JP2005246182A - Ion exchange regeneration method for washing drainage and washing method by regenerated washing water - Google Patents

Ion exchange regeneration method for washing drainage and washing method by regenerated washing water Download PDF

Info

Publication number
JP2005246182A
JP2005246182A JP2004058283A JP2004058283A JP2005246182A JP 2005246182 A JP2005246182 A JP 2005246182A JP 2004058283 A JP2004058283 A JP 2004058283A JP 2004058283 A JP2004058283 A JP 2004058283A JP 2005246182 A JP2005246182 A JP 2005246182A
Authority
JP
Japan
Prior art keywords
water
cleaning
washing
electrical conductivity
regenerated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004058283A
Other languages
Japanese (ja)
Other versions
JP4398758B2 (en
Inventor
Yosuke Yamamoto
洋右 山本
Masaaki Osaka
正明 大坂
Koji Kawaguchi
厚司 川口
Koji Murakami
功治 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duskin Co Ltd
Original Assignee
Duskin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Duskin Co Ltd filed Critical Duskin Co Ltd
Priority to JP2004058283A priority Critical patent/JP4398758B2/en
Publication of JP2005246182A publication Critical patent/JP2005246182A/en
Application granted granted Critical
Publication of JP4398758B2 publication Critical patent/JP4398758B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To develop a method for controlling a content of electrolytic ions contained in a drainage generated by washing, and the like, and improving the water quality of the drainage to use washing water regenerated. <P>SOLUTION: The method comprises subjecting the cleaned drainage obtained by cleaning treatment of the washing drainage to an ion exchange to generate soft water when the electric conductivity of the cleaned drainage is ≤6,000 (μS/cm) and using the soft water as the regenerated washing water which can be reused as the washing water. The cleaned drainage made into the soft water can increase the surface active effect of a detergent and therefore has high detergency. A high degree of the detergency can thus be imparted thereto. The washing drainage discharged from a factory, and the like, can be improved in the water quality and can be recycled as the washing water and therefore a water rate can be reduced and the amount of the detergent can be saved by about 45% than usual. This method is effective for environmental conservation due to the reuse. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、工場・大型施設などにおいて洗浄時に使用される洗浄水に関し、更に詳細には、洗浄によって排出される洗浄排水を再処理して、洗浄水として再利用できる再生洗浄水を生成する洗浄排水の再生方法に関する。   The present invention relates to cleaning water used at the time of cleaning in factories, large facilities, and the like, and more specifically, cleaning that regenerates cleaning wastewater discharged by cleaning and generates regenerated cleaning water that can be reused as cleaning water. It relates to a method for recycling wastewater.

日本は清澄な水を大量に入手できる国であり、河川水・湖沼水・地下水・雨水などを生活用水として多量に消費している。工場等においても良質な工業用水等を安価に利用できるので、洗浄・空調・食品加工・醸造等で多量の工業用水が使用されてきた。特に、洗浄工程では大量の水を必要とするが、水が豊富であるために、洗浄後の排水を再生使用することは殆ど省みられなかった。従って、洗浄効率を上げるためには、洗浄用水の水質を検討するよりも、洗剤の種類及び効率的な使用方法が重要視されてきた。   Japan is a country where a large amount of clear water can be obtained, and it consumes a large amount of river water, lake water, groundwater, rainwater, etc. as domestic water. In factories and the like, high-quality industrial water can be used at low cost, and a large amount of industrial water has been used for washing, air conditioning, food processing, brewing, and the like. In particular, although a large amount of water is required in the washing process, since the water is abundant, it has hardly been omitted to recycle waste water after washing. Therefore, in order to increase the cleaning efficiency, the type of detergent and the efficient usage method have been regarded as more important than the examination of the water quality of the cleaning water.

一般に、洗剤として石鹸と合成洗剤が主として使用されている。石鹸は油脂から生成される脂肪酸塩で、その中でも主としてナトリウム塩やカリウム塩が石鹸として利用されている。他方、合成洗剤は、1834年にドイツで開発され、100年以上の時間を経過する中で幾多の改良が重ねられ、高品質の合成洗剤が出現するに至っている。1960年代になって、石鹸に併用される形で、日本でも合成洗剤が大量に使用されるようになった。合成洗剤は石鹸に比べ洗浄効率が高く、特に油脂類の分解能力に優れているので、現在では工業用としてのみならず日常生活一般に利用されるようになった。   In general, soap and synthetic detergent are mainly used as detergents. Soap is a fatty acid salt produced from fats and oils. Among them, sodium salts and potassium salts are mainly used as soaps. Synthetic detergents, on the other hand, were developed in Germany in 1834 and many improvements were made over the course of more than 100 years, leading to the emergence of high-quality synthetic detergents. In the 1960s, synthetic detergents were used in large quantities in Japan in the form of being used together with soap. Synthetic detergents have higher cleaning efficiency than soap and are particularly excellent in the ability to decompose fats and oils, so they are now used not only for industrial purposes but also in daily life.

合成洗剤は石油等から大量に生産され、工業用・家庭用に広く使用されている。しかし、環境問題が顕在化する中で、合成洗剤の有害性が指摘されるようになった。特に、リンを含む合成洗剤の使用が河川や湖沼の富栄養化を促進し、自然環境の破壊に繋がるとして問題視されている。また、合成洗剤の一部が環境ホルモンとして作用することが確認され、人間を含む生物界に悪影響を与えることが懸念されている。近年、国際会議で環境汚染について討議されるほど、自然環境保護についての意識が世界的に広がり、各国で合成洗剤の使用が問題になり、日本でも合成洗剤の使用が抑制されつつある。   Synthetic detergents are produced in large quantities from petroleum and are widely used for industrial and household purposes. However, as environmental problems become apparent, the harmfulness of synthetic detergents has been pointed out. In particular, the use of synthetic detergents containing phosphorus has been regarded as a problem because it promotes eutrophication of rivers and lakes and leads to the destruction of the natural environment. In addition, it has been confirmed that a part of the synthetic detergent acts as an environmental hormone, and there is a concern that it adversely affects the biological world including humans. In recent years, as environmental pollution has been discussed at international conferences, awareness of protection of the natural environment has spread worldwide, and the use of synthetic detergents has become a problem in many countries, and the use of synthetic detergents is also being suppressed in Japan.

その結果、現在では、合成洗剤に替る洗剤として、従来から使用されてきた石鹸が見直されている。石鹸は油脂をアルカリ処理(水酸化ナトリウム又は水酸化カリウムによる加水分解)して生成され、リンを含有せず、環境ホルモン作用を有さないので、生態系にとって有害でないことが指摘されている。従って、石鹸が合成洗剤に替って使用されることは自然環境保護の観点から好ましい。しかし、合成洗剤の洗浄力と比較すると洗浄力が低いので、過度に汚れた汚染物を洗浄するには、洗浄力が不十分である。例えば、使用後の業務用モップやマット類の汚れはかなりひどく、石鹸を主体にした洗浄工程での大量洗浄では洗浄効率が低下することが考えられる。   As a result, at present, soaps that have been used conventionally are reviewed as detergents that replace synthetic detergents. It has been pointed out that soap is not harmful to the ecosystem because it is produced by alkaline treatment of fats and oils (hydrolysis with sodium hydroxide or potassium hydroxide), does not contain phosphorus and has no environmental hormone action. Therefore, it is preferable from the viewpoint of protecting the natural environment that soap is used instead of synthetic detergent. However, since the cleaning power is low as compared with the cleaning power of the synthetic detergent, the cleaning power is insufficient for cleaning excessively contaminated contaminants. For example, the dirt of commercial mops and mats after use is very severe, and it is conceivable that the cleaning efficiency is reduced in large-scale cleaning in a cleaning process mainly using soap.

また、洗浄等に使用される工業用水等の水質も環境汚染のため年々悪化し、洗浄効率をより一層低下させる要因になっている。そこで、洗剤により洗浄効率を向上させるという従来の発想を転換して、洗浄に使用される洗浄水の水質を改良して洗浄力を高めるという水質の改良技術が盛んに研究されるようになった。通常、水道水の浄化技術として、塩素処理・オゾン処理・紫外線処理・活性炭処理などが行われているが、これらの処理費用は高額になり、上水道に限られている現状にある。工業用水については、処理費用の観点から、そのまま適用することは困難な状態にある。例えば、水道水の改質技術として特開2001−170660号が公表され、洗浄水の改質技術として特開平7−96283号が公表されている。
特開2001−170660号公報 特開平7−96283号公報
In addition, the quality of industrial water used for cleaning and the like deteriorates year by year due to environmental pollution, and is a factor that further reduces the cleaning efficiency. Therefore, the conventional idea of improving the washing efficiency with detergents has been changed, and water quality improvement technology has been actively researched to improve the washing water used for washing and improve the washing power. . Normally, chlorine treatment, ozone treatment, ultraviolet treatment, activated carbon treatment, and the like are performed as tap water purification technologies, but these treatment costs are high and are limited to the water supply. Industrial water is difficult to apply as it is from the viewpoint of processing costs. For example, Japanese Patent Laid-Open No. 2001-170660 is published as a tap water reforming technique, and Japanese Patent Laid-Open No. 7-96283 is published as a cleaning water reforming technique.
JP 2001-170660 A JP-A-7-96283

図13は、特開2001−170660号に示されている水道水の改質技術における工程図である。水道水・地下水等G1をイオン交換処理G2してCa2+及びMg2+などの硬度成分(金属イオン)を除去する。次に、トルマリン処理G3により水の分子集団であるクラスターを微細化して、洗浄用活性水G4を生成する。この公知技術は、最終的に得られた洗浄用活性水を用いて被洗浄物を洗浄すれば、単なる水道水や地下水による洗浄よりも洗浄効率が向上することを示している。しかし、この公知技術はイオン交換処理に更にトルマリン処理という2段階処理を行うため、処理費用が高額になる弱点がある。また、使用される水道水や地下水は極めて清澄度の高い水であり、洗浄後の排水にこの2段階処理を適用したときには、同様の洗浄効率が得られるかどうかについては全く言及していない。しかも、洗浄後の排水の再利用は考慮していないから、環境に排出した場合には、環境汚染を惹起する弱点もある。 FIG. 13 is a process diagram in the tap water reforming technique disclosed in Japanese Patent Laid-Open No. 2001-170660. Tap water, groundwater, etc. G1 is subjected to ion exchange treatment G2, and hardness components (metal ions) such as Ca 2+ and Mg 2+ are removed. Next, a cluster which is a molecular group of water is refined by tourmaline treatment G3 to generate cleaning active water G4. This publicly known technique shows that the cleaning efficiency is improved when the object to be cleaned is cleaned using the finally obtained cleaning active water, compared to cleaning with simple tap water or groundwater. However, since this known technique performs a two-stage process called a tourmaline process in addition to the ion exchange process, there is a weak point that the processing cost is high. In addition, tap water and groundwater used are highly clear water, and no mention is made as to whether or not the same washing efficiency can be obtained when this two-stage treatment is applied to the waste water after washing. Moreover, since reuse of waste water after washing is not considered, there is a weak point that causes environmental pollution when discharged into the environment.

