JP2005245202A - STRUCTURAL CHARACTERISTIC AND FUNCTION OF NEW ZINC BINDING DOMAIN OF HUMAN TFIIEalpha - Google Patents

STRUCTURAL CHARACTERISTIC AND FUNCTION OF NEW ZINC BINDING DOMAIN OF HUMAN TFIIEalpha Download PDF

Info

Publication number
JP2005245202A
JP2005245202A JP2004055645A JP2004055645A JP2005245202A JP 2005245202 A JP2005245202 A JP 2005245202A JP 2004055645 A JP2004055645 A JP 2004055645A JP 2004055645 A JP2004055645 A JP 2004055645A JP 2005245202 A JP2005245202 A JP 2005245202A
Authority
JP
Japan
Prior art keywords
atom
protein
amino acid
zinc
acid sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004055645A
Other languages
Japanese (ja)
Inventor
Yoshifumi Nishimura
善文 西村
Masahiko Okuda
昌彦 奥田
Yoshiaki Okuma
芳明 大熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Yokohama City
Original Assignee
Japan Science and Technology Agency
Yokohama City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Yokohama City filed Critical Japan Science and Technology Agency
Priority to JP2004055645A priority Critical patent/JP2005245202A/en
Publication of JP2005245202A publication Critical patent/JP2005245202A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To find the structural characteristic and function of zinc binding domain of human TFIIEα. <P>SOLUTION: The method for predicting the stereostructure of protein containing zinc binding domain or a complex between the protein and a substance to be bound with the protein comprises (i) a process of preparing the three-dimensional structure of the zinc binding domain of human TFIIEα or its part defined by atomic coordinates in which the root mean square deviation in relation to a distance from the three-dimensional structure of the atomic coordinates of a table A or defined by the atomic coordinates of the table A is 0.0096±0.0012 angstrom and root mean square deviation in relation to a dihedral angle is 0.75±0.09° and a process (ii) of constructing the three-dimensional structure of protein containing a zinc binding domain or a complex between the protein and a substance to be bound with the protein by homology modeling that uses the three-dimensional structure prepared by the process (i) as a template. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ヒトTFIIEαの新規な亜鉛結合ドメインの構造的特徴および機能に関し、より詳細には、ヒトTFIIEαの新規な亜鉛結合ドメインの構造的特徴および機能を利用した、タンパク質の立体構造を予測する方法、タンパク質の機能を予測する方法、転写活性を調節することができる物質をスクリーニングする方法、ヒトTFIIEαの亜鉛結合ドメインの変異体に関する。   The present invention relates to structural features and functions of a novel zinc-binding domain of human TFIIEα, and more particularly, predicts protein conformation utilizing the structural features and functions of a novel zinc-binding domain of human TFIIEα. The present invention relates to a method, a method for predicting the function of a protein, a method for screening a substance capable of regulating transcriptional activity, and a variant of a zinc binding domain of human TFIIEα.

真核生物においては、タンパク質をコードする遺伝子の転写開始にはRNAポリメラーゼ(RNA Pol II)および基本転写因子(GTF)であるTFIIA、TFIIB、TFIID、 TFIIE、TFIIFおよびTFIIHが必要である。RNA Pol IIおよびGTFはプロモーターDNA上でアセンブリングされ、前開始複合体(PIC)を形成する(非特許文献1,2)。In vitro転写の再構成系は、PIC形成のための段階的アセンブリーモデルを以下のように提案した。すなわち、TFIIDの構成要素の1つであるTATAボックス結合タンパク質(TBP)が転写開始部位より25-30 bp上流でTATAボックスを認識する。TBP (TFIID)-DNA複合体の形成後、TFIIAおよびTFIIBが入ってくる。その後、RNA Pol IIはTFIIFによって上記複合体中に取り込まれることができる。最終的には、TFIIEおよび TFIIHが上記複合体に組み込まれて、PIC形成が完了する。別のPIC形成モデルとしては、RNA Pol II、GTF、いくつかの転写因子およびメディエーターによってプレアセンブリーされた巨大なホロ酵素がプロモーターDNAに直接結合するというものがある(非特許文献3,4)。PICはプロモーター融解、生成しつつある転写物の最初のホスホジエステル結合の合成、およびプロモータークリアランスを経て活性化される(非特許文献5,6,7)。次に、生産性RNA Pol IIは鎖伸長段階へ進む。   In eukaryotes, RNA polymerase (RNA Pol II) and basic transcription factors (GTF) TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH are required to initiate transcription of the gene encoding the protein. RNA Pol II and GTF are assembled on the promoter DNA to form a pre-initiation complex (PIC) (Non-Patent Documents 1 and 2). The in vitro transcription reconstitution system proposed a stepwise assembly model for PIC formation as follows. That is, TATA box binding protein (TBP), one of the components of TFIID, recognizes the TATA box 25-30 bp upstream from the transcription start site. After formation of the TBP (TFIID) -DNA complex, TFIIA and TFIIB enter. RNA Pol II can then be incorporated into the complex by TFIIF. Eventually, TFIIE and TFIIH are incorporated into the complex to complete PIC formation. Another PIC formation model is that a huge holoenzyme pre-assembled by RNA Pol II, GTF, several transcription factors and mediators binds directly to promoter DNA (Non-Patent Documents 3 and 4) . PIC is activated through promoter melting, synthesis of the first phosphodiester bond of the transcript being generated, and promoter clearance (Non-Patent Documents 5, 6, 7). Next, the productive RNA Pol II proceeds to the chain extension stage.

TFIIEは種々のGTF、RNA Pol IIおよびプロモーターDNAと相互作用する(非特許文献8)。TFIIEはTFIIHをPIC中に取り込み(非特許文献9)、TFIIHの酵素活性、すなわちRNA Pol IIの最大サブユニット(CTD)のC末端ドメインのリン酸化、DNA依存性ATPアーゼ活性およびDNAヘリカーゼ活性を調節する(非特許文献5,6,10)。さらに、TFIIEはRNA Pol IIの活性部位の近くに位置し(非特許文献11)、プロモーター融解(非特許文献5,6,10)およびプロモータークリアランス(非特許文献12,13,14)に寄与する。これらのデータは、TFIIEが多機能タンパク質であること、そして転写の開始および開始から鎖伸長への遷移の両方において重要な役割を果たすことを示した。   TFIIE interacts with various GTF, RNA Pol II and promoter DNA (Non-patent Document 8). TFIIE incorporates TFIIH into PIC (Non-Patent Document 9), and exhibits TFIIH enzymatic activity, namely phosphorylation of the C-terminal domain of the largest subunit (CTD) of RNA Pol II, DNA-dependent ATPase activity and DNA helicase activity. Adjust (Non-Patent Documents 5, 6, 10). Furthermore, TFIIE is located near the active site of RNA Pol II (Non-Patent Document 11) and contributes to promoter melting (Non-Patent Documents 5, 6, 10) and promoter clearance (Non-Patent Documents 12, 13, 14). . These data indicated that TFIIE is a multifunctional protein and plays an important role in both the initiation and initiation-to-chain extension transition of transcription.

ヒトTFIIEは、2つの大サブユニット(TFIIEα;57 kDa, 439 aa)および2つの小サブユニット(TFIIEβ; 34 kDa, 291 aa)からなるヘテロ四量体である(非特許文献15,16,17,18)。これらのサブユニットは両方とも数個の特徴的配列および推定上の構造モチーフを有する。非常に重要なタンパク質であるにもかかわらず、構造についての情報はほんの少ししかない。その理由は、構造研究に使用される高濃度ではTFIIEおよび各サブユニットの溶解度が低いということが主として挙げられる。
Orphanides, G., Lagrange, T. & Reinberg, D. The general transcription factors of RNA polymerase II. Genes Dev. 10, 2657-2683 (1996). Roeder, R.G. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem. Sci. 21, 327-335 (1996). Bjorklund, S. & Y.-J. Kim. Mediator of transcriptional regulation. Trends Biochem. Sci. 21, 335-337 (1996). Koleske, A.J. & R.A.Young. The RNA polymerase II holoenzyme and its implication for gene regulation. Trends Biochem. Sci. 20, 113-116 (1995). Lu, H., Flores, O., Weinmann, R. & Reinberg, D. The nonphosphorylated form of RNA polymerase II preferentially associates with the preinitiation complex. Proc. Natl. Acad. Sci. USA 88, 10004-10008 (1991). Ohkuma, Y. & Roeder, R.G. Regulation of TFIIH ATPase and kinase activities by TFIIE during active initiation complex formation. Nature 368, 160-163 (1994). Dvir, A., K. et al. A role for ATP and TFIIH in activation of the RNA polymerase II preinitiation complex prior to transcription initiation. J. Biol. Chem. 271, 7245-7248 (1996). Maxon, M.E., Goodrich, J.A. & Tjian, R. Transcription factor IIE binds preferentially to RNA polymerase IIa and recruits TFIIH: a model for promoter clearance. Genes Dev. 8, 515-524 (1994). Flores, O., Lu, H. & Reinberg, D. Factors involved in specific transcription by mammalian RNA polymerase II. J. Biol. Chem. 267, 2786-2793 (1992). Drapkin, R. et al. Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature 368, 769-772 (1994). Leuther, K.K., Bushnell, D.A. & Kornberg, R.D. Two-dimensional crystallography of TFIIB- and IIE-RNA polymerase II complexes : Implications for start site selection and initiation complex formation. Cell 85, 773-779 (1996). Goodrich, J.A. & Tjian, R. Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell 77, 145-156 (1994). Dvir, A., Conaway, R.C. & Conaway, J.W. A role for TFIIH in controlling the activity of early RNA polymerase II elongation complexes. Proc. Natl. Acad. Sci. USA 94, 9006-9010 (1997). Kumar, K.P., Akoulitchev, S. & Reinberg, D. Promoter-proximal stalling results from the inability to recruit transcription factor IIH to the transcription complex and is a regulated event. Proc. Natl. Acad. Sci. USA 95, 9767-9772 (1998). Ohkuma, Y., Sumimoto, H., Horikoshi, M. & Roeder, R. G. Factors involved in specific transcription by mammalian RNA polymerase II: Purification and characterization of general transcription factor TFIIE. Proc. Natl. Acad. Sci. USA 87, 9163-9167 (1990). Ohkuma, Y. et al. Structural motifs and potential σ homologies in the large subunit of human general transcription factor TFIIE. Nature 354, 398-402 (1991). Peterson, M.G. et al. Structure and functional properties of human general transcription factor IIE. Nature 354, 369-373 (1991). Sumimoto, H. et al. Conserved sequence motifs in the small subunit of human general transcription factor TFIIE. Nature 354, 401-404(1991).
Human TFIIE is a heterotetramer composed of two large subunits (TFIIEα; 57 kDa, 439 aa) and two small subunits (TFIIEβ; 34 kDa, 291 aa) (Non-patent Documents 15, 16, and 17). , 18). Both of these subunits have several characteristic sequences and putative structural motifs. Despite being a very important protein, there is very little information about the structure. This is mainly due to the low solubility of TFIIE and each subunit at the high concentrations used for structural studies.
Orphanides, G., Lagrange, T. & Reinberg, D. The general transcription factors of RNA polymerase II. Genes Dev. 10, 2657-2683 (1996). Roeder, RG The role of general initiation factors in transcription by RNA polymerase II.Trends Biochem.Sci. 21, 327-335 (1996). Bjorklund, S. & Y.-J. Kim. Mediator of transcriptional regulation.Trends Biochem. Sci. 21, 335-337 (1996). Koleske, AJ & RAYoung.The RNA polymerase II holoenzyme and its implication for gene regulation.Trends Biochem.Sci. 20, 113-116 (1995). Lu, H., Flores, O., Weinmann, R. & Reinberg, D. The nonphosphorylated form of RNA polymerase II preferentially associates with the preinitiation complex.Proc. Natl. Acad. Sci. USA 88, 10004-10008 (1991) . Ohkuma, Y. & Roeder, RG Regulation of TFIIH ATPase and kinase activities by TFIIE during active initiation complex formation.Nature 368, 160-163 (1994). Dvir, A., K. et al. A role for ATP and TFIIH in activation of the RNA polymerase II preinitiation complex prior to transcription initiation.J. Biol. Chem. 271, 7245-7248 (1996). Maxon, ME, Goodrich, JA & Tjian, R. Transcription factor IIE binds preferentially to RNA polymerase IIa and recruits TFIIH: a model for promoter clearance. Genes Dev. 8, 515-524 (1994). Flores, O., Lu, H. & Reinberg, D. Factors involved in specific transcription by mammalian RNA polymerase II. J. Biol. Chem. 267, 2786-2793 (1992). Drapkin, R. et al. Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II.Nature 368, 769-772 (1994). Leuther, KK, Bushnell, DA & Kornberg, RD Two-dimensional crystallography of TFIIB- and IIE-RNA polymerase II complexes: Implications for start site selection and initiation complex formation.Cell 85, 773-779 (1996). Goodrich, JA & Tjian, R. Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II.Cell 77, 145-156 (1994). Dvir, A., Conaway, RC & Conaway, JW A role for TFIIH in controlling the activity of early RNA polymerase II elongation complexes.Proc. Natl. Acad. Sci. USA 94, 9006-9010 (1997). Kumar, KP, Akoulitchev, S. & Reinberg, D. Promoter-proximal stalling results from the inability to recruit transcription factor IIH to the transcription complex and is a regulated event.Proc. Natl. Acad. Sci. USA 95, 9767-9772 (1998). Ohkuma, Y., Sumimoto, H., Horikoshi, M. & Roeder, RG Factors involved in specific transcription by mammalian RNA polymerase II: Purification and characterization of general transcription factor TFIIE. Proc. Natl. Acad. Sci. USA 87, 9163 -9167 (1990). Ohkuma, Y. et al. Structural motifs and potential σ homologies in the large subunit of human general transcription factor TFIIE.Nature 354, 398-402 (1991). Peterson, MG et al. Structure and functional properties of human general transcription factor IIE.Nature 354, 369-373 (1991). Sumimoto, H. et al. Conserved sequence motifs in the small subunit of human general transcription factor TFIIE.Nature 354, 401-404 (1991).

