JP2005246476A - Method for management of in-furnace atmosphere of reflow soldering equipment and reflow soldering equipment - Google Patents

Method for management of in-furnace atmosphere of reflow soldering equipment and reflow soldering equipment Download PDF

Info

Publication number
JP2005246476A
JP2005246476A JP2004123835A JP2004123835A JP2005246476A JP 2005246476 A JP2005246476 A JP 2005246476A JP 2004123835 A JP2004123835 A JP 2004123835A JP 2004123835 A JP2004123835 A JP 2004123835A JP 2005246476 A JP2005246476 A JP 2005246476A
Authority
JP
Japan
Prior art keywords
oxygen concentration
furnace
nitrogen gas
reflow soldering
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004123835A
Other languages
Japanese (ja)
Inventor
Hideo Endo
英夫 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOTA TECHNICA KK
Yokota Technica Co Ltd
Original Assignee
YOKOTA TECHNICA KK
Yokota Technica Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOTA TECHNICA KK, Yokota Technica Co Ltd filed Critical YOKOTA TECHNICA KK
Priority to JP2004123835A priority Critical patent/JP2005246476A/en
Publication of JP2005246476A publication Critical patent/JP2005246476A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for management of an in-furnace atmosphere by which the oxygen atmosphere in gaseous nitrogen in a furnace of reflow soldering equipment is kept at a desired value and reflow soldering equipment which realizes the method. <P>SOLUTION: The reflow soldering equipment which performs reflow soldering within the furnace 1 supplied with the gaseous nitrogen is equipped with: gaseous nitrogen supplying means 8 to 23 capable of supplying the gaseous nitrogen into the furnace 1; a means 24 for detecting the oxygen concentration in the furnace 1; and control means 25 and 26 for controlling the oxygen concentration of the gaseous nitrogen supplied from the gaseous nitrogen supplying means 8 to 23 according to the oxygen concentration in the furnace 1 detected by the detecting means 24. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、窒素ガスが供給されている炉内でリフロー半田付けを行うリフロー半田付け装置において、炉内雰囲気の酸素濃度を一定に管理するための技術に関する。   The present invention relates to a technique for maintaining the oxygen concentration in a furnace atmosphere constant in a reflow soldering apparatus that performs reflow soldering in a furnace supplied with nitrogen gas.

リフロー半田付け装置は、電子部品を搭載したプリント基板をコンベヤで搬送しながら、炉内の高温雰囲気中で基板上のクリーム半田を加熱溶融してリフロー半田付けを行う。この際、炉内が空気で満たされていると、酸素によってクリーム半田が酸化し、半田付け部の品質が低下するため、現在では、炉内に窒素ガスを供給してリフロー半田付けを行うリフロー半田付け装置が一般に使用されている。   The reflow soldering apparatus performs reflow soldering by heating and melting cream solder on a substrate in a high temperature atmosphere in a furnace while conveying a printed circuit board on which electronic components are mounted by a conveyor. At this time, if the inside of the furnace is filled with air, the cream solder is oxidized by oxygen and the quality of the soldering part is deteriorated. Therefore, reflow soldering is currently performed by supplying nitrogen gas into the furnace. A soldering apparatus is generally used.

一方、炉内の窒素ガス中の酸素濃度に変動があると、半田付け部の品質が一定に維持されないため、炉内の酸素濃度を所望の低酸素濃度に維持するように炉内雰囲気を管理している(例えば特許文献1参照)。
特開平3−101296号公報
On the other hand, if the oxygen concentration in the nitrogen gas in the furnace fluctuates, the quality of the soldering part will not be maintained, so the furnace atmosphere is managed so that the oxygen concentration in the furnace is maintained at the desired low oxygen concentration. (For example, refer to Patent Document 1).
JP-A-3-101296

しかし、上記の技術は、炉内に低酸素濃度(例えば50〜30ppm)の窒素ガスを連続的に供給し、炉内の酸素濃度が不必要な低酸素濃度となったとき、空気(酸素)を補充するもので、効率のよい制御方式とは言えない。   However, in the above technique, when nitrogen gas having a low oxygen concentration (for example, 50 to 30 ppm) is continuously supplied into the furnace and the oxygen concentration in the furnace becomes an unnecessary low oxygen concentration, air (oxygen) It is not an efficient control method.

本発明が解決しようとする課題は、上記のような無駄をなくし、リフロー半田付け装置において炉内の窒素ガス中の酸素濃度を所望の値に維持できる炉内雰囲気管理方法及びそれを実現するリフロー半田付け装置を提供することである。   The problem to be solved by the present invention is to eliminate the above-mentioned waste, and to maintain the oxygen concentration in the nitrogen gas in the furnace at a desired value in the reflow soldering apparatus, and the reflow realizing the same It is to provide a soldering apparatus.

上記課題を解決するために本発明は次の解決手段を採る。すなわち、
本発明のリフロー半田付け装置の炉内雰囲気管理方法は、窒素ガスが供給されている炉内でリフロー半田付けを行うリフロー半田付け装置において、炉内の酸素濃度に応じて、炉内に供給される窒素ガスの酸素濃度が自動調整されることを特徴とする。
In order to solve the above problems, the present invention employs the following means. That is,
The reflow soldering apparatus according to the present invention is a reflow soldering apparatus that performs reflow soldering in a furnace to which nitrogen gas is supplied, and is supplied to the furnace in accordance with the oxygen concentration in the furnace. The oxygen concentration of the nitrogen gas is automatically adjusted.