図14は、特開平7−96283号に示される洗浄水の改質技術における工程図である。水道水・地下水F1をイオン交換処理F2してCa2+及びMg2+等の金属イオンを除去して軟水化し、トルマリン処理F3により洗浄用活性水F4を生成する。この洗浄用活性水F4は洗剤を使用しないで洗浄F5できる特性を有し、その洗浄により被洗浄物から脱離された油は水道水添加で油水分離F6ができる。層分離された油・水は油分の回収及び水分の排出F7により分離回収される。この公知技術も、清澄な水道水や地下水にイオン交換とトルマリンの2段階処理を行うから、処理コストが高くなる。また、洗浄後の排水に対しては、同様の洗浄効果が得られるかどうかについては全く記載されていないし、示唆もされていない。しかも、洗浄後の排水の再利用は考慮していないから、環境に排出した場合には、環境汚染を惹起する弱点もある。 FIG. 14 is a process diagram in the washing water reforming technique disclosed in Japanese Patent Laid-Open No. 7-96283. Tap water / ground water F1 is subjected to an ion exchange treatment F2 to remove metal ions such as Ca 2+ and Mg 2+ to soften the water, and a tourmaline treatment F3 generates cleaning active water F4. This active water F4 for washing has a characteristic that can be washed F5 without using a detergent, and the oil released from the object to be washed by the washing can be separated into oil and water F6 by adding tap water. The separated oil / water is separated and recovered by oil recovery and moisture discharge F7. This known technique also performs a two-stage treatment of ion exchange and tourmaline on clear tap water or groundwater, so that the processing cost becomes high. Further, there is no description or suggestion as to whether or not the same cleaning effect can be obtained with respect to the waste water after cleaning. Moreover, since reuse of waste water after washing is not considered, there is a weak point that causes environmental pollution when discharged into the environment.

上述したように、前記両公知技術ともに、水道水や地下水といった清澄水にイオン交換及びトルマリン処理を施して水質を改善し、洗浄力を高めることを目的としている。しかし、このような従来方法では、常に高価な清澄水を必要とし、水道コストが高くなる。また、トルマリンという高価な素材を使用するから、処理施設が高額になる。また、洗浄排水は再利用されずそのまま自然放出されるから、昨今、世界的に不足が問題となっている水資源の有効活用や環境保護には全く貢献しない技術となってしまう。従って、環境保全と洗浄コストの低減を実現するためには、洗浄排水を再生使用できる技術が求められている。   As described above, both of the known techniques are intended to improve the water quality by increasing the detergency by performing ion exchange and tourmaline treatment on clear water such as tap water and groundwater. However, such a conventional method always requires expensive clarified water, resulting in high water costs. In addition, an expensive material called tourmaline is used, which makes the processing facility expensive. In addition, since the washing wastewater is spontaneously released without being reused, it becomes a technology that does not contribute at all to effective use of water resources and environmental protection, which are currently lacking worldwide. Therefore, in order to realize environmental conservation and reduction of cleaning costs, a technology that can recycle and reuse cleaning wastewater is required.

衣服やモップ・マット等の汚れた繊維製品や洗浄する時に使用される洗剤や薬品にはかなりの量のNa化合物(Na)や硬度成分(例えばCa2+、Mg2+)が含まれており、これらの繊維製品を洗浄すれば、洗浄後の排水(洗浄排水)には大量のNa、Ca2+、Mg2+が含有されることになる。一般的に、Na+を含有した水では、Ca2+、Mg2+などの硬度成分をイオン交換できないと考えられていた。即ち、Ca2+、Mg2+などの硬度成分がイオン交換されずに、そのまま排出される現象が生起し、この現象は硬度漏れ現象と言われている。以下、図15により硬度漏れ現象について詳細に説明する。 Dirty textiles such as clothes and mops and mats, and detergents and chemicals used when washing contain a significant amount of Na compounds (Na + ) and hardness components (eg Ca 2+ , Mg 2+ ) If these textiles are washed, a large amount of Na + , Ca 2+ and Mg 2+ will be contained in the waste water after washing (wash waste water). In general, it has been considered that water containing Na + cannot ion-exchange hardness components such as Ca 2+ and Mg 2+ . That is, a phenomenon occurs in which hardness components such as Ca 2+ and Mg 2+ are discharged without being ion-exchanged, and this phenomenon is said to be a hardness leakage phenomenon. Hereinafter, the hardness leakage phenomenon will be described in detail with reference to FIG.

図15は、硬度漏れ現象の説明図である。(15A)はイオン交換樹脂にNa+が付着した状態の説明図である。今、上部から、Ca2+、Mg2+及びNa+を含有した排水がイオン交換樹脂槽へ流入する場合を考察する。(15B)はこれらのイオン群がイオン交換樹脂を通過する途中状態の説明図で、Ca2+がイオン交換樹脂に付着したNa+と交換された状態を示す。この段階では、排水に含有されていたCa2+はイオン交換樹脂に吸着され、逆にイオン交換樹脂に付着していたNa+が放出されて、イオン交換が行われている。(15C)は硬度漏れ現象図である。イオン交換樹脂に一旦吸収されたCa2+が排水中に含有されたNa+と交換し、イオン交換樹脂から排水中に放出された状態を示す。即ち、一旦吸収されたCa2+が再び排水中に放出されることを示している。従って、排水中にNa+が含有されている場合には、イオン交換が不可能であることを示しており、この現象を硬度漏れ現象という。 FIG. 15 is an explanatory diagram of the hardness leakage phenomenon. (15A) is an explanatory diagram of a state in which Na + is attached to the ion exchange resin. Consider the case where waste water containing Ca 2+ , Mg 2+ and Na + flows into the ion exchange resin tank from above. (15B) is an explanatory diagram of a state where these ion groups pass through the ion exchange resin, and shows a state where Ca 2+ is exchanged with Na + attached to the ion exchange resin. At this stage, Ca 2+ contained in the waste water is adsorbed by the ion exchange resin, and Na + adhering to the ion exchange resin is released and ion exchange is performed. (15C) is a diagram of a hardness leakage phenomenon. The state where Ca 2+ once absorbed in the ion exchange resin is exchanged with Na + contained in the waste water and is released from the ion exchange resin into the waste water is shown. That is, it is shown that Ca 2+ once absorbed is released again into the waste water. Therefore, when Na + is contained in the waste water, ion exchange is impossible, and this phenomenon is called hardness leakage phenomenon.

従来の技術常識では、高塩分を有する排水から硬度成分をイオン交換により除去することは不可能であると信じられてきた。つまり、繊維製品の洗浄排水には高塩分が残留するから、この高塩分の作用により、洗浄排水をイオン交換することは不可能であるということが、洗浄技術分野の常識となっていた。   In the conventional technical common sense, it has been believed that it is impossible to remove hardness components from waste water having high salinity by ion exchange. That is, since high salinity remains in the washing wastewater of textile products, it has become common sense in the field of washing technology that it is impossible to ion-exchange the washing wastewater due to the action of this high salinity.

本発明者等は、排水中に含まれるNa化合物等の電解質の濃度に着目して、電解質の濃度が一定値以下の場合は硬度漏れ現象が発生しないことを発見して、本発明を完成したものである。排水中に含まれる電解質の含有量を測定できれば、排水中の硬度成分であるCa2+やMg2+を除去でき、塩分含有排水を軟水化できることを着想した。前記電解質としてはNa化合物が主成分であるから、電解質イオンはNa+が中心となる。この電解質イオンの濃度は、洗浄後に排出される排水の電気伝導度(σ)を測定すれば可能であることに注目して本発明を完成したものである。従って、本発明の目的は、この排水の電気伝導度(σ)を測定することにより、排水がイオン交換可能かどうかを判断し、可能な場合には、イオン交換を行って、排水を再生処理し、洗浄水として再利用する方法を提供することである。 The inventors of the present invention have focused on the concentration of electrolyte such as Na compound contained in the waste water, and found that the leakage phenomenon of hardness does not occur when the concentration of the electrolyte is below a certain value, thereby completing the present invention. Is. The idea was that if the content of the electrolyte contained in the wastewater could be measured, Ca 2+ and Mg 2+ , which are hardness components in the waste water, could be removed, and the salt-containing waste water could be softened. Since the electrolyte is mainly composed of a Na compound, the electrolyte ions are mainly Na + . The present invention has been completed by paying attention to the fact that the concentration of the electrolyte ions can be obtained by measuring the electrical conductivity (σ) of the waste water discharged after washing. Therefore, the object of the present invention is to determine whether or not the drainage can be ion-exchanged by measuring the electrical conductivity (σ) of this drainage, and if possible, perform ion exchange and recycle the drainage. And providing a method for reusing as washing water.