そこで、本発明者らはこのタンパク質の多重機能に焦点をあて、各サブユニット内の構造/機能ドメインを同定しようと試みた。プロテアーゼ限定分解実験は、TFIIEα内にC-x2-C-xn-C-x2-C(xは任意のアミノ酸)配列を含む高度に保存された亜鉛結合領域を見出した(図1a)。この領域は、保存された、基本転写および活性化された転写の両方に十分なN末端側の半分に存在している (Ohkuma, Y., Hashimoto, S., Wang, C.K, Horikoshi,M. & Roeder, R.G. Analysis of the Role of TFIIE in basal transcription and TFIIH-mediated carboxy-terminal domain phosphorylation through structure-function studies of TFIIE-α. Mol. Cell. Biol. 15, 4856-4866 (1995).)。亜鉛リガンドの第3システイン残基が点突然変異したものを分析したところ、TFIIEの転写活性は亜鉛結合に依存することが示された(Maxon, M.E. & Tjian, R. Transcriptional activity of transcription factor IIE is dependent on zinc binding. Proc.Natl.Acad.Sci.USA 91, 9529-9533 (1994).)。同様に、亜鉛結合ドメインの欠失突然変異体は、転写に関してドミナントネガティブ効果を示す(Ohkuma, Y., Hashimoto, S., Wang, C.K, Horikoshi,M. & Roeder, R.G. Analysis of the Role of TFIIE in basal transcription and TFIIH-mediated carboxy-terminal domain phosphorylation through structure-function studies of TFIIE-α. Mol. Cell. Biol. 15, 4856-4866 (1995).)。距離幾何学に基づくホモロジーモデリングは、亜鉛結合ドメインは亜鉛リボン構造をとるであろうと予測した(Qian, X. et al. Novel zinc finger motif in the basal transcriptional machinery: Three-dimensional NMR studies of the nucleic acid binding domain of transcriptional e longation factor TFIIS. Biochemistry 32, 9944-9959 (1993).)。本研究において、本発明者らはヒトTFIIEα亜鉛結合ドメインの溶液構造を決定し、そしてTFIIE機能におけるその役割について構造上の洞察を提供した。 Thus, the inventors focused on the multiple functions of this protein and attempted to identify the structure / function domains within each subunit. Protease limited degradation experiments found a highly conserved zinc-binding region containing the Cx 2 -Cx n -Cx 2 -C (x is any amino acid) sequence within TFIIEα (FIG. 1a). This region is present in the N-terminal half, sufficient for both conserved basal and activated transcription (Ohkuma, Y., Hashimoto, S., Wang, CK, Horikoshi, M. & Roeder, RG Analysis of the Role of TFIIE in basal transcription and TFIIH-mediated carboxy-terminal domain phosphorylation through structure-function studies of TFIIE-α. Mol. Cell. Biol. 15, 4856-4866 (1995)). Analysis of point mutations in the third cysteine residue of the zinc ligand showed that TFIIE transcriptional activity was dependent on zinc binding (Maxon, ME & Tjian, R. Transcriptional activity of transcription factor IIE is dependent on zinc binding. Proc. Natl. Acad. Sci. USA 91, 9529-9533 (1994).). Similarly, deletion mutants of the zinc binding domain show a dominant negative effect on transcription (Ohkuma, Y., Hashimoto, S., Wang, CK, Horikoshi, M. & Roeder, RG Analysis of the Role of TFIIE in basal transcription and TFIIH-mediated carboxy-terminal domain phosphorylation through structure-function studies of TFIIE-α. Mol. Cell. Biol. 15, 4856-4866 (1995)). Homology modeling based on distance geometry predicted that the zinc binding domain would have a zinc ribbon structure (Qian, X. et al. Novel zinc finger motif in the basal transcriptional machinery: Three-dimensional NMR studies of the nucleic acid binding domain of transcriptional e longation factor TFIIS. Biochemistry 32, 9944-9959 (1993).). In this study, we determined the solution structure of the human TFIIE alpha zinc binding domain and provided structural insights about its role in TFIIE function.

本発明は、ヒトTFIIEαの新規な亜鉛結合ドメインの構造的特徴および機能を見出すことを目的とする。   The present invention aims to find the structural features and functions of a novel zinc binding domain of human TFIIEα.

基本転写因子TFIIEは、2つの大サブユニット(TFIIEα)および2つの小サブユニット(TFIIEβ)からなるヘテロ四量体である。Cx2CxnCx2Cモチーフを有する高度に保存されたTFIIEα亜鉛結合ドメインは、転写活性に必要である。このドメインは亜鉛リボン構造を形成することが予測されていた。しかし、本発明者らが決定した構造は、亜鉛リボンとも他の亜鉛結合構造とも驚くほど違っている。新規な構造の機能を明らかにするため、本発明者らは転写活性ならびにTFIIEβおよび他の基本転写因子との結合能について全長TFIIEαの突然変異分析を実施した。興味深いことに、システイン→アラニン点突然変異、すなわち亜鉛結合部位のC129A、C132A、C154AおよびC157Aは、両方のアッセイにおいて非対称性を示した。Zn2+-リガンドを突然変異させた亜鉛結合ドメインのCD、NMRおよびEDTA滴定実験は、これらのドメインが、Zn2+と配位結合することのできるそれら自身の部分的に折りたたまれた構造を有していて、これがランダムコイル構造と様々な程度に平衡化していることを明らかにした。構造の安定性がリガンドの位置に依存することは、上記の非対称性を説明する。本発明者らの生化学的データおよび構造データ、ならびに以前に報告された結果を総合的に考えて、本発明者らは亜鉛結合ドメインの役割を関連づけた。本発明はこれらの知見に基づいて、完成されたものである。 The basic transcription factor TFIIE is a heterotetramer composed of two large subunits (TFIIEα) and two small subunits (TFIIEβ). A highly conserved TFIIEα zinc binding domain with a Cx 2 Cx n Cx 2 C motif is required for transcriptional activity. This domain was predicted to form a zinc ribbon structure. However, the structure determined by the inventors is surprisingly different from the zinc ribbon and other zinc-bonded structures. To elucidate the function of the novel structure, we performed mutation analysis of full-length TFIIEα for transcriptional activity and ability to bind TFIIEβ and other basic transcription factors. Interestingly, the cysteine → alanine point mutations, ie the zinc binding sites C129A, C132A, C154A and C157A, showed asymmetry in both assays. CD, NMR and EDTA titration experiments of zinc-binding domains with mutated Zn 2+ -ligands show that these domains have their own partially folded structure that can coordinate with Zn 2+ It has been clarified that this is equilibrated to various degrees with the random coil structure. The dependence of structural stability on the position of the ligand explains the above asymmetry. Taken together, our biochemical and structural data, as well as previously reported results, we have linked the role of the zinc binding domain. The present invention has been completed based on these findings.

本発明の要旨は以下の通りである。
〔1〕 亜鉛結合ドメインを含むタンパク質または該タンパク質と該タンパク質に結合しうる物質との複合体の立体構造を予測する方法であって、
(i)表Aの原子座標または表Aの原子座標により規定される三次元構造からの距離に関する根平均二乗偏差が0.0096±0.0012オングストロームであり、二面角に関する根平均二乗偏差が0.75±0.09°である原子座標により規定されるヒトTFIIEαの亜鉛結合ドメイン又はその一部の三次元構造を用意する工程、及び
(ii)(i)の工程で用意した三次元構造を鋳型とするホモロジーモデリングにより、亜鉛結合ドメインを含むタンパク質または該タンパク質と該タンパク質に結合しうる物質との複合体の三次元構造を構築する工程
を含む前記方法。
〔2〕 亜鉛結合ドメインを含むタンパク質又はその一部の機能を予測する方法であって、
(i)表Aの原子座標または表Aの原子座標により規定される三次元構造からの距離に関する根平均二乗偏差が0.0096±0.0012オングストロームであり、二面角に関する根平均二乗偏差が0.75±0.09°である原子座標により規定されるヒトTFIIEαの亜鉛結合ドメイン又はその一部の三次元構造を用意する工程、
(ii) 亜鉛結合ドメインを含むタンパク質の亜鉛結合ドメイン又はその一部の三次元構造を用意する工程、
(iii) (i)の工程で用意した三次元構造と(ii)の工程で用意した三次元構造の構造アラインメントを行う工程、
(iv)(iii)の工程で行った構造アラインメントの結果、構造類似性があると判定された場合には、(ii)の亜鉛結合ドメインを含むタンパク質又はその一部が、(i)のヒトTFIIEαの亜鉛結合ドメイン又はその一部と類似の機能を有すると予測する工程
を含む前記方法。
〔3〕 配列番号2のアミノ酸配列を有するヒトTFIIEαの亜鉛結合ドメイン又は該ドメインを含むタンパク質が、28位のグルタミン酸、52位のアスパラギン酸、17位のシステイン、20位のシステイン、42位のシステイン及び45位のシステインからなる群より選択される少なくとも1つのアミノ酸部位で、被験物質と相互作用するか否かを解析し、相互作用する場合には、被験物質が転写活性を調節することができると判定することを含む、転写活性を調節することができる物質をスクリーニングする方法。
〔4〕 亜鉛イオンの存在下で、配列番号2のアミノ酸配列を有するヒトTFIIEαの亜鉛結合ドメイン又は該ドメインを含むタンパク質が、28位のグルタミン酸、52位のアスパラギン酸、17位のシステイン、20位のシステイン、42位のシステイン及び45位のシステインからなる群より選択される少なくとも1つのアミノ酸部位で、被験物質と相互作用するか否かを解析する〔3〕記載の方法。
〔5〕 以下の(a)、(b)、(c)又は(d)のいずれかのタンパク質であるTFIIEαの亜鉛結合ドメイン変異体タンパク質又はその塩。
(a)配列番号2のアミノ酸配列において、28位のグルタミン酸からアラニン又はリシンへの置換、17位のシステインからアラニンへの置換、20位のシステインからアラニンへの置換、42位のシステインからアラニンへの置換及び45位のシステインからアラニンへの置換からなる群より選択される少なくとも1つの置換がなされているアミノ酸配列を有するタンパク質
(b)(a)のタンパク質のアミノ酸配列において、28位のアミノ酸、17位のアミノ酸、20位のアミノ酸、42位のアミノ酸及び45位のアミノ酸以外の1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有し、かつ転写活性が配列番号2のアミノ酸配列を有する野生型TFIIEαの亜鉛結合ドメインよりも低いタンパク質
(c) 配列番号2のアミノ酸配列において、52位のアスパラギン酸からアラニン又はリシンへの置換がなされているアミノ酸配列を有するタンパク質
(d)(c)のタンパク質のアミノ酸配列において、52位のアミノ酸以外の1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有し、かつ転写活性が配列番号2のアミノ酸配列を有する野生型TFIIEαの亜鉛結合ドメインよりも高いタンパク質
〔6〕 以下の(1)〜(8)のいずれかのタンパク質である〔5〕記載のTFIIEαの亜鉛結合ドメイン変異体タンパク質又はその塩。
(1) 配列番号2のアミノ酸配列において、28位のグルタミン酸からアラニンへの置換がなされているアミノ酸配列を有するタンパク質
(2) 配列番号2のアミノ酸配列において、28位のグルタミン酸からリシンへの置換がなされているアミノ酸配列を有するタンパク質
(3) 配列番号2のアミノ酸配列において、17位のシステインからアラニンへの置換がなされているアミノ酸配列を有するタンパク質
(4) 配列番号2のアミノ酸配列において、20位のシステインからアラニンへの置換がなされているアミノ酸配列を有するタンパク質
(5) 配列番号2のアミノ酸配列において、42位のシステインからアラニンへの置換がなされているアミノ酸配列を有するタンパク質
(6) 配列番号2のアミノ酸配列において、45位のシステインからアラニンへの置換がなされているアミノ酸配列を有するタンパク質
(7) 配列番号2のアミノ酸配列において、52位のアスパラギン酸からアラニンへの置換がなされているアミノ酸配列を有するタンパク質
(8) 配列番号2のアミノ酸配列において、52位のアスパラギン酸からリシンへの置換がなされているアミノ酸配列を有するタンパク質
〔7〕 〔5〕記載のタンパク質をコードするDNA。
〔8〕 〔7〕記載のDNAを含有する組換えベクター。
〔9〕 〔8〕記載の組換えベクターを含む形質転換体。
〔10〕 〔7〕記載のDNAで形質転換した宿主を培養し、培養物からTFIIEαの亜鉛結合ドメイン変異体タンパク質を採取することを含むTFIIEαの亜鉛結合ドメイン変異体タンパク質の製造方法。
〔11〕 〔5〕記載のTFIIEαの亜鉛結合ドメイン変異体タンパク質又はその塩に対する抗体。
The gist of the present invention is as follows.
[1] A method for predicting the three-dimensional structure of a protein comprising a zinc-binding domain or a complex of the protein and a substance capable of binding to the protein,
(i) The root mean square deviation for the distance from the three-dimensional structure defined by the atomic coordinates in Table A or the atomic coordinates in Table A is 0.0096 ± 0.0012 angstroms, and the root mean square deviation for the dihedral angle is 0.75 ± 0.09 ° Providing a three-dimensional structure of a human TFIIEα zinc-binding domain or part thereof defined by atomic coordinates of:
(ii) Build a three-dimensional structure of a protein containing a zinc-binding domain or a complex of the protein and a substance capable of binding to the protein by homology modeling using the three-dimensional structure prepared in step (i) as a template Said method comprising the steps.
[2] A method for predicting the function of a protein containing a zinc-binding domain or a part thereof,
(i) The root mean square deviation with respect to the distance from the three-dimensional structure defined by the atomic coordinates in Table A or the atomic coordinates in Table A is 0.0096 ± 0.0012 angstroms, and the root mean square deviation with respect to the dihedral angle is 0.75 ± 0.09 ° Providing a three-dimensional structure of a human TFIIEα zinc-binding domain or part thereof defined by atomic coordinates
(ii) providing a three-dimensional structure of a zinc-binding domain of a protein containing a zinc-binding domain or a part thereof;
(iii) a step of performing structural alignment between the three-dimensional structure prepared in the step (i) and the three-dimensional structure prepared in the step (ii);
(iv) When it is determined that there is structural similarity as a result of the structural alignment performed in the step (iii), the protein containing the zinc-binding domain of (ii) or a part thereof is Said method comprising the step of predicting that it has a function similar to the zinc-binding domain of TFIIEα or a part thereof.
[3] A human TFIIEα zinc-binding domain having the amino acid sequence of SEQ ID NO: 2 or a protein containing the domain is glutamic acid at position 28, aspartic acid at position 52, cysteine at position 17, cysteine at position 20, cysteine at position 42 And at least one amino acid site selected from the group consisting of cysteine at position 45, it is analyzed whether or not it interacts with the test substance, and if it interacts, the test substance can regulate the transcriptional activity. A method of screening for a substance capable of regulating transcriptional activity.
[4] In the presence of zinc ions, the human TFIIEα zinc-binding domain having the amino acid sequence of SEQ ID NO: 2 or a protein containing the domain is glutamic acid at position 28, aspartic acid at position 52, cysteine at position 17, and position 20 The method according to [3], wherein at least one amino acid site selected from the group consisting of cysteine, cysteine at position 42 and cysteine at position 45 is analyzed for interaction with the test substance.
[5] A zinc-binding domain mutant protein of TFIIEα, which is a protein of any one of the following (a), (b), (c) or (d), or a salt thereof.
(a) In the amino acid sequence of SEQ ID NO: 2, substitution of glutamic acid at position 28 with alanine or lysine, substitution of cysteine at position 17 with alanine, substitution of cysteine at position 20 with alanine, cysteine at position 42 with alanine And a protein having an amino acid sequence in which at least one substitution selected from the group consisting of substitution at position 45 and substitution from cysteine to alanine at position 45 is made
(b) In the amino acid sequence of the protein of (a), one or several amino acids other than the 28th amino acid, the 17th amino acid, the 20th amino acid, the 42nd amino acid and the 45th amino acid are deleted or substituted. Alternatively, a protein having an added amino acid sequence and having a transcriptional activity lower than that of the wild-type TFIIEα zinc-binding domain having the amino acid sequence of SEQ ID NO: 2.
(c) a protein having an amino acid sequence in which substitution of aspartic acid at position 52 with alanine or lysine is performed in the amino acid sequence of SEQ ID NO: 2
(d) the amino acid sequence of the protein of (c), which has an amino acid sequence in which one or several amino acids other than the amino acid at position 52 are deleted, substituted or added, and whose transcription activity is SEQ ID NO: 2 A protein higher than the zinc-binding domain of wild-type TFIIEα having [6] The zinc-binding domain mutant protein of TFIIEα or a salt thereof according to [5], which is a protein of any one of the following (1) to (8):
(1) a protein having an amino acid sequence in which glutamic acid at position 28 is substituted with alanine in the amino acid sequence of SEQ ID NO: 2
(2) A protein having an amino acid sequence in which glutamic acid at position 28 is substituted with lysine in the amino acid sequence of SEQ ID NO: 2
(3) A protein having an amino acid sequence in which the cysteine at position 17 is substituted with alanine in the amino acid sequence of SEQ ID NO: 2.
(4) In the amino acid sequence of SEQ ID NO: 2, a protein having an amino acid sequence in which substitution of cysteine to alanine at position 20 is made
(5) A protein having an amino acid sequence in which cysteine is substituted with alanine at position 42 in the amino acid sequence of SEQ ID NO: 2.
(6) A protein having an amino acid sequence in which the cysteine at position 45 is substituted with alanine in the amino acid sequence of SEQ ID NO: 2.
(7) a protein having an amino acid sequence in which aspartic acid is substituted with alanine at position 52 in the amino acid sequence of SEQ ID NO: 2
(8) A protein encoding the protein according to [7] [5], which has an amino acid sequence in which the substitution of aspartic acid to lysine at position 52 in the amino acid sequence of SEQ ID NO: 2 is performed.
[8] A recombinant vector containing the DNA according to [7].
[9] A transformant comprising the recombinant vector according to [8].
[10] A method for producing a TFIIEα zinc-binding domain mutant protein comprising culturing a host transformed with the DNA according to [7] and collecting the TFIIEα zinc-binding domain mutant protein from the culture.
[11] An antibody against the TFIIEα zinc-binding domain mutant protein or a salt thereof according to [5].