また、本発明のリフロー半田付け装置は、窒素ガスが供給されている炉内でリフロー半田付けを行うリフロー半田付け装置において、窒素ガスを炉内に供給可能な窒素ガス供給手段と、炉内の酸素濃度を検出する手段と、この検出手段によって検出された炉内の酸素濃度に応じて、前記窒素ガス供給手段から供給される窒素ガスの酸素濃度を制御する制御手段とを備えてなることを特徴とする。   The reflow soldering apparatus of the present invention is a reflow soldering apparatus that performs reflow soldering in a furnace to which nitrogen gas is supplied, a nitrogen gas supply means capable of supplying nitrogen gas into the furnace, Means for detecting the oxygen concentration, and control means for controlling the oxygen concentration of the nitrogen gas supplied from the nitrogen gas supply means in accordance with the oxygen concentration in the furnace detected by the detection means. Features.

なお、上記において、炉内に供給される窒素ガスが空気から分離して生成される場合は、窒素ガスの酸素濃度を制御する代わりに、窒素ガスの窒素濃度を制御しても実質的に同じである。   In addition, in the above, when the nitrogen gas supplied into the furnace is generated separately from the air, it is substantially the same even if the nitrogen concentration of the nitrogen gas is controlled instead of controlling the oxygen concentration of the nitrogen gas. It is.

本発明は以上の構成を有しているため、炉内雰囲気中の酸素濃度の増加・減少に応じて、炉内に供給される窒素ガスの酸素濃度が減少・増加され、炉内雰囲気が常に所定の酸素濃度に管理される。   Since the present invention has the above-described configuration, the oxygen concentration of the nitrogen gas supplied to the furnace is decreased / increased in accordance with the increase / decrease of the oxygen concentration in the furnace atmosphere, and the furnace atmosphere is always maintained. It is controlled to a predetermined oxygen concentration.

以下、本発明の好ましい一実施形態を図面を参照しながら説明する。   Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings.

リフロー半田付け装置は、図1に示されているように、炉1内に、3個の予熱室2と、1個のリフロー室3と、1個の冷却室4とをコンベヤ5の搬送方向に沿って順に有している。6は送風機、7はヒータである。窒素ガス供給管8の供給口が炉1の壁面を貫通して炉1内に臨んでおり、窒素ガス供給管8を通じて窒素ガス供給システム9から一定量の窒素ガスが炉1内に連続的に供給されるようにされている。   As shown in FIG. 1, the reflow soldering apparatus includes three preheating chambers 2, one reflow chamber 3, and one cooling chamber 4 in the furnace 1 in the conveying direction of the conveyor 5. It has in order along. 6 is a blower, 7 is a heater. The supply port of the nitrogen gas supply pipe 8 passes through the wall of the furnace 1 and faces the furnace 1, and a certain amount of nitrogen gas is continuously supplied into the furnace 1 from the nitrogen gas supply system 9 through the nitrogen gas supply pipe 8. To be supplied.

本発明の方法を実施するための窒素ガス供給システム9は、原料ガスから窒素ガスを分離して窒素ガスを生成するPSA(Pressure Swing Adsorption)方式の窒素ガス生成方式を採用しており、吸着剤として分子篩炭(Molecular Seiving Carbon)を用いている。分子篩炭は窒素と酸素の吸着速度差が異なり、加圧下において酸素を優先的に吸着し、空気から窒素を分離できる。吸着した酸素は減圧すると脱着でき、分子篩炭を再生できる。   The nitrogen gas supply system 9 for carrying out the method of the present invention employs a PSA (Pressure Swing Adsorption) type nitrogen gas generation method in which nitrogen gas is separated from a raw material gas to generate nitrogen gas, and an adsorbent As a molecular sieve charcoal (Molecular Seizing Carbon) is used. Molecular sieve charcoal has different adsorption rates between nitrogen and oxygen, and can preferentially adsorb oxygen under pressure and separate nitrogen from air. The adsorbed oxygen can be desorbed under reduced pressure, and molecular sieve charcoal can be regenerated.

窒素ガス供給システム9は、図2に示されているように、分子篩炭を充填した2基の吸着槽10,11を備え、この2基の吸着槽10,11が、それぞれ高圧吸着工程・低圧脱着(再生)工程を交互に繰り返すことにより、連続的に空気から窒素を分離し、窒素ガスを供給する。以下、図2〜図6に基づいて詳細に説明する。   As shown in FIG. 2, the nitrogen gas supply system 9 includes two adsorption tanks 10 and 11 filled with molecular sieve charcoal, and these two adsorption tanks 10 and 11 respectively have a high pressure adsorption process and a low pressure. By repeating the desorption (regeneration) step alternately, nitrogen is continuously separated from the air and nitrogen gas is supplied. Hereinafter, it demonstrates in detail based on FIGS.