本発明の第1の形態は、洗浄によって排出される洗浄排水に浄化処理を施して浄化排水を生成し、この浄化排水の電気伝導度が6000(μS/cm)以下であるときに、前記浄化排水をイオン交換して軟水を生成し、この軟水を洗浄水として再使用される再生洗浄水とする洗浄排水のイオン交換再生方法である。   In the first aspect of the present invention, purification wastewater discharged by washing is subjected to purification treatment to produce purified wastewater, and the purification wastewater has an electrical conductivity of 6000 (μS / cm) or less. This is an ion-exchange regeneration method for washing wastewater, in which the wastewater is ion-exchanged to generate soft water, and this soft water is regenerated washing water that is reused as washing water.

本発明の第2の形態は、洗浄によって排出される洗浄排水に浄化処理を施して浄化排水を生成し、この浄化排水の電気伝導度が6000(μS/cm)以下の範囲内に設定された基準許容電気伝導度以下であるときに、前記浄化排水をイオン交換して軟水を生成し、この軟水を洗浄水として再使用される再生洗浄水とする洗浄排水のイオン交換再生方法である。   In the second embodiment of the present invention, the cleaning wastewater discharged by cleaning is subjected to purification treatment to generate purified wastewater, and the electrical conductivity of the purified wastewater is set within a range of 6000 (μS / cm) or less. This is an ion exchange regeneration method for cleaning wastewater that is ion-exchanged for the purified wastewater to produce soft water when the electrical conductivity is lower than the standard allowable electrical conductivity, and this soft water is reused as cleaning water.

本発明の第3の形態は、浄化排水の電気伝導度が基準許容電気伝導度を超える場合には、この浄化排水に水を添加し、基準許容電気伝導度以下になるまで希釈処理を施こす洗浄排水のイオン交換再生方法である。   In the third embodiment of the present invention, when the electrical conductivity of the purified wastewater exceeds the standard allowable electrical conductivity, water is added to the purified wastewater, and the dilution treatment is performed until the purified wastewater becomes equal to or lower than the standard allowable electrical conductivity. This is an ion exchange regeneration method for washing wastewater.

本発明の第4の形態は、浄化排水の電気伝導度を測定センサーにより常時計測し、この計測値が基準許容電気伝導度以下になるまで水の添加を継続する洗浄排水のイオン交換再生方法である。   The fourth aspect of the present invention is an ion exchange regeneration method for cleaning wastewater, in which the electrical conductivity of purified wastewater is constantly measured by a measurement sensor, and the addition of water is continued until the measured value falls below the reference allowable electrical conductivity. is there.

本発明の第5の形態は、浄化排水の電気伝導度を測定センサーにより計測し、この計測値から浄化排水の電気伝導度が基準許容電気伝導度以下になる水の添加量を算出し、この算出された添加量の水を前記浄化排水に注入する洗浄排水のイオン交換再生方法である。   In the fifth aspect of the present invention, the electrical conductivity of the purified wastewater is measured by a measurement sensor, and the amount of water added so that the electrical conductivity of the purified wastewater is equal to or lower than the reference allowable electrical conductivity is calculated from this measured value. This is an ion exchange regeneration method for washing wastewater, in which a calculated addition amount of water is injected into the purified wastewater.

本発明の第6の形態は、第1形態〜第5形態のいずれかに記載の再生洗浄水を用いて被洗浄物を洗剤により洗浄する洗浄方法である。   A sixth embodiment of the present invention is a cleaning method for cleaning an object to be cleaned with a detergent using the regenerated cleaning water according to any one of the first to fifth embodiments.

本発明の第7の形態は、第1形態〜第5形態のいずれかに記載の再生洗浄水と新水を混合して洗浄水とし、この洗浄水を用いて被洗浄物を洗剤により洗浄する洗浄方法である。   In the seventh aspect of the present invention, the regenerated cleaning water and the fresh water described in any one of the first to fifth embodiments are mixed to form cleaning water, and the object to be cleaned is washed with a detergent using this cleaning water. It is a cleaning method.

本発明の第8の形態は、第6形態又は第7形態に記載の洗浄方法を用いて被洗浄物を洗浄し、この被洗浄物を少なくとも最終段階において新水で濯ぐ洗浄方法である。   The eighth aspect of the present invention is a cleaning method for cleaning an object to be cleaned using the cleaning method according to the sixth or seventh aspect, and rinsing the object to be cleaned with fresh water at least in the final stage.

本発明の第1の形態によれば、洗浄によって排出される洗浄排水に浄化処理を施して生成される浄化排水の電気伝導度σ(μS/cm)が、6000(μS/cm)以下の場合にはイオン交換が可能となり、軟水化処理が可能になる。以下では、6000(μS/cm)の電気伝導度を限界許容電気伝導度と称して論ずる。前記浄化排水の電気伝導度は、浄化排水中に含有される金属イオンの濃度に相関関係を有し、浄化排水中のNa化合物等の電解質の含有量が多いほど電気伝導度は高くなる。従来、浄化排水中にNa+が含まれている場合には、前述した硬度漏れ現象が発生し、硬度成分のイオン交換ができないと考えられていた。本発明者等は、浄化排水中に含まれる電解質イオン(主としてNa+)の含有量(濃度)と硬度漏れとの相関関係に着目し、浄化排水の電気伝導度が限界許容電気伝導度以下であれば、イオン交換ができることを実証して本発明を完成させたものである。この結果、イオン交換により浄化排水中に含まれるCa2+やMg2+等を除去でき、浄化排水を軟水化することが可能となった。軟水化された浄化排水は、洗剤が有する界面活性作用を活性化させることができるので、高洗浄力を有している。この高洗浄力を有する軟水を再生洗浄水とし、洗浄水として再利用できることが可能となった。浄化排水の電気伝導度の下限値はゼロである。浄化排水の電気伝導度は小さいほど塩分が少なく、イオン交換が効率的に行われる。しかし、清澄水であっても有限の電気伝導度を有するから、特殊な場合を除き(超純水)、電気伝導度がゼロの水を得ることは不可能である。従って、浄化排水の電気伝導度の下限値は、限界許容電気伝導度以下の実際に使用できる水質の電気伝導度であればよい。前記軟水化された浄化排水を再生洗浄水と称し、トルマリン処理を施さなくても高洗浄力を有するから、被洗浄物を効率的に洗浄することができる。 According to the first aspect of the present invention, the electrical conductivity σ (μS / cm) of the purified wastewater generated by subjecting the washed wastewater discharged by the cleaning to purification treatment is 6000 (μS / cm) or less. In this case, ion exchange becomes possible and water softening treatment becomes possible. In the following, the electrical conductivity of 6000 (μS / cm) will be referred to as the limit allowable electrical conductivity. The electrical conductivity of the purified wastewater has a correlation with the concentration of metal ions contained in the purified wastewater, and the electrical conductivity increases as the content of an electrolyte such as a Na compound in the purified wastewater increases. Conventionally, when Na + is contained in the purified waste water, it has been considered that the above-described hardness leakage phenomenon occurs and the ion exchange of the hardness component cannot be performed. The present inventors pay attention to the correlation between the content (concentration) of electrolyte ions (mainly Na + ) contained in the purified waste water and the hardness leak, and the electrical conductivity of the purified waste water is less than the limit allowable electrical conductivity. If present, the present invention has been completed by demonstrating that ion exchange can be performed. As a result, it was possible to remove Ca 2+ , Mg 2+ and the like contained in the purified waste water by ion exchange, and to soften the purified waste water. Since the purified waste water that has been softened can activate the surface active action of the detergent, it has a high detergency. This soft water having high detergency can be used as reclaimed wash water and can be reused as wash water. The lower limit value of the electrical conductivity of the purified waste water is zero. The smaller the electrical conductivity of the purified waste water, the lower the salinity and the more efficient ion exchange. However, even clarified water has a finite electrical conductivity, so it is impossible to obtain water with zero electrical conductivity except in special cases (ultra pure water). Therefore, the lower limit value of the electrical conductivity of the purified waste water may be an electrical conductivity of water quality that can be actually used that is equal to or lower than the limit allowable electrical conductivity. The purified water that has been softened is referred to as regenerated cleaning water, and has high detergency even without being subjected to tourmaline treatment, so that the object to be cleaned can be efficiently cleaned.

本発明の第2の形態によれば、浄化排水の電気伝導度σが、限界許容電気伝導度以下の範囲内に設定された基準許容電気伝導度σ(μS/cm)以下の場合は、前述の様にイオン交換ができ、浄化排水を軟水化できる。本発明が実現できる電気伝導度は限界許容電気伝導度以下であればよいが、排水の汚れ度合いと洗浄方法並びに排水処理方法により電気伝導度は可変する。そこで、実際に可能な電気伝導度の上限値として、限界許容電気伝導度以下の範囲内において基準許容電気伝導度(σ(μS/cm))が設定される。その値は浄化排水の水質に応じて、4000、3000、2000(μS/cm)等と任意に設定される。この基準許容電気伝導度(σ)の数値を適宜調整すれば、浄化排水の軟水化を自在に実現でき、被洗浄物の汚れの程度に応じて浄化排水の水質を改善できる。基準許容電気伝導度(σ)の数値を低く設定すれば、浄化排水のより高度な軟水化が達成され、各種の洗浄用途に利用できる。この軟水化された浄化排水を再生洗浄水と称し、トルマリン処理を施さなくても高洗浄力を有するから、被洗浄物を効率的に洗浄することができる。 According to the second aspect of the present invention, when the electrical conductivity σ of the purified waste water is equal to or lower than the reference allowable electrical conductivity σ 0 (μS / cm) set within a range equal to or lower than the limit allowable electrical conductivity, Ion exchange can be performed as described above, and the purified waste water can be softened. The electric conductivity that can be realized by the present invention may be equal to or less than the limit allowable electric conductivity, but the electric conductivity varies depending on the degree of contamination of the waste water, the cleaning method, and the waste water treatment method. Therefore, the reference allowable electric conductivity (σ 0 (μS / cm)) is set as an upper limit value of the electric conductivity that is actually possible within a range equal to or lower than the limit allowable electric conductivity. The value is arbitrarily set to 4000, 3000, 2000 (μS / cm) or the like according to the quality of the purified waste water. By appropriately adjusting the numerical value of the reference allowable electrical conductivity (σ 0 ), the purified waste water can be freely softened, and the quality of the purified waste water can be improved according to the degree of contamination of the object to be cleaned. If the numerical value of the standard permissible electrical conductivity (σ 0 ) is set low, a higher degree of softening of the purified waste water can be achieved and it can be used for various washing applications. This purified water that has been softened is referred to as regenerated washing water, and has high detergency even without being subjected to tourmaline treatment, so that the object to be washed can be efficiently washed.