本明細書において、「TFIIE」とは、真核生物おいて、タンパク質をコードした遺伝子の転写を行うRNAポリメラーゼIIの補助因子である6種の基本転写因子とよばれるタンパク質のうちの1つをいう。   In this specification, “TFIIE” refers to one of six proteins called basic transcription factors, which are cofactors of RNA polymerase II that performs transcription of a gene encoding a protein in eukaryotes. Say.

「TFIIEα」とは、2種のサブユニット、α、βの各2個からなるα2β2のヘテロ4量体であるTFIIEの構成サブユニットのうち、大きなαサブユニットをいう。   “TFIIEα” refers to a large α subunit among the constituent subunits of TFIIE, which is a heterotetramer of α2β2 composed of two types of subunits, α and β.

「TFIIEαの亜鉛結合ドメイン」及び「TFIIEα亜鉛結合ドメイン」とは、TFIIEα内で亜鉛イオンを配位する4つのシステインのシステイン-x2-システイン-xn-システイン-x2-システイン(xは任意のアミノ酸)配列を含み特定の立体構造を有する領域をいう。 And and "TFIIEα zinc binding domain of the""TFIIEα zinc binding domain" of the four cysteines coordinating the zinc ion in TFIIEα cysteine -x 2 - cysteine -x n - cysteine -x 2 - cysteine (x is an arbitrary Of amino acid) and a region having a specific three-dimensional structure.

「変異体タンパク質」とは、基準となるタンパク質と異なるが、基準となるタンパク質の不可欠な性質を保持しているタンパク質を意味する。典型的な変異体タンパク質は、基準となるタンパク質とアミノ酸配列が相違する。   “Mutant protein” means a protein that is different from the reference protein but retains the essential properties of the reference protein. A typical mutant protein differs in amino acid sequence from the reference protein.

「抗体」とは、抗原刺激の結果、免疫反応によって生体内に誘導されるタンパク質で、免疫原(抗原)と特異的に結合する活性を有するものを意味し、これには、ポリクローナル抗体、モノクローナル抗体、キメラ抗体、一本鎖抗体、ヒト化抗体、さらには、Fab又はFabフラグメントなどが含まれる。   “Antibody” means a protein that is induced in an organism by an immune reaction as a result of antigen stimulation and has an activity of specifically binding to an immunogen (antigen). Examples include antibodies, chimeric antibodies, single chain antibodies, humanized antibodies, and Fab or Fab fragments.

「相互作用」とは、2つ以上の物体(例えば、原子、分子)の間に力が働きあうことをいう。相互作用としては、親水性の相互作用(例えば、水素結合、塩橋)、疎水性の相互作用(例えば、疎水結合)、静電相互作用、ファンデルワールス相互作用などを例示することができる。
“Interaction” means that a force works between two or more objects (for example, atoms and molecules). Examples of the interaction include hydrophilic interaction (for example, hydrogen bond, salt bridge), hydrophobic interaction (for example, hydrophobic bond), electrostatic interaction, van der Waals interaction, and the like.

本発明により、TFIIEαの亜鉛結合ドメインと類似の配列及び/又は構造を有するタンパク質の立体構造及び機能が予測できるようになった。   According to the present invention, the three-dimensional structure and function of a protein having a sequence and / or structure similar to the zinc binding domain of TFIIEα can be predicted.

また、本発明により、転写活性を調節することができる物質をスクリーニングすることができるようになった。   In addition, according to the present invention, it has become possible to screen for substances that can regulate transcriptional activity.

さらに、本発明により、転写活性が野生型ヒトTFIIEαの亜鉛結合ドメインよりも低い、あるいは高い変異体が提供された。
Furthermore, the present invention provides a mutant whose transcriptional activity is lower or higher than that of the wild-type human TFIIEα zinc-binding domain.

以下、本発明をより詳細に説明する。
1.ホモロジーモデリングによる、亜鉛結合ドメインを含むタンパク質又はその複合体の立体構造の予測
本発明は、亜鉛結合ドメインを含むタンパク質または該タンパク質と該タンパク質に結合しうる物質との複合体の立体構造を予測する方法であって、
(i)表Aの原子座標または表Aの原子座標により規定される三次元構造からの距離に関する根平均二乗偏差が0.0096±0.0012オングストロームであり、二面角に関する根平均二乗偏差が0.75±0.09°である原子座標により規定されるヒトTFIIEαの亜鉛結合ドメイン又はその一部の三次元構造を用意する工程、及び
(ii)(i)の工程で用意した三次元構造を鋳型とするホモロジーモデリングにより、亜鉛結合ドメインを含むタンパク質または該タンパク質と該タンパク質に結合しうる物質との複合体の三次元構造を構築する工程
を含む前記方法を提供する。
Hereinafter, the present invention will be described in more detail.
1. Prediction of a three-dimensional structure of a protein containing a zinc-binding domain or a complex thereof by homology modeling The present invention predicts a three-dimensional structure of a protein containing a zinc-binding domain or a complex of the protein and a substance capable of binding to the protein A method,
(i) The root mean square deviation with respect to the distance from the three-dimensional structure defined by the atomic coordinates in Table A or the atomic coordinates in Table A is 0.0096 ± 0.0012 angstroms, and the root mean square deviation with respect to the dihedral angle is 0.75 ± 0.09 ° Providing a three-dimensional structure of a human TFIIEα zinc-binding domain or part thereof defined by atomic coordinates of:
(ii) Build a three-dimensional structure of a protein containing a zinc-binding domain or a complex of the protein and a substance capable of binding to the protein by homology modeling using the three-dimensional structure prepared in step (i) as a template The method is provided comprising the steps of:

ホモロジーモデリングとは、構造未知のタンパク質の構造を、類似の配列を持つ構造既知のタンパク質(鋳型)を元に予測する手法である。   Homology modeling is a technique for predicting the structure of a protein with an unknown structure based on a protein with a similar structure (template) having a similar sequence.

ホモロジーモデリングでは、まず、構造データベースから類似の配列を検索し、配列のアラインメントを行う。次に、アラインメントした鋳型の配列から、対応する部分の構造を選び出して予測構造を構築する。ホモロジーモデリングには、フラグメントに基づく方法と制約条件に基づく方法がある。   In homology modeling, first, similar sequences are searched from a structural database, and sequences are aligned. Next, the structure of the corresponding part is selected from the aligned template sequences to construct a predicted structure. Homology modeling includes a fragment-based method and a constraint-based method.

ホモロジーモデリングを実施するためのウェブサイトとしては、MODELLER(ウェブアドレス:http://guitar.rockefeller.edu/moduller/moduller.html、文献:Sali et al. (1995) Proteins 23:318-326)、SWISS-MODEL(ウェブアドレス:http://www.expasy.ch/swissmod/SWISS-MODEL.html、文献:Peitsch (1996) Biochem. Soc. Trans. 24:274-279)、WHAT IF(ウェブアドレス:http://www.cmbi.kun.nl/whatif/、文献:Rodriguez et al. (1998) Bioinfomatics 14: 523-528)があり、これらを利用することができる。   As a website for carrying out homology modeling, MODELLER (web address: http://guitar.rockefeller.edu/moduller/moduller.html, literature: Sali et al. (1995) Proteins 23: 318-326), SWISS-MODEL (web address: http://www.expasy.ch/swissmod/SWISS-MODEL.html, literature: Peitsch (1996) Biochem. Soc. Trans. 24: 274-279), WHAT IF (web address: http://www.cmbi.kun.nl/whatif/, literature: Rodriguez et al. (1998) Bioinfomatics 14: 523-528), which can be used.

さらに、これらのウェブサイトによって解析され、重ね合わされた配列の分子の距離、角度、スレッディング、エネルギーの最小化の計算をSwiss-PdbViewer(ウェブアドレス:http://www.expasy.ch/spdbv/mainpage.html、文献:Guex and Peitsch, 1977, Electrophoresis 18: 2714-2723)により行ない、タンパク質モデルを作成することができる。   In addition, calculations of molecular distance, angle, threading, and energy minimization of sequences analyzed and superimposed by these websites are performed by Swiss-PdbViewer (web address: http://www.expasy.ch/spdbv/mainpage .html, literature: Guex and Peitsch, 1977, Electrophoresis 18: 2714-2723), and a protein model can be created.

ホモロジーモデリングは、構造既知のタンパク質と25〜30%程度以上の配列の類似性があると有効である。   Homology modeling is effective when there is a similarity of about 25 to 30% or more with a protein having a known structure.

従って、本発明の立体構造予測法は、配列番号2のアミノ酸配列と比較して、25〜30%程度以上の配列の類似性があるタンパク質又はその複合体の立体構造の予測に有効である。   Therefore, the three-dimensional structure prediction method of the present invention is effective for predicting the three-dimensional structure of a protein or a complex thereof having a sequence similarity of about 25 to 30% or more compared to the amino acid sequence of SEQ ID NO: 2.

亜鉛結合ドメインを含むタンパク質としては、TFIIEα、TFIIB、RNAポリメラーゼII、TFIISなどを例示することができる。TFIIEαに結合しうる物質としては、TFIIEβ、TFIIF、TFIIH、RNAポリメラーゼIIなどを例示することができる。TFIIBやTFIISの亜鉛結合ドメインは、RNAポリメラーゼIIに結合しうる。
Examples of the protein containing a zinc binding domain include TFIIEα, TFIIB, RNA polymerase II, TFIIS, and the like. Examples of substances that can bind to TFIIEα include TFIIEβ, TFIIF, TFIIH, RNA polymerase II, and the like. The zinc-binding domain of TFIIB and TFIIS can bind to RNA polymerase II.

2.亜鉛結合ドメインを含むタンパク質又はその一部の機能の予測
本発明は、亜鉛結合ドメインを含むタンパク質又はその一部の機能を予測する方法であって、
(i)表Aの原子座標または表Aの原子座標により規定される三次元構造からの距離に関する根平均二乗偏差が0.0096±0.0012オングストロームであり、二面角に関する根平均二乗偏差が0.75±0.09°である原子座標により規定されるヒトTFIIEαの亜鉛結合ドメイン又はその一部の三次元構造を用意する工程、
(ii) 亜鉛結合ドメインを含むタンパク質の亜鉛結合ドメイン又はその一部の三次元構造を用意する工程、
(iii) (i)の工程で用意した三次元構造と(ii)の工程で用意した三次元構造の構造アラインメントを行う工程、
(iv)(iii)の工程で行った構造アラインメントの結果、構造類似性があると判定された場合には、(ii)の亜鉛結合ドメインを含むタンパク質又はその一部が、(i)のヒトTFIIEαの亜鉛結合ドメイン又はその一部と類似の機能を有すると予測する工程
を含む前記方法を提供する。
2. Prediction of the function of a protein containing a zinc binding domain or part thereof The present invention is a method for predicting the function of a protein containing a zinc binding domain or part thereof,
(i) The root mean square deviation with respect to the distance from the three-dimensional structure defined by the atomic coordinates in Table A or the atomic coordinates in Table A is 0.0096 ± 0.0012 angstroms, and the root mean square deviation with respect to the dihedral angle is 0.75 ± 0.09 ° Providing a three-dimensional structure of a human TFIIEα zinc-binding domain or part thereof defined by atomic coordinates
(ii) providing a three-dimensional structure of a zinc-binding domain of a protein containing a zinc-binding domain or a part thereof;
(iii) a step of performing structural alignment between the three-dimensional structure prepared in the step (i) and the three-dimensional structure prepared in the step (ii);
(iv) When it is determined that there is structural similarity as a result of the structural alignment performed in the step (iii), the protein containing the zinc-binding domain of (ii) or a part thereof is The method is provided comprising the step of predicting a function similar to that of a zinc-binding domain of TFIIEα or a part thereof.

以下、(i)のヒトTFIIEαの亜鉛結合ドメイン又はその一部を「参照タンパク質」、(ii)の亜鉛結合ドメインを含むタンパク質の亜鉛結合ドメイン又はその一部を「問い合わせタンパク質」と記すこともある。   Hereinafter, the zinc-binding domain of human TFIIEα of (i) or a part thereof may be referred to as “reference protein”, and the zinc-binding domain of a protein containing the zinc-binding domain of (ii) or a part thereof may be referred to as “query protein”. .

問い合わせタンパク質の三次元構造座標は、X線結晶構造解析や核磁気共鳴(NMR)などの手法により得られたものであってもよいし、既にデータベース(ブルックヘブンタンパク質データバンク(PDB))に登録されているものであってもよい。PDBファイルはPDBのウェブサイト(http://www.rcsb.org/pdb/)から容易に入手できる。   The three-dimensional structure coordinates of the query protein may be obtained by techniques such as X-ray crystal structure analysis or nuclear magnetic resonance (NMR), or already registered in the database (Brookhaven Protein Data Bank (PDB)). It may be what has been done. PDB files are readily available from the PDB website (http://www.rcsb.org/pdb/).

構造アラインメントを行う際には、1つのタンパク質ドメインの三次元構造を別のタンパク質ドメインの三次元構造の上に重ね合わせ、原子同士をできるだけ近くに合わせてそれらの間のずれの平均が最小になるようにする。タンパク質の構造比較を行うための方法は、Blundel and Johonson, 1993, Protein Sci. 2:877-883; Holm and Sander, 1994, J. Mol. Biol. 233: 123-138; Holm and Sander,1996, Science 273: 595-603; Alexandrov and Fischer, 1996, Proteins 25: 354-365; Gibrat et al. 1996, Curr. Opin. Struct. Biol. 6:377-385; Orengo and Taylor, 1996, Methods Enzymol. 266:617-635に紹介されている。また、タンパク質の構造比較を行うためのプログラムとしては、SSAP(Orengo and Taylor, 1996, Methods Enzymol. 266:617-635), DALI(Vriend and Sander, 1991, Proteins 11: 52-68)などがある。構造アラインメントの結果、一致した領域の座標が得られる。アラインメントされた領域は、RasMol, Cn3D, Swiss-PbdViewerなどの分子表示プログラムで表示するとよい。   When doing structural alignment, the three-dimensional structure of one protein domain is superimposed on the three-dimensional structure of another protein domain, and atoms are aligned as close as possible to minimize the average deviation between them. Like that. Methods for conducting protein structure comparison are described in Blundel and Johonson, 1993, Protein Sci. 2: 877-883; Holm and Sander, 1994, J. Mol. Biol. 233: 123-138; Holm and Sander, 1996, Science 273: 595-603; Alexandrov and Fischer, 1996, Proteins 25: 354-365; Gibrat et al. 1996, Curr. Opin.Struct. Biol. 6: 377-385; Orengo and Taylor, 1996, Methods Enzymol. 266 : 617-635. In addition, SSAP (Orengo and Taylor, 1996, Methods Enzymol. 266: 617-635), DALI (Vriend and Sander, 1991, Proteins 11: 52-68) are programs for comparing protein structures. . As a result of the structural alignment, the coordinates of the matched region are obtained. The aligned region may be displayed with a molecular display program such as RasMol, Cn3D, Swiss-PbdViewer.

