrasive particles in the polishing liquid 3 can be stabilized by setting the pH of the polishing liquid 3 to a predetermined value. When such a polishing liquid 3 is used, if the pH of the polishing liquid 3 changes, the dispersion state of the abrasive particles may change, and the surface roughness of the processed surface may deteriorate.

そこで、研磨装置8は、PHセンサー9と、これと連動するPH調整剤添加装置とを備えることによって、研磨工程の間、PHセンサー9でPH値を検出し、この値に応じてPH調整液添加装置10によりPH調整剤を添加して、研磨液3のPHを一定に保持することができる。噴射ノズル1より噴射する気体4が二酸化炭素ガスを含み、研磨液3が研磨材粒子と水との混合物である場合には、PH調整剤は、好適には強アルカリ水溶液である水酸化ナトリウムの50%水溶液とするが、他の状況で研磨を行う場合には適宜好適なPH調整剤を選択する。   Therefore, the polishing apparatus 8 includes a PH sensor 9 and a PH adjuster addition device that works in conjunction therewith, so that the PH value is detected by the PH sensor 9 during the polishing process, and a PH adjusting liquid is determined according to this value. A pH adjusting agent can be added by the adding device 10 to keep the pH of the polishing liquid 3 constant. When the gas 4 injected from the injection nozzle 1 contains carbon dioxide gas and the polishing liquid 3 is a mixture of abrasive particles and water, the PH adjuster is preferably sodium hydroxide, which is a strong alkaline aqueous solution. Although a 50% aqueous solution is used, a suitable pH adjusting agent is appropriately selected when polishing in other situations.

また、これまでは、研磨液3が経時的に酸性側に変化する場合について述べてきたのであるが、これとは逆に研磨液3が経時的にアルカリ性側に変化する場合がある。その場合には、強酸性の水溶液をPH調整剤として添加とする。   In addition, the case where the polishing liquid 3 changes to the acidic side with time has been described so far. On the contrary, the polishing liquid 3 may change to the alkaline side with time. In that case, a strongly acidic aqueous solution is added as a pH adjuster.

本発明の実施の形態2で述べた研磨装置8によれば、研磨工程の間、研磨液3のPHが一定に保たれて、研磨速度が一定に保持されるので、表面粗さの良好な高精度研磨面が得られ、更にNC駆動と組み合わせることで高精度の形状創成研磨加工が可能となる。
[発明の実施の形態3]
According to the polishing apparatus 8 described in the second embodiment of the present invention, the pH of the polishing liquid 3 is kept constant and the polishing rate is kept constant during the polishing process, so that the surface roughness is good. A high-precision polished surface can be obtained, and furthermore, by combining with NC drive, high-precision shape creation polishing can be performed.
Embodiment 3 of the Invention

以下、本発明の実施の形態3について、図5を参照して説明する。   Hereinafter, a third embodiment of the present invention will be described with reference to FIG.

図5は、本発明の実施の形態3に係る研磨装置8の概略図である。   FIG. 5 is a schematic view of a polishing apparatus 8 according to Embodiment 3 of the present invention.

この実施の形態3の研磨装置8は、容器13の中に満たされた研磨液3と、前記研磨液3中に気体4を導入する噴射ノズル1と、気体4である不活性ガスを導入することが可能な「ガス供給手段」としてのガス供給系11とを備えている。ここでは、不活性ガスとして、窒素ガスを用いた。   The polishing apparatus 8 according to the third embodiment introduces a polishing liquid 3 filled in a container 13, an injection nozzle 1 that introduces a gas 4 into the polishing liquid 3, and an inert gas that is a gas 4. And a gas supply system 11 as a “gas supply means” that can be used. Here, nitrogen gas was used as the inert gas.

そのガス供給系11に格納されている不活性ガスは、不図示のコンプレッサーにより圧縮されて、噴射ノズル1に圧送され、噴射ノズル1の噴射口1aより研磨液3中に噴射される。噴射された不活性ガスは、噴射ノズル1の噴射口1a周辺の研磨液3を巻き込みながら研磨対象物2に衝突する。巻き込まれた研磨液3が研磨対象物2の表面に衝突することによって研磨対象物2の表面が研磨される。   The inert gas stored in the gas supply system 11 is compressed by a compressor (not shown), is pumped to the injection nozzle 1, and is injected into the polishing liquid 3 from the injection port 1 a of the injection nozzle 1. The injected inert gas collides with the polishing object 2 while entraining the polishing liquid 3 around the injection port 1 a of the injection nozzle 1. The surface of the polishing object 2 is polished by the impregnated polishing liquid 3 colliding with the surface of the polishing object 2.