本発明の第3の形態によれば、浄化排水の電気伝導度が基準許容電気伝導度(σ)を超える場合には、基準許容電気伝導度(σ)以下になるまで新水等により希釈処理を行なうことができる。浄化排水の電気伝導度が基準許容電気伝導度(σ)以下になれば、前述のとおり、浄化排水をイオン交換できるので洗浄水として再生できる。希釈処理には水道水、地下水及び河川水等が利用できるので容易に希釈でき、希釈量も基準許容電気伝導度(σ)以下の範囲で、洗浄用途に応じて自在に調整できる。従って、電気伝導度が基準許容電気伝導度(σ)以下に希釈された浄化排水をイオン交換し、高洗浄力を有する洗浄水に再生でき再生洗浄水として再利用できる。 According to a third aspect of the present invention, when the electrical conductivity of the cleaning wastewater exceeds the reference allowable electric conductivity (sigma 0), the reference acceptable electrical conductivity (sigma 0) by fresh water or the like until the following Dilution treatment can be performed. If the electrical conductivity of the purified wastewater is equal to or lower than the reference allowable electrical conductivity (σ 0 ), as described above, the purified wastewater can be ion-exchanged and can be regenerated as washing water. Since tap water, ground water, river water, etc. can be used for the dilution treatment, it can be easily diluted, and the dilution amount can be freely adjusted in accordance with the cleaning application within the range of the standard allowable electrical conductivity (σ 0 ) or less. Therefore, the purified waste water whose electrical conductivity is diluted below the standard permissible electrical conductivity (σ 0 ) can be ion-exchanged and regenerated to wash water having high detergency, and can be reused as regenerated wash water.

本発明の第4の形態によれば、前記基準許容電気伝導度(σ)を任意の値に設定すれば、測定センサーが常時計測して浄化排水の電気伝導度を基準許容電気伝導度(σ)以下になるまで新水等により希釈できるから、大量の被洗浄物を連続的に処理する場合に好適である。特に、同程度の汚れを有する大量の被洗浄物を洗浄する場合には、高洗浄力を有する洗浄水を連続的に再生できるので、洗浄工程におけるランニングコストを大幅に低減できる。 According to the fourth aspect of the present invention, if the reference allowable electric conductivity (σ 0 ) is set to an arbitrary value, the measurement sensor constantly measures the electric conductivity of the purified waste water as the reference allowable electric conductivity ( Since it can be diluted with fresh water or the like until σ 0 ) or less, it is suitable when a large amount of objects to be cleaned are continuously processed. In particular, when a large amount of objects to be cleaned having the same degree of dirt is cleaned, since the cleaning water having a high cleaning power can be continuously regenerated, the running cost in the cleaning process can be greatly reduced.

本発明の第5の形態によれば、浄化排水の電気伝導度を測定センサーで測定して基準許容電気伝導度(σ)以下になるよう新水等の希釈量を算定するので各種の汚れに対応できるだけでなく、不均一な汚れにも適応できる。また、新水等の希釈量を正確に算定するので洗浄工程に係るコストを低減でき、排出する排水の処理費用をも削減できる効果がある。 According to the fifth aspect of the present invention, the electric conductivity of the purified waste water is measured by the measuring sensor, and the amount of dilution of fresh water or the like is calculated so as to be equal to or lower than the standard allowable electric conductivity (σ 0 ). It can be applied to non-uniform dirt. In addition, since the amount of dilution of new water or the like can be accurately calculated, it is possible to reduce the cost associated with the cleaning process, and to reduce the cost for treating the discharged waste water.

本発明の第6の形態によれば、第1〜第5形態のいずれかの再生洗浄水を用いることができる。即ち、第1は、電気伝導度が6000(μS/cm)以下の浄化排水を再生した再生洗浄水である。第2は、電気伝導度が6000(μS/cm)以下の範囲内に設定された基準許容電気伝導度(σ)以下の浄化排水を再生した再生洗浄水である。第3は、電気伝導度が基準許容電気伝導度(σ)を越える場合に、前記基準許容電気伝導度(σ)以下に希釈処理を施した浄化排水を再生した再生洗浄水である。第4は、電気伝導度が基準許容電気伝導度(σ)以下になるよう常時計測して、浄化排水を再生した再生洗浄水である。第5は、電気伝導度が基準許容電気伝導度(σ)以下になるように水の注入量を算定して、浄化排水を再生した再生洗浄水である。この5種類の再生洗浄水は、イオン交換により軟水化され、再生洗浄水として高洗浄力を有している。従って、この5種類のいずれかの再生洗浄水を用いて被洗浄物を洗剤により洗浄すれば、より一層高い洗浄力が発揮される。例えば、レンタル清掃用品を例にとれば、イオン交換なしの新水で洗浄した場合に比べて、家庭用マットで45%、家庭用モップで40%、業務用モップでは25%、全体として平均40%の洗剤の使用量を削減できる。従って、洗浄水に再生洗浄水のみを使用した場合には洗浄後の排水を下水及び河川等に排水することが少なくなるので、水道水や工業用水購入量や下水処理費が低減でき洗浄コストが削減できる。また、洗剤の使用量を低減できるので洗浄コストだけでなく、自然環境保護に対しても貢献できる。 According to the 6th form of this invention, the regenerated washing water in any one of the 1st-5th form can be used. That is, the first is regenerated washing water that regenerates purified waste water having an electric conductivity of 6000 (μS / cm) or less. The second is regenerated wash water that regenerates purified wastewater having a reference electrical conductivity (σ 0 ) or less set within an electric conductivity of 6000 (μS / cm) or less. Third, when exceeding the electric conductivity reference acceptable electrical conductivity a (sigma 0), which is the reference tolerance electric conductivity (sigma 0) reproducing the washing water obtained by reproducing the purification wastewater subjected to dilution treatment below. The fourth is regenerated washing water in which the purified waste water is regenerated by constantly measuring the electric conductivity to be equal to or lower than the reference allowable electric conductivity (σ 0 ). The fifth is regenerated wash water in which purified water is regenerated by calculating the amount of water injected so that the electrical conductivity is equal to or lower than the reference allowable electrical conductivity (σ 0 ). These five types of regenerated cleaning water are softened by ion exchange and have high detergency as regenerated cleaning water. Therefore, if the object to be cleaned is washed with a detergent using any one of these five types of regenerated washing water, even higher detergency is exhibited. For example, taking rental cleaning supplies as an example, compared to washing with fresh water without ion exchange, 45% for household mats, 40% for household mops, 25% for commercial mops, an average of 40 overall % Detergent usage can be reduced. Therefore, when only regenerated washing water is used as washing water, waste water after washing is less likely to be drained into sewage and rivers, etc., so the purchase amount of tap water and industrial water and sewage treatment costs can be reduced, and washing costs are reduced. Can be reduced. In addition, since the amount of detergent used can be reduced, it can contribute not only to cleaning costs but also to protection of the natural environment.

本発明の第7の形態によれば、前記5種類のいずれかの再生洗浄水に新水等を混合して洗浄できる。前述の通り、前記5種類の再生洗浄水は高洗浄力を有している。新水としては水道水、工業用水、地下水、及び河川水等がある。これらの新水にはNa化合物等の電解質が含まれている。通常、日本の水道水や工業用水等の硬度は一般的に50〜300(ppm)である。前記再生洗浄水はこれに比べイオン交換処理によりCa2+やMg2+等が非常に少ないので、前記5種類のいずれかの再生洗浄水に新水を混合して混合再生洗浄水を生成すれば、単に新水を用いる洗浄に比較して、一層高い洗浄力を実現できる。従って、この5種類のいずれかの再生洗浄水に新水等を混合して洗浄すれば、新水等だけを用いて洗浄した場合に比べ洗剤の使用量を低減でき、洗浄に係るコストの減少と自然環境保護を同時に達成できる。 According to the seventh aspect of the present invention, cleaning can be performed by mixing fresh water or the like with any of the five types of regenerated cleaning water. As described above, the five types of recycled cleaning water have high cleaning power. New water includes tap water, industrial water, groundwater, and river water. These new waters contain electrolytes such as Na compounds. Usually, the hardness of Japanese tap water or industrial water is generally 50 to 300 (ppm). Compared to this, the regenerated wash water contains much less Ca 2+ , Mg 2+, etc. by ion exchange treatment. As a result, higher cleaning power can be realized as compared with cleaning using only fresh water. Therefore, if cleaning is performed by mixing fresh water, etc., with any of these five types of regenerated cleaning water, the amount of detergent used can be reduced compared to cleaning using only fresh water, etc., and the cost of cleaning is reduced. And natural environment protection at the same time.