図2において、12は圧縮空気を供給するインバータ式の圧縮機、13はインバータ、14,15はエアー供給弁、16,17は排気弁、18,19は製品供給弁、20,21は均圧弁、22は製品排出弁であり、いずれの弁14〜22も電磁弁で構成されている。23は、窒素ガスを貯蔵する製品窒素ガスの貯槽である。24は、炉1内雰囲気の酸素濃度を検出するための酸素濃度計であり、酸素濃度計24の検出端24aが炉1内に挿入されている。酸素濃度計24の出力端はPIDコントローラ25に接続されており、酸素濃度計24で検出された酸素濃度の値はコントローラ25に入力される。コントローラ25は、酸素濃度計24の検出値と炉1内雰囲気の設定酸素濃度の値との偏差に基づいてインバータ13の周波数を制御して圧縮機12の回転数をコントロールする。また、酸素濃度計24の検出値と設定酸素濃度の値がコントローラ25を通じてシーケンサ(PLC)26に入力される。シーケンサ26は、各弁14〜22の開閉を制御し、例えば、酸素濃度計24の検出値と炉1内雰囲気の設定酸素濃度の値との偏差に基づいて、吸着槽10,11の吸着・脱着の切り替え周期を自動調整する。   In FIG. 2, 12 is an inverter type compressor for supplying compressed air, 13 is an inverter, 14 and 15 are air supply valves, 16 and 17 are exhaust valves, 18 and 19 are product supply valves, and 20 and 21 are pressure equalization valves. , 22 are product discharge valves, and any of the valves 14 to 22 is composed of a solenoid valve. 23 is a product nitrogen gas storage tank for storing nitrogen gas. Reference numeral 24 denotes an oxygen concentration meter for detecting the oxygen concentration in the atmosphere in the furnace 1, and a detection end 24 a of the oxygen concentration meter 24 is inserted into the furnace 1. The output terminal of the oxygen concentration meter 24 is connected to the PID controller 25, and the value of the oxygen concentration detected by the oxygen concentration meter 24 is input to the controller 25. The controller 25 controls the rotation speed of the compressor 12 by controlling the frequency of the inverter 13 based on the deviation between the detected value of the oxygen concentration meter 24 and the set oxygen concentration value of the atmosphere in the furnace 1. Further, the detected value of the oximeter 24 and the set oxygen concentration value are input to the sequencer (PLC) 26 through the controller 25. The sequencer 26 controls the opening and closing of the valves 14 to 22, for example, based on the deviation between the detected value of the oxygen concentration meter 24 and the set oxygen concentration value of the atmosphere in the furnace 1. Automatically adjusts the desorption switching cycle.

以下、上記窒素ガス供給システム9の作用を説明する。   Hereinafter, the operation of the nitrogen gas supply system 9 will be described.

PSA方式の本システム9は、圧縮機12により加圧された空気が2基の吸着槽10,11に交互に選択的に送り込まれ、加圧空気が送り込まれた吸着槽で酸素が吸着除去され、窒素ガスが製品貯槽23に送られる。すなわち、一方の吸着槽10が吸着工程、他方の吸着槽11が脱着工程にあるとき、弁14〜22は次の状態にある。エアー供給弁14、排気弁17、及び製品供給弁18は開、エアー供給弁15、排気弁16、製品供給弁19、及び均圧弁20,21は閉の状態にある。この状態で、圧縮機12によって加圧された空気は一方の吸着槽10に送り込まれ、その加圧空気は一方の吸着槽10内で酸素が吸着除去され、窒素ガスが製品貯槽23に送られる。一方、他方の吸着槽11では、前の吸着工程で吸着された酸素が脱着され、排気される。   In the PSA system 9, the air pressurized by the compressor 12 is selectively sent alternately to the two adsorption tanks 10 and 11, and the oxygen is adsorbed and removed in the adsorption tank into which the pressurized air is sent. Nitrogen gas is sent to the product storage tank 23. That is, when one adsorption tank 10 is in the adsorption process and the other adsorption tank 11 is in the desorption process, the valves 14 to 22 are in the following state. The air supply valve 14, the exhaust valve 17, and the product supply valve 18 are open, and the air supply valve 15, the exhaust valve 16, the product supply valve 19, and the pressure equalizing valves 20, 21 are closed. In this state, the air pressurized by the compressor 12 is sent into one adsorption tank 10, and the pressurized air adsorbs and removes oxygen in the one adsorption tank 10, and nitrogen gas is sent to the product storage tank 23. . On the other hand, in the other adsorption tank 11, the oxygen adsorbed in the previous adsorption process is desorbed and exhausted.

上記の吸着工程と脱着工程が所定時間行われると、次に、一方の吸着槽10が脱着工程、他方の吸着槽11が吸着工程に切り替わる。すなわち、エアー供給弁15、排気弁16、及び製品供給弁19は開、エアー供給弁14、排気弁17、製品供給弁18、及び均圧弁20,21は閉の状態になり、この状態で、圧縮機12によって加圧された空気は他方の吸着槽11に送り込まれ、その加圧空気は他方の吸着槽11内で酸素が吸着除去され、窒素ガスが製品貯槽23に送られる。そして、一方の吸着槽10では、前の吸着工程で吸着された酸素が脱着され、排気される。   When the above adsorption process and desorption process are performed for a predetermined time, next, one adsorption tank 10 is switched to the desorption process, and the other adsorption tank 11 is switched to the adsorption process. That is, the air supply valve 15, the exhaust valve 16, and the product supply valve 19 are opened, and the air supply valve 14, the exhaust valve 17, the product supply valve 18, and the pressure equalizing valves 20, 21 are closed. The air pressurized by the compressor 12 is sent to the other adsorption tank 11, the oxygen is adsorbed and removed from the pressurized air in the other adsorption tank 11, and nitrogen gas is sent to the product storage tank 23. In one adsorption tank 10, the oxygen adsorbed in the previous adsorption process is desorbed and exhausted.

なお、均圧弁20,21は吸着工程から脱着工程に切り替わる途中で、開になり、2基の吸着槽10,11を均圧化する。すなわち、吸着工程終了時、弁14〜19が一旦、全て閉になり、均圧弁20,21が開になる。均圧工程終了後、上記脱着工程に移る。   The pressure equalizing valves 20 and 21 are opened in the middle of switching from the adsorption process to the desorption process to equalize the pressure in the two adsorption tanks 10 and 11. That is, at the end of the adsorption process, all the valves 14 to 19 are once closed, and the pressure equalizing valves 20 and 21 are opened. After completion of the pressure equalization process, the process proceeds to the desorption process.

