JP2005246138A - Microwave reaction treatment apparatus - Google Patents

Microwave reaction treatment apparatus Download PDF

Info

Publication number
JP2005246138A
JP2005246138A JP2004056506A JP2004056506A JP2005246138A JP 2005246138 A JP2005246138 A JP 2005246138A JP 2004056506 A JP2004056506 A JP 2004056506A JP 2004056506 A JP2004056506 A JP 2004056506A JP 2005246138 A JP2005246138 A JP 2005246138A
Authority
JP
Japan
Prior art keywords
microwave
treatment
reaction
dielectric
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004056506A
Other languages
Japanese (ja)
Inventor
Toshiyuki Takamatsu
利行 高松
Katsutoshi Yasutome
勝敏 安留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004056506A priority Critical patent/JP2005246138A/en
Publication of JP2005246138A publication Critical patent/JP2005246138A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microwave reaction treatment apparatus, allowing large-volume treatment, high-level homogenization treatment and realization of high efficiency and achieving low costs and safety of operation at the same time. <P>SOLUTION: The apparatus decomposes gaseous substances by irradiating the substances with microwaves while causing the substances to be in contact with the inside or surface of a dielectric and using the dielectric as a surface waveguide for microwaves, and the decomposition treatment is carried out while mist of water molecules and film of water vapor are formed on the surface of the dielectric. The apparatus thereby permits large-volume treatment owing to uniform microwave excitation in the treatment region or the interface and the large area of the treatment reaction unit. The configuration of the apparatus permits efficient catalytic reaction in reaction treatment and treatment at low costs. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はマイクロ波反応処理装置のうち加熱・化学分解・化学合成・触媒反応・脱臭処理等において、被処理材料をマイクロ波励起による電磁波処理反応により行うことを特徴とするマイクロ波帯域を用いた高周波反応処理装置に関する。   The present invention uses a microwave band characterized in that the material to be treated is subjected to an electromagnetic wave treatment reaction by microwave excitation in heating, chemical decomposition, chemical synthesis, catalytic reaction, deodorization treatment, etc. of the microwave reaction treatment apparatus. The present invention relates to a high-frequency reaction processing apparatus.

マイクロ波による反応処理は、被加熱体の形状にとらわれず材料誘電率によって加熱できることから乾燥、焼結分野等で主に加熱反応に利用されている。これはマイクロ波が電磁波であり極性分子を回転させることによる回転エネルギーによる摩擦現象によるためであり、また処理部における高周波電磁波の共振現象を利用してエネルギー投入を行うものである。   The reaction process using microwaves is mainly used for the heating reaction in the fields of drying and sintering because it can be heated by the material dielectric constant without being limited by the shape of the object to be heated. This is because the microwave is an electromagnetic wave and is caused by a friction phenomenon due to rotational energy caused by rotating polar molecules, and energy is input by utilizing a resonance phenomenon of high-frequency electromagnetic waves in the processing unit.

このようにマイクロ波では分子を直接励起でき、また分子の極性状態により選択的に励起できることから分解・合成・触媒反応等に利用でき研究が進められている。   In this way, since microwaves can directly excite molecules and selectively excite them depending on the polar state of the molecules, they can be used for decomposition, synthesis, catalysis, etc.

これらの処理の中で従来マイクロ波を用いた分解処理として、マイクロ波を熱源として用いてマイクロ波吸収体あるいはその近傍において加熱反応による熱分解によって分解反応処理を行うもの、マイクロ波による熱平衡プラズマにより分解反応を行うもの、あるいは減圧非平衡プラズマにより分解反応処理を行うもの、あるいは水素ガスを添加して誘電体表面にて反応をおこなうもの等が提案されている(たとえば特許文献1)。
特開平9−312285号公報
Among these treatments, the conventional decomposition treatment using microwaves is one in which decomposition reaction treatment is performed by thermal decomposition by heating reaction in or near the microwave absorber using microwaves as a heat source, and by thermal equilibrium plasma by microwaves Proposals have been made of those that perform a decomposition reaction, those that perform a decomposition reaction process using reduced-pressure non-equilibrium plasma, or those that perform a reaction on a dielectric surface by adding hydrogen gas (for example, Patent Document 1).
Japanese Patent Laid-Open No. 9-312285

マイクロ波を熱源とした熱分解方法では、第一に熱吸収体において反応を制御するために限られた誘電率の材料を用いなければならないため材料選択の制約が生じる。また第二に熱吸収体部位での均熱が必要であるためマイクロ波の均一照射が必要となり処理容量を増やすための処理部領域の大型化等に困難が生じ装置構造に制約が生じる。   In the pyrolysis method using a microwave as a heat source, first, a material having a limited dielectric constant must be used in order to control the reaction in the heat absorber. Secondly, since it is necessary to soak heat at the heat absorber, uniform irradiation with microwaves is necessary, which makes it difficult to increase the size of the processing area for increasing the processing capacity, and restricts the apparatus structure.