本発明の第8の形態によれば、第6形態又は第7形態に記載の洗浄方法で洗浄した後、被洗浄物を新水で濯ぐことができる。新水で濯ぐことにより被洗浄物に吸収された洗剤が洗い流されるだけでなく、被洗浄物に付着したNa化合物等の電解質を除去できる。新水には水道水、工業用水、地下水、及び河川水等があり容易に利用できる。新水の使用量や濯ぎの回数は、被洗浄物の汚れ具合や汚れの種類により適宜調整でき、被洗浄物に必要とされる洗浄効果を達成できる。   According to the 8th form of this invention, after wash | cleaning with the washing | cleaning method as described in a 6th form or a 7th form, a to-be-cleaned object can be rinsed with fresh water. By rinsing with fresh water, not only the detergent absorbed in the object to be cleaned is washed away, but also electrolytes such as Na compounds adhering to the object to be cleaned can be removed. New water includes tap water, industrial water, groundwater, river water, etc. and can be used easily. The amount of fresh water used and the number of times of rinsing can be adjusted as appropriate depending on the degree of contamination of the object to be cleaned and the type of dirt, and the cleaning effect required for the object to be cleaned can be achieved.

以下に、本発明に係る洗浄排水の再生方法及び再生洗浄水による洗浄方法の実施形態を図面に従って詳細に説明する。   Hereinafter, embodiments of a method for regenerating cleaning wastewater and a method for cleaning with regenerated cleaning water according to the present invention will be described in detail with reference to the drawings.

図1は、洗浄後の排水の電気伝導度(σ)を常時測定し、再生洗浄水を生成するための工程図である。洗浄A1により排出された洗浄排水は、浄化処理A2により通常の排水処理を受けて浄化排水になる。その後、測定センサーにより電気伝導度測定A3を常時行って、σ≦σ(μS/cm)(σ≦6000)の判定A4が行われる。浄化排水の電気伝導度が基準許容電気伝導度(σ)以下である場合には、イオン交換A6により浄化排水を軟水化して浄化排水を洗浄水として再生し、この再生洗浄水を再生洗浄水槽A7に貯留する。浄化排水の電気伝導度σが基準許容電気伝導度σ以下でない場合には、希釈処理A5を行い、浄化排水の電気伝導度σを基準許容電気伝導度σ以下にして、イオン交換A6により浄化排水を再生し、再生洗浄水槽A7に貯留する。つまり、処理A3、A4、A5を連続的に繰り返しながら、電気伝導度σがσ以下になるまで希釈され、σ以下に希釈された浄化排水がイオン交換A6を受けることになる。この再生方法は浄化排水の電気伝導度を常時測定しているので、大量の被洗浄物を連続して洗浄する場合に最適である。 FIG. 1 is a process diagram for constantly measuring the electrical conductivity (σ) of waste water after washing to generate regenerated washing water. The cleaning wastewater discharged by the cleaning A1 is subjected to a normal wastewater treatment by the purification treatment A2 and becomes purified wastewater. Thereafter, electrical conductivity measurement A3 is always performed by the measurement sensor, and determination A4 of σ ≦ σ 0 (μS / cm) (σ 0 ≦ 6000) is performed. If the electrical conductivity of the purified wastewater is less than or equal to the standard allowable electrical conductivity (σ 0 ), the purified wastewater is softened by ion exchange A6 and the purified wastewater is regenerated as wash water, and this regenerated wash water is regenerated and washed water tank Store in A7. When the electrical conductivity σ of the purified waste water is not the standard allowable electrical conductivity σ 0 or less, the dilution process A5 is performed to reduce the electrical conductivity σ of the purified waste water to the standard allowable electrical conductivity σ 0 or less, and the ion exchange A6 The purified waste water is regenerated and stored in the regenerated washing water tank A7. That is, while the processes A3, A4, A5 are continuously repeated, the purified waste water diluted until the electric conductivity σ becomes σ 0 or less and diluted to σ 0 or less receives the ion exchange A6. Since this regeneration method constantly measures the electrical conductivity of the purified waste water, it is optimal for washing a large amount of objects to be cleaned continuously.

図2は、洗浄後の排水の電気伝導度を測定し、希釈量を演算して再生洗浄水を生成するための工程図である。洗浄B1により排出された洗浄排水は、通常の浄化処理(排水処理B2)を受けて浄化排水になる。その後、測定センサーにより電気伝導度測定B3を行って、σ≦σ(μS/cm)(σ≦6000)の判定B4が行なわれる。洗浄排水の電気伝導度σが基準許容電気伝導度σ以下である場合には、イオン交換B7により浄化排水を軟水化して浄化排水を洗浄水として再生し、この再生洗浄水を再生洗浄水槽B8に貯留する。浄化排水の電気伝導度σが基準許容電気伝導度σ以下でない場合には、希釈量演算B5を行い、σ≦σに希釈処理B6する。この希釈処理により浄化排水の電気伝導度σが基準許容電気伝導度σ以下に調整され、イオン交換B7により浄化排水を再生し、再生洗浄水槽B8に貯留する。希釈量は次のように演算される。希釈される浄化排水量をVとし、その電気伝導度をσ、希釈添加量をV、基準許容電気伝導度をσとすれば、浄化排水中の電解イオン(主としてNa)の量は一定であり、電気伝導度は電解イオン量に比例するので次の式が成立する。Vσ=(V+V)σ この式をVについて解くと、V+V=Vσ/σとなり、V=V(σ/σ-1)が得られる。このようにして希釈添加量Vは演算される。この再生方法は、浄化排水の電気伝導度を測定し希釈量を演算して浄化排水を希釈できるので、バッチ処理として各種の被洗浄物を個別に洗浄できる利点を有する。 FIG. 2 is a process diagram for measuring the electrical conductivity of the waste water after washing, calculating the dilution amount, and generating regenerated washing water. The cleaning wastewater discharged by the cleaning B1 is subjected to normal purification treatment (drainage treatment B2) to become purified wastewater. Thereafter, electrical conductivity measurement B3 is performed by the measurement sensor, and determination B4 of σ ≦ σ 0 (μS / cm) (σ 0 ≦ 6000) is performed. When the electrical conductivity σ of the cleaning wastewater is equal to or less than the reference allowable electrical conductivity σ 0 , the purified wastewater is softened by ion exchange B7 and regenerated as cleaning water, and this regenerated cleaning water is regenerated and washed water tank B8. Store in. When the electrical conductivity σ of the purified waste water is not equal to or less than the reference allowable electrical conductivity σ 0 , a dilution amount calculation B5 is performed, and a dilution process B6 is performed so that σ ≦ σ 0 . By this dilution treatment, the electrical conductivity σ of the purified waste water is adjusted to be equal to or lower than the reference allowable electrical conductivity σ 0, and the purified waste water is regenerated by ion exchange B7 and stored in the regenerative washing water tank B8. The dilution amount is calculated as follows. If the amount of purified waste water to be diluted is V 0 , the electrical conductivity is σ, the diluted addition amount is V, and the reference allowable electrical conductivity is σ 0 , the amount of electrolytic ions (mainly Na + ) in the purified waste water is constant. Since the electric conductivity is proportional to the amount of electrolytic ions, the following equation is established. V 0 σ = (V + V 0 ) σ 0 When this equation is solved for V, V + V 0 = V 0 σ / σ 0 is obtained, and V = V 0 (σ / σ 0 −1) is obtained. In this way, the diluted addition amount V is calculated. This regeneration method has the advantage that various cleaning objects can be individually washed as a batch process because the purified wastewater can be diluted by measuring the electrical conductivity of the purified wastewater and calculating the dilution amount.

図3は、本実施形態における実際の再生洗浄水生成の工程図である。洗浄後の洗浄排水は、沈殿槽C1で固形物の沈殿処理が行われ、凝集処理槽C2で硫酸バンド等の凝集剤により凝集沈殿が行われる。次に、脱色カチオン凝集剤処理C3により脱色処理が行われる。これらの処理C1、C2、C3が前述した浄化処理A2又はB2に相当し、その結果、浄化排水が生成される。更に、浄化排水の電気伝導度の測定C4が行われ、σ≦σ(μS/cm)(σ≦6000)の判定C5がなされる。浄化排水の電気伝導度σが基準許容電気伝導度σ以下である場合には、イオン交換C7により浄化排水が軟水化されて浄化排水を洗浄水として再生し、この再生洗浄水を再生洗浄水槽C8に貯留する。浄化排水の電気伝導度σが基準許容電気伝導度σ以下でない場合には、希釈処理C6が行われ、浄化排水の電気伝導度σが基準許容電気伝導度σ以下に調節される。その後、イオン交換C7により浄化排水を再生し、再生洗浄水槽C8に貯留される。希釈処理C6には前記2種類の処理方法が適用される。 FIG. 3 is a process diagram of the actual regeneration cleaning water generation in the present embodiment. The washed waste water after the washing is subjected to a solid precipitation process in the settling tank C1, and is coagulated and precipitated with a coagulant such as a sulfuric acid band in the coagulation process tank C2. Next, a decolorization process is performed by the decolorization cation flocculant process C3. These processes C1, C2, and C3 correspond to the purification process A2 or B2 described above, and as a result, purified waste water is generated. Furthermore, measurement C4 of the electrical conductivity of the purified waste water is performed, and determination C5 of σ ≦ σ 0 (μS / cm) (σ 0 ≦ 6000) is made. When the electrical conductivity σ of the purified waste water is less than the standard allowable electrical conductivity σ 0 , the purified waste water is softened by the ion exchange C7 and regenerated as the cleaning water. Store in C8. When the electrical conductivity σ of the purified waste water is not equal to or less than the reference allowable electrical conductivity σ 0 , the dilution process C6 is performed, and the electrical conductivity σ of the purified waste water is adjusted to be equal to or lower than the standard allowable electrical conductivity σ 0 . Thereafter, the purified waste water is regenerated by ion exchange C7 and stored in the regenerated washing tank C8. The two kinds of processing methods are applied to the dilution process C6.