本発明の実施の形態3では、噴射ノズル1より噴射する気体4として不活性ガスを使用することにより、研磨液3のPH変化を防止することができる。   In Embodiment 3 of the present invention, the use of an inert gas as the gas 4 ejected from the ejection nozzle 1 can prevent a change in pH of the polishing liquid 3.

本発明の実施の形態3によれば、気体4として不活性ガスを用いるだけで、研磨液3のPHを一定に保つことができるため、PHセンサー9やPH調整液添加装置10が不要となるので、研磨装置8の構成が簡略になるという利点がある。本発明の実施の形態3では、不活性ガスとして窒素ガスを用いたが、これに限ることなく、ヘリウム、アルゴン、クリプトン、キセノンガスを用いても良いことは言うまでもない。
[発明の実施の形態4]
According to Embodiment 3 of the present invention, the PH of the polishing liquid 3 can be kept constant only by using an inert gas as the gas 4, so that the PH sensor 9 and the PH adjusting liquid adding device 10 are not required. Therefore, there is an advantage that the configuration of the polishing apparatus 8 is simplified. In Embodiment 3 of the present invention, nitrogen gas is used as the inert gas, but it is needless to say that helium, argon, krypton, and xenon gas may be used.
[Embodiment 4 of the Invention]

以下、本発明の実施の形態4について、図6を参照して説明する。   The fourth embodiment of the present invention will be described below with reference to FIG.

図6は、本発明の実施の形態4に係る研磨装置の概略図である。   FIG. 6 is a schematic diagram of a polishing apparatus according to Embodiment 4 of the present invention.

この実施の形態4の研磨装置8は、容器13の中に満たされた研磨液3と、研磨液3中に気体4を導入する噴射ノズル1と、研磨特性を悪化させる成分を気体4から除去することが可能な「気体成分除去機構」としての除去フィルター12とからなる。   The polishing apparatus 8 according to the fourth embodiment removes from the gas 4 the polishing liquid 3 filled in the container 13, the injection nozzle 1 that introduces the gas 4 into the polishing liquid 3, and components that deteriorate the polishing characteristics. And a removal filter 12 as a “gas component removal mechanism” that can be used.

このようなものにあっては、気体4として外部から取り入れられた空気は、不図示のコンプレッサーで圧縮され、二酸化炭素を除去するための除去フィルター12を経由して噴射ノズル1に圧送される。圧送された空気は、噴射ノズル1の噴射口1aより研磨液3中に噴射され、噴射ノズル1の噴射口1a周辺の研磨液3を巻き込みながら研磨対象物2に衝突する。巻き込まれた研磨液3が研磨対象物2の表面に衝突することによって、研磨対象物2の表面が研磨される。   In such a case, the air taken in from the outside as the gas 4 is compressed by a compressor (not shown), and is sent to the injection nozzle 1 via the removal filter 12 for removing carbon dioxide. The pressure-fed air is injected into the polishing liquid 3 from the injection port 1 a of the injection nozzle 1 and collides with the polishing object 2 while entraining the polishing liquid 3 around the injection port 1 a of the injection nozzle 1. As the entrained polishing liquid 3 collides with the surface of the polishing object 2, the surface of the polishing object 2 is polished.

気体4として研磨液3中に外部の空気を取り入れて噴射する場合、空気中に含まれる二酸化炭素などの微量成分が、研磨液3のPHを経時的に変化させ、精密研磨を妨げる要因となることは、本発明の実施の形態2にて既に述べた。   When external air is introduced into the polishing liquid 3 as the gas 4 and injected, trace components such as carbon dioxide contained in the air change the pH of the polishing liquid 3 over time, and hinder precision polishing. This has already been described in the second embodiment of the present invention.