このように、弁14〜19を開閉させることにより、一方の吸着槽10が吸着時は、他方の吸着槽11は脱着を行い、次のサイクルで、一方の吸着槽10は脱着、他方の吸着槽11は吸着を行うよう構成されている。これらが所定の切り替え周期で繰り返されて窒素ガスが連続的に生成される。上記吸着・脱着工程を切り替える弁14〜19及び均圧弁20,21の開閉制御はシーケンサ26により行われている。なお、製品排出弁22は、装置運転後所定時間が経過した後、シーケンサ26により開になるようにされている。   Thus, by opening and closing the valves 14 to 19, when one of the adsorption tanks 10 is adsorbed, the other adsorption tank 11 is desorbed, and in the next cycle, one of the adsorption tanks 10 is desorbed and the other is adsorbed. The tank 11 is configured to perform adsorption. These are repeated at a predetermined switching cycle to continuously generate nitrogen gas. The sequencer 26 performs opening / closing control of the valves 14 to 19 and the pressure equalizing valves 20 and 21 for switching the adsorption / desorption process. The product discharge valve 22 is opened by a sequencer 26 after a predetermined time has elapsed after the operation of the apparatus.

上記PSA方式の窒素ガス供給システム9において、分子篩炭は窒素と酸素の吸着速度差が吸着時間によって変化するので、吸着槽10,11の吸着・脱着の切り替え周期を変化させれば、生成する窒素ガスの酸素濃度は変化する(図4参照)。   In the PSA-type nitrogen gas supply system 9, the molecular sieve charcoal changes the adsorption rate difference between nitrogen and oxygen depending on the adsorption time. Therefore, if the adsorption / desorption switching cycle of the adsorption tanks 10 and 11 is changed, the generated nitrogen The oxygen concentration of the gas changes (see FIG. 4).

また、上記PSA方式の窒素ガス供給システム9において、加圧空気の圧力すなわち加圧空気の供給量例えば圧縮機12の回転数が変化することによっても、生成する窒素ガスの酸素濃度は変化する(図6参照)。   In the PSA-type nitrogen gas supply system 9, the oxygen concentration of the generated nitrogen gas also changes when the pressure of the pressurized air, that is, the supply amount of the pressurized air, for example, the rotational speed of the compressor 12 changes ( (See FIG. 6).

本実施形態の窒素ガス供給システム9は、吸着槽10,11の吸着・脱着の切り替え周期、すなわちエアー供給弁14,15、排気弁16,17、及び製品供給弁18,19の開閉をシーケンサ26で自動調整し、更に、圧縮機12の回転数すなわちインバータ13の周波数をコントローラ25で制御することによって、異なる酸素濃度の窒素ガスが生成されるように構成されている。   The nitrogen gas supply system 9 of the present embodiment is configured to switch the adsorption / desorption cycle of the adsorption tanks 10 and 11, that is, the sequencer 26 for opening and closing the air supply valves 14 and 15, the exhaust valves 16 and 17, and the product supply valves 18 and 19. Further, the controller 25 controls the rotational speed of the compressor 12, that is, the frequency of the inverter 13, so that nitrogen gases having different oxygen concentrations are generated.

以下、炉1内雰囲気の設定酸素濃度が500ppmの場合を例にとって説明する。   Hereinafter, the case where the set oxygen concentration in the atmosphere in the furnace 1 is 500 ppm will be described as an example.

シーケンサ26による吸着槽10,11における吸着・脱着の切り替え周期の自動調整を図3に示すフローチャートに基づいて説明する。図3に示されているように、最初は、吸着槽10,11の吸着・脱着の切り替え周期がシーケンサ26に初期値として入力されている時間に設定される。この切り替え周期の初期値は、炉1内雰囲気の設定酸素濃度よりも低い酸素濃度の窒素ガスを生成できる切り替え周期であればよいが、低酸素濃度の窒素ガスができるだけ多量に生成されるよう設定するのが好ましい。したがって、酸素濃度が0ppm又はそれにより近い酸素濃度で、切り替え周期は最短時間に設定するのが好ましい。本実施形態では、図4に示す周波数及び切り替え周期と酸素濃度との関係を示す試験データから、35秒(周波数が50Hzで酸素濃度0ppm)に設定してある。   The automatic adjustment of the adsorption / desorption switching cycle in the adsorption tanks 10 and 11 by the sequencer 26 will be described based on the flowchart shown in FIG. As shown in FIG. 3, initially, the adsorption / desorption switching period of the adsorption tanks 10 and 11 is set to the time inputted as an initial value to the sequencer 26. The initial value of the switching cycle may be any switching cycle that can generate nitrogen gas having an oxygen concentration lower than the set oxygen concentration of the atmosphere in the furnace 1, but is set so that nitrogen gas having a low oxygen concentration is generated as much as possible. It is preferable to do this. Therefore, it is preferable to set the switching cycle to the shortest time when the oxygen concentration is 0 ppm or close thereto. In this embodiment, 35 seconds (the frequency is 50 Hz and the oxygen concentration is 0 ppm) is set from the test data indicating the relationship between the frequency and switching period and the oxygen concentration shown in FIG.