マイクロ波を用いた熱平衡プラズマによる分解方法は、被処理気体を含む水蒸気雰囲気内にマイクロ波を照射して分解を行おうとするものであるが、水蒸気雰囲気内においてマイクロ波はその周囲領域にて吸収されるため反応自体が処理内部領域で促進されず、処理容量と効率に問題を生じる。   In the decomposition method using thermal equilibrium plasma using microwaves, the decomposition is performed by irradiating microwaves into a water vapor atmosphere containing the gas to be treated. However, microwaves are absorbed in the surrounding area in the water vapor atmosphere. Therefore, the reaction itself is not promoted in the processing internal region, which causes a problem in processing capacity and efficiency.

マイクロ波を用いた減圧非平衡プラズマによる分解処理方法では、減圧雰囲気内での処理が必要であるとともに処理密度が低くなるため低コスト化および大量処理が困難であって実用的な手法ではない。また水素ガスを処理雰囲気に導入し、気体固体接触反応により分解を行うものも提案されているが水素ガスの取扱いには制約があるため実用上問題が生じる。   The decomposition treatment method using the reduced-pressure non-equilibrium plasma using microwaves is not a practical method because it requires processing in a reduced-pressure atmosphere and lowers the processing density, making it difficult to reduce the cost and mass processing. In addition, there has been proposed a method in which hydrogen gas is introduced into a processing atmosphere and decomposition is performed by a gas-solid catalytic reaction.

本発明が解決しようとする課題は次のとおりである。(1)処理領域あるいは界面においてマイクロ波を均一均等に照射可能な装置であって、かつ(2)マイクロ波照射領域を大面積に展開できる大容量処理が可能な装置であり、かつ(3)反応処理において効率よく接触反応を行える装置であり、かつ(4)低コスト化のためにコンパクトでかつ常圧にて処理が可能であり、かつ(5)水蒸気を反応のための水素供給源として使用できる処理装置を提供する事である。   The problems to be solved by the present invention are as follows. (1) A device capable of uniformly and uniformly irradiating microwaves at a processing region or interface, and (2) a device capable of large-capacity processing capable of developing a microwave irradiation region over a large area, and (3) It is a device that can perform catalytic reaction efficiently in the reaction process, and (4) it can be processed in a compact and normal pressure for cost reduction, and (5) water vapor as a hydrogen supply source for the reaction It is to provide a processing device that can be used.

本発明はマイクロ波反応処理装置のうち加熱・化学分解・化学合成・触媒反応等において、マイクロ波帯域高周波を用いた反応処理装置に関するものである。   The present invention relates to a reaction processing apparatus using microwave high frequency in heating, chemical decomposition, chemical synthesis, catalytic reaction, etc., among microwave reaction processing apparatuses.

本発明の目的は前記のような従来技術の課題を解消し大容積処理,高い均一処理化,高効率化ができかつ低コストでかつ使用上安全であることを同時に満足するマイクロ波反応処理装置を提供することにある。   The object of the present invention is to solve the problems of the prior art as described above, and to achieve a high volume processing, high uniform processing, high efficiency, low cost and safe use at the same time. Is to provide.

本発明の目的を達成するためには、マイクロ波照射構造として、反応処理領域に対してマイクロ波高周波電界面を大きく均一に形成でき、導入される高周波電力に対して損失が小さく負荷に高い効率でエネルギーを移送することができ、さらに装置は最大限小型化されるとともに、処理のための装置維持保守に係わる部分が少なく、さらに大容量処理に対して、マイクロ波導入電力を増加する際に複数の発振源を同一負荷に導入できる構造である必要性がある。   In order to achieve the object of the present invention, as a microwave irradiation structure, a microwave high-frequency electric field surface can be formed uniformly and uniformly with respect to the reaction processing region, and the loss is small with respect to the high-frequency power introduced and the load is highly efficient. In addition to reducing the size of the equipment to the maximum, there are few parts related to equipment maintenance for processing, and when increasing the microwave power for large-capacity processing. There is a need for a structure in which a plurality of oscillation sources can be introduced into the same load.