構造アラインメントの結果、参照タンパク質(すなわち、(i)のヒトTFIIEαの亜鉛結合ドメイン又はその一部)と構造類似性があると判定された場合には、問い合わせタンパク質(すなわち、(ii)の亜鉛結合ドメインを含むタンパク質又はその一部)が、参照タンパク質と類似の機能を有すると予測する。   If the structural alignment results in structural similarity with the reference protein (ie, the human TFIIEα zinc-binding domain of (i) or a portion thereof), the query protein (ie, (ii) zinc-binding) It is predicted that the protein containing the domain or a part thereof has a function similar to that of the reference protein.

参照タンパク質(すなわち、(i)のヒトTFIIEαの亜鉛結合ドメイン又はその一部)の機能としては、転写活性を制御する作用、他因子との相互作用などの他、抗原としての活性、免疫原としての活性などを挙げることができるが、これらに限定されることはない。   The function of the reference protein (ie, the human TFIIEα zinc-binding domain of (i) or a part thereof) is to control transcription activity, interact with other factors, etc., as an antigen, as an immunogen However, it is not limited to these.

亜鉛結合ドメインを含むタンパク質としては、TFIIEα、TFIIB、RNAポリメラーゼII、TFIISなどを例示することができる。
Examples of the protein containing a zinc binding domain include TFIIEα, TFIIB, RNA polymerase II, TFIIS, and the like.

3.スクリーニング方法
本発明は、配列番号2のアミノ酸配列を有するヒトTFIIEαの亜鉛結合ドメイン又は該ドメインを含むタンパク質が、28位のグルタミン酸、52位のアスパラギン酸、17位のシステイン、20位のシステイン、42位のシステイン及び45位のシステインからなる群より選択される少なくとも1つのアミノ酸部位で、被験物質と相互作用するか否かを解析し、相互作用する場合には、被験物質が転写活性を調節することができると判定することを含む、転写活性を調節することができる物質をスクリーニングする方法を提供する。本発明の方法において、亜鉛イオンの存在下で、配列番号2のアミノ酸配列を有するヒトTFIIEαの亜鉛結合ドメイン又は該ドメインを含むタンパク質が、28位のグルタミン酸、52位のアスパラギン酸、17位のシステイン、20位のシステイン、42位のシステイン及び45位のシステインからなる群より選択される少なくとも1つのアミノ酸部位で、被験物質と相互作用するか否かを解析してもよい。
3. Screening method The present invention relates to a human TFIIEα zinc-binding domain having the amino acid sequence of SEQ ID NO: 2 or a protein containing the domain comprising glutamic acid at position 28, aspartic acid at position 52, cysteine at position 17, cysteine at position 20, Whether or not it interacts with the test substance at at least one amino acid site selected from the group consisting of cysteine at the position and cysteine at the 45th position, and if so, the test substance regulates transcriptional activity There is provided a method of screening for a substance capable of regulating transcriptional activity, comprising determining that it can. In the method of the present invention, the zinc binding domain of human TFIIEα having the amino acid sequence of SEQ ID NO: 2 or a protein containing the domain in the presence of zinc ion is glutamic acid at position 28, aspartic acid at position 52, cysteine at position 17 It may be analyzed whether or not it interacts with a test substance at at least one amino acid site selected from the group consisting of cysteine at position 20, cysteine at position 42 and cysteine at position 45.

配列番号2のアミノ酸配列を有するヒトTFIIEαの亜鉛結合ドメインを含むタンパク質としては、ヒトTFIIEαを例示することができる。野生型ヒトTFIIEαのアミノ酸配列を配列番号19に示す。   An example of a protein containing the human TFIIEα zinc-binding domain having the amino acid sequence of SEQ ID NO: 2 is human TFIIEα. The amino acid sequence of wild type human TFIIE α is shown in SEQ ID NO: 19.

配列番号2のアミノ酸配列を有するヒトTFIIEαの亜鉛結合ドメイン又は該ドメインを含むタンパク質が、28位のグルタミン酸、52位のアスパラギン酸、17位のシステイン、20位のシステイン、42位のシステイン及び45位のシステインからなる群より選択される少なくとも1つのアミノ酸部位で、被験物質と相互作用するか否かを解析するには、X線結晶構造解析、核磁気共鳴(NMR)、中性子回折などの立体構造解析、電子顕微鏡や原子間力顕微鏡などの複合体の形状を観察する方法や配列番号2のアミノ酸配列を有するヒトTFIIEαの亜鉛結合ドメインの立体構造に対する任意の構造の被験物質との安定な結合様式をコンピュータでシュミレートするドッキングスタディなどの手法、本発明者らがこの明細書において開示するヒトTFIIEαの亜鉛結合ドメインの立体構造との類似性に基づく判断を用いることができる。   The human TFIIEα zinc-binding domain having the amino acid sequence of SEQ ID NO: 2 or a protein containing the domain is glutamic acid at position 28, aspartic acid at position 52, cysteine at position 17, cysteine at position 20, cysteine at position 42, and position 45 In order to analyze whether or not it interacts with a test substance at at least one amino acid site selected from the group consisting of cysteine, three-dimensional structures such as X-ray crystal structure analysis, nuclear magnetic resonance (NMR), and neutron diffraction Method of observing the shape of the complex such as analysis, electron microscope and atomic force microscope, and the stable binding mode with the test substance of any structure for the three-dimensional structure of the human TFIIEα zinc binding domain having the amino acid sequence of SEQ ID NO: 2 A method such as a docking study for computer simulation of the human TFIIEα zinc binding disclosed herein by the present inventors It can be used judgment based on the similarity of the main conformation.

転写活性を調節することができる物質は、転写が関与する疾患(例えば、癌、リウマチ、生活習慣病、遺伝病など)の予防及び/又は治療に利用することができる。
A substance capable of regulating transcriptional activity can be used for prevention and / or treatment of diseases involving transcription (for example, cancer, rheumatism, lifestyle-related diseases, genetic diseases, etc.).

4.TFIIEαの亜鉛結合ドメイン変異体タンパク質
本発明は、以下の(a)、(b)、(c)又は(d)のいずれかのタンパク質であるTFIIEαの亜鉛結合ドメイン変異体タンパク質又はその塩を提供する。
(a)配列番号2のアミノ酸配列において、28位のグルタミン酸からアラニン又はリシンへの置換、17位のシステインからアラニンへの置換、20位のシステインからアラニンへの置換、42位のシステインからアラニンへの置換及び45位のシステインからアラニンへの置換からなる群より選択される少なくとも1つの置換がなされているアミノ酸配列を有するタンパク質。
(b)(a)のタンパク質のアミノ酸配列において、28位のアミノ酸、17位のアミノ酸、20位のアミノ酸、42位のアミノ酸及び45位のアミノ酸以外の1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有し、かつ転写活性が配列番号2のアミノ酸配列を有する野生型TFIIEαの亜鉛結合ドメインよりも低いタンパク質。
(c) 配列番号2のアミノ酸配列において、52位のアスパラギン酸からアラニン又はリシンへの置換がなされているアミノ酸配列を有するタンパク質。
(d)(c)のタンパク質のアミノ酸配列において、52位のアミノ酸以外の1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有し、かつ転写活性が配列番号2のアミノ酸配列を有する野生型TFIIEαの亜鉛結合ドメインよりも高いタンパク質。
4). TFIIEα Zinc-binding Domain Mutant Protein The present invention provides TFIIEα zinc-binding domain mutant protein or a salt thereof, which is one of the following proteins (a), (b), (c) or (d): .
(a) In the amino acid sequence of SEQ ID NO: 2, substitution of glutamic acid at position 28 with alanine or lysine, substitution of cysteine at position 17 with alanine, substitution of cysteine at position 20 with alanine, cysteine at position 42 with alanine And a protein having an amino acid sequence in which at least one substitution selected from the group consisting of substitution at position 45 and substitution from cysteine to alanine at position 45 is made.
(b) In the amino acid sequence of the protein of (a), one or several amino acids other than the 28th amino acid, the 17th amino acid, the 20th amino acid, the 42nd amino acid and the 45th amino acid are deleted or substituted. Alternatively, a protein having an added amino acid sequence and having a transcription activity lower than that of the zinc-binding domain of wild-type TFIIEα having the amino acid sequence of SEQ ID NO: 2.
(c) A protein having an amino acid sequence in which substitution of aspartic acid at position 52 with alanine or lysine is performed in the amino acid sequence of SEQ ID NO: 2.
(d) the amino acid sequence of the protein of (c), which has an amino acid sequence in which one or several amino acids other than the amino acid at position 52 are deleted, substituted or added, and whose transcription activity is SEQ ID NO: 2 A protein higher than the zinc-binding domain of wild-type TFIIEα.

(a)及び(c)のTFIIEαの亜鉛結合ドメイン変異体タンパク質としては、以下の(1)〜(8)のタンパク質を例示することができる。
(1) 配列番号2のアミノ酸配列において、28位のグルタミン酸からアラニンへの置換がなされているアミノ酸配列を有するタンパク質。
(2) 配列番号2のアミノ酸配列において、28位のグルタミン酸からリシンへの置換がなされているアミノ酸配列を有するタンパク質。
(3) 配列番号2のアミノ酸配列において、17位のシステインからアラニンへの置換がなされているアミノ酸配列を有するタンパク質。
(4) 配列番号2のアミノ酸配列において、20位のシステインからアラニンへの置換がなされているアミノ酸配列を有するタンパク質。
(5) 配列番号2のアミノ酸配列において、42位のシステインからアラニンへの置換がなされているアミノ酸配列を有するタンパク質。
(6) 配列番号2のアミノ酸配列において、45位のシステインからアラニンへの置換がなされているアミノ酸配列を有するタンパク質。
(7) 配列番号2のアミノ酸配列において、52位のアスパラギン酸からアラニンへの置換がなされているアミノ酸配列を有するタンパク質。
(8) 配列番号2のアミノ酸配列において、52位のアスパラギン酸からリシンへの置換がなされているアミノ酸配列を有するタンパク質。
Examples of the TIFIEα zinc-binding domain mutant proteins (a) and (c) include the following proteins (1) to (8).
(1) A protein having an amino acid sequence in which the glutamic acid at position 28 is substituted with alanine in the amino acid sequence of SEQ ID NO: 2.
(2) A protein having an amino acid sequence in which glutamic acid at position 28 is substituted with lysine in the amino acid sequence of SEQ ID NO: 2.
(3) A protein having an amino acid sequence in which cysteine is substituted with alanine at position 17 in the amino acid sequence of SEQ ID NO: 2.
(4) A protein having an amino acid sequence in which substitution of cysteine to alanine at position 20 is made in the amino acid sequence of SEQ ID NO: 2.
(5) A protein having an amino acid sequence in which a cysteine at position 42 is substituted with alanine in the amino acid sequence of SEQ ID NO: 2.
(6) A protein having an amino acid sequence in which cysteine is substituted with alanine at position 45 in the amino acid sequence of SEQ ID NO: 2.
(7) A protein having an amino acid sequence in which substitution of aspartic acid to alanine at position 52 in the amino acid sequence of SEQ ID NO: 2 is performed.
(8) A protein having an amino acid sequence in which substitution of aspartic acid to lysine at position 52 in the amino acid sequence of SEQ ID NO: 2 is performed.

(1)のタンパク質(以下、「E140A」と記すこともある。)のアミノ酸配列を配列番号4に示す。   The amino acid sequence of the protein (1) (hereinafter sometimes referred to as “E140A”) is shown in SEQ ID NO: 4.

(2)のタンパク質(以下、「E140K」と記すこともある。)のアミノ酸配列を配列番号6に示す。   The amino acid sequence of the protein (2) (hereinafter sometimes referred to as “E140K”) is shown in SEQ ID NO: 6.

(3)のタンパク質(以下、「C129A」と記すこともある。)のアミノ酸配列を配列番号12に示す。   The amino acid sequence of the protein (3) (hereinafter sometimes referred to as “C129A”) is shown in SEQ ID NO: 12.

(4)のタンパク質(以下、「C132A」と記すこともある。)のアミノ酸配列を配列番号14に示す。   The amino acid sequence of the protein (4) (hereinafter sometimes referred to as “C132A”) is shown in SEQ ID NO: 14.

(5)のタンパク質(以下、「C154A」と記すこともある。)のアミノ酸配列を配列番号16に示す。   The amino acid sequence of the protein (5) (hereinafter sometimes referred to as “C154A”) is shown in SEQ ID NO: 16.

(6)のタンパク質(以下、「C157A」と記すこともある。)のアミノ酸配列を配列番号18に示す。   The amino acid sequence of the protein (6) (hereinafter sometimes referred to as “C157A”) is shown in SEQ ID NO: 18.

(7)のタンパク質(以下、「D164A」と記すこともある。)のアミノ酸配列を配列番号8に示す。   The amino acid sequence of the protein (7) (hereinafter sometimes referred to as “D164A”) is shown in SEQ ID NO: 8.

(8)のタンパク質(以下、「D164K」と記すこともある。)のアミノ酸配列を配列番号10に示す。   The amino acid sequence of the protein (8) (hereinafter sometimes referred to as “D164K”) is shown in SEQ ID NO: 10.

(b)及び(d)のTFIIEα亜鉛結合ドメイン変異体タンパク質としては、ヒト以外の生物(例えば、ヒト以外の哺乳類(例えば、マウス)、両生類(例えば、アフリカツメガエルなど)、昆虫(例えば、ショウジョウバエなど)、線形動物(例えば、線虫など)などの動物、菌類(例えば、分裂酵母、出芽酵母など)など)に由来するTFIIEα亜鉛結合ドメインの変異体、配列番号4、6、8、10、12、14、16及び18のアミノ酸配列のN末端(すなわち、1位)にメチオニンが付加したアミノ酸配列、2個以上の余分なアミノ酸残基が付加したアミノ酸配列又はHisタグなどの余分なアミノ酸配列が付加したアミノ酸配列を有するタンパク質などを例示することができる。   (b) and (d) TFIIE α zinc binding domain mutant proteins include non-human organisms (eg, non-human mammals (eg, mice), amphibians (eg, Xenopus), insects (eg, Drosophila, etc.) ), Mutants of TFIIEα zinc-binding domain derived from animals such as linear animals (eg nematodes), fungi (eg fission yeast, budding yeast, etc.), SEQ ID NOs: 4, 6, 8, 10, 12 An amino acid sequence in which methionine is added to the N-terminus (ie, position 1) of amino acid sequences 14, 14, and 18, an amino acid sequence in which two or more extra amino acid residues are added, or an extra amino acid sequence such as a His tag Examples include proteins having added amino acid sequences.

本発明のTFIIEα亜鉛結合ドメイン変異体タンパク質は、ヒト由来の野生型TFIIEα亜鉛結合ドメイン変異体の変異体であっても、ヒト以外の生物(例えば、ヒト以外の哺乳類(例えば、マウス)、両生類(例えば、アフリカツメガエルなど)、昆虫(例えば、ショウジョウバエなど)、線形動物(例えば、線虫など)などの動物、菌類(例えば、分裂酵母、出芽酵母など)など)由来の野生型TFIIEα亜鉛結合ドメインの変異体であってもよい。   The TFIIEα zinc-binding domain mutant protein of the present invention may be a human-derived wild-type TFIIEα zinc-binding domain mutant protein, even if it is a non-human organism (eg, a non-human mammal (eg, mouse), amphibian ( Wild type TFIIEα zinc-binding domain derived from animals such as Xenopus, insects (eg, Drosophila), linear animals (eg, nematodes), fungi (eg, fission yeast, budding yeast, etc.) It may be a mutant.