図4は、本実施形態における再生洗浄水生成の装置図である。洗浄槽2から排出された排水は、配管を通って浄化処理槽4で浄化され、浄化排水注入管5より浄化排水槽6貯留される。この貯留された浄化排水8の電気伝導度σが測定センサー10により測定され、σ≦σ(μS/cm)(σ≦6000)の判定が制御装置12により行われる。浄化排水6の電気伝導度σが基準許容電気伝導度σ以下である場合には、バルブ20が開放され、浄化排水8はイオン交換槽22に移動して軟水化される。その結果、浄化排水8を洗浄水として再生し、この再生洗浄水28を再生洗浄水槽26に貯留する。浄化排水8の電気伝導度σが基準許容電気伝導度σ以下でない場合は、新水導入管14のバルブ16が開いて、浄化排水槽6に新水注入18がなされる。 FIG. 4 is an apparatus diagram for generating regenerated cleaning water in the present embodiment. The waste water discharged from the cleaning tank 2 is purified in the purification treatment tank 4 through the piping, and is stored in the purification drain tank 6 from the purification drain injection pipe 5. The electrical conductivity σ of the stored purified waste water 8 is measured by the measurement sensor 10, and the determination of σ ≦ σ 0 (μS / cm) (σ 0 ≦ 6000) is performed by the control device 12. When the electrical conductivity σ of the purified waste water 6 is equal to or lower than the reference allowable electrical conductivity σ 0 , the valve 20 is opened, and the purified waste water 8 moves to the ion exchange tank 22 and is softened. As a result, the purified waste water 8 is regenerated as cleaning water, and the regenerated cleaning water 28 is stored in the regenerated cleaning water tank 26. When the electrical conductivity σ of the purified waste water 8 is not equal to or lower than the reference allowable electrical conductivity σ 0 , the valve 16 of the new water introduction pipe 14 is opened, and fresh water injection 18 is made into the purified waste water tank 6.

図5は、本実施形態における再生洗浄水のみを使用した場合の洗浄方法を示した工程図である。再生洗浄水貯槽D1に貯留された再生洗浄水は洗浄槽D2に送られ、洗浄槽D2内に被洗浄物投入D3と洗剤投入D4が行われ、洗浄D5の後、すすぎD6を経て洗浄後の排水は排水処理D7に送出される。すすぎの回数は被洗浄物の汚れの程度に応じて適宜調整され、すすぎの順序も洗浄後すすぐだけでなく、再び洗浄して濯ぐことを繰り返してもよい。最終段階では新水により濯ぐことになる。この最終段階の新水による濯ぎにより、被洗浄物に残留している塩分が除去される。   FIG. 5 is a process diagram showing a cleaning method when only regenerated cleaning water is used in the present embodiment. The regenerated cleaning water stored in the regenerated cleaning water storage tank D1 is sent to the cleaning tank D2, and the object to be cleaned D3 and the detergent charging D4 are performed in the cleaning tank D2, and after the cleaning D5 and the rinse D6, Waste water is sent to waste water treatment D7. The number of times of rinsing is appropriately adjusted according to the degree of soiling of the object to be cleaned, and the rinsing order may be repeated not only after rinsing but also rinsing and rinsing again. In the final stage, it will be rinsed with fresh water. By rinsing with fresh water at the final stage, salt remaining in the object to be cleaned is removed.

図6は、本実施形態における再生洗浄水のみを使用した場合の洗浄方法を示した装置図である。再生洗浄水槽26に貯留された再生洗浄水28は再生洗浄水注入管30を通って洗浄槽2に注入される。洗剤32と被洗浄物34が投入されて洗浄が行われる。洗浄槽2には洗浄物34が含有されている。   FIG. 6 is an apparatus diagram showing a cleaning method when only regenerated cleaning water is used in the present embodiment. The regenerated cleaning water 28 stored in the regenerated cleaning water tank 26 is injected into the cleaning tank 2 through the regenerated cleaning water injection pipe 30. The detergent 32 and the object to be cleaned 34 are supplied and cleaning is performed. The cleaning tank 2 contains a cleaning product 34.

図7は、本実施形態における再生洗浄水と新水との混合洗浄水を使用した場合の洗浄方法を示した工程図である。再生洗浄水貯槽E1に貯留された再生洗浄水は洗浄槽E2に送られ、洗浄槽E2内に新水投入E3がなされ、再生洗浄水と新水の混合が行われる。被洗浄物投入E4及び洗剤投入E5が行われ、洗浄E6がなされた後、すすぎE7を経て洗浄後の排水は排水処理E8される。この場合にも、すすぎの回数は被洗浄物の汚れの程度に応じて適宜調整され、すすぎの順序も洗浄後濯ぐだけでなく、再び洗浄して濯ぐことを繰り返してもよい。最終段階では新水により濯ぎ、被洗浄物に残留している塩分が除去される。   FIG. 7 is a process diagram showing a cleaning method when using mixed cleaning water of regenerated cleaning water and fresh water in the present embodiment. The regenerated wash water stored in the regenerated wash water storage tank E1 is sent to the wash tank E2, and fresh water is charged E3 in the wash tank E2, and the regenerated wash water and fresh water are mixed. After the object to be cleaned E4 and the detergent input E5 are performed and the cleaning E6 is performed, the waste water after the cleaning through the rinse E7 is subjected to a drainage treatment E8. Also in this case, the number of times of rinsing is appropriately adjusted according to the degree of contamination of the object to be cleaned, and the rinsing order may be repeated after washing and rinsing again. In the final stage, rinsing is performed with fresh water to remove salt remaining in the object to be cleaned.

図8は、本実施形態における再生洗浄水と新水との混合洗浄水を使用した場合の洗浄方法を実現する装置図である。再生洗浄水槽26に貯留された再生洗浄水28は再生洗浄水注入管30を介して洗浄槽2に注入される。新水は新水注入管36により洗浄槽2に注入され、洗剤32と被洗浄物34が投入される。再生洗浄水と新水との混合比は適宜調整される。洗浄槽2には洗浄物34が含有されている。   FIG. 8 is an apparatus diagram for realizing a cleaning method in the case where mixed cleaning water of regenerated cleaning water and fresh water is used in the present embodiment. The regenerated cleaning water 28 stored in the regenerated cleaning water tank 26 is injected into the cleaning tank 2 through the regenerated cleaning water injection pipe 30. Fresh water is injected into the cleaning tank 2 through a new water injection pipe 36, and a detergent 32 and an object to be cleaned 34 are introduced. The mixing ratio of regenerated washing water and fresh water is adjusted as appropriate. The cleaning tank 2 contains a cleaning product 34.

本実施例では被洗浄物として均一な汚れのモップ片500gと人口汚染布5枚を用いた。モップ片は、10個のモップを3cm×3cmの大きさに切断したものを用いた。この被洗浄物をテスト用小型バケツ洗濯機に入れ、60℃の再生洗浄水6L(リットル)と石鹸を主成分とする洗剤22.5gと無機ビルダー(アルカリ剤)50gを加えて12分間洗浄した。洗浄後、この被洗浄物を再生洗浄水(室温)で2分間濯いだ後、再度60℃の再生洗浄水6Lと石鹸を主成分とする洗剤15gと塩素系殺菌漂白剤500ppmで10分間洗浄した。この被洗浄物に新水(室温)による2分間の濯ぎを2回施して、その後吸着剤として油剤を滲み込ませ、脱水し乾燥させた。この洗浄されたモップ片の洗浄具合は目視により判定し、人口汚染布は汚染度で判定し、両判定を総合的に評価した。その総合判定結果について、優は◎、良は○、可は△、不可は×、絶対不可は××で表示される。   In the present embodiment, 500 g of a uniform soiled mop piece and five artificially contaminated cloths were used as objects to be cleaned. The mop piece was obtained by cutting 10 mops into a size of 3 cm × 3 cm. This object to be cleaned was put into a small bucket washing machine for test, and washed with 6 L (liter) of 60 ° C. regenerated cleaning water, 22.5 g of detergent mainly composed of soap and 50 g of inorganic builder (alkali agent) for 12 minutes. . After washing, the object to be washed is rinsed with regenerated washing water (room temperature) for 2 minutes, and then again washed with 6 L of regenerated washing water at 60 ° C., 15 g of soap-based detergent and 500 ppm of chlorine-based disinfecting bleach. did. The object to be cleaned was rinsed twice with fresh water (room temperature) twice, and then the oil was soaked as an adsorbent, dehydrated and dried. The degree of cleaning of the washed mop piece was determined visually, the artificially contaminated cloth was determined based on the degree of contamination, and both determinations were comprehensively evaluated. With respect to the overall judgment result, “Excellent” is indicated by “◎”, “Good” is indicated by “◯”, “Yes” is indicated, “No” is indicated, “No” is indicated, and “No” is indicated when Absolutely impossible.

[実施例1〜7:全硬度25ppmの浄化排水]
図9は実施例1〜7の一覧図(表1)である。Naを除く金属イオンの総量を全硬度とし、全硬度25(ppm)の浄化排水の電気伝導度(μS/cm)を1000、3000、5000、6000、7000、8000、10000の7種類に調整した。この7種類の浄化排水をイオン交換して再生洗浄水を生成した。この再生洗浄水の全硬度が測定され、この再生洗浄水を用いて前述の洗浄を行った。再生洗浄水の全硬度は25ppmよりも急減しており、イオン交換により硬度成分が除去されていることが実証された。前記電気伝導度はボウ硝(NaSO)を添加して調整された。その結果、実施例1〜7に不具合が生じなかった。
[Examples 1 to 7: Purified waste water having a total hardness of 25 ppm]
FIG. 9 is a list of Examples 1 to 7 (Table 1). The total amount of metal ions excluding Na + is the total hardness, and the electrical conductivity (μS / cm) of purified wastewater with a total hardness of 25 (ppm) is adjusted to seven types of 1000, 3000, 5000, 6000, 7000, 8000, and 10,000. did. These seven types of purified waste water were ion-exchanged to produce regenerated wash water. The total hardness of this regenerated cleaning water was measured, and the above cleaning was performed using this regenerated cleaning water. The total hardness of the regenerated wash water has dropped sharply from 25 ppm, demonstrating that the hardness component has been removed by ion exchange. The electrical conductivity was adjusted by adding bow glass (Na 2 SO 4 ). As a result, no problems occurred in Examples 1-7.