圧縮機12から2基の吸着槽10,11に交互に選択的に送り込まれた加圧空気は、35秒の切り替え周期で、吸着・脱着が繰り返され、酸素が吸着除去されて生成された窒素ガスが製品貯槽23に送られる。   Pressurized air that is selectively sent alternately from the compressor 12 to the two adsorption tanks 10 and 11 is repeatedly adsorbed and desorbed at a switching period of 35 seconds, and is produced by adsorption and removal of oxygen. The gas is sent to the product storage tank 23.

炉1内雰囲気の酸素濃度が酸素濃度計24で検出され、その検出値とコントローラ25に入力された設定酸素濃度の値(500ppm)がシリアル通信によってシーケンサ26に入力される。シーケンサ26は、検出値<(設定値+一定値)を判断し、これを満足しない場合は、上記35秒の切り替え周期で運転が続行される。なお、上記の一定値は任意の値でよく、本実施形態では300ppmに設定してある。   The oxygen concentration in the atmosphere in the furnace 1 is detected by the oxygen concentration meter 24, and the detected value and the set oxygen concentration value (500 ppm) input to the controller 25 are input to the sequencer 26 by serial communication. The sequencer 26 determines that the detected value <(set value + constant value), and if not satisfied, the operation is continued with the switching period of 35 seconds. The constant value may be an arbitrary value, and is set to 300 ppm in the present embodiment.

上記の切り替え周期での運転により、炉1内雰囲気の酸素濃度は低下してくる。そして、検出値<(設定値+一定値)を満足することがシーケンサ26によって判断されると、シーケンサ26は吸着槽10,11の吸着・脱着の切り替え周期を設定酸素濃度に応じた切り替え周期に変更する。この切り替え周期は、次のようにして決定されている。すなわち、図4に示されているように、インバータ周波数(すなわち圧縮機12の回転数)が相異すれば、生成される窒素ガスの最小の酸素濃度の値は相異している。そして、最小の酸素濃度の値が高くなるほど周波数は低くなっている。したがって、生成される窒素ガスの最小の酸素濃度が設定酸素濃度となる周波数によれば、最小の消費電力で設定酸素濃度の窒素ガスを得ることができる。したがって、この周波数で圧縮機12が運転されたときに設定酸素濃度の窒素ガスを生成できる切り替え周期が選択される。すなわち、生成される窒素ガスの最小の酸素濃度が設定酸素濃度となる周波数で設定酸素濃度の窒素ガスを生成できる切り替え周期が選択される。これにより、圧縮機12の消費電力を最小限にできる。   By the operation in the switching cycle, the oxygen concentration in the atmosphere inside the furnace 1 is lowered. When the sequencer 26 determines that the detected value <(set value + constant value) is satisfied, the sequencer 26 sets the adsorption / desorption switching cycle of the adsorption tanks 10 and 11 to a switching cycle according to the set oxygen concentration. change. This switching cycle is determined as follows. That is, as shown in FIG. 4, if the inverter frequency (that is, the rotation speed of the compressor 12) is different, the minimum oxygen concentration value of the generated nitrogen gas is different. The frequency decreases as the value of the minimum oxygen concentration increases. Therefore, according to the frequency at which the minimum oxygen concentration of the generated nitrogen gas becomes the set oxygen concentration, the nitrogen gas having the set oxygen concentration can be obtained with the minimum power consumption. Therefore, a switching cycle is selected that can generate nitrogen gas with a set oxygen concentration when the compressor 12 is operated at this frequency. That is, a switching cycle is selected that can generate nitrogen gas having a set oxygen concentration at a frequency at which the minimum oxygen concentration of the generated nitrogen gas becomes the set oxygen concentration. Thereby, the power consumption of the compressor 12 can be minimized.

図4及び図5により説明すると、生成される窒素ガスにおいて設定酸素濃度500ppmが酸素濃度の最小値となるのは、周波数が32Hzのときである。この周波数で圧縮機12を運転すれば、低消費電力で設定酸素濃度(500ppm)の窒素ガスを生成できる。したがって、この周波数の下で酸素濃度が設定酸素濃度(500ppm)になる切り替え周期、すなわち60秒が選択される。したがって、検出値<(設定値+一定値)が満足されると、吸着槽10,11の吸着・脱着の切り替え周期は、シーケンサ26によって60秒に変更され、以後、この切り替え周期で運転が続行される。   Referring to FIGS. 4 and 5, the set oxygen concentration of 500 ppm in the generated nitrogen gas becomes the minimum value of the oxygen concentration when the frequency is 32 Hz. If the compressor 12 is operated at this frequency, nitrogen gas having a set oxygen concentration (500 ppm) can be generated with low power consumption. Therefore, a switching cycle in which the oxygen concentration becomes the set oxygen concentration (500 ppm) under this frequency, that is, 60 seconds is selected. Therefore, when the detected value <(set value + constant value) is satisfied, the adsorption / desorption switching period of the adsorption tanks 10 and 11 is changed to 60 seconds by the sequencer 26, and thereafter the operation is continued at this switching period. Is done.

このように、吸着槽10,11の吸着・脱着の切り替え周期は、シーケンサ26によって、最初は初期値に設定され、炉1内雰囲気の酸素濃度が設定酸素濃度に近づくと、設定酸素濃度に応じた切り替え周期に変更され、以後、この切り替え周期で運転される。   As described above, the adsorption / desorption switching period of the adsorption tanks 10 and 11 is initially set to an initial value by the sequencer 26. When the oxygen concentration in the furnace 1 atmosphere approaches the set oxygen concentration, the change is made according to the set oxygen concentration. After that, the operation is changed to this switching cycle.