野生型ヒトTFIIEαのアミノ酸配列を配列番号19に示す。配列番号19のアミノ酸配列において、113位から174位までが亜鉛結合ドメインである。配列番号2のアミノ酸配列は、配列番号19のアミノ酸配列における113位のアルギニンから174位のアルギニンまでの断片である。配列番号2のアミノ酸配列における17, 20, 28, 42, 45及び52位のアミノ酸部位は、それぞれ、配列番号19のアミノ酸配列における129, 132, 140, 154, 157及び164位のアミノ酸部位に相当する。   The amino acid sequence of wild type human TFIIE α is shown in SEQ ID NO: 19. In the amino acid sequence of SEQ ID NO: 19, positions 113 to 174 are zinc binding domains. The amino acid sequence of SEQ ID NO: 2 is a fragment from arginine at position 113 to arginine at position 174 in the amino acid sequence of SEQ ID NO: 19. The amino acid positions at positions 17, 20, 28, 42, 45 and 52 in the amino acid sequence of SEQ ID NO: 2 correspond to the amino acid positions at positions 129, 132, 140, 154, 157 and 164 in the amino acid sequence of SEQ ID NO: 19, respectively. To do.

本発明のTFIIEα亜鉛結合ドメイン変異体タンパク質及びその塩は、公知の方法によって製造することができる。例えば、後述の5に記載のようにして、TFIIEα亜鉛結合ドメイン変異体タンパク質をコードするDNAを得、得られたDNAを適当な発現ベクターに組み込んだ後、適当な宿主に導入し、組換え蛋白質として生産させることにより、TFIIEα亜鉛結合ドメイン変異体タンパク質を製造することができる(例えば、西郷薫、佐野弓子共訳、CURRENT PROTOCOLSコンパクト版、分子生物学実験プロトコール、I、II、III、丸善株式会社:原著、Ausubel,F.M.等, Short Protocols in Molecular Biology, Third Edition, John Wiley & Sons, Inc., New Yorkを参照のこと)。   The TFIIE α zinc-binding domain mutant protein and salts thereof of the present invention can be produced by known methods. For example, as described in 5 below, a DNA encoding a TFIIE α zinc binding domain mutant protein is obtained, and the obtained DNA is incorporated into an appropriate expression vector and then introduced into an appropriate host to obtain a recombinant protein. As a result, it is possible to produce a TFIIE α zinc-binding domain mutant protein (for example, Jun Saigo, Yoko Sano, CURRENT PROTOCOLS Compact Edition, Molecular Biology Experiment Protocol, I, II, III, Maruzen Co., Ltd.) : See, Original, Ausubel, FM et al., Short Protocols in Molecular Biology, Third Edition, John Wiley & Sons, Inc., New York).

あるいはまた、本発明のTFIIEα亜鉛結合ドメイン変異体タンパク質及びその塩は、公知のペプチド合成法に従って製造することもできる。   Alternatively, the TFIIE α zinc-binding domain mutant protein and salts thereof of the present invention can also be produced according to known peptide synthesis methods.

本発明のTFIIEα亜鉛結合ドメイン変異体タンパク質は公知の方法により塩の形で得ることもできる。   The TFIIE α zinc binding domain mutant protein of the present invention can also be obtained in the form of a salt by a known method.

本発明のTFIIEα亜鉛結合ドメイン変異体タンパク質の塩は、薬理学的に許容される塩であるとよく、特に、薬理学的に許容される酸付加塩が好ましい。薬理学的に許容される酸付加塩としては、無機酸(例えば、塩酸、リン酸、臭化水素酸、硫酸)との塩、有機酸(例えば、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、蓚酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸)との塩などを例示することができる。
The salt of the TFIIE α zinc-binding domain mutant protein of the present invention may be a pharmacologically acceptable salt, and a pharmacologically acceptable acid addition salt is particularly preferable. Pharmacologically acceptable acid addition salts include salts with inorganic acids (eg hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid), organic acids (eg acetic acid, formic acid, propionic acid, fumaric acid, maleic acid). Examples thereof include salts with acid, succinic acid, tartaric acid, citric acid, malic acid, succinic acid, benzoic acid, methanesulfonic acid, and benzenesulfonic acid.

5.TFIIEα亜鉛結合ドメイン変異体タンパク質をコードするDNA
本発明のTFIIEα亜鉛結合ドメイン変異体タンパク質をコードするDNAは、本発明のTFIIEα亜鉛結合ドメイン変異体タンパク質をコードする塩基配列を含有するものであればいかなるものであってもよい。本発明のTFIIEα亜鉛結合ドメイン変異体タンパク質をコードするDNAとしては、配列番号3、5、7、9、11、13、15又は17のいずれかの塩基配列を有するDNAを例示することができる。
5). DNA encoding TFIIEα zinc binding domain mutant protein
The DNA encoding the TFIIE α zinc-binding domain mutant protein of the present invention may be any DNA as long as it contains a base sequence encoding the TFIIE α zinc-binding domain mutant protein of the present invention. Examples of the DNA encoding the TFIIE α zinc binding domain mutant protein of the present invention include DNA having any one of the nucleotide sequences of SEQ ID NOs: 3, 5, 7, 9, 11, 13, 15 or 17.

本発明のTFIIEα亜鉛結合ドメイン変異体タンパク質をコードするDNAは、例えば、以下のようにして製造することができる。   The DNA encoding the TFIIE α zinc-binding domain mutant protein of the present invention can be produced, for example, as follows.

野生型ヒトTFIIEαは、ヒト培養細胞であるHeLa細胞から転写活性を指標に精製したTFIIE(Ohkuma, Y. et al., Proc Natl Acad Sci USA. 87, 9163-9167, 1990)から逆相高速液体クロマトグラフィーにより2つのサブユニットαとβを分離精製し、そのうちαサブユニットの方を限定分解して得られたペプチド断片のアミノ酸配列を基に、PCRでcDNAの部分配列を増幅した後に、ヒトNAM細胞cDNAライブラリーをスクリーニングすることでその全長cDNAを単離する(Ohkuma, Y. et al., Nature, 354, 398-401, 1991) 。このヒトTFIIEαcDNAは、pBluescriptII-SK(-)に組み込まれており、そのタンパク質コード領域の289番目と290番目のコドンにまたがってNdeI切断部位を持っているため、アミノ酸に変異を入れない形でこの部位を潰して、N末端に新たにNdeI認識部位を、またC末のストップコドンの3'下流にBamHI認識部位を作成する目的で、Mutan-K変異導入キット(TaKaRa)を用い、変異を導入する。これをNdeI認識部位とBamHI認識部位で切り出し、N末側に6個のヒスチジン残基を付加した6Hisタグ融合蛋白質を発現できるpET-11dベクター(Novagen)に組み込み、野生型ヒトTFIIEα発現プラスミドとする。   Wild-type human TFIIEα is a reverse-phase high-speed liquid from TFIIE (Ohkuma, Y. et al., Proc Natl Acad Sci USA. 87, 9163-9167, 1990) purified from transcriptional activity from HeLa cells, which are cultured human cells. The two subunits α and β are separated and purified by chromatography, and the partial sequence of the cDNA is amplified by PCR based on the amino acid sequence of the peptide fragment obtained by restricting the α subunit. The full-length cDNA is isolated by screening a NAM cell cDNA library (Ohkuma, Y. et al., Nature, 354, 398-401, 1991). This human TFIIEα cDNA is incorporated into pBluescriptII-SK (-) and has an NdeI cleavage site that spans the 289th and 290th codons of the protein coding region. In order to crush the site and create a new NdeI recognition site at the N-terminus and a BamHI recognition site 3 'downstream of the C-terminal stop codon, mutations were introduced using the Mutan-K mutagenesis kit (TaKaRa). To do. This was excised at the NdeI recognition site and the BamHI recognition site and incorporated into a pET-11d vector (Novagen) capable of expressing a 6His-tagged protein with 6 histidine residues added to the N-terminal side, resulting in a wild-type human TFIIEα expression plasmid .

亜鉛結合ドメインの変異体(E140A, E140K, D164A, D164K, C129A, C132A, C154A, C157A)も、各々のアミノ酸に変異を入れるためのオリゴDNAを合成し、これらと上記のMutan-K変異導入キット(TaKaRa)を用い、pBluescriptII-SK(-)に組み込まれた形の野生型ヒトTFIIEαに変異を導入して、これも上記のようにNdeI認識部位とBamHI認識部位で切り出し、N末側に6個のヒスチジン残基を付加した6Hisタグ融合蛋白質を発現できるpET-11dベクター(Novagen)に組み込む。   Zinc-binding domain mutants (E140A, E140K, D164A, D164K, C129A, C132A, C154A, C157A) were also synthesized with oligo DNAs to mutate each amino acid, and the above Mutan-K mutagenesis kit Using (TaKaRa), a mutation was introduced into wild-type human TFIIEα incorporated into pBluescriptII-SK (-), and this was also excised at the NdeI recognition site and the BamHI recognition site as described above. It is incorporated into a pET-11d vector (Novagen) capable of expressing a 6His-tagged protein with one histidine residue added.

配列番号2のアミノ酸配列において、28位のグルタミン酸からアラニンへの置換がなされているアミノ酸配列を有するタンパク質(E140A)をコードするDNAの塩基配列の一例を配列番号3に示す。配列番号2のアミノ酸配列において、28位のグルタミン酸からリシンへの置換がなされているアミノ酸配列を有するタンパク質(E140K)をコードするDNAの塩基配列の一例を配列番号5に示す。配列番号2のアミノ酸配列において、17位のシステインからアラニンへの置換がなされているアミノ酸配列を有するタンパク質(C129A)をコードするDNAの塩基配列の一例を配列番号11に示す。配列番号2のアミノ酸配列において、20位のシステインからアラニンへの置換がなされているアミノ酸配列を有するタンパク質(C132A)をコードするDNAの塩基配列の一例を配列番号13に示す。配列番号2のアミノ酸配列において、42位のシステインからアラニンへの置換がなされているアミノ酸配列を有するタンパク質(C154A)をコードするDNAの塩基配列の一例を配列番号15に示す。配列番号2のアミノ酸配列において、45位のシステインからアラニンへの置換がなされているアミノ酸配列を有するタンパク質(C157A)をコードするDNAの塩基配列の一例を配列番号17に示す。配列番号2のアミノ酸配列において、52位のアスパラギン酸からアラニンへの置換がなされているアミノ酸配列を有するタンパク質(D164A)をコードするDNAの塩基配列の一例を配列番号7に示す。配列番号2のアミノ酸配列において、52位のアスパラギン酸からリシンへの置換がなされているアミノ酸配列を有するタンパク質(D164K)をコードするDNAの塩基配列の一例を配列番号9に示す。
In the amino acid sequence of SEQ ID NO: 2, an example of a base sequence of DNA encoding a protein (E140A) having an amino acid sequence in which glutamic acid at position 28 is substituted with alanine is shown in SEQ ID NO: 3. In the amino acid sequence of SEQ ID NO: 2, an example of the base sequence of DNA encoding a protein (E140K) having an amino acid sequence in which glutamic acid at position 28 is substituted with lysine is shown in SEQ ID NO: 5. In the amino acid sequence of SEQ ID NO: 2, an example of the base sequence of DNA encoding a protein (C129A) having an amino acid sequence in which cysteine is substituted with alanine at position 17 is shown in SEQ ID NO: 11. In the amino acid sequence of SEQ ID NO: 2, an example of the base sequence of DNA encoding a protein (C132A) having an amino acid sequence in which substitution of cysteine at position 20 with alanine is made is shown in SEQ ID NO: 13. In the amino acid sequence of SEQ ID NO: 2, an example of a base sequence of DNA encoding a protein (C154A) having an amino acid sequence in which cysteine is substituted with alanine at position 42 is shown in SEQ ID NO: 15. In the amino acid sequence of SEQ ID NO: 2, an example of a base sequence of DNA encoding a protein (C157A) having an amino acid sequence in which cysteine is substituted with alanine at position 45 is shown in SEQ ID NO: 17. An example of the base sequence of DNA encoding a protein (D164A) having an amino acid sequence in which the substitution of aspartic acid at position 52 with alanine in the amino acid sequence of SEQ ID NO: 2 is shown in SEQ ID NO: 7. An example of the base sequence of DNA encoding a protein (D164K) having an amino acid sequence in which the substitution of aspartic acid to lysine at position 52 in the amino acid sequence of SEQ ID NO: 2 is shown in SEQ ID NO: 9.

6.組換えベクター
本発明のTFIIEα亜鉛結合ドメイン変異体タンパク質をコードするDNAを含有する組換えベクターは、公知の方法(例えば、Molecular Cloning2nd Edition, J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989に記載の方法)により、本発明のTFIIEα亜鉛結合ドメイン変異体タンパク質をコードするDNAを適当な発現ベクターに挿入することにより得られる。
6). Recombinant Vector A recombinant vector containing DNA encoding the TFIIE α zinc binding domain mutant protein of the present invention can be obtained by a known method (for example, Molecular Cloning 2nd Edition, J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989). By inserting the DNA encoding the TFIIE α zinc-binding domain mutant protein of the present invention into an appropriate expression vector.

発現ベクターとしては、大腸菌由来のプラスミド(例、pBR322,pBR325,pUC12,pUC13)、枯草菌由来のプラスミド(例、pUB110,pTP5,pC194)、酵母由来プラスミド(例、pSH19,pSH15)、λファージなどのバクテリオファージ、レトロウイルス,ワクシニアウイルスなどの動物ウイルス、バキュロウイルスなどの昆虫病原ウイルスなどを用いることができる。   As expression vectors, plasmids derived from E. coli (eg, pBR322, pBR325, pUC12, pUC13), plasmids derived from Bacillus subtilis (eg, pUB110, pTP5, pC194), yeast-derived plasmids (eg, pSH19, pSH15), λ phage, etc. Bacteriophages, animal viruses such as retroviruses and vaccinia viruses, insect pathogenic viruses such as baculoviruses, and the like can be used.

発現ベクターには、プロモーター、エンハンサー、スプライシングシグナル、ポリA付加シグナル、選択マーカー、SV40複製オリジンなどを付加してもよい。   A promoter, enhancer, splicing signal, poly A addition signal, selection marker, SV40 replication origin, and the like may be added to the expression vector.

また、発現ベクターは、融合タンパク質発現ベクターであってもよい。種々の融合タンパク質発現ベクターが市販されており、pGEXシリーズ(アマシャムファルマシアバイオテク社)、pET CBD Fusion System 34b-38b(Novagen社)、pET Dsb Fusion Systems 39b and 40b(Novagen社)、pET GST Fusion System 41 and 42(Novagen社)などを例示することができる。
The expression vector may be a fusion protein expression vector. Various fusion protein expression vectors are commercially available: pGEX series (Amersham Pharmacia Biotech), pET CBD Fusion System 34b-38b (Novagen), pET Dsb Fusion Systems 39b and 40b (Novagen), pET GST Fusion System 41 and 42 (Novagen).

7.形質転換体
本発明のTFIIEα亜鉛結合ドメイン変異体タンパク質をコードするDNAを含有する組換えベクターを宿主に導入することにより、形質転換体を得ることができる。
7). Transformant A transformant can be obtained by introducing a recombinant vector containing DNA encoding the TFIIE α zinc-binding domain mutant protein of the present invention into a host.