同時にマイクロ波の被照射部でありかつ反応処理領域においては反応接触面を大きくとりながらマイクロ波励起表面反応が反応接触面全体で行えてかつ処理ガスが容易に通過できる反応処理部でなければならない。さらに処理ガスの反応界面がマイクロ波照射界面との間で効率よく確実に接触できなければならない。   At the same time, it must be a part to be irradiated with microwaves, and in the reaction processing region, it must be a reaction processing part in which a microwave-excited surface reaction can be performed on the entire reaction contact surface while allowing a process gas to pass easily while taking a large reaction contact surface. . Furthermore, the reaction interface of the processing gas must be able to contact the microwave irradiation interface efficiently and reliably.

また反応において処理ガスに反応ガスを導入して処理反応を行うような場合には、処理反応部において反応が安全でかつ確実に処理ガス及び反応ガスが接触しなければならない。
前記内容を具体化するために以下の手法を用いる。
In addition, when a reaction gas is introduced into the processing gas in the reaction and the processing reaction is performed, the processing gas and the reactive gas must be in contact with each other safely and reliably in the processing reaction section.
In order to embody the content, the following method is used.

マイクロ波照射装置構造として本出願人により国際出願されているPCT/JPO3/05662に記載されている、誘電体による筒状あるいは球状の誘電体面線路を構成し、当該誘電体線路を無限線路と等価にするために高周波結合部を筒状側面あるいは球状側面に設けて高周波伝播線路がループ状に帰還する無限長誘電体線路を構成し、帰還長をすくなくとも導入される高周波の1/4波長の整数倍とし、さらに前記無限長誘電体線路である容器外側の高周波結合部以外の部分を導入高周波接地電位となるよう導体被覆し、当該導体面と無限長誘電体線路の境界面から導入される高周波波長の1/4波長長さを隔てた距離の部分に少なくとも一部の面をもつ処理容器を構成し、必要に応じて処理容器の内側に導体面をもつ構成の装置を用いたマイクロ波照射方法を用いる。   A cylindrical or spherical dielectric surface line made of a dielectric material, which is described in PCT / JPO3 / 05662 internationally filed by the present applicant as a microwave irradiation device structure, is configured, and the dielectric line is equivalent to an infinite line In order to make an infinite length dielectric line in which a high frequency coupling portion is provided on a cylindrical side surface or a spherical side surface so that a high frequency propagation line returns in a loop shape, an integer of a quarter wavelength of a high frequency introduced at least. In addition, a portion other than the high-frequency coupling portion outside the container, which is the infinite length dielectric line, is covered with a conductor so as to be an introduction high-frequency ground potential, and a high frequency introduced from the boundary surface between the conductor surface and the infinite length dielectric line A processing container having at least a part of the surface at a distance of a quarter wavelength length of the wavelength was configured, and an apparatus having a conductive surface inside the processing container was used as needed. Using microwave irradiation method.

同時に処理接触反応部にマイクロ波励起表面反応を行うために処理ガスが通過できかつマイクロ波表皮伝搬が可能な無機誘電多孔体を用いることにより反応接触面積の大きな処理部が構成できる方法を用いる。同時に処理部での処理ガスと無機誘電多孔体界面における固体/気体接触界面での接触反応効率をあげさらに全ての処理ガスが確実に反応系路を通過するために、気体吸着及びマイクロ波励起吸収が効率よく行えるために微細な水分子ミストを処理反応部に導入して接触反応効率をあげる方法を用いる。   At the same time, in order to perform the microwave-excited surface reaction in the treatment contact reaction portion, a method is used in which a treatment portion having a large reaction contact area can be formed by using an inorganic dielectric porous material that can pass a treatment gas and can propagate through the microwave skin. At the same time, gas adsorption and microwave excitation absorption are performed in order to increase the contact reaction efficiency at the solid / gas contact interface at the processing gas and inorganic dielectric porous material interface in the processing section and to ensure that all the processing gas passes through the reaction system. Therefore, a method of increasing the contact reaction efficiency by introducing a fine water molecule mist into the treatment reaction part is used.

水分子ミストを用いる事により処理気体が一般的なスクラバー処理の効果と同様に水分子ミストに吸着されてマイクロ波処理反応部に導入される事になると同時に、マイクロ波反応処理部において無機誘電多孔体表面に水分子ミストと処理ガスが効率よく吸着しかつマイクロ波吸収率の高い水分子ミストによりマイクロ波励起吸収が促進されることになる。
水分子ミストが誘電多孔体表面においてマイクロ波励起される事によって、気体/固体表面界面における熱平衡反応により水素基あるいはOH基の供給が行われることにより処理によってはさらに処理効果が促進することになる。
By using the water molecule mist, the processing gas is adsorbed by the water molecule mist and introduced into the microwave treatment reaction part, as well as the effect of the general scrubber treatment. The water molecule mist and the treatment gas are efficiently adsorbed on the body surface, and the microwave excitation absorption is promoted by the water molecule mist having a high microwave absorption rate.
When water molecule mist is microwave-excited on the surface of the dielectric porous material, the hydrogen or OH group is supplied by the thermal equilibrium reaction at the gas / solid surface interface, thereby further enhancing the treatment effect depending on the treatment. .