そこで、本発明の実施の形態4では、コンプレッサーで圧縮した空気を、除去フィルター12を通過させた後に、噴射ノズル1に圧送する。除去フィルター12によって二酸化炭素が除去された圧縮空気が研磨液3中に噴射されるので、研磨液3のPHを変化させることがない。   Therefore, in Embodiment 4 of the present invention, the air compressed by the compressor is passed through the removal filter 12 and then pumped to the injection nozzle 1. Since compressed air from which carbon dioxide has been removed by the removal filter 12 is jetted into the polishing liquid 3, the PH of the polishing liquid 3 is not changed.

本発明の実施の形態4によれば、除去フィルター12を配置させただけなので、構成が単純であり低コストな研磨装置8を提供できる。   According to the fourth embodiment of the present invention, since the removal filter 12 is merely arranged, it is possible to provide the polishing apparatus 8 having a simple configuration and low cost.

図7は、半導体露光装置の全体構成を概略図である。   FIG. 7 is a schematic diagram showing the overall configuration of the semiconductor exposure apparatus.

図7に示すように、半導体露光装置21は、光源22、照明光学系23、マスク部24、投影光学系25、ウエハ部26から構成される。本発明の実施の形態1〜4で述べた研磨装置8を用いて研磨された光学素子は、照明光学系23や投影光学系26に組み込まれ使用される。したがって、光学露光を高精度に実施することが可能な半導体露光装置21を提供できる。
[比較例]
As shown in FIG. 7, the semiconductor exposure apparatus 21 includes a light source 22, an illumination optical system 23, a mask unit 24, a projection optical system 25, and a wafer unit 26. The optical element polished by using the polishing apparatus 8 described in the first to fourth embodiments of the present invention is incorporated into the illumination optical system 23 and the projection optical system 26 and used. Therefore, it is possible to provide the semiconductor exposure apparatus 21 capable of performing optical exposure with high accuracy.
[Comparative example]

表1に、温度18℃における、粘度及びPHの各値を固定値とした場合の研磨速度を示す。   Table 1 shows the polishing rate when the values of viscosity and PH at a temperature of 18 ° C. are fixed values.

Figure 2005246587
Figure 2005246587

表1に示すように、温度を一定にした場合にも、PH9.63〜10.14のばらつき、粘度1.850cst〜3.412cstのばらつきがある場合には、研磨速度は48.13nm/min〜117.23nm/minの範囲でばらつくことがわかった。   As shown in Table 1, the polishing rate is 48.13 nm / min when there is a variation of PH 9.63 to 10.14 and a viscosity of 1.850 cst to 3.412 cst even when the temperature is constant. It was found that the variation was in the range of ˜117.23 nm / min.

本発明の実施の形態1から4で述べた研磨装置を用いれば、粘度及びPH値を一定に保つことが可能であるので、研磨速度を一定に保つことができる。   If the polishing apparatus described in the first to fourth embodiments of the present invention is used, the viscosity and the PH value can be kept constant, so that the polishing rate can be kept constant.

本発明の実施の形態1に係る研磨装置の概略図である。1 is a schematic view of a polishing apparatus according to Embodiment 1 of the present invention. 研磨液の粘度と研磨速度の関係を示す図である。It is a figure which shows the relationship between the viscosity of polishing liquid, and polishing rate. 本発明の実施の形態2に係る研磨装置の概略図である。It is the schematic of the grinding | polishing apparatus which concerns on Embodiment 2 of this invention. 研磨液のPHと研磨速度の関係を示す図である。It is a figure which shows the relationship between PH of polishing liquid, and polishing rate. 本発明の実施の形態3に係る研磨装置の概略図である。It is the schematic of the grinding | polishing apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る研磨装置の概略図である。It is the schematic of the grinding | polishing apparatus which concerns on Embodiment 4 of this invention. 本発明の半導体露光装置の概略図である。It is the schematic of the semiconductor exposure apparatus of this invention.

符号の説明Explanation of symbols

1 噴射ノズル
1a 噴射口
2 研磨対象物
3 研磨液
4 気体
5 粘性センサー
6 粘性調整液添加装置
7 羽根
8 研磨装置
9 PHセンサー
10 PH調整液添加装置
11 ガス供給系
12 除去フィルター
13 容器
14 載置台
21 半導体露光装置
22 光源
23 照明光学系
24 マスク部
25 投影光学系
26 ウエハ部
DESCRIPTION OF SYMBOLS 1 Injection nozzle 1a Injection port 2 Polishing object 3 Polishing liquid 4 Gas 5 Viscosity sensor 6 Viscosity adjustment liquid addition apparatus 7 Blade 8 Polishing apparatus 9 PH sensor 10 PH adjustment liquid addition apparatus 11 Gas supply system 12 Removal filter 13 Container 14 Mounting stand DESCRIPTION OF SYMBOLS 21 Semiconductor exposure apparatus 22 Light source 23 Illumination optical system 24 Mask part 25 Projection optical system 26 Wafer part