宿主としては、細菌細胞(例えば、エシェリヒア属菌、バチルス属菌、枯草菌など)、真菌細胞(例えば、酵母、アスペルギルスなど)、昆虫細胞(例えば、S2細胞、Sf細胞など)、動物細胞(例えば、CHO細胞、COS細胞、HeLa細胞、C127細胞、3T3細胞、BHK細胞、HEK293細胞など)、植物細胞などを例示することができる。   Hosts include bacterial cells (eg, Escherichia, Bacillus, Bacillus, etc.), fungal cells (eg, yeast, Aspergillus, etc.), insect cells (eg, S2 cells, Sf cells, etc.), animal cells (eg, CHO cells, COS cells, HeLa cells, C127 cells, 3T3 cells, BHK cells, HEK293 cells, etc.), plant cells and the like.

組換えベクターを宿主に導入するには、Molecular Cloning2nd Edition, J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989に記載の方法(例えば、リン酸カルシウム法、DEAE-デキストラン法、トランスベクション法、マイクロインジェクション法、リポフェクション法、エレクロトポレーション法、形質導入法、スクレープローディング法、ショットガン法など)または感染により行うことができる。   In order to introduce a recombinant vector into a host, the method described in Molecular Cloning 2nd Edition, J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989 (for example, calcium phosphate method, DEAE-dextran method, transfection method, Injection method, lipofection method, electroporation method, transduction method, scrape loading method, shotgun method, etc.) or infection.

形質転換体を培地で培養し、培養物からTFIIEα亜鉛結合ドメイン変異体タンパク質を採取することができる。TFIIEα亜鉛結合ドメイン変異体タンパク質が培地に分泌される場合には、培地を回収し、その培地からTFIIEα亜鉛結合ドメイン変異体タンパク質を分離し、精製すればよい。TFIIEα亜鉛結合ドメイン変異体タンパク質が形質転換された細胞内に産生される場合には、その細胞を溶解し、その溶解物からTFIIEα亜鉛結合ドメイン変異体タンパク質を分離し、精製すればよい。   The transformant can be cultured in a medium, and the TFIIE α zinc-binding domain mutant protein can be collected from the culture. When the TFIIEα zinc-binding domain mutant protein is secreted into the medium, the medium may be recovered, and the TFIIE α zinc-binding domain mutant protein may be separated from the medium and purified. When the TFIIEα zinc-binding domain mutant protein is produced in a transformed cell, the cell may be lysed, and the TFIIE α zinc-binding domain mutant protein may be separated from the lysate and purified.

TFIIEα亜鉛結合ドメイン変異体タンパク質が別のタンパク質(タグとして機能する)との融合タンパク質の形態で発現される場合には、融合タンパク質を分離及び精製した後に、FactorXaや酵素(エンテロキナーゼ)処理をすることにより、別のタンパク質を切断し、目的とするTFIIEα亜鉛結合ドメイン変異体タンパク質を得ることができる。   If the TFIIEα zinc-binding domain mutant protein is expressed in the form of a fusion protein with another protein (functioning as a tag), the fusion protein is isolated and purified, and then treated with FactorXa or an enzyme (enterokinase) By this, another protein can be cut | disconnected and the target TFIIE alpha zinc binding domain mutant protein can be obtained.

TFIIEα亜鉛結合ドメイン変異体タンパク質の分離及び精製は、公知の方法により行うことができる。公知の分離、精製法としては、塩析や溶媒沈澱法などの溶解度を利用する方法、透析法、限外ろ過法、ゲルろ過法、およびSDS−ポリアクリルアミドゲル電気泳動法などの分子量の差を利用する方法、イオン交換クロマトグラフィーなどの荷電の差を利用する方法、アフィニティークロマトグラフィーなどの特異的親和性を利用する方法、逆相高速液体クロマトグラフィーなどの疎水性の差を利用する方法、等電点電気泳動法などの等電点の差を利用する方法などが用いられる。
Separation and purification of the TFIIEα zinc-binding domain mutant protein can be performed by known methods. Known separation and purification methods include differences in molecular weight such as methods utilizing solubility such as salting out and solvent precipitation, dialysis, ultrafiltration, gel filtration, and SDS-polyacrylamide gel electrophoresis. Methods that use, methods that use charge differences such as ion exchange chromatography, methods that use specific affinity such as affinity chromatography, methods that use hydrophobic differences such as reversed-phase high-performance liquid chromatography, etc. A method using the difference in isoelectric point, such as electric point electrophoresis, is used.

8.抗体
本発明のTFIIEα亜鉛結合ドメイン変異体タンパク質又はその塩に対する抗体は、本発明のTFIIEα亜鉛結合ドメイン変異体タンパク質又はその塩の検出及び/又は定量に利用することができる。
8). Antibody The antibody against the TFIIE α zinc-binding domain mutant protein or a salt thereof of the present invention can be used for detection and / or quantification of the TFIIE α zinc-binding domain mutant protein or a salt thereof of the present invention.

本発明のTFIIEα亜鉛結合ドメイン変異体タンパク質又はその塩に対する抗体は、慣用のプロトコールを用いて、本発明のTFIIEα亜鉛結合ドメイン変異体タンパク質又はその塩またはそのエピトープを含む断片を動物に投与することにより得られる。   The antibody against the TFIIE α zinc-binding domain mutant protein or a salt thereof of the present invention can be obtained by administering a fragment containing the TFIIE α zinc-binding domain mutant protein of the present invention or a salt thereof or an epitope thereof to an animal using a conventional protocol. can get.

本発明の抗体は、ポリクローナル抗体、モノクローナル抗体、キメラ抗体、一本鎖抗体、ヒト化抗体のいずれであってもよい。   The antibody of the present invention may be any of a polyclonal antibody, a monoclonal antibody, a chimeric antibody, a single chain antibody, and a humanized antibody.

ポリクローナル抗体を作製するには、公知あるいはそれに準じる方法にしたがって製造することができる。例えば、免疫抗原(タンパク質抗原)とキャリアー蛋白質との複合体をつくり、動物に投与(免疫)を行ない、該免疫動物から本発明のタンパク質に対する抗体含有物を採取して、抗体の分離精製を行なうことにより製造できる。投与に際して抗体産生能を高めるため、完全フロイントアジュバントや不完全フロイントアジュバントを投与してもよい。投与は、通常約2〜6週毎に1回ずつ、計約3〜10回程度行なわれる。ポリクローナル抗体は、免疫動物の血液、腹水など、好ましくは血液から採取することができる。ポリクローナル抗体の分離精製は、免疫グロブリンの分離精製法(例えば、塩析法、アルコール沈殿法、等電点沈殿法、電気泳動法、イオン交換体による吸脱着法、超遠心法、ゲルろ過法、抗原結合固相あるいはプロテインAあるいはプロテインGなどの活性吸着剤により抗体のみを採取し、結合を解離させて抗体を得る特異的精製法)に従って行なうことができる。   In order to produce a polyclonal antibody, it can be produced according to a known method or a method analogous thereto. For example, a complex of an immunizing antigen (protein antigen) and a carrier protein is prepared, administered (immunized) to an animal, and an antibody-containing substance against the protein of the present invention is collected from the immunized animal, and the antibody is separated and purified. Can be manufactured. Complete Freund's adjuvant or incomplete Freund's adjuvant may be administered in order to enhance antibody production ability upon administration. Administration is usually performed once every about 2 to 6 weeks, about 3 to 10 times in total. Polyclonal antibodies can be collected from blood, ascites, etc., preferably from blood of immunized animals. Polyclonal antibodies can be separated and purified by immunoglobulin separation and purification methods (for example, salting-out method, alcohol precipitation method, isoelectric precipitation method, electrophoresis method, adsorption / desorption method using ion exchanger, ultracentrifugation method, gel filtration method, A specific purification method in which only an antibody is collected using an antigen-binding solid phase or an active adsorbent such as protein A or protein G, and the antibody is obtained by dissociating the binding.

モノクローナル抗体は、Nature (1975) 256: 495、Science (1980) 208: 692-に記載されている、G. Koehler及びC. Milsteinのハイブリドーマ法により作製することができる。すなわち、動物を免疫した後、免疫動物の脾臓から抗体産生細胞を単離し、これを骨髄腫細胞と融合させることによりモノクローナル抗体産生細胞を調製する。さらに、インターロイキン−18変異体タンパク質又はその塩と特異的に反応するが、他の抗原タンパク質とは実質的に交差反応しない抗体を産生する細胞系を単離するとよい。この細胞系を培養し、培養物から所望のモノクローナル抗体を取得することができる。モノクローナル抗体の精製は、上記の免疫グロブリンの分離精製法に従って行なうことができる。   Monoclonal antibodies can be prepared by the hybridoma method of G. Koehler and C. Milstein described in Nature (1975) 256: 495, Science (1980) 208: 692-. That is, after immunizing an animal, antibody-producing cells are isolated from the spleen of the immunized animal and fused with myeloma cells to prepare monoclonal antibody-producing cells. In addition, cell lines that produce antibodies that react specifically with the interleukin-18 mutant protein or salt thereof but do not substantially cross-react with other antigenic proteins may be isolated. This cell line can be cultured, and the desired monoclonal antibody can be obtained from the culture. Purification of the monoclonal antibody can be performed according to the above-described method for separating and purifying immunoglobulin.

一本鎖抗体を作製する技法は、米国特許第4,946,778号に記載されている。   Techniques for making single chain antibodies are described in US Pat. No. 4,946,778.

ヒト化抗体を作製する技法は、Biotechnology 10, 1121-, 1992; Biotechnology 10, 169-, 1992に記載されている。
Techniques for making humanized antibodies are described in Biotechnology 10, 1121-, 1992; Biotechnology 10, 169-, 1992.

9.TFIIEα亜鉛結合ドメイン変異体タンパク質又はその塩の用途
本発明のTFIIEα亜鉛結合ドメイン変異体タンパク質及びその塩は、TFIIEαが関与する事象(例えば、転写活性、TFIIEβ及び他の基本転写因子への結合など)の制御に利用することができる。例えば、本発明のTFIIEα亜鉛結合ドメイン変異体タンパク質及びその塩を利用して、転写が関与する疾患(例えば、癌、リウマチ、生活習慣病、遺伝病など)の予防及び/又は治療を行うことができるかもしれない。また、本発明のTFIIEα亜鉛結合ドメイン変異体タンパク質及びその塩を利用して、転写のメカニズムを解明することができるかもしれない。
9. Use of TFIIEα zinc-binding domain mutant protein or salt thereof The TFIIEα zinc-binding domain mutant protein and salts thereof of the present invention can be used for events involving TFIIEα (eg, transcriptional activity, binding to TFIIEβ and other basic transcription factors). Can be used to control For example, the prevention and / or treatment of diseases involving transcription (for example, cancer, rheumatism, lifestyle-related diseases, genetic diseases, etc.) can be carried out using the TFIIE α zinc-binding domain mutant protein and salts thereof of the present invention. I may be able to do it. In addition, the transcription mechanism may be elucidated using the TFIIE α zinc-binding domain mutant protein of the present invention and salts thereof.

本発明のTFIIEα亜鉛結合ドメイン変異体タンパク質及びその塩は、疾患の予防及び/又は治療を目的とする医薬品として、あるいは、実験用の試薬として利用することができる。
The TFIIE α zinc-binding domain mutant protein and salts thereof of the present invention can be used as pharmaceuticals for the purpose of preventing and / or treating diseases, or as experimental reagents.

以下、本発明を実施例によって具体的に説明する。なお、これらの実施例は、本発明を説明するためのものであって、本発明の範囲を限定するものではない。
Hereinafter, the present invention will be specifically described by way of examples. These examples are for explaining the present invention and do not limit the scope of the present invention.

構造の記述
N末端の12残基およびC末端の11残基は、距離制限が少なかっため収束しなかった。実際、1H-15N ヘテロ核NOE および15N-T1、T2 値は、これらの領域における主鎖のフレキシビリティーを明らかにした(データ省略)。しかし、残りの40個のアミノ酸だけで、6本のβ鎖および1本の短いαヘリックスからなるコンパクトな構造を設計することが可能である(図1bおよび1c);S1鎖 (126-129aa)、t1 ターン (130-133aa)、S2 鎖 (134-136aa)、αヘリックス (138-142aa)、S3鎖 (144-146aa)、ループ (147-150aa)、S4鎖(151-154aa)、 t2ターン (155-158aa)、S5 鎖 (159-161aa)、S6 鎖 (162-164aa)。S1、S2、S6 鎖およびS3、S4、S5鎖は、それぞれ逆平行βシートを形成する。αヘリックスによって隔てられた2つのβシートは、トポロジー図(図1d)におけるシステイン残基の位置も含めて等しい。このコンホメーションにおいて6本のβ鎖はαヘリックスを直径として半円を描く。Zn2+は、t1ターンで129Cおよび132Cと、t2ターンで154Cおよび157Cと配位結合する。H-D交換実験において、131V、132C、156Fおよび157Cのアミドプロトンの交換速度は比較的遅かった。構造から判断すると、おそらく129C:Sγ-131V:HN, -132 C:HN および 154C:Sγ-156F:HN, -157C:HN にそれぞれ水素結合が形成されているのであろう(図1e)。これらの二またに分かれる水素結合は、多くのジンクフィンガードメインに観察される、i残基のSγとi+2, i+3残基のHNとの間の水素結合パターンと一致している(Qian, X. et al. Novel zinc finger motif in the basal transcriptional machinery: Three-dimensional NMR studies of the nucleic acid binding domain of transcriptional elongation factor TFIIS. Biochemistry 32, 9944-9959 (1993).; Zhu, W. et al. The N-terminal domain of TFIIB from Pyrococcus furiosus forms a zinc ribbon. Nat. Struct. Biol. 3, 122-124 (1996).; Wang, B., Jones, D.N., Kaine, B.P. & Weiss, M.A. High-resolution structure of an archaeal zinc ribbon defines a general architectural motif in eukaryotic RNA polymerases. Structure 6, 555-569 (1998).; Chen, H.T., Legault, P., Glushka, J., Omichinski, J.G. & Scott, R.A. Structure of a (Cys3His) zinc ribbon, a ubiquitous motif in archaeal and eucaryal transcription. Protein Sci. 9, 1743-1752 (2000).)。アミドプロトンの殆ど全部が40分以内にジュウテリウムと交換された。そのため、H-D交換実験では水素結合の情報は殆ど得られなかった。幸運なことに、本発明者らはトランス水素結合3hJNC’結合を測定することによって、βシート中のより多数の水素結合を直接観察することができた(Cordier, F. & Grzesiek, S. Direct observation of hydrogen bonds in proteins by interresidue 3hJNC' Scalar Couplings. J. Am. Chem. Soc. 121, 1601-1602 (1999).; Cornilescu, G., Hu, J-S. & Bax, A. Identification of the hydrogen bonding network in a protein by scalar couplings. J. Am. Chem. Soc. 121, 2949-2950(1999).)。
現在の構造は、このような短い領域であるにもかかわらず、いかに構造が維持されうるかを説明することができる。Zn2+と4つのシステインとの配位結合、および補助的な2つの分岐した水素結合は、t1およびt2ターンを厳密に固定する。これが、2つの逆平行βシートをαヘリックスの片側に近づける。各二次構造中の疎水性アミノ酸によって疎水性コアが形成される(図1f)。この疎水性コア内では、5個のフェニルアラニン残基が相互に積み重ねられ、L字形に配置されている。芳香族-芳香族相互作用ネットワークは、構造の安定化に著しく寄与する。それらの他に、141A、144L および161V等の疎水性アミノ酸もまた疎水性コアの形成に重要である。TFIIEα亜鉛結合ドメインは、疎水性コアに関与する残基および亜鉛結合部位の4つのシステイン残基も含めて、高度に保存されている(図1a)。分子表面の静電ポテンシャルは、この亜鉛結合ドメインが、保存された138D、160E、162E、163E、164Dおよび165E(これらは亜鉛結合部位の反対側のくぼんだ表面の広い範囲に位置している)からなる陰性ポテンシャルクラスターを有することを示している(図1g)。これらの観察は、ホモローグ中の亜鉛結合ドメインの構造がヒトTFIIEαのそれと類似しているであろうことを強く示唆している。
Description of structure
N-terminal 12 residues and C-terminal 11 residues did not converge because of limited distance. In fact, 1 H- 15 N heteronuclear NOE and 15 NT 1 , T 2 values revealed backbone flexibility in these regions (data not shown). However, with only the remaining 40 amino acids, it is possible to design a compact structure consisting of 6 β chains and 1 short α helix (FIGS. 1b and 1c); S1 chain (126-129aa) , T1 turn (130-133aa), S2 chain (134-136aa), α helix (138-142aa), S3 chain (144-146aa), loop (147-150aa), S4 chain (151-154aa), t2 turn (155-158aa), S5 chain (159-161aa), S6 chain (162-164aa). S1, S2, S6 chains and S3, S4, S5 chains each form an antiparallel β sheet. The two β sheets separated by an α helix are equal, including the position of the cysteine residue in the topology diagram (FIG. 1d). In this conformation, the six β chains draw a semicircle with an α helix as the diameter. Zn 2+ coordinates with 129C and 132C in the t1 turn and 154C and 157C in the t2 turn. In HD exchange experiments, the exchange rate of 131V, 132C, 156F and 157C amide protons was relatively slow. Judging from the structure, hydrogen bonds are probably formed in 129C: Sγ-131V: H N , -132 C: H N and 154C: Sγ-156F: H N , -157C: H N (Fig. 1e). These bifurcated to split the hydrogen bond is consistent with the hydrogen bonding pattern between the H N of Sγ and i + 2, i + 3 residues of many observed in zinc finger domains, i residues (Qian, X. et al. Novel zinc finger motif in the basal transcriptional machinery: Three-dimensional NMR studies of the nucleic acid binding domain of transcriptional elongation factor TFIIS.Biochemistry 32, 9944-9959 (1993) .; Zhu, W. et al. The N-terminal domain of TFIIB from Pyrococcus furiosus forms a zinc ribbon. Nat.Struct. Biol. 3, 122-124 (1996) .; Wang, B., Jones, DN, Kaine, BP & Weiss, MA High-resolution structure of an archaeal zinc ribbon defines a general architectural motif in eukaryotic RNA polymerases.Structure 6, 555-569 (1998) .; Chen, HT, Legault, P., Glushka, J., Omichinski, JG & Scott, RA Structure of a (Cys3His) zinc ribbon, a ubiquitous motif in archaeal and eucaryal transcription. Protein Sci. 9, 1743-1752 (2000).). Almost all of the amide protons were exchanged for deuterium within 40 minutes. For this reason, little information on hydrogen bonding was obtained in HD exchange experiments. Fortunately, we were able to directly observe a larger number of hydrogen bonds in the β-sheet by measuring the trans hydrogen bond 3h J NC ′ bond (Cordier, F. & Grzesiek, S Direct observation of hydrogen bonds in proteins by interresidue 3 hJ NC ' Scalar Couplings. J. Am. Chem. Soc. 121, 1601-1602 (1999) .; Cornilescu, G., Hu, JS. & Bax, A. Identification of the hydrogen bonding network in a protein by scalar couplings. J. Am. Chem. Soc. 121, 2949-2950 (1999).).
The current structure can explain how the structure can be maintained despite such a short region. The coordination bond between Zn 2+ and the four cysteines and the two auxiliary branched hydrogen bonds tightly fix the t1 and t2 turns. This brings the two antiparallel β sheets closer to one side of the α helix. A hydrophobic core is formed by the hydrophobic amino acids in each secondary structure (FIG. 1f). Within this hydrophobic core, five phenylalanine residues are stacked on top of each other and arranged in an L shape. Aromatic-aromatic interaction networks contribute significantly to structural stabilization. Besides them, hydrophobic amino acids such as 141A, 144L and 161V are also important for the formation of the hydrophobic core. The TFIIEα zinc binding domain is highly conserved, including residues involved in the hydrophobic core and the four cysteine residues in the zinc binding site (FIG. 1a). The electrostatic potential on the molecular surface indicates that this zinc binding domain is conserved 138D, 160E, 162E, 163E, 164D and 165E (which are located in a wide range of recessed surfaces opposite the zinc binding site) It has a negative potential cluster consisting of (Fig. 1g). These observations strongly suggest that the structure of the zinc binding domain in the homologue will be similar to that of human TFIIEα.

亜鉛結合モチーフの新規な構造
TFIIEα亜鉛結合ドメインは、転写伸長因子TFIIS (TFIISc)のC末端ドメイン(Qian, X. et al. Novel zinc finger motif in the basal transcriptional machinery: Three-dimensional NMR studies of the nucleic acid binding domain of transcriptional elongation factor TFIIS. Biochemistry 32, 9944-9959 (1993).; Olmsted, V.K. et al. Yeast transcript elongation factor (TFIIS), structure and function. J. Biol. Chem. 273, 22589-22594 (1998).)、 TFIIB (TFIIBn) のN末端ドメイン(Zhu, W. et al. The N-terminal domain of TFIIB from Pyrococcus furiosus forms a zinc ribbon. Nat. Struct. Biol. 3, 122-124 (1996).; Chen, H.T., Legault, P., Glushka, J., Omichinski, J.G. & Scott, R.A. Structure of a (Cys3His) zinc ribbon, a ubiquitous motif in archaeal and eucaryal transcription. Protein Sci. 9, 1743-1752 (2000).)およびRNA Pol IIのRPB9サブユニットのC末端ドメイン(RPB9c)( Wang, B., Jones, D.N., Kaine, B.P. & Weiss, M.A. High-resolution structure of an archaeal zinc ribbon defines a general architectural motif in eukaryotic RNA polymerases. Structure 6, 555-569 (1998).; Cramer, P., Bushnell, D.A. & Kornberg, R.D. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292, 1863-1875 (2001).; Gnatt, A.L., Cramer, P., Fu, J., Bushnell, D.A., & Kornberg, R.D. Structural basis of transcription: An RNA polymerase II elongation complex at 3.3 Å resolution. Science 292, 1876-1882 (2001).)に観察されるように、亜鉛リボン構造を形成していると予測されていた。驚くべきことに、TFIIEα亜鉛結合ドメインは亜鉛リボン構造とは全く異なっている(図2a)。TFIISc、TFIIBnおよび RPB9cのトポロジーは、それぞれβββ、βββおよびββββ(β:β鎖)であり、これらは逆平行βシートを形成している。他方、TFIIEα亜鉛結合ドメインのトポロジーはより複雑である。それはββαββββ(α:αヘリックス)で、2つの逆平行βシートおよび1つのαヘリックスを形成している。他方、これらの亜鉛結合部位は互いによく似ている(図2b)。2つのターン(CxxCxxおよびCxxCxx、12aa領域)の主鎖を比較すると、TFIIEα亜鉛結合ドメインのTFIISc、TFIIBnおよび RPB9cに対する根平均二乗偏差(rmsd)はそれぞれ0.87Å、1.05Åおよび0.72Åである。本発明者らは類似構造の検索を試みたが、DALIサーバーを用いた検索では類似構造は検出されなかった(Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123-138 (1993).)。したがって、TFIIEα亜鉛結合ドメインは新しい種類の亜鉛結合構造に分類されるべきである。
Novel structure of zinc binding motif
TFIIEα zinc binding domain is the C-terminal domain of transcription elongation factor TFIIS (TFIISc) (Qian, X. et al. Novel zinc finger motif in the basal transcriptional machinery: Three-dimensional NMR studies of the nucleic acid binding domain of transcriptional elongation factor TFIIS. Biochemistry 32, 9944-9959 (1993) .; Olmsted, VK et al. Yeast transcript elongation factor (TFIIS), structure and function.J. Biol. Chem. 273, 22589-22594 (1998).), TFIIB ( The N-terminal domain of TFIIBn) (Zhu, W. et al. The N-terminal domain of TFIIB from Pyrococcus furiosus forms a zinc ribbon. Nat. Struct. Biol. 3, 122-124 (1996) .; Chen, HT, Legault , P., Glushka, J., Omichinski, JG & Scott, RA Structure of a (Cys3His) zinc ribbon, a ubiquitous motif in archaeal and eucaryal transcription. Protein Sci. 9, 1743-1752 (2000).) And RNA Pol C-terminal domain (RPB9c) of the RPB9 subunit of II (Wang, B., Jones, DN, Kaine, BP & Weiss, MA High-resolution structure of an archaeal zinc ribbon defines a general architectural motif in eukaryotic RNA polymerases.Structure 6, 555-569 (1998) .; Cramer, P., Bushnell, DA & Kornberg, RD Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution.Science 292, 1863-1875 (2001) .; Gnatt, AL, Cramer, P., Fu, J., Bushnell, DA, & Kornberg, RD Structural basis of transcription: An RNA polymerase II elongation complex at 3.3 Å resolution. Science 292, 1876-1882 ( 2001).) Was predicted to form a zinc ribbon structure. Surprisingly, the TFIIEα zinc binding domain is quite different from the zinc ribbon structure (FIG. 2a). The topologies of TFIISc, TFIIBn and RPB9c are βββ, βββ and ββββ (β: β chain), respectively, which form antiparallel β sheets. On the other hand, the topology of TFIIEα zinc binding domain is more complex. It is ββαββββ (α: α helix), forming two antiparallel β sheets and one α helix. On the other hand, these zinc binding sites are very similar to each other (Figure 2b). Comparing the backbones of the two turns (CxxCxx and CxxCxx, 12aa regions), the root mean square deviations (rmsd) for TFIIEα zinc binding domain TFIISc, TFIIBn and RPB9c are 0.87Å, 1.05Å and 0.72Å, respectively. The present inventors tried to search for a similar structure, but no similar structure was detected by a search using a DALI server (Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. Biol. 233, 123-138 (1993).). Therefore, TFIIE alpha zinc binding domains should be classified into a new kind of zinc binding structure.

突然変異分析
亜鉛結合ドメインの機能を明らかにするために、陰性ポテンシャル表面に位置する高度に保存された2つのアミノ酸、すなわち140Eおよび164Dをそれぞれアラニンまたはリシンに突然変異させ(E140A、E140K、D164A、D164K)、そして4つのZn2+リガンドのそれぞれをシステインからアラニンへ突然変異させた (C129A、C132A、 C154A、C157A)。本発明者らは超コイル鋳型を用いて、突然変異させた全長TFIIEαの基本転写活性に対する影響をアッセイした(図3a)。E140A突然変異体は転写活性が軽度に増大し、またE140K突然変異体の転写活性は野生型の転写活性の50%まで低下した。驚くべきことに、D164AおよびD164Kの場合、転写活性は約200から250%まで増大した。他方、全てのZn2+リガンド突然変異体において活性は劇的に低下したが、その程度はそれぞれ違っていた。本発明者らは全てのZn2+リガンド突然変異体が等しく転写活性を失うであろうと予測していた。なぜなら、それらは配位結合していたZn2+を失い、亜鉛結合部位が破壊され、ランダムコイル構造になると思われたからである。実際には、C154A およびC157Aはほぼ完全に活性を失ったが、C129AおよびC132Aは12-25%の活性を保持していた。
次に、本発明者らはGSTプルダウンアッセイによって、これらの突然変異がTFIIEβおよび他のGTFとの結合に及ぼす影響を調べた(図3b)。転写活性は突然変異の影響を受けたにもかかわらず、C154A およびC157Aを含む殆ど全ての突然変異体が野生型の結合能と同一の結合能を有していた。対照的に、C129AおよびC132Aは野生型よりも強くTFIIFβに結合した。したがって、これらのアッセイは、各Zn2+リガンド(すなわち、システイン)の構造への寄与の非対称性を示唆していた。
Mutation analysis To elucidate the function of the zinc binding domain, two highly conserved amino acids located on the negative potential surface, 140E and 164D, were mutated to alanine or lysine, respectively (E140A, E140K, D164A, D164K), and each of the four Zn 2+ ligands was mutated from cysteine to alanine (C129A, C132A, C154A, C157A). We assayed the effect of mutated full-length TFIIEα on basal transcriptional activity using a supercoiled template (FIG. 3a). The E140A mutant had a slight increase in transcriptional activity, and the transcriptional activity of the E140K mutant decreased to 50% of the wild type transcriptional activity. Surprisingly, for D164A and D164K, transcriptional activity increased from about 200 to 250%. On the other hand, the activity decreased dramatically in all Zn 2+ ligand mutants, but to varying degrees. The inventors predicted that all Zn 2+ ligand mutants would lose transcriptional activity equally. This is because they seem to lose the coordinated Zn 2+ and destroy the zinc binding site, resulting in a random coil structure. In practice, C154A and C157A almost completely lost activity, while C129A and C132A retained 12-25% activity.
Next, we examined the effect of these mutations on binding to TFIIEβ and other GTFs by GST pull-down assay (FIG. 3b). Despite transcriptional effects, almost all mutants, including C154A and C157A, had the same binding ability as wild-type. In contrast, C129A and C132A bound to TFIIFβ more strongly than the wild type. Thus, these assays suggested asymmetry of the contribution of each Zn 2+ ligand (ie, cysteine) to the structure.