本発明によるマイクロ波反応処理装置により、処理領域あるいは界面においてマイクロ波励起が均一均等で処理反応部を大面積に展開できる大容量処理が可能な装置であり、かつ反応処理において効率よく接触反応が行え、かつ低コスト処理である処理装置が提供できる。   The microwave reaction processing apparatus according to the present invention is an apparatus capable of large-capacity processing capable of expanding a processing reaction portion in a large area with uniform and uniform microwave excitation at a processing region or interface, and efficiently performing contact reaction in the reaction processing. It is possible to provide a processing apparatus that can perform processing at low cost.

以下に本発明の実施態様を図1に基づき説明する。図1は本発明のマイクロ波反応処理部構成の鉛直中心部断面図である。図1において処理ガスあるいは処理ガスと反応ガスの混合ガスが導入側フランジ"7"に構成された処理ガス導入口"6"より導入される。導入側フランジ"7"には金属製管状の水分子ミスト発生部管"17"が接続されている。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view of a vertical center portion of a microwave reaction processing unit configuration according to the present invention. In FIG. 1, a processing gas or a mixed gas of a processing gas and a reactive gas is introduced from a processing gas introduction port “6” formed in the introduction side flange “7”. A metal tubular water molecule mist generating tube “17” is connected to the introduction side flange “7”.

水分子ミスト発生管部"17"内部には貯水容器"12"が設置されていて、水分子ミスト発生用の水が常時一定量で注水ライン"15"より貯水容器"12"に導入され排水ライン"16"よりオーバーフローして水液面を一定化する構造となっている。貯水容器"12"の底部には圧電素子を用いた水分子ミスト発生部"13"が設置されていてこの作動により水分子ミスト"14"が貯水容器"12"から発生する。2.45GHzマイクロ波がマイクロ波発振マグネトロン"1"からTMモードによりマイクロ波結合部"2"を経由して円筒型の外筒誘電体マイクロ波伝搬線路部"8"と金属製の円筒共振体"3"で構成される領域へ導入される。   A water storage container “12” is installed inside the water molecule mist generating pipe section “17”, and a constant amount of water for generating water molecular mist is always introduced into the storage container “12” from the water injection line “15”. Overflowing from the line “16”, the liquid level is made constant. A water molecule mist generating section “13” using a piezoelectric element is installed at the bottom of the water storage container “12”. By this operation, a water molecule mist “14” is generated from the water storage container “12”. 2.45 GHz microwave from microwave oscillation magnetron “1” via TM coupling mode through microwave coupling portion “2” and cylindrical outer dielectric dielectric microwave propagation line portion “8” and metallic cylindrical resonator Introduced into the area consisting of “3”.

マイクロ波は外筒誘電体マイクロ波伝搬線路部"8"と金属製の円筒共振体"3"内面において円周方向に無限長に誘電体線路伝搬する。この誘電体線路伝搬によりエバネセント表面波を内部に形成し、内筒処理管"9"の内部円周方向に多点ピークを持つマイクロ波が伝搬導入されて無機誘電多孔体"10"に吸収される。   The microwave propagates in an infinite length in the circumferential direction on the inner surface of the outer cylindrical dielectric microwave propagation line portion “8” and the inner surface of the metal cylindrical resonator “3”. The evanescent surface wave is formed inside by the propagation of the dielectric line, and the microwave having a multipoint peak in the inner circumferential direction of the inner tube processing tube “9” is propagated and absorbed by the inorganic dielectric porous material “10”. The

本構成のマイクロ波照射装置においてマイクロ波発振マグネトロン"1"から導入されたマイクロ波は無限長線路を伝搬することによって負荷側からの反射波が発振側に帰還することが無いために高周波線路内にアイソレーターあるいは整合器等の設置が不要であって低コスト化が実現すると同時に複数の同様なマイクロ波発振源を同一負荷に接続する事ができ大電力化に対応できる構造となっている。
無機誘電多孔体"10"は多孔部が連結していて気体通過が可能なものである。さらに触媒等が担持されていてもよく、また複数の異なった種類の多孔体が設置されていても良い。
In the microwave irradiation apparatus of this configuration, the microwave introduced from the microwave oscillating magnetron “1” propagates through the infinite length line, so that the reflected wave from the load side does not return to the oscillation side. In addition, it is not necessary to install an isolator or a matching unit, so that the cost can be reduced. At the same time, a plurality of similar microwave oscillation sources can be connected to the same load, so that the structure can cope with high power.
The inorganic dielectric porous body “10” has a porous portion connected and allows gas to pass therethrough. Further, a catalyst or the like may be supported, and a plurality of different types of porous bodies may be installed.

前記記載の構成部がマイクロ波処理部となるが、当該の処理部には処理ガス排出口"4"をもつ排出側フランジ"5"が接続されていて、排出側フランジ"5"には処理部からガスを吸気できる負圧とされている外部配管に接続される。   The component described above is a microwave processing unit, and a discharge side flange “5” having a processing gas discharge port “4” is connected to the processing unit, and a processing is performed on the discharge side flange “5”. It is connected to an external pipe that has a negative pressure capable of sucking gas from the section.

前記構成において装置作動時には、処理ガス導入口"6"より導入される処理ガスあるいは処理ガスと反応ガスの混合ガスは水分子ミスト発生部管"17"内部にて水分子ミスト"14"と接触して一部は水分子と吸着しながら内筒処理管"9"内の無機誘電多孔体"10"の多孔表面を接触吸着しながら通過することになる。一方マイクロ波発振マグネトロン"1"から導入されたマイクロ波は無機誘電多孔体"10"の多孔内部域も含めた表面を表面波により伝搬し、多孔体表面にて吸着接触している水分子ミストと処理ガスの混合気体に対して励起作用する。   When the apparatus is operated in the above-described configuration, the processing gas introduced from the processing gas introduction port “6” or the mixed gas of the processing gas and the reaction gas contacts the water molecule mist “14” inside the water molecule mist generating tube “17”. Then, a part passes through the porous surface of the inorganic dielectric porous body “10” in the inner cylinder processing tube “9” while adsorbing with water molecules while being adsorbed by contact. On the other hand, the microwave introduced from the microwave oscillating magnetron “1” propagates by the surface wave including the porous inner region of the inorganic dielectric porous material “10”, and the water molecule mist adsorbing and contacting the surface of the porous material. Exciting action on the mixed gas of gas and process gas.

水分子はマイクロ波吸収率が高く、無機誘電多孔体表面での表面励起が促進されることになる。さらに無機誘電多孔体表面での固体/気体・液体混合相界面においては電磁波励起による電子の移動により水分子の一部は水素基あるいは水酸基を脱離することにより、処理の用途によっては還元あるいは酸化反応を界面にて形成できる。
本実施形態では水分子ミストを形成するために圧電素子によるミスト発生器を用いているが、微細水粒が形成できる加圧スプレイあるいは超音波ノズル等による微細水粒の形成方法を用いることもできる。
Water molecules have a high microwave absorption rate, and surface excitation on the surface of the inorganic dielectric porous material is promoted. Furthermore, at the solid / gas / liquid mixed phase interface on the surface of the inorganic dielectric porous material, some of the water molecules are desorbed from hydrogen groups or hydroxyl groups by the movement of electrons due to electromagnetic wave excitation. A reaction can be formed at the interface.
In this embodiment, a mist generator using a piezoelectric element is used to form a water molecule mist. However, a method of forming fine water droplets using a pressure spray capable of forming fine water droplets or an ultrasonic nozzle can also be used. .

ここで具体的寸法と容量を示す。マイクロ波発振マグネトロン"1"は2.45GHz200W用マグネトロンであり、マイクロ波結合部"2"部は幅70ミリ高さ130ミリの開口部をもって、アルミ製の円筒共振体"3"と外筒誘電体マイクロ波伝搬線路部"8"の側面にてTM11モードにより結合している。円筒共振体"3"は外径100φ肉厚5ミリ長さ200ミリの円筒構造であり、外筒誘電体マイクロ波伝搬線路部"8"はマイカ膜で積層形成した外径85ミリ内径60ミリ長さ170ミリの円筒構造となっている。内筒処理管"9"は外径52ミリ内径46ミリ長さ200ミリの石英管であり、オーリング"11"により処理部が外圧対応密閉構造となるようにシールされている。無機誘電多孔体"10"はSiC製で平均多孔径がφ1ミリの外径45ミリ長さ170ミリであり、白金触媒が重量比で0.5%担持されたものとなっている。アルミ製φ100厚み20ミリの排出側フランジ"5"にはNW25フランジ接続可能なφ23ミリの処理ガス排出口"4"が形成されていて、さらに外部配管と接続できるようにフランジ加工がなされている。   Here, specific dimensions and capacities are shown. The microwave oscillation magnetron “1” is a magnetron for 2.45 GHz 200 W, and the microwave coupling portion “2” has an opening with a width of 70 mm and a height of 130 mm, and an aluminum cylindrical resonator “3” and an outer cylinder dielectric. It couple | bonds by TM11 mode in the side surface of the body microwave propagation line part "8". The cylindrical resonator “3” has a cylindrical structure with an outer diameter of 100φ, a thickness of 5 mm, and a length of 200 mm, and the outer cylindrical dielectric microwave propagation line portion “8” has an outer diameter of 85 mm and an inner diameter of 60 mm formed of mica films. It has a cylindrical structure with a length of 170 mm. The inner cylinder processing tube “9” is a quartz tube having an outer diameter of 52 mm, an inner diameter of 46 mm, and a length of 200 mm, and is sealed by an O-ring “11” so that the processing portion has a sealed structure corresponding to external pressure. The inorganic dielectric porous material “10” is made of SiC, has an average pore diameter of φ1 mm, an outer diameter of 45 mm and a length of 170 mm, and carries a platinum catalyst by 0.5% by weight. The discharge side flange “5” of φ100 thickness 20 mm made of aluminum has a φ23 mm process gas discharge port “4” that can be connected to the NW25 flange, and is further flanged so that it can be connected to external piping. .

水分子ミスト発生管部"17"はアルミ製φ90ミリ肉厚3ミリ長さ100ミリで低部厚みは15ミリであり、低部は円筒共振体"3"とボルトにて固定接続されている。貯水容器"12"は高さ60ミリ外径60ミリ内径54ミリ底部厚み3ミリのステンレス製容器であり、注水ライン"15"及び排水ライン"16"は1/4インチステンレス管で構成されていて水分子ミスト発生管部"17"よりシールの上貫通している。水分子ミスト発生部"13"はAC24V、1.2A消費の気化能力90mL/時の圧電素子振動によるミスト発生器であって構造部はステンレス製である。   The water molecule mist generating tube section “17” is made of aluminum, φ90 mm thickness, 3 mm length, 100 mm, and the lower thickness is 15 mm, and the lower portion is fixedly connected to the cylindrical resonator “3” with bolts. . The water storage container “12” is a stainless steel container having a height of 60 mm, an outer diameter of 60 mm, an inner diameter of 54 mm and a bottom thickness of 3 mm, and the water injection line “15” and the drainage line “16” are composed of 1/4 inch stainless steel pipes. The water molecule mist generating tube portion “17” penetrates the seal. The water molecule mist generating part “13” is a mist generator by piezoelectric element vibration with a vaporization capacity of 90 mL / hour for consumption of AC 24 V, 1.2 A, and the structure part is made of stainless steel.

アルミ製φ100厚み20ミリの導入側フランジ"7"にはNW25フランジ接続可能なφ23ミリの処理ガス導入口"6"が形成されていて、さらに外部配管と接続できるようにフランジ加工がなされている。   An aluminum-made φ100-thick 20 mm-thick inlet side flange “7” has a φ23-mm process gas inlet “6” that can be connected to an NW25 flange, and is further flanged so that it can be connected to external piping. .

本実施形態での処理効率の実施例は次のとおりである。処理ガスとしてトルエン気体を装置内を通過するように導入側フランジ"7"より導入し、150ppm/分の流量となるよう処理ガス排出口"4"より排気量を制御して一定量通過させた。   Examples of processing efficiency in the present embodiment are as follows. Toluene gas was introduced from the introduction side flange “7” so as to pass through the inside of the apparatus as a processing gas, and a fixed amount was passed through the processing gas discharge port “4” with a flow rate of 150 ppm / min. .

処理マイクロ波パワーは100ワットで固定とし、処理時間0分、1分及び5分のマイクロ波処理時間ごとに吸引型濃度測定のトルエンデテクターチューブGASTEC、No122を用いて処理ガス排出口"4"のトルエン濃度を測定し、水ミスト混入の有無それぞれについて測定をおこなった。   The processing microwave power is fixed at 100 watts, and the processing gas discharge port “4” is used with the toluene detector tube GASTEC No122 of the suction type concentration measurement every microwave processing time of 0 minutes, 1 minute and 5 minutes. The toluene concentration was measured, and the presence or absence of water mist contamination was measured.