Claims (12)

容器の中に満たされた研磨液と、前記研磨液中に気体を導入する噴射ノズルとを備え、研磨対象物に前記研磨液及び前記気体を衝突させることによって、前記研磨対象物を研磨する研磨装置であって、
前記研磨対象物の研磨中に、前記研磨液の物性値をモニターしながら、該物性値を一定に保つための研磨液調整手段を備えていることを特徴とする研磨装置。
Polishing comprising a polishing liquid filled in a container and an injection nozzle for introducing a gas into the polishing liquid, and polishing the polishing object by causing the polishing liquid and the gas to collide with the polishing object A device,
A polishing apparatus comprising a polishing liquid adjusting means for keeping the physical property value constant while monitoring the physical property value of the polishing liquid during polishing of the polishing object.
前記物性値は、粘性値又はPH値であることを特徴とする請求項1に記載の研磨装置。 The polishing apparatus according to claim 1, wherein the physical property value is a viscosity value or a PH value. 前記研磨液調整手段として、前記粘性値をモニターしながら、粘性調整剤を添加して所望の粘性値に調整する粘性調整手段を備えていることを特徴とする請求項1又は2に記載の研磨装置。 3. The polishing according to claim 1, further comprising a viscosity adjusting unit that adjusts to a desired viscosity value by adding a viscosity adjusting agent while monitoring the viscosity value as the polishing liquid adjusting unit. apparatus. 前記研磨液調整手段として、前記PH値をモニターしながら、PH調整剤を添加して所望のPH値に調整するPH調整手段を備えていることを特徴とする請求項1又は2に記載の研磨装置。 3. The polishing according to claim 1, further comprising a PH adjusting unit that adjusts to a desired PH value by adding a PH adjusting agent while monitoring the PH value as the polishing liquid adjusting unit. apparatus. 容器の中に満たされた研磨液と、前記研磨液中に気体を導入する噴射ノズルとを備え、研磨対象物に前記研磨液及び前記気体を衝突させることによって、前記研磨対象物を研磨する研磨装置であって、
前記気体として、不活性ガスを導入することが可能なガス供給手段を備えていることを特徴とする研磨装置。
Polishing comprising a polishing liquid filled in a container and an injection nozzle for introducing a gas into the polishing liquid, and polishing the polishing object by causing the polishing liquid and the gas to collide with the polishing object A device,
A polishing apparatus comprising gas supply means capable of introducing an inert gas as the gas.
前記不活性ガスは、窒素ガス、ヘリウムガス、アルゴンガス、クリプトンガス、キセノンガスから選ばれる一つであることを特徴とする請求項5に記載の研磨装置。 The polishing apparatus according to claim 5, wherein the inert gas is one selected from nitrogen gas, helium gas, argon gas, krypton gas, and xenon gas. 容器の中に満たされた研磨液と、前記研磨液中に気体を導入する噴射ノズルとを備え、研磨対象物に前記研磨液及び前記気体を衝突させることによって、前記研磨対象物を研磨する研磨装置であって、
研磨特性を悪化させる成分を前記気体から除去する気体成分除去機構を備えていることを特徴とする研磨装置。
Polishing comprising a polishing liquid filled in a container and an injection nozzle for introducing a gas into the polishing liquid, and polishing the polishing object by causing the polishing liquid and the gas to collide with the polishing object A device,
A polishing apparatus comprising a gas component removal mechanism for removing a component that deteriorates polishing characteristics from the gas.
前記研磨特性を悪化させる成分は、二酸化炭素ガスであることを特徴とする請求項7に記載の研磨装置。 The polishing apparatus according to claim 7, wherein the component that deteriorates the polishing characteristics is carbon dioxide gas. 前記気体成分除去機構はフィルターであることを特徴とする請求項7に記載の研磨装置。 The polishing apparatus according to claim 7, wherein the gas component removing mechanism is a filter. 容器の中に満たされた研磨液と、前記研磨液中に気体を導入する噴射ノズルとを備え、研磨対象物に前記研磨液及び前記気体を衝突させることによって、前記研磨対象物を研磨する研磨方法であって、
前記研磨対象物の研磨中に、前記研磨液の物性値をモニターしながら、該物性値を一定に保った状態で研磨することを特徴とする研磨方法。
Polishing comprising a polishing liquid filled in a container and an injection nozzle for introducing a gas into the polishing liquid, and polishing the polishing object by causing the polishing liquid and the gas to collide with the polishing object A method,
A polishing method comprising polishing while maintaining the physical property value of the polishing liquid while monitoring the physical property value of the polishing object.
請求項10に記載の研磨方法により研磨されたことを特徴とする光学素子。 An optical element polished by the polishing method according to claim 10. 請求項11に記載の光学素子を光学系に配置したことを特徴とする半導体露光装置。 A semiconductor exposure apparatus comprising the optical element according to claim 11 arranged in an optical system.
JP2004064247A 2004-03-08 2004-03-08 Polishing equipment Expired - Fee Related JP4474950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004064247A JP4474950B2 (en) 2004-03-08 2004-03-08 Polishing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004064247A JP4474950B2 (en) 2004-03-08 2004-03-08 Polishing equipment