[比較例1]
比較のために、一般の水道水を洗浄水として使用し、実施例1〜7と同様の洗浄試験を行った。この水道水はイオン交換処理が施されていない。本発明の再生洗浄水を用いた実施例1、実施例2及び実施例3の洗剤使用量は、前記水道水を使用した場合における洗剤使用量の約50%で済むことが明らかとなった。従って、本発明は、洗剤量の50%程度の節減と水道使用料の節約を実現できることが判明した。
[Comparative Example 1]
For comparison, general tap water was used as washing water, and washing tests similar to those in Examples 1 to 7 were performed. This tap water is not subjected to ion exchange treatment. It was revealed that the amount of detergent used in Examples 1, 2 and 3 using the regenerated washing water of the present invention was about 50% of the amount of detergent used when the tap water was used. Accordingly, it has been found that the present invention can achieve a saving of about 50% of the amount of detergent and a saving in water usage fee.

[実施例8〜14:全硬度42ppmの浄化排水]
図10は実施例8〜14の一覧図(表2)である。全硬度42(ppm)の浄化排水の電気伝導度を実施例1〜7と同様に7種類に調整し、各7種類の浄化排水をイオン交換して再生洗浄水を生成した。この再生洗浄水の全硬度を測定し、この再生洗浄水を用いて、実施例1〜7と同様の方法で洗浄した。その結果、実施例13と実施例14に不具合が生じた。再生洗浄水の全硬度の値が大きいことが原因と考えられる。
[Examples 8 to 14: Purified waste water having a total hardness of 42 ppm]
FIG. 10 is a list of Examples 8 to 14 (Table 2). The electrical conductivity of the purified wastewater having a total hardness of 42 (ppm) was adjusted to 7 types in the same manner as in Examples 1 to 7, and each of the 7 types of purified wastewater was subjected to ion exchange to generate regenerated washing water. The total hardness of this regenerated washing water was measured, and this regenerated washing water was used for washing in the same manner as in Examples 1-7. As a result, defects occurred in Example 13 and Example 14. The reason is considered to be that the total hardness value of the regenerated cleaning water is large.

[比較例2]
比較のために、水道水を洗浄水として使用して洗浄試験を行った。本発明の再生洗浄水を用いた実施例8及び実施例9の洗剤使用量は、水道水を使用した場合における洗剤使用量の約55%で済むことが明らかとなった。従って、本発明は、洗剤量の45%程度の節減と水道使用料の節約を実現できることが判明した。
[Comparative Example 2]
For comparison, a cleaning test was performed using tap water as cleaning water. It was revealed that the amount of detergent used in Examples 8 and 9 using the regenerated washing water of the present invention is about 55% of the amount of detergent used when tap water is used. Accordingly, it has been found that the present invention can realize a saving of about 45% of the amount of detergent and a saving in water usage fee.

[実施例15〜21:全硬度98ppmの浄化排水]
図11は実施例15〜21の一覧図(表3)である。全硬度98(ppm)の浄化排水の電気伝導度を実施例1〜7と同様に7種類に調整し、各7種類の浄化排水をイオン交換して再生洗浄水を生成した。この再生洗浄水の全硬度を測定し、この再生洗浄水を用いて実施例1〜7と同様の方法で洗浄した。その結果、実施例19、実施例20及び実施例21に不具合が生じた。再生洗浄水の全硬度の値が大きいことが原因と考えられる。
[Examples 15 to 21: Purified waste water having a total hardness of 98 ppm]
FIG. 11 is a list of Examples 15 to 21 (Table 3). The electrical conductivity of the purified wastewater with a total hardness of 98 (ppm) was adjusted to 7 types in the same manner as in Examples 1 to 7, and each of the 7 types of purified wastewater was subjected to ion exchange to generate regenerated washing water. The total hardness of this regenerated washing water was measured, and this regenerated washing water was used for washing in the same manner as in Examples 1-7. As a result, defects occurred in Example 19, Example 20, and Example 21. The reason is considered to be that the total hardness value of the regenerated cleaning water is large.

[比較例3]
比較のために、水道水を洗浄水として使用して洗浄試験を行った。本発明の再生洗浄水を用いた実施例15及び実施例16の洗剤使用量は、水道水を使用した場合における洗剤使用量の約60%で済むことが明らかとなった。従って、本発明は、洗剤量の40%程度の節減と水道使用料の節約を実現できることが判明した。
[Comparative Example 3]
For comparison, a cleaning test was performed using tap water as cleaning water. It was revealed that the amount of detergent used in Examples 15 and 16 using the regenerated washing water of the present invention was about 60% of the amount of detergent used when tap water was used. Accordingly, it has been found that the present invention can achieve a saving of about 40% of the amount of detergent and a saving in water usage fee.

[実施例22〜28:全硬度136ppmの浄化排水]
図12は実施例22〜28の一覧図(表4)である。全硬度136(ppm)の浄化排水の電気伝導度を実施例1〜7と同様に7種類に調整し、各7種類の浄化排水をイオン交換して再生洗浄水を生成した。この再生洗浄水の全硬度を測定し、この再生洗浄水を用いて実施例1〜7と同様の方法で洗浄した。その結果、実施例26、実施例27及び実施例28に不具合が生じた。再生洗浄水の全硬度の値が大きいことが原因と考えられる。
[Examples 22 to 28: Purified waste water having a total hardness of 136 ppm]
FIG. 12 is a list of Examples 22 to 28 (Table 4). The electrical conductivity of the purified waste water having a total hardness of 136 (ppm) was adjusted to 7 types in the same manner as in Examples 1 to 7, and each of the 7 types of purified waste water was subjected to ion exchange to generate regenerated washing water. The total hardness of this regenerated washing water was measured, and this regenerated washing water was used for washing in the same manner as in Examples 1-7. As a result, defects occurred in Example 26, Example 27, and Example 28. The reason is considered to be that the total hardness value of the regenerated cleaning water is large.

[比較例4]
比較のために、水道水を洗浄水として使用して洗浄試験を行った。本発明の再生洗浄水を用いた実施例22及び実施例23の洗剤使用量は、水道水を使用した場合における洗剤使用量の約65%で済むことが明らかとなった。従って、本発明は、洗剤量の35%程度の節減と水道使用料の節約を実現できることが判明した。
[Comparative Example 4]
For comparison, a cleaning test was performed using tap water as cleaning water. It was revealed that the amount of detergent used in Examples 22 and 23 using the regenerated washing water of the present invention was about 65% of the amount of detergent used when tap water was used. Accordingly, it has been found that the present invention can realize a saving of about 35% of the amount of detergent and a saving in water usage fee.

実施例1〜28の結果から、全硬度が25、42、98、136(ppm)の各浄化排水の電気伝導度が6000以下の場合に、この浄化排水を本発明により再生して再生洗浄水を生成でき、この再生洗浄水が高洗浄力を有することが実証された。本実施例においては本発明により得られた再生洗浄水だけで洗浄した。この結果、通常の水道水に比べて、洗剤の平均使用量を約45%節減できることが分かった。従って、この再生洗浄水に新水を添加して洗浄水とし、この混合洗浄水により洗浄しても、同様の効果があることは明白である。   From the results of Examples 1 to 28, when the electrical conductivity of each effluent having a total hardness of 25, 42, 98, and 136 (ppm) is 6000 or less, the clarified effluent is regenerated according to the present invention and regenerated washing water. This regenerated wash water has been demonstrated to have a high detergency. In this example, washing was performed only with the regenerated washing water obtained by the present invention. As a result, it was found that the average amount of detergent used can be reduced by about 45% compared to normal tap water. Therefore, it is obvious that the same effect can be obtained by adding fresh water to the regenerated washing water to obtain washing water and washing with the mixed washing water.

本発明により洗浄排水を改質して高洗浄力を有する再生洗浄水として再生できることが明らかになった。この再生洗浄水を用いると洗剤使用量を約45%節減でき、しかも再生して何回でも使用できるから水道料金を節約でき、同時に環境への排水量が少なくなるので環境保全に役に立つ。従って、繊維製品の洗浄だけでなく、非繊維製品の洗浄にも利用でき、特に、モップやマットなどのダストコントロール製品の洗浄に大いに利用できる利点がある。   It has been clarified that the present invention can regenerate cleaning wastewater and regenerate it as regenerated cleaning water having high detergency. The use of this regenerated wash water can reduce the amount of detergent used by about 45%, and it can be regenerated and used any number of times to save water bills. At the same time, the amount of drainage into the environment is reduced, which is useful for environmental conservation. Accordingly, it can be used not only for cleaning textile products but also for non-textile products, and in particular, has an advantage that it can be used for cleaning dust control products such as mops and mats.

本発明において、浄化排水の電気伝導度を常時測定し、再生洗浄水を生成するための工程図である。In this invention, it is a process figure for always measuring the electrical conductivity of purified waste water, and producing | generating regenerated washing | cleaning water. 本発明において、浄化排水の電気伝導度を測定し、希釈量を演算して再生洗浄水を生成するための工程図である。In this invention, it is a process figure for measuring the electrical conductivity of purified waste water and calculating the amount of dilution, and producing | generating regenerated washing water. 本発明の実施形態における再生洗浄水生成の工程図である。It is a flowchart of regeneration washing water generation in an embodiment of the present invention. 本発明の実施形態における再生洗浄水生成の装置図である。It is an apparatus figure of the regenerated washing water generation in the embodiment of the present invention. 本実施形態における再生洗浄水のみを使用した場合の洗浄方法を示した工程図である。It is process drawing which showed the washing | cleaning method at the time of using only the reproduction | regeneration washing | cleaning water in this embodiment. 本実施形態における再生洗浄水のみを使用した場合の洗浄方法を示した装置図である。It is an apparatus figure showing a washing method at the time of using only regenerated washing water in this embodiment. 本実施形態における再生洗浄水と新水との混合洗浄水を使用した場合の洗浄方法を示した工程図である。It is process drawing which showed the washing | cleaning method at the time of using the mixed washing water of the reproduction | regeneration washing | cleaning water and new water in this embodiment. 本実施形態における再生洗浄水と新水との混合洗浄水を使用した場合の洗浄方法を示した装置図である。It is the apparatus figure which showed the washing | cleaning method at the time of using the mixed washing water of the reproduction | regeneration washing water and new water in this embodiment. 実施例1〜7の一覧図(表1)である。It is a list figure (Table 1) of Examples 1-7. 実施例8〜14の一覧図(表2)である。It is a list figure (Table 2) of Examples 8-14. 実施例15〜21の一覧図(表3)である。It is a list figure (Table 3) of Examples 15-21. 実施例22〜28の一覧図(表4)である。It is a list figure (Table 4) of Examples 22-28. 従来の特開2001−170660号が示している水道水の改質技術の工程図である。It is process drawing of the reforming technique of the tap water which the conventional Unexamined-Japanese-Patent No. 2001-170660 has shown. 従来の特開平7−96283号が示している洗浄水の改質技術の工程図である。FIG. 5 is a process diagram of a cleaning water reforming technique disclosed in Japanese Unexamined Patent Publication No. 7-96283. 硬度漏れ現象の説明図である。It is explanatory drawing of a hardness leak phenomenon.

符号の説明Explanation of symbols

2 洗浄槽
4 浄化処理槽
5 浄化排水注入管
6 浄化排水槽
8 浄化排水
10 測定センサー
12 制御装置
14 新水注入配管
16 新水注入バルブ
18 新水注入
20 排水バルブ
22 イオン交換槽
26 再生洗浄水槽
28 再生洗浄水
30 再生洗浄水注入管
32 洗剤
34 被洗浄物
36 新水注入管
DESCRIPTION OF SYMBOLS 2 Washing tank 4 Purification treatment tank 5 Purification drainage injection pipe 6 Purification drainage tank 8 Purification drainage 10 Measurement sensor 12 Control device 14 New water injection pipe 16 New water injection valve 18 New water injection 20 Drain valve 22 Ion exchange tank 26 Regenerative cleaning water tank 28 Recycled Wash Water 30 Recycled Wash Water Injection Pipe 32 Detergent 34 Washed Object 36 New Water Injection Pipe

Claims (8)

洗浄によって排出される洗浄排水に浄化処理を施して浄化排水を生成し、この浄化排水の電気伝導度が6000(μS/cm)以下であるときに、前記浄化排水をイオン交換して軟水を生成し、この軟水を洗浄水として再使用される再生洗浄水とすることを特徴とする洗浄排水のイオン交換再生方法。 Purified wastewater discharged by washing is purified to generate purified wastewater. When the electrical conductivity of the purified wastewater is 6000 (μS / cm) or less, the purified wastewater is ion-exchanged to generate soft water. A method for ion-exchange regeneration of cleaning wastewater, characterized in that this soft water is regenerated cleaning water that is reused as cleaning water. 洗浄によって排出される洗浄排水に浄化処理を施して浄化排水を生成し、この浄化排水の電気伝導度が6000(μS/cm)以下の範囲内に設定された基準許容電気伝導度以下であるときに、前記浄化排水をイオン交換して軟水を生成し、この軟水を洗浄水として再使用される再生洗浄水とすることを特徴とする洗浄排水のイオン交換再生方法。 When cleaning wastewater discharged by cleaning is subjected to purification treatment to generate purified wastewater, and the electrical conductivity of the purified wastewater is equal to or less than a standard allowable electrical conductivity set within a range of 6000 (μS / cm) or less In addition, an ion-exchange regeneration method for cleaning waste water, wherein the purified waste water is ion-exchanged to generate soft water, and the soft water is used as regenerated cleaning water that is reused as cleaning water. 前記浄化排水の電気伝導度が前記基準許容電気伝導度を超える場合には、この浄化排水に水を添加し、前記基準許容電気伝導度以下になるまで希釈処理を施こす請求項2に記載の洗浄排水のイオン交換再生方法。 3. The method according to claim 2, wherein when the electrical conductivity of the purified wastewater exceeds the reference allowable electrical conductivity, water is added to the purified wastewater, and dilution treatment is performed until the purified wastewater is equal to or lower than the reference allowable electrical conductivity. Ion exchange regeneration method for washing wastewater. 前記浄化排水の電気伝導度を測定センサーにより常時計測し、この計測値が前記基準許容電気伝導度以下になるまで水の添加を継続する請求項3に記載の洗浄排水のイオン交換再生方法。 4. The method for ion exchange regeneration of cleaning wastewater according to claim 3, wherein the electrical conductivity of the purified wastewater is constantly measured by a measurement sensor, and the addition of water is continued until the measured value becomes equal to or less than the reference allowable electrical conductivity. 前記浄化排水の電気伝導度を測定センサーにより計測し、この計測値から前記浄化排水の電気伝導度が前記基準許容電気伝導度以下になる水の添加量を算出し、この算出された添加量の水を前記浄化排水に添加する請求項3に記載の洗浄排水のイオン交換再生方法。 The electrical conductivity of the purified wastewater is measured by a measurement sensor, and the amount of water added so that the electrical conductivity of the purified wastewater is equal to or less than the reference allowable electrical conductivity is calculated from the measured value. The method for ion exchange regeneration of washing wastewater according to claim 3, wherein water is added to the purified wastewater. 請求項1〜5のいずれかに記載の再生洗浄水を用いて被洗浄物を洗剤により洗浄することを特徴とする洗浄方法。 6. A cleaning method, wherein the object to be cleaned is cleaned with a detergent using the regenerated cleaning water according to claim 1. 請求項1〜5のいずれかに記載の再生洗浄水と新水を混合して洗浄水とし、この洗浄水を用いて被洗浄物を洗剤により洗浄することを特徴とする洗浄方法。 A cleaning method comprising mixing the regenerated cleaning water and fresh water according to any one of claims 1 to 5 to form cleaning water, and using this cleaning water to clean the object to be cleaned with a detergent. 請求項6又は7に記載の洗浄方法を用いて被洗浄物を洗浄し、この被洗浄物を少なくとも最終段階において新水で濯ぐことを特徴とする洗浄方法。 A cleaning method, comprising: cleaning an object to be cleaned using the cleaning method according to claim 6 or 7, and rinsing the object to be cleaned with fresh water at least in a final stage.
JP2004058283A 2004-03-02 2004-03-02 Ion exchange regeneration method for cleaning wastewater and cleaning method using regenerated cleaning water Expired - Lifetime JP4398758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004058283A JP4398758B2 (en) 2004-03-02 2004-03-02 Ion exchange regeneration method for cleaning wastewater and cleaning method using regenerated cleaning water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004058283A JP4398758B2 (en) 2004-03-02 2004-03-02 Ion exchange regeneration method for cleaning wastewater and cleaning method using regenerated cleaning water

Publications (2)

Publication Number Publication Date
JP2005246182A true JP2005246182A (en) 2005-09-15
JP4398758B2 JP4398758B2 (en) 2010-01-13

Family

ID=35027183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004058283A Expired - Lifetime JP4398758B2 (en) 2004-03-02 2004-03-02 Ion exchange regeneration method for cleaning wastewater and cleaning method using regenerated cleaning water

Country Status (1)

Country Link
JP (1) JP4398758B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021201023A1 (en) * 2020-04-03 2021-10-07 パナソニックIpマネジメント株式会社 Water softener apparatus and method for regenerating water softener apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021201023A1 (en) * 2020-04-03 2021-10-07 パナソニックIpマネジメント株式会社 Water softener apparatus and method for regenerating water softener apparatus

Also Published As

Publication number Publication date
JP4398758B2 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
AU2005325830B2 (en) Water softening device and method
EP1769116B1 (en) Cleaning method
WO2011016197A1 (en) Washing machine
JP2007536067A (en) Cleaning method and cleaning system
CN106957089A (en) A kind of twice-modified method of discarded reverse osmosis membrane available for treatment of dyeing wastewater
CN205773818U (en) A kind of car-washing sewage treatment system
JP4398757B2 (en) Cleaning drainage recycling method and cleaning method using recycled cleaning water
JP4398758B2 (en) Ion exchange regeneration method for cleaning wastewater and cleaning method using regenerated cleaning water
JP2023545949A (en) Car wash and wastewater reclamation system
CN102092877A (en) System for comprehensively recycling waste water
JP2010194442A (en) Ion separation treatment method and ion separation treatment apparatus
JP2005161145A (en) Device for producing water-softening alkali and water-hardening acid and washing machine joined to the same device
JP3813080B2 (en) Wash water generator
CN113968638A (en) Copper strip cleaning line grinding and washing water recycling method
JP2010222602A (en) Pickling method and pickling equipment of metal material
CN103691493B (en) A kind of anion exchange resin technique water-saving method and water saving fixtures
JP3541251B2 (en) Water softener
CN209210554U (en) A kind of electronic grade ultrapure water system
JP2007152077A (en) Washing method
KR200452610Y1 (en) Washing machine
CN1260423C (en) Washing method for washing machine without detergent
CN104860453A (en) Method for treating heavy metal wastewater during machining process
CN111533331A (en) Filtering process for cleaning waste liquid
CN103977710B (en) A kind of inner pressed membranous system chemical cleaning method
CN111559780A (en) Nickel-magnesium wastewater treatment system and nickel-magnesium wastewater treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4398758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151030

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250