一方、上記吸着槽10,11の吸着・脱着の切り替え周期の下で、炉1内の酸素濃度が設定酸素濃度(500ppm)になるように、酸素濃度計24による検出値と設定酸素濃度の値との偏差に応じて、インバータ13の周波数がコントローラ25によって自動調整されて圧縮機12の回転数が制御され、吸着槽10,11へ送り込まれる加圧空気の供給量が調整されて、炉1内へ供給される窒素ガスの酸素濃度が自動調整される。   On the other hand, the value detected by the oxygen concentration meter 24 and the value of the set oxygen concentration so that the oxygen concentration in the furnace 1 becomes the set oxygen concentration (500 ppm) under the adsorption / desorption switching cycle of the adsorption tanks 10 and 11. The frequency of the inverter 13 is automatically adjusted by the controller 25 in accordance with the deviation from the above, the number of revolutions of the compressor 12 is controlled, the amount of pressurized air fed into the adsorption tanks 10 and 11 is adjusted, and the furnace 1 The oxygen concentration of the nitrogen gas supplied into the inside is automatically adjusted.

以上のようにして、吸着槽10,11の吸着・脱着の切り替え周期が、酸素濃度の検出値に応じてシーケンサ26により適切に自動調整されるとともに、圧縮機12の回転数が酸素濃度の検出値に応じてコントローラ25により制御され、炉1内の酸素濃度が設定酸素濃度になるよう炉1内へ供給される窒素ガスの酸素濃度が自動調整される。   As described above, the adsorption / desorption switching cycle of the adsorption tanks 10 and 11 is appropriately automatically adjusted by the sequencer 26 in accordance with the detected value of the oxygen concentration, and the rotation speed of the compressor 12 is detected for the oxygen concentration. It is controlled by the controller 25 according to the value, and the oxygen concentration of the nitrogen gas supplied into the furnace 1 is automatically adjusted so that the oxygen concentration in the furnace 1 becomes the set oxygen concentration.

以下、本発明の作用を説明する。   Hereinafter, the operation of the present invention will be described.

炉1内の窒素ガス雰囲気は、上述のようにして、窒素ガス供給システム9によって酸素濃度が設定酸素濃度例えば500ppmにされている。電子部品を搭載したプリント基板27は、コンベヤ5によって炉1内を基板搬入口1aから基板搬出口1bへ搬送されながら、プリント基板27上のクリーム半田が、加熱された窒素ガス雰囲気中で予熱室2で予熱され、リフロー室3で加熱溶融され、冷却室4で溶融半田が冷却固化されて、電子部品が基板上に半田付けされる。   The nitrogen gas atmosphere in the furnace 1 is set to a set oxygen concentration, for example, 500 ppm by the nitrogen gas supply system 9 as described above. The printed circuit board 27 on which the electronic components are mounted is conveyed in the furnace 1 by the conveyor 5 from the substrate carry-in port 1a to the substrate carry-out port 1b, and the cream solder on the printed circuit board 27 is preheated in a heated nitrogen gas atmosphere. 2 is preheated, heated and melted in the reflow chamber 3, the molten solder is cooled and solidified in the cooling chamber 4, and the electronic component is soldered onto the substrate.

そして、設定酸素濃度(500ppm)よりも高い酸素濃度が酸素濃度計24によって検出されると、酸素濃度の検出値に応じて酸素濃度を低くした窒素ガスが窒素ガス供給システム9によって炉1内に供給され、炉1内は酸素濃度が常に500ppmになるようにされる。また、設定酸素濃度(500ppm)よりも低い酸素濃度が酸素濃度計24によって検出されると、酸素濃度の検出値に応じて酸素濃度を高くした窒素ガスが窒素ガス供給システム9によって炉1内に供給され、炉1内は酸素濃度が常に500ppmになるようにされる。このように、炉1内の酸素濃度が設定酸素濃度に対して増加・減少した場合、窒素ガス供給システム9から供給される窒素ガスの酸素濃度が減少・増加され、炉1内は常に設定酸素濃度になるように管理される。   When an oxygen concentration higher than the set oxygen concentration (500 ppm) is detected by the oxygen concentration meter 24, nitrogen gas having a lower oxygen concentration in accordance with the detected value of the oxygen concentration is introduced into the furnace 1 by the nitrogen gas supply system 9. The oxygen concentration in the furnace 1 is always 500 ppm. When an oxygen concentration lower than the set oxygen concentration (500 ppm) is detected by the oxygen concentration meter 24, nitrogen gas whose oxygen concentration is increased according to the detected value of the oxygen concentration is introduced into the furnace 1 by the nitrogen gas supply system 9. The oxygen concentration in the furnace 1 is always 500 ppm. Thus, when the oxygen concentration in the furnace 1 increases / decreases relative to the set oxygen concentration, the oxygen concentration of the nitrogen gas supplied from the nitrogen gas supply system 9 is decreased / increased, and the set oxygen is always set in the furnace 1. It is managed so as to be a concentration.

なお、本発明で使用するPSA方式の窒素ガス供給システムは、炉内の酸素濃度を酸素濃度計で検出した値と、設定酸素濃度の値との偏差に基づいて、吸着槽の吸着・脱着の切り替え周期と原料ガスの供給量を調整して、炉内の酸素濃度が設定酸素濃度になるよう炉内へ供給される窒素ガスの酸素濃度が自動調整されるように構成しているが、酸素濃度の調整を次のように行うことも可能である。すなわち、炉内の酸素濃度を酸素濃度計で検出した値と、設定酸素濃度の値との偏差に基づいて、吸着槽の吸着・脱着の切り替え周期を調整して、炉内の酸素濃度が設定酸素濃度になるよう炉内へ供給される窒素ガスの酸素濃度が自動調整されるように構成することもできる。あるいは、炉内の酸素濃度を酸素濃度計で検出した値と、設定酸素濃度の値との偏差に基づいて、原料ガスの供給量を調整して、炉内の酸素濃度が設定酸素濃度になるよう炉内へ供給される窒素ガスの酸素濃度が自動調整されるように構成することもできる。   The PSA-type nitrogen gas supply system used in the present invention is based on the deviation between the value detected by the oxygen concentration meter and the set oxygen concentration in the furnace, and the adsorption / desorption of the adsorption tank is performed. The oxygen concentration of the nitrogen gas supplied into the furnace is automatically adjusted so that the oxygen concentration in the furnace becomes the set oxygen concentration by adjusting the switching cycle and the supply amount of the source gas. It is also possible to adjust the density as follows. In other words, the oxygen concentration in the furnace is set by adjusting the adsorption / desorption switching cycle of the adsorption tank based on the deviation between the value detected by the oxygen concentration meter and the value of the set oxygen concentration. It can also be configured such that the oxygen concentration of the nitrogen gas supplied into the furnace is automatically adjusted so as to obtain an oxygen concentration. Alternatively, the supply amount of the raw material gas is adjusted based on the deviation between the value of the oxygen concentration detected in the furnace with the oximeter and the value of the set oxygen concentration, so that the oxygen concentration in the furnace becomes the set oxygen concentration. The oxygen concentration of the nitrogen gas supplied into the furnace can be automatically adjusted.

また、上記実施形態では、コントローラ25はPID制御のコントローラを用いたが、他の制御方式のコントローラでも勿論よい。また、圧縮機の回転数を制御したが、原料ガスの供給量を制御できれば他の方式でもよい。また、本発明は上述のような閉ループ制御によって炉内の酸素濃度を管理したが、炉内の酸素濃度は、上記本発明のような閉ループ制御の他に、予め、決められた手順に従って圧縮機の回転数や吸着槽の吸着・脱着の切り換え周期を変更するシーケンス制御による開ループ制御を採用して管理することも可能である。   In the above embodiment, the controller 25 uses a PID control controller, but it may of course be a controller of another control method. Moreover, although the rotation speed of the compressor was controlled, another system may be used as long as the supply amount of the source gas can be controlled. Further, the present invention manages the oxygen concentration in the furnace by the closed loop control as described above, but the oxygen concentration in the furnace is not limited to the closed loop control as in the present invention, but the compressor is operated in accordance with a predetermined procedure. It is also possible to manage by adopting open loop control by sequence control that changes the rotation speed of the suction tank and the adsorption / desorption switching cycle of the adsorption tank.

本発明のリフロー半田付け装置を示す断面図である。It is sectional drawing which shows the reflow soldering apparatus of this invention. PSA方式の窒素ガス供給システムの構成例を示す図である。It is a figure which shows the structural example of the nitrogen gas supply system of a PSA system. シーケンサによる吸着・脱着の切り替え周期の自動調整を示すフローチャートである。It is a flowchart which shows the automatic adjustment of the switching cycle of adsorption | suction / desorption by a sequencer. 周波数及び切り替え周期と酸素濃度との関係を示すグラフである。It is a graph which shows the relationship between a frequency and a switching period, and oxygen concentration. 図4の一部分の拡大図である。FIG. 5 is an enlarged view of a part of FIG. 4. 切り替え周期が30秒の下でのインバータ周波数と酸素濃度との関係を示すグラフである。It is a graph which shows the relationship between the inverter frequency and oxygen concentration under a switching period of 30 seconds.

符号の説明Explanation of symbols

1・・炉、1a・・基板搬入口、1b・・基板搬出口、2・・予熱室、3・・リフロー室、4・・冷却室、5・・コンベヤ、6・・送風機、7・・ヒータ、8・・窒素ガス供給管、9・・窒素ガス供給システム、10,11・・吸着槽、12・・圧縮機、13・・インバータ、14,15・・エアー供給弁、16,17・・排気弁、18,19・・製品供給弁、20,21・・均圧弁、22・・製品排出弁、23・・製品貯槽、24・・酸素濃度計、24a・・検出端、25・・コントローラ、26・・シーケンサ、27・・電子部品を搭載したプリント基板。   1 .. Furnace, 1a ... Substrate carry-in port, 1b ... Substrate carry-out port, 2 .... Preheating chamber, 3 .... Reflow chamber, 4 .... Cooling chamber, 5 .... Conveyor, 6 .... Blower, 7 .... Heater, 8 ·· Nitrogen gas supply pipe, 9 ·· Nitrogen gas supply system, 10, 11 ·· Adsorption tank, 12 ·· Compressor, 13 ·· Inverter, 14,15 ·· Air supply valve, 16, 17 · · Exhaust valve, 18, 19 ·· Product supply valve, 20, 21 · · Pressure equalizing valve, 22 · · Product discharge valve, 23 · · Product storage tank, 24 · · Oxygen meter, 24a · · Detection end, 25 · · Controller, 26 ... Sequencer, 27 ... Printed circuit board with electronic components.

Claims (4)

窒素ガスが供給されている炉内でリフロー半田付けを行うリフロー半田付け装置において、炉内の酸素濃度に応じて、炉内に供給される窒素ガスの酸素濃度が自動調整されることを特徴とするリフロー半田付け装置の炉内雰囲気管理方法。   In a reflow soldering apparatus that performs reflow soldering in a furnace supplied with nitrogen gas, the oxygen concentration of the nitrogen gas supplied into the furnace is automatically adjusted according to the oxygen concentration in the furnace. A method for managing the atmosphere in the furnace of the reflow soldering apparatus. 窒素ガスが供給されている炉内でリフロー半田付けを行うリフロー半田付け装置において、炉内の酸素濃度に応じて、炉内に供給される窒素ガスの窒素濃度が自動調整されることを特徴とするリフロー半田付け装置の炉内雰囲気管理方法。   In a reflow soldering apparatus that performs reflow soldering in a furnace supplied with nitrogen gas, the nitrogen concentration of the nitrogen gas supplied into the furnace is automatically adjusted according to the oxygen concentration in the furnace. A method for managing the atmosphere in the furnace of the reflow soldering apparatus. 窒素ガスが供給されている炉内でリフロー半田付けを行うリフロー半田付け装置において、窒素ガスを炉内に供給可能な窒素ガス供給手段と、炉内の酸素濃度を検出する手段と、この検出手段によって検出された炉内の酸素濃度に応じて、前記窒素ガス供給手段から供給される窒素ガスの酸素濃度を制御する制御手段とを備えてなることを特徴とするリフロー半田付け装置。   In a reflow soldering apparatus for performing reflow soldering in a furnace supplied with nitrogen gas, nitrogen gas supply means capable of supplying nitrogen gas into the furnace, means for detecting the oxygen concentration in the furnace, and this detection means And a control means for controlling the oxygen concentration of the nitrogen gas supplied from the nitrogen gas supply means in accordance with the oxygen concentration in the furnace detected by the above. 窒素ガスが供給されている炉内でリフロー半田付けを行うリフロー半田付け装置において、窒素ガスを炉内に供給可能な窒素ガス供給手段と、炉内の酸素濃度を検出する手段と、この検出手段によって検出された炉内の酸素濃度に応じて、前記窒素ガス供給手段から供給される窒素ガスの窒素濃度を制御する制御手段とを備えてなることを特徴とするリフロー半田付け装置。   In a reflow soldering apparatus for performing reflow soldering in a furnace supplied with nitrogen gas, nitrogen gas supply means capable of supplying nitrogen gas into the furnace, means for detecting the oxygen concentration in the furnace, and this detection means And a control means for controlling the nitrogen concentration of the nitrogen gas supplied from the nitrogen gas supply means in accordance with the oxygen concentration in the furnace detected by the step.
JP2004123835A 2004-02-06 2004-04-20 Method for management of in-furnace atmosphere of reflow soldering equipment and reflow soldering equipment Pending JP2005246476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004123835A JP2005246476A (en) 2004-02-06 2004-04-20 Method for management of in-furnace atmosphere of reflow soldering equipment and reflow soldering equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004031080 2004-02-06
JP2004123835A JP2005246476A (en) 2004-02-06 2004-04-20 Method for management of in-furnace atmosphere of reflow soldering equipment and reflow soldering equipment

Publications (1)

Publication Number Publication Date
JP2005246476A true JP2005246476A (en) 2005-09-15

Family

ID=35027458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004123835A Pending JP2005246476A (en) 2004-02-06 2004-04-20 Method for management of in-furnace atmosphere of reflow soldering equipment and reflow soldering equipment

Country Status (1)

Country Link
JP (1) JP2005246476A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008062296A (en) * 2006-09-11 2008-03-21 Kanto Yakin Kogyo Co Ltd Brazing furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008062296A (en) * 2006-09-11 2008-03-21 Kanto Yakin Kogyo Co Ltd Brazing furnace

Similar Documents

Publication Publication Date Title
KR100878946B1 (en) Method and apparatus for feeding gases
US6923844B2 (en) Gas separation method and device
JP5427412B2 (en) Ozone gas concentration method and apparatus
JP2005246476A (en) Method for management of in-furnace atmosphere of reflow soldering equipment and reflow soldering equipment
KR101525505B1 (en) Method of concentrating ozone gas and apparatus therefor
WO2019234882A1 (en) Ozone supply device and ozone supply method
JP6632463B2 (en) Ozone gas concentration method and ozone gas concentration device
JP2009260097A (en) Facility for modifying into nitrogen reflow furnace
JP2023055466A (en) Annealing furnace, annealing method
JP3769741B2 (en) Ozone concentration storage device and control method thereof
US11925896B2 (en) Gas separation method and gas separation device
JP2005262000A (en) Method for producing nitrogen gas
JP2005270953A (en) Method for separating mixture gas, and device for separating nitrogen gas and system for consuming nitrogen gas
JP6666071B2 (en) Local soldering method
JP7292554B1 (en) Ozone supply device and ozone supply method
JP4354428B2 (en) Substrate processing equipment
JP6632464B2 (en) Ozone gas concentration method and ozone gas concentration device
JPH09142808A (en) Control of ozonizer
JPH05137939A (en) Separation of gaseous nitrogen
JP4607551B2 (en) Operation method of exhaust gas abatement apparatus for vapor phase growth apparatus
JP3806590B2 (en) Constant pressure supply method for high-concentration ozone gas
JP2023105661A (en) Annealing furnace and annealing method
JP4171392B2 (en) Gas separation and recovery method and pressure swing adsorption gas separation and recovery system
JPH03262513A (en) Separation of nitrogen gas
JP6027769B2 (en) Gas separation apparatus and method