Publications (2)

Publication Number Publication Date
JP2005246587A true JP2005246587A (en) 2005-09-15
JP4474950B2 JP4474950B2 (en) 2010-06-09

Family

ID=35027557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004064247A Expired - Fee Related JP4474950B2 (en) 2004-03-08 2004-03-08 Polishing equipment

Country Status (1)

Country Link
JP (1) JP4474950B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166205A (en) * 2008-01-18 2009-07-30 Hitachi Plant Technologies Ltd Blasting device and its operation method
JP2020127980A (en) * 2019-02-08 2020-08-27 新東工業株式会社 Polishing device, polishing system and polishing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166205A (en) * 2008-01-18 2009-07-30 Hitachi Plant Technologies Ltd Blasting device and its operation method
JP2020127980A (en) * 2019-02-08 2020-08-27 新東工業株式会社 Polishing device, polishing system and polishing method
JP7146173B2 (en) 2019-02-08 2022-10-04 新東工業株式会社 Polishing device, polishing system and polishing method

Also Published As

Publication number Publication date
JP4474950B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP4516119B2 (en) Polishing composition for precious metals
EP1785230B1 (en) Method for slurry cleaning of etch chambers
CN105408520A (en) Method of treating a metal substrate
JP2001150347A (en) Abrasive liquid supplying device
WO2003097223A1 (en) Continuous dissolving device, continuous dissolving method, and gas-dissolved water supply
JP2005536034A (en) Chemical mechanical polishing (CMP) method for changing oxidant concentration in slurry
JP4474950B2 (en) Polishing equipment
EP2412687A1 (en) Synthetic quartz glass substrate polishing slurry and manufacture of synthetic quartz glass substrate using the same
CN104530987B (en) A kind of silicon wafer finishing polish compositionss and preparation method
JP2011005584A (en) Device and method for grinding and polishing optical element, and method for manufacturing the same
JP2009262303A (en) Polishing device and polishing method
US7562663B2 (en) High-pressure processing apparatus and high-pressure processing method
TWI787564B (en) Oxidizer free cmp slurry and ruthenium cmp
JP3985620B2 (en) Etching method
JP4228146B2 (en) Polishing equipment
JP2009006480A (en) Grinding device
KR20090045145A (en) Polishing composition for silicon wafer, composition kit for silicon wafer polishing, and methods of polishing silicon wafer
JP5003959B2 (en) Blasting device and operation method thereof
JP4725767B2 (en) Strain-free surface processing equipment and surface processing technology for optical materials
JP2005262344A (en) Ultra-precisely polishing method and its device
JP2019155232A (en) Cleaning method and cleaning device
JP2004098202A (en) Polishing method and device, optical element processed thereby, and projecting/exposure device equipped with optical element
JP5721245B2 (en) Supply system for adding gas to polishing slurry and method
JP3612246B2 (en) Semiconductor wafer etching apparatus and etching method
JP2018001188A (en) Flux coating method and flux coating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100301

R150 Certificate of patent or registration of utility model

Ref document number: 4474950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees