JP2005245290A - Method for producing protein processed food hardly presenting bitter taste/astringent taste in acidic region - Google Patents

Method for producing protein processed food hardly presenting bitter taste/astringent taste in acidic region Download PDF

Info

Publication number
JP2005245290A
JP2005245290A JP2004059561A JP2004059561A JP2005245290A JP 2005245290 A JP2005245290 A JP 2005245290A JP 2004059561 A JP2004059561 A JP 2004059561A JP 2004059561 A JP2004059561 A JP 2004059561A JP 2005245290 A JP2005245290 A JP 2005245290A
Authority
JP
Japan
Prior art keywords
protein
astringency
starch
sugar
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004059561A
Other languages
Japanese (ja)
Inventor
Yoichi Kinekawa
洋一 杵川
Naofumi Kitahata
直文 北畠
Hiroaki Sano
弘明 佐野
Toshihiko Egashira
俊彦 江頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Kasei Co Ltd
Kyoto University NUC
Original Assignee
Daiichi Kasei Co Ltd
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Kasei Co Ltd, Kyoto University NUC filed Critical Daiichi Kasei Co Ltd
Priority to JP2004059561A priority Critical patent/JP2005245290A/en
Publication of JP2005245290A publication Critical patent/JP2005245290A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a food raw material protein processed food hardly presenting bitter taste/astringent taste even in acidic region, and a food containing the protein. <P>SOLUTION: This method for producing the protein processed food comprises adding a starch decomposed sugar to a protein selected from the group consisting of unheated or heated cow milk serum protein, cow milk casein, soybean protein and albumen protein, and heat-treating the product. The decomposition degree of the starch decomposited sugar to be used is preferably DE 3-40. The solid weight ratio of used quantities of the protein and the starch decomposed sugar is preferably about (1:1)-(1:20). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、酸性域でも渋味・収斂味を呈しにくい食品素材タンパク質加工品およびタンパク質含有加工食品の製造方法に関するものである。   The present invention relates to a food material processed protein product that hardly exhibits astringency and astringency even in an acidic region, and a method for producing a protein-containing processed food.

タンパク質高濃度含有食品としては、健康補助食品、医療食品、高齢者対応機能性食品、介護食品、病者用食品やスポーツ栄養補強食品などがある。タンパク質素材としては、牛乳タンパク質、卵タンパク質あるいは大豆タンパク質などが利用されている。これら食品素材タンパク質は、いずれも栄養性や物性などの機能性が高い。これらのタンパク質を含む前記食品は、一般的に中性pH域の製品が多いが、概して嗜好性の低い不味なものが多い。   Examples of foods containing high protein concentrations include health supplements, medical foods, functional foods for the elderly, nursing foods, sick foods, and sports nutrition supplemented foods. As the protein material, milk protein, egg protein, soybean protein or the like is used. All of these food material proteins have high functionality such as nutrition and physical properties. The foods containing these proteins are generally many products in the neutral pH range, but generally have many tasteless products with low palatability.

一方、酸性域(低pH)食品、例えば飲料,ワイン,ゼリーデザート,たれ・ソース・ドレッシング,乳製品,菓子,漬け物,スープ,ジャム,果物や発酵食品などは、嗜好性が高いことが知られている。そこで、前記のタンパク質高濃度含有食品にさわやかな酸味を付与することにより、嗜好性を高めることができると考えられる。   On the other hand, acidic (low pH) foods such as beverages, wine, jelly desserts, sauces, sauces and dressings, dairy products, confectionery, pickles, soups, jams, fruits and fermented foods are known to have high palatability. ing. Then, it is thought that palatability can be improved by giving a refreshing acidity to the said protein high concentration containing foodstuff.

しかし、酸性域において、牛乳乳清タンパク質などの食品素材タンパク質は、不快感の強い渋味や収斂味を呈することが知られており(江頭ら,日本食品科学工学会2003年度大会)、このことが障害となり、嗜好性の高いタンパク質高濃度含有加工食品を調製することは困難であった。   However, it is known that food material proteins such as milk whey protein exhibit a strong unpleasant astringency and astringency in the acidic range (Egashira et al., Japan Society for Food Science and Technology 2003). However, it was difficult to prepare processed foods with high protein concentration and high palatability.

チーズ、バターやカゼインの製造時に発生する牛乳乳清中のタンパク質は、低利用余剰資源であった。乳清タンパク質は分離・精製技術の進歩に伴い、主として加工食品用食品素材として利用されてきた。しかし、乳清タンパク質食品素材には透明性、高塩濃度下での加熱ゲル形成性、乳化安定性や消化性などに難点があった。これらの難点が改善された改質乳清タンパク質(特許文献1〜3及び非特許文献1参照)が知られている。しかし、いずれの乳清タンパク質も酸性域においては強い渋味・収斂味を有する(江頭、佐野、杵川、北畠,日本食品科学工学会2003年度大会)。また、牛乳カゼインや大豆タンパク質や卵白タンパク質においても同様の不快味を呈する。   Protein in milk whey generated during the production of cheese, butter and casein was a low-use surplus resource. Whey protein has been mainly used as a food material for processed foods with the progress of separation and purification technology. However, whey protein food materials have difficulties in transparency, heat gel formation under high salt concentration, emulsion stability and digestibility. A modified whey protein (see Patent Documents 1 to 3 and Non-Patent Document 1) in which these difficulties are improved is known. However, all whey proteins have strong astringency and astringency in the acidic region (Egashira, Sano, Yodogawa, Hokuto, Japan Society for Food Science and Technology 2003 Conference). Milk casein, soy protein, and egg white protein also exhibit the same unpleasant taste.

渋味とよく似た食味には、キニーネなどに代表される苦味がある。苦味は舌上皮細胞上に存在するレセプターを介した反応であることが知られている。一方、例えば渋茶を口に含んだ場合に感じる渋味は、茶中のタンニンなどのポリフェノール類が唾液中のタンパク質(プロリン・リッチ・プロテイン)と複合体や凝集体を形成し、これらが舌上皮や口腔内上皮に存在する脂質二重層膜に沈殿することによる味刺激であることが報告されており(非特許文献2参照)、苦味と渋味は全く異なるメカニズムによる食味であることが知られている。しかし、酸性域でタンパク質が呈する渋味のメカニズムに関する詳細な報告はまだ見あたらない。   There are bitterness typified by quinine in the taste similar to astringency. It is known that the bitter taste is a reaction via a receptor present on the tongue epithelial cells. On the other hand, for example, the astringency that is felt when astringent tea is included in the mouth is that polyphenols such as tannin in tea form complexes and aggregates with proteins in saliva (proline rich protein), which are the tongue epithelium. It has been reported that it is a taste stimulus due to precipitation in the lipid bilayer membrane present in the oral epithelium (see Non-Patent Document 2), and bitterness and astringency are known to be due to a completely different mechanism. ing. However, there is still no detailed report on the mechanism of astringency that proteins exhibit in the acidic region.

渋味の改善方法としては、スクラロース(特許文献4参照)やアスパルテーム(特許文献5参照)などの甘味料、キトサン類(特許文献6参照)、モノまたはジグリセリド・ポリカルボン酸エステルの金属塩またはアミノ酸塩(特許文献7参照)などの、マスキング剤を添加する方法が知られている。しかし、酸性域におけるタンパク質そのものが呈する渋味・収斂味の低減技術は発明されていない。
特許第3065116号公報 特許第3050483号公報 特公平6−101986号公報 特開平10−262601号公報 特開平10−248501号公報 特開2000−229862号公報 特開平8−332051号公報 日本食品科学工学会誌第44巻,第9号,p.599-606 (1997) Haslam&Lilley,Critical Reviews in Food Science and Nutrition, 1988
As a method for improving astringency, sweeteners such as sucralose (see Patent Document 4) and aspartame (see Patent Document 5), chitosans (see Patent Document 6), metal salts or amino acids of mono- or diglycerides / polycarboxylic acid esters A method of adding a masking agent such as a salt (see Patent Document 7) is known. However, a technique for reducing the astringency and astringency of the protein itself in the acidic region has not been invented.
Japanese Patent No. 3065116 Japanese Patent No. 3050483 Japanese Patent Publication No. 6-101986 Japanese Patent Laid-Open No. 10-262601 JP-A-10-248501 JP 2000-229862 A JP-A-8-332051 Japanese Society for Food Science and Technology Volume 44, No. 9, p.599-606 (1997) Haslam & Lilley, Critical Reviews in Food Science and Nutrition, 1988

このようなタンパク質素材を、酸性域でも不快な渋味や収斂味を呈しにくいものに加工する技術が得られれば、前記の健康補助食品や介護食品などを、よりおいしく、食べやすくすることができ、その用途を拡大できると考えられる。そこで、本発明は、酸性域でも渋味・収斂味を呈しにくい食品素材タンパク質加工品と、当該タンパク質を含有する食品の製造方法を提供することを課題とする。   If the technology to process such protein materials into those that do not exhibit unpleasant astringency or astringency even in the acidic range, the above health supplements and nursing foods can be made more delicious and easy to eat. It is thought that its application can be expanded. Therefore, an object of the present invention is to provide a processed food material protein product that hardly exhibits astringency and astringency even in an acidic region, and a method for producing a food containing the protein.

本発明で定義する収斂味とは、強度の渋味刺激、長時間持続する渋味刺激である。
本発明では、牛乳乳清タンパク質、牛乳カゼイン、大豆タンパク質及び卵白タンパク質からなる群から選ばれるタンパク質を、でんぷん分解糖存在下で加熱を行う、または、これらのタンパク質をpH7.5以下で加熱・冷却した後、でんぷん分解糖存在下で再度加熱を行うことにより、酸性域でも渋味・収斂味を呈しにくいタンパク質加工品を製造することを可能とした。さらに、このようにして得たタンパク質加工品をタンパク質源として添加することにより、酸性域でも渋味・収斂味を呈しにくいタンパク質含有食品を製造することを可能とした。
The astringent taste defined in the present invention is a strong astringency stimulus or a long-lasting astringency stimulus.
In the present invention, a protein selected from the group consisting of milk whey protein, milk casein, soy protein and egg white protein is heated in the presence of starch-degrading sugar, or these proteins are heated and cooled at pH 7.5 or lower. After that, by heating again in the presence of starch-degrading sugar, it was possible to produce a processed protein product that hardly shows astringency and astringency even in the acidic range. Furthermore, by adding the protein processed product thus obtained as a protein source, it has become possible to produce a protein-containing food that hardly exhibits astringency and astringency even in an acidic region.

牛乳乳清タンパク質としては、例えばチーズやバター、カゼイン製造工程の副産物として得られた乳清中のタンパク質画分を、例えば限外濾過法やクロマトグラフィなどにより濃縮・精製したものを用いる。また、WPC(Whey Protein Concentrate)、WPI(Whey Protein Isolate)、TMP(Total Milk Protein)、MPC(Milk Protein Concentrate)あるいはコプレシピテイト(Co precipitate)などの牛乳乳清タンパク質を用いることもできる。牛乳カゼインは、ナトリウム、カルシウム、カリウムまたはマグネシウム塩も利用できる。大豆タンパク質としては、脱脂大豆中のタンパク質画分を濃縮・精製したもので、濃縮大豆タンパク質、抽出大豆タンパク質および大豆タンパク質分離物が利用できる。卵白タンパク質は鶏卵白中のタンパク質画分を濃縮・精製したものを利用することができる。いずれのタンパク質も精製度合いとしては特に限定されないが、イオン強度25mM以下が望ましい。   As the milk whey protein, for example, a protein fraction in whey obtained as a by-product in the cheese, butter and casein production process is concentrated and purified by, for example, ultrafiltration or chromatography. In addition, milk whey proteins such as WPC (Whey Protein Concentrate), WPI (Whey Protein Isolate), TMP (Total Milk Protein), MPC (Milk Protein Concentrate) or Coprecipitate (Co precipitate) can also be used. Milk casein is also available in sodium, calcium, potassium or magnesium salts. As soy protein, the protein fraction in defatted soybean is concentrated and purified, and concentrated soy protein, extracted soy protein and soy protein isolate can be used. Egg white protein can be obtained by concentrating and purifying the protein fraction in chicken egg white. The purification degree of any protein is not particularly limited, but an ionic strength of 25 mM or less is desirable.

でんぷん分解糖としては、粉体または液状のデキストリン、マルトデキストリン、粉あめや水飴などが利用できる。分解度としては、DE(Dextrose Equivalent)3〜40が望ましい。また、添加量としてはタンパク質とでんぷん分解糖の固形分重量比率が1:1〜1:20程度となるようにするのが望ましく、タンパク質液におけるでんぷん分解糖の含有量が10〜70重量%、特に30〜50重量%であるようにするのが望ましい。   As the starch-decomposing sugar, powdered or liquid dextrin, maltodextrin, powdered candy, starch syrup and the like can be used. As the degree of decomposition, DE (Dextrose Equivalent) 3-40 is desirable. In addition, it is desirable that the solid content weight ratio of the protein and starch-decomposing sugar is about 1: 1 to 1:20 as the addition amount, and the content of the starch-decomposing sugar in the protein solution is 10 to 70% by weight, In particular, it is desirable to be 30 to 50% by weight.

牛乳乳清タンパク質を、でんぷん分解糖存在下で加熱を行う場合、加熱時のpHは、特に限定されないが、酸性域で利用し易い7以下であるのが望ましい。タンパク質は2〜20重量%の水溶液として使用するのが望ましく、加熱温度としては、使用するタンパク質の変性温度以上であればよいが、70〜120℃であるのが望ましい。加熱時間は特に限定されないが、通常30分〜120分間程度でよく、加熱後は自然または強制的に室温以下に放冷または冷却するのがよい。   When the milk whey protein is heated in the presence of starch-degrading sugar, the pH at the time of heating is not particularly limited, but is preferably 7 or less, which is easily used in the acidic region. The protein is desirably used as an aqueous solution of 2 to 20% by weight, and the heating temperature may be not lower than the denaturation temperature of the protein to be used, but is preferably 70 to 120 ° C. Although the heating time is not particularly limited, it may usually be about 30 minutes to 120 minutes, and after heating, it may be naturally or forcibly cooled or cooled to room temperature or lower.

牛乳乳清タンパク質を、pH7.5以下で加熱・冷却後、でんぷん分解糖存在下で再度加熱を行う場合には、初段の加熱条件がpH7.5以下であれば、いずれのpH域でも利用できる。タンパク質濃度としては、2〜20重量%が望ましく、加熱温度としては、使用するタンパク質の変性温度以上であればよいが、70〜120℃が望ましい。加熱時間は通常30分〜120分間程度でよい。加熱後は自然または強制的に室温以下に放冷または冷却する。次いででんぷん分解糖を加えた後の加熱条件は、pH7以下、70〜120℃、30分〜120分間が望ましい。加熱後は自然または強制的に室温以下に放冷または冷却する。   When milk whey protein is heated and cooled at pH 7.5 or lower and then heated again in the presence of starch-degrading sugar, it can be used in any pH range as long as the first heating condition is pH 7.5 or lower. . The protein concentration is desirably 2 to 20% by weight, and the heating temperature is not less than the denaturation temperature of the protein to be used, but is preferably 70 to 120 ° C. The heating time is usually about 30 minutes to 120 minutes. After heating, naturally or forcibly cool or cool below room temperature. Next, the heating conditions after adding the starch-decomposing sugar are preferably pH 7 or less, 70 to 120 ° C., and 30 to 120 minutes. After heating, naturally or forcibly cool or cool below room temperature.

本発明により調製したタンパク質を0.1〜20重量%添加したタンパク質含有加工食品は、pH5以下というような酸性域であっても、タンパク質特有の渋味や収斂味を呈することなく、非常に口当たりの良い食品となる。例えば、弱酸性〜酸性域の固形状食品、ゼリー状食品、ゾル状食品または液状食品の何れにも、タンパク質を含有させることが可能となるのである。固形状食品としては特に限定されないが、菓子類、食肉・水産加工品などである。ゼリー状食品、ゾル状食品としては特に限定されないが、デザート類、健康補助食品、医療食品、高齢者対応機能性食品、介護食品、病者用食品やスポーツ栄養補強食品などである。液状食品としては、嗜好性飲料、スポーツ飲料、健康補助食品、医療食品、高齢者対応機能性食品、介護食品や病者用食品などである。   The protein-containing processed food to which 0.1 to 20% by weight of the protein prepared according to the present invention is added has a very palatable taste without astringent taste or astringent taste peculiar to protein even in an acidic range of pH 5 or lower. Become a good food. For example, protein can be contained in any of a solid food, a jelly-like food, a sol-like food, or a liquid food in a weakly acidic to acidic range. Although it does not specifically limit as solid food, It is confectionery, meat, fishery products, etc. The jelly-like food and the sol-like food are not particularly limited, and include desserts, health supplements, medical foods, functional foods for elderly people, nursing foods, sick foods, and sports nutrition supplemented foods. Examples of liquid foods include palatability drinks, sports drinks, health supplements, medical foods, functional foods for the elderly, nursing foods, and sick foods.

酸性域において食品タンパク質が渋味・収斂味を呈するであろうと言うことは、これまでに漠然と知られていた。しかし、牛乳乳清タンパク質の酸性域における渋味・収斂味については詳細な研究はなかった。前述の通り筆者らは、渋味の定量系を確立することにより酸性領域において牛乳乳清タンパク質が未変性/変性に関わらず、渋味・収斂味を呈することを見いだした。   It has been vaguely known so far that food proteins will exhibit astringency and astringency in the acidic range. However, there was no detailed study on the astringency and astringency in the acidic region of milk whey protein. As described above, the authors have found that milk whey protein exhibits astringency and astringency in the acidic region regardless of whether it is native or denatured by establishing a quantitative system for astringency.

本発明では、乳清タンパク質、カゼイン、大豆タンパク質および卵白タンパク質が酸性域で呈する強い渋味や収斂味を低減することにより、これらのタンパク質を酸性域の加工食品用素材として利用することが可能となる。さらに、本発明により得られたタンパク質素材を用いた液状からゲル状の加工食品は、呈味性に優れた健康補助食品、医療食品、高齢者対応機能性食品、介護食品、病者用食品やスポーツ栄養補強食品などの高タンパク質含有食品に利用することが可能である。   In the present invention, whey protein, casein, soy protein, and egg white protein can be used as raw materials for processed foods in the acidic range by reducing the strong astringency and astringent taste exhibited in the acidic range. Become. Furthermore, the liquid to gel processed foods using the protein material obtained by the present invention are health supplements, medical foods, functional foods for elderly people, nursing foods, foods for the sick, and the like that are excellent in taste. It can be used for foods with high protein content such as sports nutrition supplements.

次に、本発明の開発の経緯を示す実験例を示すが、本発明はこれらによって限定されるものではない。
この例では、牛乳乳清タンパク質(WPI)は、粗タンパク質95%(ドライベース、ケルダール法)、灰分3%(灰化法)、ラクトース1%、粗脂肪1%(酸分解法)、水分5%(常圧乾燥法)を成分とする乳清タンパク質分離物(商品名:ダイイチラクト、第一化成製)を用いた。これを12%になるように蒸留水に溶解し、最終的に10倍容量の蒸留水に対して透析を行い試験用のタンパク質液とした。WPI溶液のpHを2 M 塩酸または水酸化ナトリウムで7.0または3.5に調整後、タンパク質濃度を5%に調整し、90℃で30分間加熱した。pH7.0および3.5で加熱して得られた改質乳清タンパク質をそれぞれPWP、aPWPとした。牛ゼラチン(牛皮膚由来、Type B、ゲル強度225Bloom)および豚ゼラチン(豚皮膚由来、Type A、ゲル強度300 Bloom)はSigma社より購入し、5%懸濁液を60℃で10分間加温溶解して使用した。タンニン酸は和光純薬工業から購入した。
Next, although the experiment example which shows the history of development of this invention is shown, this invention is not limited by these.
In this example, milk whey protein (WPI) consists of 95% crude protein (dry base, Kjeldahl method), 3% ash (ashing method), 1% lactose, 1% crude fat (acid decomposition method), 5 moisture % (Normal pressure drying method) was used as a whey protein isolate (trade name: Daiichilacto, manufactured by Daiichi Kasei). This was dissolved in distilled water to a 12% and a protein solution to be tested was dialyzed against final 10 4 volumes of distilled water. After adjusting the pH of the WPI solution to 7.0 or 3.5 with 2 M hydrochloric acid or sodium hydroxide, the protein concentration was adjusted to 5% and heated at 90 ° C. for 30 minutes. The modified whey proteins obtained by heating at pH 7.0 and 3.5 were designated as PWP and aPWP, respectively. Bovine gelatin (derived from bovine skin, Type B, gel strength 225 Bloom) and porcine gelatin (derived from porcine skin, Type A, gel strength 300 Bloom) were purchased from Sigma, and 5% suspension was heated at 60 ° C for 10 minutes. Used by dissolving. Tannic acid was purchased from Wako Pure Chemical Industries.

乳清タンパク質およびゼラチン溶液のpHを2M塩酸で3.5に調整後、104倍容量の5mMリン酸緩衝液(pH3.5)に対して透析した。透析した溶液のpHを5mMリン酸緩衝液で正確に3.5に調整後、所定のタンパク質濃度に希釈したものを渋味評価試料とした。 The pH of the whey protein and gelatin solution was adjusted to 3.5 with 2M hydrochloric acid, and dialyzed against 10 4 volumes of 5 mM phosphate buffer (pH 3.5). The pH of the dialyzed solution was accurately adjusted to 3.5 with 5 mM phosphate buffer, and then diluted to a predetermined protein concentration was used as an astringency evaluation sample.

官能検査は28〜37歳の健康な男性7名のパネラーで行った。官能検査は検査毎に被験者に口腔を充分に蒸留水で洗浄させた後、直ちに行った。検査後の口腔の洗浄は150 mM 塩化ナトリウム/10 mM リン酸緩衝液(pH 7.4)で口腔を洗浄させることで行った。検液の溶媒は2.5 mLの5 mM リン酸緩衝(pH3.5)であり、検液の温度を一定にするため検査前に少なくとも2時間室温放置した。評点法による渋味の官能評価は、標準渋味試料としてタンニン酸を用いた。   The sensory test was carried out by panelists of seven healthy men aged 28 to 37 years. The sensory test was performed immediately after the test subject was thoroughly washed with distilled water for each test. After the test, the oral cavity was washed by washing the oral cavity with 150 mM sodium chloride / 10 mM phosphate buffer (pH 7.4). The solvent of the test solution was 2.5 mL of 5 mM phosphate buffer (pH 3.5), and was left at room temperature for at least 2 hours before the test in order to keep the temperature of the test solution constant. Sensory evaluation of astringency by the scoring method used tannic acid as a standard astringency sample.

[渋味スコアの標準化]
任意濃度のタンニン酸液を、あらかじめスコアを設定した既知濃度のタンニン酸液の渋味の程度と比較することにより、渋味スコアの標準化を次の手順で行った。 0, 0.343, 0.537, 0.842および1.319 mM タンニン酸の渋味スコアがそれぞれ0, 2, 4, 6および8の渋味標準試料とし、0.343, 0.429, 0.537, 0.673, 0.842, 1.054, 1.319, 1.651および2.066 mM のタンニン酸液を評価試料として渋味を評価した結果をグラフ(図1)にプロットし検量線を作成し、次式を得た。
. 渋味スコア = 4.49985 Lnタンニン酸濃度(mM) + 6.32211
この検量線より、0, 0.383, 0.597, 0.931, 1.452および2.264 mMタンニン酸の渋味スコアを0, 2, 4, 6, 8および10とした。 評点法による渋味の評価はこれらを渋味標準試料として用いて行った。渋味スコアと官能評価との関係は、0は渋味を全く感じない、2はごく僅かに渋味を感じる、4は僅かに渋味を感じる、6は明らかに渋味を感じる、8〜10は強い渋味・収斂味を感じる、となる。
[Standardization of astringency score]
The astringency score was standardized by the following procedure by comparing the tannic acid solution at an arbitrary concentration with the astringency level of a tannic acid solution at a known concentration with a preset score. 0, 0.343, 0.537, 0.842 and 1.319 mM tannic acid with astringency scores of 0, 2, 4, 6 and 8 respectively, 0.343, 0.429, 0.537, 0.673, 0.842, 1.054, 1.319, 1.651 and The results of evaluating astringency using a 2.066 mM tannic acid solution as an evaluation sample were plotted on a graph (FIG. 1) to create a calibration curve, and the following equation was obtained.
. Astringency score = 4.49985 Ln tannic acid concentration (mM) + 6.32211
From this calibration curve, the astringency scores of 0, 0.383, 0.597, 0.931, 1.452 and 2.264 mM tannic acid were set to 0, 2, 4, 6, 8 and 10. Evaluation of astringency by the scoring method was performed using these as astringency standard samples. The relationship between the astringency score and the sensory evaluation is that 0 is no astringency, 2 is slightly astringent, 4 is slightly astringent, 6 is clearly astringent, 8- 10 means a strong astringency and astringency.

「評点法を用いた渋味評価試料の渋味スコアの測定]
pH 3.5、タンパク質濃度0.25、 0.5および1%のときのWPI、PWPおよびaPWPの渋味スコアを測定した結果、タンパク質濃度1%においてWPI, PWP, およびaPWPはいずれも8〜9の渋味スコアに相当する強い渋味・収斂味を呈した。渋味の強度はタンパク質濃度の増加に依存して上昇したが、試料間に強度の差は見られなかった。
"Measurement of astringency score of astringency evaluation sample using scoring method"
As a result of measuring the astringency score of WPI, PWP and aPWP at pH 3.5, protein concentration of 0.25, 0.5 and 1%, WPI, PWP and aPWP are all 8 to 1 at protein concentration of 1%. It exhibited a strong astringency and astringency corresponding to an astringency score of 9. The intensity of astringency increased depending on the increase in protein concentration, but no difference in intensity was observed between samples.

一方、牛および豚ゼラチンについて同様に渋味の強さを評価した結果、渋味スコアは1〜2であり、明確な渋味は呈しなかった。また、タンパク質濃度に依存した渋味の増加は見られず、pH 3.5においてゼラチンは明確な渋味を呈さなかった。また、同様の試験をカゼイン(ナカライテスク製試薬カゼイン(牛乳由来)を等電点沈殿法で再精製したもの)および大豆タンパク質分離物(脱脂大豆粉より等電点沈殿法で分離精製したもの)を用いて行ったところ、WPI,およびPWPと同等の渋味・収斂味を呈することが確認できた。データの一部を図2に示す。   On the other hand, as a result of similarly evaluating the strength of astringency for beef and pork gelatin, the astringency score was 1-2, and a clear astringency was not exhibited. In addition, no increase in astringency depending on the protein concentration was observed, and gelatin did not exhibit a clear astringency at pH 3.5. In addition, similar tests were conducted on casein (reagent purified from Nacalai Tesque (derived from milk) by isoelectric precipitation) and soy protein isolate (separated from defatted soybean powder by isoelectric precipitation). It was confirmed that astringency and astringency similar to those of WPI and PWP were exhibited. A part of the data is shown in FIG.

以上の試験から、渋味の程度がタンニン酸を指標とした評点法によって、渋味スコアを用いて定量化できることが確認できた。さらに、乳清タンパク質は未変性、変性に関わらず酸性域で渋味を呈することが明らかとなった。   From the above test, it was confirmed that the degree of astringency can be quantified using the astringency score by a scoring method using tannic acid as an index. Furthermore, it became clear that whey protein exhibits astringency in the acidic range regardless of whether it is undenatured or denatured.

牛乳乳清タンパク質などのタンパク質の等電点は一般的にpH5付近である。例えばpH3に調製した乳清タンパク質は、未加熱/加熱に関わらず渋味・収斂味を呈する。本発明者らはこの味刺激は、タンパク質液のpHが一般的に中性付近にある唾液により上昇し、等電点域を通過する際に形成した凝集体が、舌上皮や口腔内の上皮に存在する脂質二重層膜に沈殿することにより発現すると考えた。そこで、タンパク質に多量の糖類を付加させることにより、酸性域においてタンパク質部分が脂質二重層膜へ直接接触することを阻害できると考え、種々の実験や検討を行った。その結果、牛乳乳清タンパク質などをでんぷん分解糖共存下で加熱することにより課題を克服することができた。本発明によるタンパク質−でんぷん分解糖反応物は、化学的合成反応や酵素処理は用いておらず、加熱処理のみを利用しているので合成品ではなく食品として利用することには何ら問題はない。   The isoelectric point of proteins such as milk whey protein is generally around pH 5. For example, whey protein adjusted to pH 3 exhibits astringency and astringency regardless of unheated / heated. The present inventors have found that the taste stimulation is caused by the fact that the aggregate formed when the pH of the protein solution is increased by saliva in the vicinity of neutrality and passes through the isoelectric point region is the epithelium of the tongue or oral cavity. It was thought to be expressed by precipitation in the lipid bilayer membrane present in Therefore, various experiments and studies were conducted on the assumption that adding a large amount of saccharide to a protein can inhibit the protein portion from directly contacting the lipid bilayer membrane in the acidic region. As a result, it was possible to overcome the problem by heating milk whey protein and the like in the presence of starch-degrading sugar. The protein-starch decomposing sugar reaction product according to the present invention does not use a chemical synthesis reaction or an enzyme treatment, and uses only a heat treatment, so there is no problem in using it as a food instead of a synthetic product.

以下、本発明の実施例を説明する。実施例において%は、特に断りがない限り、重量%を示す。
[実施例1]
牛乳乳清タンパク質(WPI)として、粗タンパク質95%(ドライベース、ケルダール法)、灰分3%(灰化法)、ラクトース1%、粗脂肪1%(酸分解法)、水分5%(常圧乾燥法)を成分とする乳清タンパク質分離物(商品名ダイイチラクト、第一化成製)を用い、でんぷん分解糖として、DE(ブドウ糖当量:Dextrose Equivalent)3〜5,8,19,33および40のマルトデキストリンを用いて以下の実験をした。
水に対して十分透析を行ったWPIを、タンパク質含量が5%で、でんぷん分解糖濃度(粉体換算)が10%、20%、30%、50%および70%であるpH7の水溶液に調製した後、密封系で90℃で120分の加熱を行い、室温まで十分に放冷した。本操作により、透明〜半透明の粘稠性のタンパク質液が得られた。このタンパク質液に塩化ナトリウムを添加し加熱を行うことにより、透明〜白濁したゾル〜ゲルが得られた。
次いで、各試料液のpHを2M塩酸を用いて3.5に調整した後、5mM、pH3.5のリン酸緩衝液を用いてタンパク質濃度1%に希釈し、官能検査用試料とした。本試料を、前述のタンニン酸を指標とした評点法を用いた官能検査(28〜37歳、男7名)を行い、渋味の強度を渋味スコアとして測定した。
その結果を図3に示す。
Examples of the present invention will be described below. In Examples, “%” means “% by weight” unless otherwise specified.
[Example 1]
As milk whey protein (WPI), crude protein 95% (dry base, Kjeldahl method), ash content 3% (ashing method), lactose 1%, crude fat 1% (acid decomposition method), moisture 5% (normal pressure) Whey protein isolate (trade name: Daiichilacto, manufactured by Daiichi Kasei Co., Ltd.) as a component, and DE (dextrose equivalent) 3-5,8,19,33 and 40 as starch-degrading sugar The following experiment was carried out using maltodextrin.
WPI, which has been sufficiently dialyzed against water, is prepared as an aqueous solution of pH 7 with a protein content of 5% and starch-degrading sugar concentrations (powder equivalent) of 10, 20, 30, 50, and 70%. After that, heating was performed at 90 ° C. for 120 minutes in a sealed system, and the mixture was sufficiently cooled to room temperature. By this operation, a transparent to translucent viscous protein solution was obtained. By adding sodium chloride to the protein solution and heating, a transparent to cloudy sol-gel was obtained.
Subsequently, the pH of each sample solution was adjusted to 3.5 using 2M hydrochloric acid, and then diluted to a protein concentration of 1% using a phosphate buffer solution of 5 mM, pH 3.5 to obtain a sample for sensory test. This sample was subjected to a sensory test (28 to 37 years old, 7 males) using the above-described scoring method using tannic acid as an index, and the intensity of astringency was measured as an astringency score.
The result is shown in FIG.

でんぷん分解糖を添加しないで加熱を行ったWPIのpH3.5における渋味スコアは10であり、極めて強い渋味・収斂味を呈した(でんぷん分解糖濃度0%、Y軸上の点)が、DE19のでんぷん分解糖を添加し、加熱処理を行ったもの(■)では、でんぷん分解糖の添加量に依存して渋味スコアは明らかに低下した。DE3〜5(●)、8(◆)、33(○)および40(□)においても全く同様の結果が得られた。   The astringency score at pH 3.5 of WPI heated without adding starch-degrading sugar was 10 and exhibited extremely strong astringency and astringency (starch-degrading sugar concentration 0%, point on Y axis). In the case where DE19 starch-decomposing sugar was added and heat-treated (■), the astringency score was clearly reduced depending on the amount of starch-decomposing sugar added. The same results were obtained with DE 3 to 5 (●), 8 (♦), 33 (◯) and 40 (□).

通常、でんぷん分解糖のDE値は、でんぷんの分解率のおおよその指標として利用されているが、狭義には甘味の指標ともなる。強い甘味は渋味を若干マスクすることが考えられるが、本試験で用いたDE19以下のでんぷん分解糖は、原体粉末を直接口にしてもほとんど甘味は感じず、DE33と40のものも、同濃度の砂糖やブドウ糖と比較して明らかに低い甘味を呈するものであった。また、予備試験にて、でんぷん分解糖を添加しないで加熱を行ったWPIのpH3.5の水溶液に、砂糖やブドウ糖を添加したものは、口に含んだ直後の渋味は若干低減されたが(甘味によるカバーリング効果)、経時的におこる甘味刺激の低下に伴い渋味の強度は回復した。このことは、単糖や二糖類の甘味だけでは、甘味の刺激が口腔内にある間しか渋味の低減効果はなく、この効果が一時的であることを示している。これに比し、DE3〜40のでんぷん分解糖を添加し加熱処理を行った乳清タンパク質は、酸性域における渋味そのものが低減されていることが確認できた。
また、DE3〜40のでんぷん分解糖存在下で、pH7、実質的無塩状態で加熱を行ったWPIは、元の乳清タンパク質では得られない透明性や粘性・ゲル化特性などを有した状態で、酸性域での渋味・収斂味が顕著に低下することが確認できた。本法により調製された乳清タンパク質は、例えば飲料、ゼリーなどの食品に利用することができる。
Normally, the DE value of starch degrading sugar is used as an approximate index of the rate of starch degradation, but in the narrow sense it is also an index of sweetness. It is conceivable that strong sweetness slightly masks the astringency, but the starch-degrading sugar of DE19 or lower used in this test hardly feels sweetness even if the raw powder is directly consumed, and those of DE33 and 40 The sweetness was clearly lower than that of sugar and glucose at the same concentration. In addition, in the preliminary test, the WPI pH 3.5 aqueous solution heated without adding starch-degrading sugar was added with sugar or glucose, but the astringency immediately after being included in the mouth was slightly reduced. (Covering effect due to sweetness), the intensity of astringency recovered with a decrease in sweetness stimulation over time. This indicates that the sweetness of monosaccharides and disaccharides alone has an effect of reducing astringency only while sweetness stimulation is in the mouth, and this effect is temporary. Compared to this, it was confirmed that the whey protein in which starch-decomposing sugars of DE3 to 40 were added and subjected to heat treatment had reduced astringency in the acidic region.
In addition, WPI heated in the presence of starch-degrading sugars of DE 3 to 40 in a pH of 7 and substantially in a salt-free state has transparency, viscosity and gelation characteristics that cannot be obtained with the original whey protein. Thus, it was confirmed that the astringent taste and astringent taste in the acidic range were remarkably lowered. The whey protein prepared by this method can be used for foods such as beverages and jellies.

[実施例2]
実施例1に示すWPIとDE19のでんぷん分解糖を用い、タンパク質含量5%、でんぷん分解糖濃度(粉体換算)50%、pH7の水溶液を調製した後、密封系で90℃で30、60、90および120分間の加熱を行った。室温まで十分に放冷した後、各試料液のpHを2M塩酸を用いて3.5に調整した後、5mM、pH3.5のリン酸緩衝液を用いてタンパク質濃度1%に希釈し、官能検査用試料とした。本試料を実施例1と同様の方法を用いて渋味スコアを測定した。
結果を図4に示す。
でんぷん分解糖を添加しないで90℃で30分間の加熱を行ったWPIのpH3.5における渋味スコアは9であり、極めて強い渋味・収斂味を呈した(○)が、DE19のでんぷん分解糖を50%添加し、90℃で加熱処理を行ったもの(●)は、30分後で渋味スコアは4となり、著しく渋味の強度は低下した。加熱時間を30から120分間行った場合の渋味スコアは4〜5であり、いずれの加熱時間でも渋味低減効果に差はなかった。
[Example 2]
Using WPI and DE19 starch-decomposing sugar shown in Example 1 and preparing an aqueous solution with a protein content of 5%, starch-decomposing sugar concentration (powder equivalent) of 50%, and pH 7, the solution was sealed at 90 ° C. at 30, 60, Heating was performed for 90 and 120 minutes. After sufficiently allowing to cool to room temperature, the pH of each sample solution was adjusted to 3.5 using 2M hydrochloric acid, diluted to a protein concentration of 1% using a 5 mM pH 3.5 phosphate buffer, A test sample was obtained. The astringency score of this sample was measured using the same method as in Example 1.
The results are shown in FIG.
WPI heated at 90 ° C. for 30 minutes without adding starch-degrading sugar had a astringency score of 9 at pH 3.5, and showed a very strong astringency and astringency (○), but starch degradation of DE19 In the case where 50% sugar was added and heat-treated at 90 ° C. (●), the astringency score was 4 after 30 minutes, and the astringency was significantly reduced. The astringency score when the heating time was 30 to 120 minutes was 4 to 5, and there was no difference in the astringency reduction effect at any heating time.

[実施例3]
実験材料としては実施例1に示す、WPIとDE3〜5,8,19,33および40のでんぷん分解糖を用いた。水に対して十分透析を行ったWPIを、タンパク質含量5〜10%、pH7、実質的に無塩状態で90℃、30分間の加熱を行い、室温まで十分に放冷し、改質乳清タンパク質(PWP)を調製した。実質的無塩状態、pH4以下または6以上で加熱処理した改質乳清タンパク質には、透明性や物性など元の乳清タンパク質にはない優れた特性を有していることが知られている(特許文献1〜3及び非特許文献1参照)。改質乳清タンパク質濃度5%、でんぷん分解糖濃度(粉体換算)10,20,30,50および70%、pH7の水溶液を調製した後、密封系で再度90℃で120分間の加熱を行い、室温まで十分に放冷した。本操作により、透明〜半透明の粘稠性のタンパク質液が得られた。本タンパク質液に塩化ナトリウム(25〜300mM)を添加し加熱を行うことにより、透明〜白濁したゾル〜ゲルが得られた。
各試料液のpHを2M塩酸を用いて3.5に調整した後、5mM、pH3.5のリン酸緩衝液を用いてタンパク質濃度1%に希釈し、官能検査用試料とした。
本試料を実施例1と同様の方法を用いて渋味スコアを測定した。
結果を図5に示す。
[Example 3]
As experimental materials, WPI and DE3-5, 8, 19, 33 and 40 starch-decomposing sugars shown in Example 1 were used. WPI, which has been sufficiently dialyzed against water, is heated at 90 ° C. for 30 minutes in a protein content of 5 to 10%, pH 7, and substantially salt-free. Protein (PWP) was prepared. It is known that the modified whey protein that has been heat-treated in a substantially salt-free state at pH 4 or lower or 6 or higher has excellent properties such as transparency and physical properties that are not found in the original whey protein. (See Patent Documents 1 to 3 and Non-Patent Document 1). After preparing aqueous solutions of modified whey protein concentration 5%, starch-degrading sugar concentration (powder equivalent) 10, 20, 30, 50 and 70%, pH 7, heat again at 90 ° C for 120 minutes in a sealed system And allowed to cool to room temperature. By this operation, a transparent to translucent viscous protein solution was obtained. By adding sodium chloride (25 to 300 mM) to the protein solution and heating, a transparent to cloudy sol-gel was obtained.
The pH of each sample solution was adjusted to 3.5 using 2M hydrochloric acid, and then diluted to a protein concentration of 1% using a phosphate buffer solution of 5 mM and pH 3.5 to obtain a sample for sensory test.
The astringency score of this sample was measured using the same method as in Example 1.
The results are shown in FIG.

でんぷん分解糖を添加しないで加熱を行ったPWPのpH3.5における渋味スコアは10(でんぷん分解糖濃度0%、Y軸上の点)であり、極めて強い渋味・収斂味を呈した。一方、DE19のでんぷん分解糖を添加し、加熱処理を行ったもの(■)では、でんぷん分解糖の添加量に依存して渋味スコアは明らかに低下した。DE3〜5(●)、8(◆)、33(○)および40(□)のでんぷん分解糖を添加したものにおいても全く同様の結果が得られた。   The astringency score at pH 3.5 of PWP heated without adding starch-degrading sugar was 10 (starch-degrading sugar concentration 0%, point on the Y-axis) and exhibited extremely strong astringency and astringency. On the other hand, in the case where DE19 starch-decomposing sugar was added and heat-treated (■), the astringency score was clearly reduced depending on the amount of starch-decomposing sugar added. The same results were obtained with the addition of starch-decomposing sugars of DE 3 to 5 (●), 8 (♦), 33 (◯) and 40 (□).

PWPに、DE3〜40のでんぷん分解糖を添加し、加熱処理を行ったものは、でんぷん分解糖を添加し再加熱処理を行う前のタンパク質液(改質乳清タンパク質)が有していた透明性や粘性・ゲル化特性などを維持したまま、酸性域での渋味・収斂味が顕著に低下することが確認できた。本法により調製された乳清タンパク質は、例えば飲料、ゼリーなどの食品に利用することができる。   A starch solution obtained by adding starch-degrading sugars of DE 3 to 40 to PWP and performing the heat treatment was transparent in the protein solution (modified whey protein) before the starch-degrading sugar was added and re-heating treatment was performed. It was confirmed that the astringency and astringency in the acidic range were significantly reduced while maintaining the properties, viscosity, and gelation characteristics. The whey protein prepared by this method can be used for foods such as beverages and jellies.

[実施例4]
実施例1に示したでんぷん分解糖共存下で加熱したWPIの渋味低減効果が、官能検査時に用いた試験液中に存在した過剰の(フリーの)でんぷん分解糖によるものであるか否かについて検討を行った。
実施例1と2と同様の方法を用いて、DE8のでんぷん分解糖を添加し加熱処理を行った乳清タンパク質液を調製した。タンパク質含量は5%、でんぷん分解糖の添加量は50%、加熱処理は90℃、30分とした。次いで、試験液中の過剰の(フリーの)でんぷん分解糖を分画分子量300,000Daの限外濾過を用いて(UF法)除去した。試験液のpHを7に調整し、4倍量の蒸留水で希釈を行った後、元の試験液と同容量になるまでUF処理を行った。このUF処理を6回繰り返し、各回毎に試験液中に残存しているでんぷん分解糖の量を、フェノール硫酸法を用いて測定した。試料液中に残存した過剰のでんぷん分解糖は、初回のUF処理後で処理前の20%以下となり、3回処理後ではほぼ0となった。
UF処理を6回くりかえした試験液の渋味スコアを、実施例1および2と同様の方法を用い測定した結果を図6に示す。対照として、WPI、WPIとでんぷん分解糖の混合物およびWPIとでんぷん分解糖の加熱処理したものを用いた。
[Example 4]
Whether or not the astringency reduction effect of WPI heated in the presence of starch-decomposing sugar shown in Example 1 is due to excess (free) starch-decomposing sugar present in the test solution used during the sensory test Study was carried out.
Using the same method as in Examples 1 and 2, a whey protein solution was prepared by adding starch-degrading sugar of DE8 and subjecting it to heat treatment. The protein content was 5%, the amount of starch-degrading sugar added was 50%, and the heat treatment was 90 ° C. for 30 minutes. Next, excess (free) starch-degrading sugar in the test solution was removed by ultrafiltration with a molecular weight cut off of 300,000 Da (UF method). The pH of the test solution was adjusted to 7, diluted with 4 volumes of distilled water, and then subjected to UF treatment until the same volume as the original test solution. This UF treatment was repeated 6 times, and the amount of starch-decomposing sugar remaining in the test solution was measured each time using the phenol-sulfuric acid method. Excess starch-degrading sugar remaining in the sample solution became 20% or less before the treatment after the first UF treatment, and became almost 0 after the third treatment.
FIG. 6 shows the results of measuring the astringency score of the test solution obtained by repeating UF treatment 6 times using the same method as in Examples 1 and 2. As controls, WPI, a mixture of WPI and starch-decomposing sugar, and a heat-treated product of WPI and starch-decomposing sugar were used.

WPIのpH3.5における渋味スコアは、でんぷん分解糖を添加することにより若干低下したが、加熱処理を行うことにより渋味スコアは大きく低下した。一方、過剰のでんぷん分解糖を完全に除去した試験液においても、渋味スコアは有意に低いことが確認できた。これらの結果から、乳清タンパク質をでんぷん分解糖共存下で加熱処理を行うことにより、タンパク質とでんぷん分解糖の複合体が形成されたために、酸性域において舌上皮や口腔内の上皮に存在する脂質二重層膜へのタンパク質部分の直接的な沈着が緩和されたことにより渋味が低減したと考察した。また、試験液中に残存したでんぷん分解糖そのものによる渋味低減効果は、ごく僅かであることが確認できた。   The astringency score at pH 3.5 of WPI slightly decreased by adding starch-degrading sugar, but the astringency score greatly decreased by heat treatment. On the other hand, it was confirmed that the astringency score was significantly low even in the test solution from which excess starch-degrading sugar was completely removed. From these results, the whey protein was heat-treated in the presence of starch-degrading sugar, and a complex of protein and starch-degrading sugar was formed, so lipids present in the tongue epithelium and oral epithelium in the acidic region. It was considered that the astringency was reduced by the direct deposition of the protein portion on the bilayer membrane being alleviated. Further, it was confirmed that the astringency reduction effect by the starch-decomposing sugar itself remaining in the test solution was very slight.

[実施例5]
実施例3と同様の方法を用いて、PWPにDE8のでんぷん分解糖を添加し、再度加熱処理を行った乳清タンパク質液を用いて、実施例4と同様の試験を行った結果を図7に示す。タンパク質含量は5%、でんぷん分解糖の添加量は50%、pH7、加熱処理は90℃、30分とした。
PWPのpH3.5における渋味スコアは、でんぷん分解糖を添加することにより若干低下したが、でんぷん分解糖を添加し、再度加熱処理を行うことにより渋味スコアは大きく低下した。一方、過剰のでんぷん分解糖を完全に除去した試験液においても、渋味スコアは有意に低いことが確認できた。これらの結果から、渋味の低減効果は、PWPをでんぷん分解糖共存下で加熱処理を行うことにより、タンパク質とでんぷん分解糖の複合体が形成されたために、酸性域において舌上皮や口腔内の上皮に存在する脂質二重層膜へのタンパク質部分の直接的な沈殿が緩和されて得られたことが示唆された。また、試験液中に残存したでんぷん分解糖そのものによる渋味低減効果は、ごく僅かであることが確認できた。
[Example 5]
Using the same method as in Example 3, the same test as in Example 4 was carried out using the whey protein solution obtained by adding starch-degrading sugar of DE8 to PWP and again heat-treated. Shown in The protein content was 5%, the amount of starch-degrading sugar added was 50%, pH 7, and the heat treatment was 90 ° C. for 30 minutes.
The astringency score of PWP at pH 3.5 was slightly reduced by adding starch degrading sugar, but the astringency score was greatly reduced by adding starch degrading sugar and heating again. On the other hand, it was confirmed that the astringency score was significantly low even in the test solution from which excess starch-degrading sugar was completely removed. From these results, the effect of reducing astringency is due to the formation of a complex of protein and starch-degrading sugar by heat treatment of PWP in the presence of starch-degrading sugar. It was suggested that the direct precipitation of the protein portion into the lipid bilayer membrane existing in the epithelium was obtained by relaxation. Further, it was confirmed that the astringency reduction effect by the starch-decomposing sugar itself remaining in the test solution was very slight.

[実施例6]
実験材料としてカゼイン(ナカライテスク製試薬カゼイン(牛乳由来)を等電点沈殿法で再精製したもの)、大豆タンパク質分離物(脱脂大豆粉より等電点沈殿法で分離精製したもの)、乾燥卵白末(第一化成製)およびDE8のでんぷん分解糖を用いた。実施例1に示す方法を用い各タンパク質をでんぷん分解糖存在下で加熱処理を行った。タンパク質含量は3%、でんぷん分解糖の添加量は50%、pH7、加熱処理は90℃、30分とした。
加熱処理後の各タンパク質液の渋味スコアを、実施例1に示す方法を用いて測定した。結果を図8に示す。
試験結果から、カゼイン、大豆タンパク質および卵白タンパク質は酸性域で強度の渋味を呈したが、でんぷん分解糖共存下で加熱処理を行うことにより、渋味が低下することが確認できた。
[Example 6]
Casein (Nacalai Tesque reagent casein (derived from milk) repurified by isoelectric precipitation), soy protein isolate (separated from defatted soybean powder by isoelectric precipitation), dried egg white Powdered starch (manufactured by Daiichi Kasei) and starch starch of DE8 were used. Using the method shown in Example 1, each protein was heat-treated in the presence of starch-degrading sugar. The protein content was 3%, the amount of starch-degrading sugar added was 50%, pH 7, and the heat treatment was 90 ° C. for 30 minutes.
The astringency score of each protein solution after the heat treatment was measured using the method shown in Example 1. The results are shown in FIG.
From the test results, it was confirmed that casein, soy protein, and egg white protein exhibited strong astringency in the acidic range, but the astringency decreased by heat treatment in the presence of starch-decomposing sugar.

[実施例7]
実験材料として、実施例1および3に示すWPIおよびPWPとDE8のでんぷん分解糖を用いた。実施例1および3に示す方法を用いて試料タンパク質液を調製した。タンパク質含量は5%、でんぷん分解糖の添加量は50%、pH7、加熱処理は90℃、30分とした。得られたタンパク質液を凍結乾燥(ヤマト社製ネオクール)した。凍結乾燥後の両試料を蒸留水に溶解後、2M塩酸を用いてpH3.5に調整した後、5mM、pH3.5のリン酸緩衝液を用いてタンパク質濃度1%に希釈し、官能検査用試料とした。本試料を実施例1と同様の方法を用いて渋味スコアを測定した。結果を図9に示す。
実施例1および3に示す方法で調製し凍結乾燥した両乳清タンパク質の渋味低減効果は、凍結乾燥により損なわれないことが確認できた。このことから、本発明により得られた乳清タンパク質を加工食品用の食品素材として簡易に取り扱うことができることが確認できた。
[Example 7]
As experimental materials, the starch-decomposing sugars of WPI, PWP and DE8 shown in Examples 1 and 3 were used. A sample protein solution was prepared using the methods shown in Examples 1 and 3. The protein content was 5%, the amount of starch-degrading sugar added was 50%, pH 7, and the heat treatment was 90 ° C. for 30 minutes. The obtained protein solution was freeze-dried (Neocool manufactured by Yamato). Both samples after lyophilization were dissolved in distilled water, adjusted to pH 3.5 with 2M hydrochloric acid, diluted to 1% protein concentration with 5 mM, pH 3.5 phosphate buffer, for sensory testing. A sample was used. The astringency score of this sample was measured using the same method as in Example 1. The results are shown in FIG.
It was confirmed that the astringent taste reducing effect of both whey proteins prepared and freeze-dried by the method shown in Examples 1 and 3 was not impaired by freeze-drying. From this, it was confirmed that the whey protein obtained by the present invention can be easily handled as a food material for processed foods.

[実施例8]
実施例1および3に示すWPIおよびPWPとDE8のでんぷん分解糖を用い、実施例1および3の方法を用いて試料タンパク質液を調製した。タンパク質含量は5%、でんぷん分解糖の添加量は50%、pH7、加熱処理は90℃、30分とした。得られた試料タンパク質液は、UF法を用いて、タンパク質濃度6.4%に濃縮した後、1Mリン酸を用いてpHを3.5に調製した。
試料タンパク質液(タンパク質濃度6.4%、pH3.5)78.5%、砂糖混合異性化糖12%、ビタミンB0.05%、レモン香料0.05%および飲料水9.4%のレシピを用いて酸性タンパク質飲料を調製した。
試作手順としては、(1)ビタミンBを飲料水に溶解、(2)実施例1または3の試料タンパク質および、対照として、でんぷん分解糖無添加品と砂糖混合異性化糖を添加混合する、(3)香料を添加、(4)容器に充填後、90℃で20分間加熱、(5)急冷、を行った。これらの操作により透明で僅かに粘稠な飲料が調製できた。飲料のpHは3.5、タンパク質含量は5%であった。
得られた酸性タンパク質飲料を実施例1に示す方法を用いて渋味スコアを測定した。結果を図10に示す。
[Example 8]
Sample protein solutions were prepared using the methods of Examples 1 and 3 using the WPI, PWP and DE8 starch-decomposing sugars shown in Examples 1 and 3. The protein content was 5%, the amount of starch-degrading sugar added was 50%, pH 7, and the heat treatment was 90 ° C. for 30 minutes. The obtained sample protein solution was concentrated to a protein concentration of 6.4% using the UF method, and then adjusted to pH 3.5 using 1M phosphoric acid.
Sample protein solution (protein concentration 6.4%, pH 3.5) 78.5%, sugar mixed isomerized sugar 12%, vitamin B 2 0.05%, lemon flavor 0.05% and drinking water 9.4% An acidic protein beverage was prepared using the recipe.
As a trial production procedure, (1) vitamin B 2 is dissolved in drinking water, (2) the sample protein of Example 1 or 3 and, as a control, a starch-decomposed sugar-free product and a sugar mixed isomerized sugar are added and mixed. (3) A fragrance was added, (4) after filling the container, heating at 90 ° C. for 20 minutes, and (5) quenching. By these operations, a transparent and slightly viscous beverage could be prepared. The pH of the beverage was 3.5 and the protein content was 5%.
The astringency score was measured for the obtained acidic protein beverage using the method shown in Example 1. The results are shown in FIG.

渋味低減化処理を行っていない、WPIおよびPWPを用いた酸性タンパク質飲料は、極めて強い渋味・収斂味を呈していた。一方、でんぷん分解糖共存下で加熱処理を行ったWPIおよびPWPを用いた飲料の渋味は、顕著に低減されており、渋味の程度は、市販の非タンパク質系嗜好性飲料と大差はなかった。この結果から、本発明によりさわやかな酸味を有し渋味・収斂味を呈しないタンパク質を5%含有する飲料を調製できることが確認できた。   Acidic protein beverages using WPI and PWP that have not undergone the astringency reduction treatment exhibited extremely strong astringency and astringency. On the other hand, the astringency of beverages using WPI and PWP that have been heat-treated in the presence of starch-degrading sugar has been significantly reduced, and the degree of astringency is not significantly different from that of commercially available non-protein taste drinks. It was. From this result, it was confirmed that a beverage containing 5% of a protein having a refreshing acidity and not exhibiting astringency and astringency can be prepared according to the present invention.

[実施例9]
実施例1に示すWPIとDE8のでんぷん分解糖を用い、実施例1および3の方法を用いて試料タンパク質液を調製した。タンパク質含量は5%、でんぷん分解糖の添加量は50%、pH7、加熱処理は90℃、30分とした。得られた試料タンパク質液は、UF法を用いて、タンパク質濃度10.8%に濃縮した後、1M塩酸を用いてpHを3.5に調製した。
試料タンパク質液(タンパク質濃度10.8%、pH3.5)89.9%、アスパルテーム製剤5%、5%乳酸カルシウム水溶液5%、ビタミンB0.05%、およびレモン香料0.05%のレシピを用いて酸性タンパク質ゼリーを調製した。
試作手順としては、(1)アスパルテーム製剤およびビタミンBを飲料水に溶解、(2)実施例1または3の試料タンパク質および、対照として、でんぷん分解糖無添加品を添加混合する、(3)香料を添加、(4)容器に充填後、90℃で40分間加熱、(5)急冷、を行った。これらの操作によりでんぷん分解糖無添加のPWPと実施例1および3を用いたものは透明ゼリーが調製できたが、でんぷん分解糖無添加のWPIではゼリー状にはならず、白濁沈殿した。
[Example 9]
Using the WPI and DE8 starch-decomposing sugars shown in Example 1, sample protein solutions were prepared using the methods of Examples 1 and 3. The protein content was 5%, the amount of starch-degrading sugar added was 50%, pH 7, and the heat treatment was 90 ° C. for 30 minutes. The obtained sample protein solution was concentrated to a protein concentration of 10.8% using the UF method, and then adjusted to pH 3.5 using 1M hydrochloric acid.
Sample protein solution (protein concentration 10.8%, pH 3.5) 89.9%, aspartame preparation 5%, 5% calcium lactate aqueous solution 5%, vitamin B 2 0.05%, and lemon flavor 0.05% recipe Was used to prepare acidic protein jelly.
The trial procedure, (1) dissolving the aspartame preparation and vitamin B 2 in water, (2) the sample protein of Example 1 or 3 and, as control, added to and mixed with starch degrading sugar additive-free products, (3) A fragrance was added, (4) after filling the container, heating at 90 ° C. for 40 minutes, and (5) quenching. By these operations, a transparent jelly could be prepared using PWP without addition of starch-decomposing sugar and Examples 1 and 3. However, WPI without addition of starch-decomposing sugar did not form a jelly but became cloudy.

得られた酸性タンパク質ゼリーと白濁沈殿を実施例1に示す方法を用いて渋味スコアを測定した。その結果、渋味低減化処理を行っていない、WPIおよびPWPを用いた白濁沈殿とゼリーは、極めて強い渋味・収斂味を呈していたが、でんぷん分解糖共存下で加熱処理を行ったWPIおよびPWPを用いたゼリーの渋味は、顕著に低減されており、渋味の程度は、市販のデザートゼリーと大差はなかった。この結果から、本発明によりさわやかな酸味を有し渋味・収斂味を呈しない高タンパク質ゼリーを調製できることが確認できた。   The astringency score was measured using the method shown in Example 1 for the obtained acidic protein jelly and cloudy precipitate. As a result, the cloudy precipitation and jelly using WPI and PWP, which had not been subjected to astringency reduction treatment, exhibited extremely strong astringency and astringency, but WPI that had been heat-treated in the presence of starch-decomposing sugars The astringency of jelly using PWP and PWP was significantly reduced, and the degree of astringency was not significantly different from that of commercially available dessert jelly. From this result, it was confirmed that a high protein jelly having a refreshing acidity and no astringency or astringency can be prepared according to the present invention.

図1は、渋味、収斂味の基準としてタンニン酸を用いて評点法で作成した検量線を示すグラフである。FIG. 1 is a graph showing a calibration curve created by a scoring method using tannic acid as a reference for astringency and astringency. 図2は、評点法を用いた、酸性域におけるタンパク質の渋味スコアを示すグラフである。FIG. 2 is a graph showing the protein astringency score in the acidic region using the scoring method. 図3は、DE3〜40のでんぷん分解糖を10〜70%添加し、加熱処理したWPIの渋味スコアを示すグラフである。FIG. 3 is a graph showing the astringency score of WPI heat-treated by adding 10-70% starch-degrading sugar of DE 3-40. DE19のでんぷん分解糖を50%添加し、90℃で30〜120分間加熱処理したWPIの渋味スコアを示すグラフである。It is a graph which shows the astringency score of WPI which added the starch decomposition sugar of DE19 50%, and heat-processed at 90 degreeC for 30 to 120 minutes. PWPをでんぷん分解糖存在下で再加熱処理したときの渋味スコアを示すグラフである。It is a graph which shows the astringency score when PWP is reheat-processed in the presence of starch-decomposing sugar. 本発明の一例によってWPIより調製した乳清タンパク質液中の過剰のでんぷん分解糖を除去したときの渋味スコアを示すグラフである。It is a graph which shows the astringency score when the excess starch decomposing | disassembling sugar in the whey protein liquid prepared from WPI by an example of this invention is removed. 本発明の一例によってPWPより調製した乳清タンパク質液中の過剰のでんぷん分解糖を除去したときの渋味スコアを示すグラフである。It is a graph which shows the astringency score when the excess starch decomposing | disassembling sugar in the whey protein liquid prepared from PWP by an example of this invention is removed. でんぷん分解糖存在下で加熱を行った食品タンパク質の酸性域における渋味スコアを示すグラフである。It is a graph which shows the astringency score in the acidic region of the food protein heated in the presence of starch decomposition sugar. 凍結乾燥(FD)を行ったでんぷん分解糖存在下加熱処理乳清タンパク質の渋味スコアを示すグラフである。It is a graph which shows the astringency score of the heat-processed whey protein in the presence of the starch decomposition sugar which performed freeze-drying (FD). でんぷん分解糖存在下加熱処理乳清タンパク質を添加した酸性タンパク質飲料の渋味スコアを示すグラフである。It is a graph which shows the astringency score of the acidic protein drink which added the heat processing whey protein in the presence of starch decomposition sugar.

Claims (5)

牛乳乳清タンパク質、牛乳カゼイン、大豆タンパク質及び卵白タンパク質からなる群から選ばれるタンパク質を、でんぷん分解糖存在下で加熱を行うことにより、酸性域でも渋味・収斂味を呈しにくいタンパク質加工品を製造する方法。 Produces a protein processed product that does not exhibit astringency or astringency even in acidic regions by heating a protein selected from the group consisting of milk whey protein, milk casein, soy protein and egg white protein in the presence of starch-degrading sugar. how to. 牛乳乳清タンパク質、牛乳カゼイン、大豆タンパク質及び卵白タンパク質からなる群から選ばれるタンパク質を、pH7.5以下で加熱・冷却後、でんぷん分解糖存在下で再度加熱を行うことにより、酸性域でも渋味・収斂味を呈しにくいタンパク質加工品を製造する方法。 A protein selected from the group consisting of milk whey protein, milk casein, soy protein and egg white protein is heated and cooled at pH 7.5 or lower, and then heated again in the presence of starch-decomposing sugar, so that it is astringent even in the acidic range. -A method for producing processed protein products that do not exhibit astringent taste. タンパク質が牛乳乳清タンパク質である、請求項1又は2の方法。 The method of claim 1 or 2, wherein the protein is milk whey protein. タンパク質とでんぷん分解糖の使用量が固形分重量比率で1:1〜1:20である請求項1〜3いずれか1項の方法。 The method according to any one of claims 1 to 3, wherein the protein and starch-decomposing sugar are used in a weight ratio of 1: 1 to 1:20 in terms of solid content. 請求項1〜4のいずれか1項により得られたタンパク質加工品を添加してなることを特徴とする、酸性域でも渋味や収斂味を呈しにくいタンパク質含有加工食品。 A protein-containing processed food that is less likely to exhibit astringency or astringency even in an acidic region, wherein the protein processed product obtained by any one of claims 1 to 4 is added.
JP2004059561A 2004-03-03 2004-03-03 Method for producing protein processed food hardly presenting bitter taste/astringent taste in acidic region Pending JP2005245290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004059561A JP2005245290A (en) 2004-03-03 2004-03-03 Method for producing protein processed food hardly presenting bitter taste/astringent taste in acidic region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004059561A JP2005245290A (en) 2004-03-03 2004-03-03 Method for producing protein processed food hardly presenting bitter taste/astringent taste in acidic region

Publications (1)

Publication Number Publication Date
JP2005245290A true JP2005245290A (en) 2005-09-15

Family

ID=35026387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004059561A Pending JP2005245290A (en) 2004-03-03 2004-03-03 Method for producing protein processed food hardly presenting bitter taste/astringent taste in acidic region

Country Status (1)

Country Link
JP (1) JP2005245290A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008531253A (en) * 2005-02-23 2008-08-14 インペリアル・ケミカル・インダストリーズ・ピーエルシー Emulsifiers and emulsions
JP2009219416A (en) * 2008-03-14 2009-10-01 Sanei Gen Ffi Inc Processed food, and method for improving palate feeling of processed food
JP2021036817A (en) * 2019-09-03 2021-03-11 アサヒ飲料株式会社 Beverage and method of enhancing palatability of beverage containing whey protein

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008531253A (en) * 2005-02-23 2008-08-14 インペリアル・ケミカル・インダストリーズ・ピーエルシー Emulsifiers and emulsions
JP2009219416A (en) * 2008-03-14 2009-10-01 Sanei Gen Ffi Inc Processed food, and method for improving palate feeling of processed food
JP2021036817A (en) * 2019-09-03 2021-03-11 アサヒ飲料株式会社 Beverage and method of enhancing palatability of beverage containing whey protein
JP7390137B2 (en) 2019-09-03 2023-12-01 アサヒ飲料株式会社 Method for improving palatability of beverages and beverages containing whey protein

Similar Documents

Publication Publication Date Title
JP5628479B2 (en) Protein hydrolyzate and method of making the same
JP6306197B2 (en) Animal protein hydrolyzate, production method thereof and use thereof
PT2117338E (en) Partially hydrolysed cereal protein
EP2498618B1 (en) Non-astringent protein products
Sano et al. Astringency of bovine milk whey protein
JP6330255B2 (en) Gel nutrition composition
TW202134267A (en) Animal-free dietary collagen
TWI675621B (en) Protein composition and method of manufacturing same
JP2022534723A (en) Palatable Highly Hydrolyzed Whey Protein Hydrolysate
JP4804951B2 (en) Method for producing acidic food and drink
US20020192333A1 (en) Milk resistant to acid coagulation, method and milk-based product
JP2005245290A (en) Method for producing protein processed food hardly presenting bitter taste/astringent taste in acidic region
WO2018079762A1 (en) Method for producing whey protein hydrolysate having superior flavor
EP3106042B1 (en) Healthy food compositions having the texture of gel or foam and comprising hydrolysed egg products
JP2005245291A (en) Processed food hardly presenting bitter taste/astringent taste
JP2020068668A (en) Milk protein hydrolyzate and method of producing the same
JPH0362382B2 (en)
WO2023054594A1 (en) Method for producing peptide
ES2385621T3 (en) Prefibrillary composition and fibrils of protein materials
JP2023524913A (en) Protein-enriched drink for improving athletic performance
Beecher Factors regulating astringency of whey protein-fortified beverages
JP2021073869A (en) Food and drink composition reduced in unpleasant taste
Steinhoff et al. Allergens in milk and eggs
JPH0154984B2 (en)
JP2005343822A (en) Limitedly hydrolyzed casein, method for producing hydrolyzed milk product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090218