水ミスト処理の際には80mL/時の水分子ミストを水分子ミスト発生部"13"にて発生させて処理をおこなった。   In the water mist treatment, the water molecule mist of 80 mL / hour was generated in the water molecule mist generating section “13”.

水ミスト処理の無い場合において、0分処理後のトルエン濃度150ppmに対して、1分後では88ppm、5分後では50ppmという結果に対して、水ミスト処理を導入した場合には0分処理後のトルエン濃度150ppmに対して、1分後では2ppm、5分後では0ppmという結果を得た。   In the case of no water mist treatment, the concentration of toluene after 150 minutes after treatment for 0 minutes was 88 ppm after 1 minute and 50 ppm after 5 minutes. The result was 2 ppm after 1 minute and 0 ppm after 5 minutes with respect to the toluene concentration of 150 ppm.

本実施形態では無機誘電多孔体"10"の材料としてSiCを用いたが、アルミナ、Si、カーボン混入の誘電体であってもよく、さらに触媒担持を用いる場合、白金系以外の他の触媒を用いることもできる。   In the present embodiment, SiC is used as the material of the inorganic dielectric porous material “10”. However, a dielectric material containing alumina, Si, or carbon may be used. It can also be used.

本発明の応用分野は合成処理・分解処理・改質処理・触媒反応処理・脱臭処理等の分野である。また、本発明は前記した実施形態や実施態様に限定されず、特許請求の精神及び範囲を逸脱せずに各種の変形を含む。   The application fields of the present invention are fields such as synthesis treatment, decomposition treatment, reforming treatment, catalytic reaction treatment, deodorizing treatment, and the like. The present invention is not limited to the above-described embodiments and embodiments, and includes various modifications without departing from the spirit and scope of the claims.

本発明の実施例でのマイクロ波反応処理装置の鉛直中心部断面図である。It is a vertical center part sectional view of the microwave reaction treatment equipment in the example of the present invention.

符号の説明Explanation of symbols

1…マイクロ波発振マグネトロン
2…マイクロ波結合部
3…円筒共振体
4…処理ガス排出口
5…排出側フランジ
6…処理ガス導入口
7…導入側フランジ
8…外筒誘電体マイクロ波伝搬線路部
9…内筒処理管
10…無機誘電多孔体
11…オーリング
12…貯水容器
13…水分子ミスト発生部
14…水分子ミスト
15…注水ライン
16…排水ライン
17…水分子ミスト発生管部

DESCRIPTION OF SYMBOLS 1 ... Microwave oscillation magnetron 2 ... Microwave coupling part 3 ... Cylindrical resonator 4 ... Process gas discharge port 5 ... Discharge side flange 6 ... Process gas introduction port 7 ... Introduction side flange 8 ... Outer cylinder dielectric microwave propagation line part DESCRIPTION OF SYMBOLS 9 ... Inner cylinder processing pipe 10 ... Inorganic dielectric porous body 11 ... O-ring 12 ... Water storage container 13 ... Water molecule mist generation part 14 ... Water molecule mist 15 ... Water injection line 16 ... Drain line 17 ... Water molecule mist generation pipe part

Claims (6)

気体状の物質を、誘電体の内部あるいは表面に接触させながら前記誘電体をマイクロ波表面波線路として用いながらマイクロ波を照射し分解を行う装置において、水分子ミストあるいは水蒸気膜を前記誘電体表面に形成しながら処理を行うことを特徴とするマイクロ波反応処理装置。   In an apparatus for performing decomposition by irradiating microwaves while using a dielectric substance as a microwave surface wave line while contacting a gaseous substance with the inside or surface of the dielectric, a water molecule mist or a water vapor film is applied to the surface of the dielectric. A microwave reaction processing apparatus, wherein the processing is performed while being formed. 処理ガスに対する水分子ミストあるいは水蒸気の分圧が10%以下であることを特徴とする請求項第一項記載のマイクロ波反応処理装置。   The microwave reaction processing apparatus according to claim 1, wherein a partial pressure of water molecule mist or water vapor with respect to the processing gas is 10% or less. 前記処理を行う処理部へのマイクロ波導入線路が表面波誘電体線路でありかつマイクロ波の伝搬線路において無限長となるように線路が閉鎖している事を特徴とする請求項第一項及び第二項記載のマイクロ波反応処理装置。   The microwave introduction line to the processing unit for performing the processing is a surface wave dielectric line, and the line is closed so that the microwave propagation line is infinitely long in the microwave propagation line. The microwave reaction processing apparatus of 2nd term | claim. 前記処理の対象となる処理物質が揮発性有機化合物であることを特徴とする請求項第一項及び第二項記載のマイクロ波反応処理装置。   3. The microwave reaction processing apparatus according to claim 1, wherein the processing substance to be processed is a volatile organic compound. 前記誘電体が多孔体であることを特徴とする請求項第一項及び第二項記載のマイクロ波反応処理装置。   The microwave reaction processing apparatus according to claim 1 or 2, wherein the dielectric is a porous body. 触媒を担持された多孔体であることを特徴とする請求項第五項記載のマイクロ波反応処理装置。
6. The microwave reaction processing apparatus according to claim 5, wherein the microwave reaction processing apparatus is a porous body carrying a catalyst.
JP2004056506A 2004-03-01 2004-03-01 Microwave reaction treatment apparatus Pending JP2005246138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004056506A JP2005246138A (en) 2004-03-01 2004-03-01 Microwave reaction treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004056506A JP2005246138A (en) 2004-03-01 2004-03-01 Microwave reaction treatment apparatus

Publications (1)

Publication Number Publication Date
JP2005246138A true JP2005246138A (en) 2005-09-15

Family

ID=35027141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004056506A Pending JP2005246138A (en) 2004-03-01 2004-03-01 Microwave reaction treatment apparatus

Country Status (1)

Country Link
JP (1) JP2005246138A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000774A (en) * 2005-06-23 2007-01-11 Toyota Central Res & Dev Lab Inc Catalytic reaction apparatus, catalyst heating method, and fuel reforming method
JP2008284529A (en) * 2007-05-21 2008-11-27 Chuan-Lian Tzeng Microwave treatment apparatus for treating volatile organic compound
JP2010207735A (en) * 2009-03-10 2010-09-24 National Institute Of Advanced Industrial Science & Technology Microwave continuous irradiation method and apparatus to fluid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000774A (en) * 2005-06-23 2007-01-11 Toyota Central Res & Dev Lab Inc Catalytic reaction apparatus, catalyst heating method, and fuel reforming method
JP2008284529A (en) * 2007-05-21 2008-11-27 Chuan-Lian Tzeng Microwave treatment apparatus for treating volatile organic compound
JP2010207735A (en) * 2009-03-10 2010-09-24 National Institute Of Advanced Industrial Science & Technology Microwave continuous irradiation method and apparatus to fluid

Similar Documents

Publication Publication Date Title
WO2006059808A1 (en) Submerged plasma-use electrode, submerged plasma generating device and submerged plasma generating method
US6290918B1 (en) Process and apparatus for the treatment of perfluorinated and hydrofluorocarbon gases for the purpose of destroying them
US7510632B2 (en) Plasma treatment within dielectric fluids
US20030146310A1 (en) Method, process and apparatus for high pressure plasma catalytic treatment of dense fluids
EP3162435B1 (en) Method for manufacturing reaction product in which phase interface reaction is employed and phase interface reactor
JP2009240862A (en) Gas purifying apparatus
JP2008173521A (en) Submerged plasma treatment apparatus and submerged plasma treatment method
JP2008036080A (en) Pollutant gas purifying device and method
RU2572895C2 (en) Device and method for processing of gaseous medium and application of said device for processing of gaseous medium, solid body, surface of their whatever combination
JP2007054774A (en) Apparatus for treating voc and cartridge for apparatus for treating voc
US7067204B2 (en) Submerged plasma generator, method of generating plasma in liquid and method of decomposing toxic substance with plasma in liquid
JP2020518438A (en) Sulfur production
JP4446030B2 (en) Liquid plasma generator and liquid plasma generation method
JP2005246138A (en) Microwave reaction treatment apparatus
JPS61208743A (en) Ultraviolet treatment device
JP2004160312A (en) Pfc gas decomposition system and method used for the same
Mizuno et al. Plasma catalysis systems
JPWO2003096769A1 (en) High frequency reaction processing equipment
JP3553624B2 (en) CFC decomposition method
CN115594257A (en) Discharge nitrogen fixation device and method
JP2009181960A (en) Method for generating plasma in liquid
US20070126649A1 (en) Microwave based air purifier
JP3845933B2 (en) Volume reduction processing method and apparatus for ion exchange resin
KR101573357B1 (en) Facility for purifying harmful gas
JP2001129359A (en) Organic halogen decomposing device employing microwave high frequency plasma discharge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090126

A131 Notification of reasons for refusal

Effective date: 20090203

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090602

Free format text: JAPANESE INTERMEDIATE CODE: A02