Zn2+リガンドの非対称性
この非対称性の原因について、本発明者らは最初C154A およびC157Aの構造は完全に破壊されてランダムコイル構造になるが、C129AおよびC132Aの構造は部分的に変化するのだと推定した。この考えを試験するため、野生型およびZn2+リガンド点突然変異体の亜鉛結合ドメインについて遠紫外CDスペクトルを記録した(図4a)。CDスペクトルから計算した二次構造は、ランダムコイル構造の相対量がC129A > C132A > C157A > C154Aの順番であることを示唆し、これは本発明者らの推定に反していた。それらの構造をより詳細に検討するため、本発明者らは1H NMRスペクトルを記録した(図4b)。野生型とのスペクトルの比較は、全ての構造が顕著に変化していることを示した。特にC129Aにおいては、シグナル分散が劇的に減少していた。これは、酵母TFIIEαの亜鉛結合部位における点突然変異体分析の結果と一致している(Kuldell, N.H., & Buratowski, S. Genetic analysis of the large subunit of yeast transcription factor IIE reveals two regions with distinct functions. Mol. Cell. Biol. 17, 5288-5298 (1997).)。この分析では、C124F(ヒトでは129C)置換を有する株は致死性であったが、C127F(ヒトでは132C)突然変異体は温度感受性であった。しかし、C129Aスペクトルは、EDTAで変性させた野生型のスペクトルと同一ではなく、そのシグナルはより広幅化していた。このことは、C132A、C154Aおよび C157Aと同様に部分的に折りたたまれた構造を示唆していた。また、それぞれの異なるスペクトルは、それら突然変異体がおのおの異なる構造を有することを示していた。
全てのZn2+リガンド点突然変異体は、4個のシステインのうち1個を欠いている。これらの突然変異体は残りの3個のシステインによってZn2+と配位結合することが可能であろうか?これを突き止めるため、本発明者らはNMR 1H-15N HSQCをモニターしながらEDTA滴定実験を行った。EDTA添加は、まず全ての突然変異体および野生型のスペクトルを変化させた。次に、等量のEDTAはシグナル分散を完全に消し去り、折り畳み構造がランダムコイル構造へ広がったことを示した。2倍過剰のEDTAを添加する前および後のスペクトルを図4cに示す。EDTA添加前のC129Aのスペクトルでは、全部ではないが殆どのシグナルがZn2+を除去したランダムコイル構造のシグナルと一致していた。亜鉛結合ドメインは2個のアスパラギンと1個のグルタミンを有し、したがってそれら側鎖シグナルの3対が1H-15N HSQCスペクトルに観察される。しかし、C129Aスペクトルは4対の側鎖シグナルを有し、そのうち2対はランダムコイル構造のそれと一致していた(図4d)。これらの結果は、C129Aにおいてランダムコイル構造は優勢であるが、Zn2+と配位結合した、部分的に折りたたまれた構造と平衡化していることを示している。C132Aの場合、野生型では57個のシグナルが観察されるのに対し、104個の主鎖シグナルが観察された。注目すべきことに、C132AスペクトルはC129Aスペクトルと類似していた。実際、C132Aスペクトルは多数の同一シグナルを含んでいた(図4d)。これらのシグナルに加えて、C132Aスペクトルは多数の分散シグナルおよびランダムコイル構造に対応する集中したシグナルをも有していた(図4c、4d)。アスパラギンおよびグルタミンの側鎖シグナルは6対観察され、そのうち2対および他の2対は、それぞれランダムコイル構造のそれ、およびC129Aにおける部分的に折り畳まれた構造のそれと一致していた(図4d)。C132AとC129Aのスペクトルの比較は、C129Aの部分的に折り畳まれた構造と同一または非常によく似た構造、およびZn2+と配位結合した、他の部分的に折り畳まれた構造、ならびにランダムコイル構造の間でC132Aが平衡化していることを明らかにした。C154AおよびC157Aのスペクトルもまた、多数の分散シグナルおよびC129A、C132A スペクトルと比較するとより少ない集中したシグナルという点を含めて相互に類似していた(図4c)。アスパラギンおよびグルタミンの側鎖シグナルについては、C154Aでは5対が観察された。そのうち2対はランダムコイル構造のものと一致し、また他の対は部分的に折り畳まれた構造のそれと対応していた(図4d)。したがって、C154Aは、Zn2+と配位結合し、部分的に折り畳まれた構造、およびランダムコイル構造(これはC129AおよびC132Aのランダムコイル構造ほど優勢ではない)の間で平衡化されている。C157Aのスペクトルについては、5対の側鎖シグナルが観察された。そのうち2対はランダムコイル構造のものと一致し、また他の2対はC154Aのそれと一致した。主鎖については、77個のシグナルが観察された。これらのシグナルはランダムコイル構造、C154Aの部分的に折り畳まれた構造、および他の部分的に折り畳まれた構造のシグナルと対応していた(図4c、4d)。これらの結果は、C157AがC154Aと同一または非常に類似した構造、および他のZn2+と配位結合し、部分的に折り畳まれた構造、およびランダムコイル構造と平衡化していることを示す。EDTA滴定実験後、透析によってEDTAおよびZnCl2を除去したサンプルを用いて、本発明者らは逆にZnCl2滴定実験を行った。ZnCl2添加はシグナルを大幅に分散させ、そして等量のZnCl2添加は、各サンプルのスペクトルをEDTA添加前と同じスペクトルに戻した(データ省略)。
要約すると、亜鉛結合部位の4つのシステインのうちいずれの1個を失っても、Zn2+との配位結合は可能である。しかし、構造は部分的に破壊され、不安定となる。第1または第2のシステインが置換された場合は特にそうである。全ての構造はZn2+と配位結合していないランダムコイル構造と平衡化していた。ランダムコイル構造の優勢は、C129A>C132A>C154A≒C157Aの順番である。C129A とC132Aの構造は相互に類似している。C154A とC157Aの構造も類似している。さらに、C132A およびC157Aもまた、他の部分的に折り畳まれた構造と平衡化していた。全ての構造は、Zn2+結合に依存して構造形成の可逆性を示す。
Asymmetry of Zn 2+ ligands. As for the cause of this asymmetry, we first destroyed the structure of C154A and C157A completely into a random coil structure, but the structure of C129A and C132A changes partially. I estimated. To test this idea, far-UV CD spectra were recorded for the zinc-binding domains of wild-type and Zn 2+ ligand point mutants (FIG. 4a). The secondary structure calculated from the CD spectrum suggested that the relative amount of the random coil structure was in the order of C129A>C132A>C157A> C154A, which was contrary to our estimation. In order to study their structures in more detail, we recorded 1 H NMR spectra (FIG. 4b). Comparison of the spectrum with the wild type showed that all structures were significantly changed. Especially in C129A, the signal dispersion was dramatically reduced. This is consistent with the results of point mutant analysis at the zinc binding site of yeast TFIIEα (Kuldell, NH, & Buratowski, S. Genetic analysis of the large subunit of yeast transcription factor IIE reveals two regions with distinct functions. Mol. Cell. Biol. 17, 5288-5298 (1997).). In this analysis, the strain with the C124F (129C in human) substitution was lethal, while the C127F (132C in human) mutant was temperature sensitive. However, the C129A spectrum was not identical to the wild-type spectrum denatured with EDTA and the signal was broader. This suggested a partially folded structure similar to C132A, C154A and C157A. Also, each different spectrum indicated that the mutants had different structures.
All Zn 2+ ligand point mutants lack one of the four cysteines. Can these mutants coordinate with Zn 2+ through the remaining 3 cysteines? In order to find out this, the present inventors conducted an EDTA titration experiment while monitoring NMR 1 H- 15 N HSQC. The addition of EDTA first changed the spectrum of all mutants and wild type. Next, an equal amount of EDTA completely erased the signal dispersion, indicating that the folded structure spread into a random coil structure. The spectrum before and after adding a 2-fold excess of EDTA is shown in Figure 4c. In the spectrum of C129A before addition of EDTA, most but not all of the signals were consistent with the signal of the random coil structure from which Zn 2+ was removed. The zinc binding domain has two asparagines and one glutamine, so three pairs of their side chain signals are observed in the 1 H- 15 N HSQC spectrum. However, the C129A spectrum had 4 pairs of side chain signals, 2 of which were consistent with that of the random coil structure (Figure 4d). These results indicate that the random coil structure is dominant in C129A, but is equilibrated with the partially folded structure coordinated with Zn 2+ . In the case of C132A, 57 signals were observed in the wild type, whereas 104 main chain signals were observed. Of note, the C132A spectrum was similar to the C129A spectrum. In fact, the C132A spectrum contained a number of identical signals (FIG. 4d). In addition to these signals, the C132A spectrum also had numerous dispersed signals and concentrated signals corresponding to random coil structures (FIGS. 4c, 4d). Six pairs of asparagine and glutamine side-chain signals were observed, two of which were consistent with that of the random coil structure and that of the partially folded structure in C129A, respectively (Figure 4d) . A comparison of the spectra of C132A and C129A shows that the structure is identical or very similar to the partially folded structure of C129A, and other partially folded structures coordinated with Zn 2+ and randomly It was clarified that C132A was equilibrated between coil structures. The spectra of C154A and C157A were also similar to each other, including a large number of dispersed signals and less concentrated signal compared to the C129A, C132A spectra (Figure 4c). For asparagine and glutamine side chain signals, 5 pairs were observed with C154A. Two of them matched the random coil structure, and the other pair corresponded to the partially folded structure (Fig. 4d). Thus, C154A is coordinated with Zn 2+ and is balanced between a partially folded structure and a random coil structure (which is not as prevalent as the random coil structure of C129A and C132A). For the C157A spectrum, 5 pairs of side chain signals were observed. Two of them matched the random coil structure, and the other two matched that of C154A. For the main chain, 77 signals were observed. These signals corresponded to signals of a random coil structure, a partially folded structure of C154A, and other partially folded structures (FIGS. 4c, 4d). These results indicate that C157A is identical or very similar to C154A, and coordinated with other Zn 2+ , partially folded structures, and equilibrated with random coil structures. After the EDTA titration experiment, the inventors conversely performed a ZnCl 2 titration experiment using a sample from which EDTA and ZnCl 2 had been removed by dialysis. Addition of ZnCl 2 greatly dispersed the signal, and addition of an equal amount of ZnCl 2 returned the spectrum of each sample to the same spectrum as before EDTA addition (data not shown).
In summary, coordinate binding to Zn 2+ is possible even if one of the four cysteines at the zinc binding site is lost. However, the structure is partially destroyed and becomes unstable. This is especially true when the first or second cysteine is replaced. All the structures were equilibrated with the random coil structure not coordinated with Zn 2+ . The predominance of the random coil structure is the order of C129A>C132A> C154A≈C157A. The structures of C129A and C132A are similar to each other. The structures of C154A and C157A are similar. In addition, C132A and C157A were also equilibrated with other partially folded structures. All structures show reversibility of structure formation depending on the Zn 2+ bond.

機能との関係
亜鉛結合ドメインの機能を明らかにするために、Zn2+を配位するシステイン(C129、C132、C154、C157)に変異を導入したヒトTFIIEα(hTFIIEα)を用いることによって亜鉛結合ドメイン構造の崩壊に対する転写活性の影響をみた。転写アッセイにはDNA鋳型としてアデノウィルス主要後期プロモーターのスーパーコイル型と直鎖型を用いた。プロモーターメルティングの際の基本転写因子TFIIEとTFIIHの必要性は、プロモーターの種類およびトポロジーに依存する。アデノウィルス主要後期プロモーターの鋳型の場合、スーパーコイル型ではTFIIHを必ずしも必要とせず、TFIIEがプロモーターメルティングを行うことができるが、鋳型が直鎖型ではTFIIHが必須となる。転写アッセイの結果、鋳型がスーパーコイル型での転写ではC129AやC132Aでは活性が約15〜30%に減少したのみであったのに対し、C154AやC157Aではほぼ完全に失活した。一方で、直鎖型ではC129A、C132A、C154A、C157Aで転写が完全に失活した。このようにスーパーコイル型と直鎖型を用いた場合で、転写活性に対し亜鉛結合ドメイン構造のN末側の2個のシステインとC末側の2個との非対称性が見られた。これまで報告された解析から明らかになった、スーパーコイル型の鋳型での転写が見られない時は転写開始活性を持っておらず、スーパーコイル型の鋳型で転写が見られて直鎖型では見られない時は転写開始から伸長への移行(トランジッション)活性に欠損があるという結果から考慮すると、C154AとC157Aは転写開始がだめになっており、一方でC129AとC132Aは転写開始にも影響を与えるがトランジッションの方により重要な欠陥があることが考えられる。これらの結果は、Znドメインの欠損が転写にドミナントネガティブであることとも対応する。
次に、亜鉛結合ドメイン構造の非対称性と機能の原因を探るために、in vitroの転写再構成反応に関わるhTFIIEβサブユニットを含む基本転写因子とRNAポリメラーゼII(Pol II)の各因子との結合特異性を解析した。基本転写因子の各サブユニットとの結合は、これらサブユニットのN末のGSTとの融合タンパク質を用いたGSTプルダウンアッセイにより検討した。その結果、hTFIIEαが強く結合することが分っているhTFIIEβとTFIIHのp62サブユニットに対しては、どの変異体も同じように強く結合した。ところが、これらに次いで強く結合するTFIIFβとTFIIHのXPBサブユニットとの結合は、C129AとC132AがTFIIFβとより強く結合し、一方でC154AとC157AはXPBとの結合が非常に弱くなっていることが明らかになった。
そこで本発明者らは、転写活性に対するZn2+リガンドシステイン残基の非対称性に興味をもち、それらの構造を調べた。いずれの変異体も構造が壊れていたが、Zn2+とは配位しており、部分的な構造は有していた。NMRシグナルからみると、C129AとC132Aが類似し、C154AとC157Aがそれぞれ互いに類似した構造であることが示された。構造解析の結果、スーパーコイル型での転写系で活性が残存したC129AやC132Aの方がほぼ完全に変性していることが示唆された。一方、C154AやC157Aの構造は、ランダムコイル構造とネイテイブ構造とは異なっている特徴的なZn2+が配位した構造との平衡になっている事が示された。従ってスーパーコイル型の鋳型ではプロモーターメルティングからトランジッションには亜鉛結合ドメインの完全な立体構造が絶対に必要というわけではないということになる。むしろ、C154AやC157Aのような特徴的なネイテイブ構造と異なる部分構造が逆に妨げとなることが明らかとなった。
In order to clarify the function of the zinc-binding domain, the structure of the zinc-binding domain was determined by using human TFIIEα (hTFIIEα) with mutations in the cysteine (C129, C132, C154, C157) that coordinates Zn2 +. The effect of transcriptional activity on decay was observed. In the transcription assay, a supercoiled type and a linear type of adenovirus major late promoter were used as DNA templates. The need for the basic transcription factors TFIIE and TFIII during promoter melting depends on the type and topology of the promoter. In the case of the adenovirus major late promoter template, TFIIH is not necessarily required for the supercoiled type, and TFIIE can perform promoter melting, but TFIIH is essential for the linear type template. As a result of the transcription assay, the activity of C129A and C132A was only reduced to about 15 to 30% in the transcription using the supercoiled template, whereas C154A and C157A were almost completely inactivated. On the other hand, in the linear type, transcription was completely inactivated by C129A, C132A, C154A, and C157A. Thus, in the case of using the supercoil type and the straight chain type, asymmetry between two cysteines on the N-terminal side and two on the C-terminal side of the zinc binding domain structure was observed with respect to transcriptional activity. From the analysis reported so far, when transcription with a supercoiled template is not seen, it has no transcription initiation activity, and transcription is seen with a supercoiled template. When it is not seen, considering that there is a defect in the transition (transition) activity from transcription initiation to elongation, C154A and C157A fail to initiate transcription, while C129A and C132A also affect transcription initiation. However, there is a more important defect in the transition. These results also correspond to the lack of Zn domain being dominant negative in transcription.
Next, in order to investigate the cause of asymmetry and function of the zinc-binding domain structure, binding of basic transcription factors including hTFIIEβ subunit involved in in vitro transcription reconstitution reaction and RNA polymerase II (Pol II) factors Specificity was analyzed. The binding of each basic transcription factor to each subunit was examined by a GST pull-down assay using a fusion protein of the N-terminal GST of these subunits. As a result, all the mutants were similarly strongly bound to the p62 subunit of hTFIIEβ and TFIIH, which are known to bind hTFIIEα strongly. However, the binding between TFIIFβ and TFIIH XPB subunit, which binds strongly next to these, is that C129A and C132A bind more strongly to TFIIFβ, while C154A and C157A have very weak binding to XPB. It was revealed.
Therefore, the present inventors were interested in the asymmetry of Zn2 + ligand cysteine residues with respect to transcriptional activity, and investigated their structures. All mutants were broken in structure, but coordinated with Zn2 + and had a partial structure. From the NMR signal, it was shown that C129A and C132A are similar, and C154A and C157A have similar structures. As a result of structural analysis, it was suggested that C129A and C132A, which remained active in the supercoiled transcription system, were almost completely denatured. On the other hand, it was shown that the structure of C154A and C157A is in equilibrium with the characteristic Zn2 + coordinated structure, which is different from the random coil structure and the native structure. Therefore, with a supercoiled template, the complete conformation of the zinc binding domain is not absolutely required for transition from promoter melting. Rather, it became clear that partial structures different from the characteristic native structures such as C154A and C157A hindered conversely.

以下分子機構について考察してみる。亜鉛結合ドメインはその分子表面の負電荷クラスターから、DNAには結合しない。TFIIEの1本鎖、2本鎖DNA結合ドメインはTFIIEβに見出されている。プロモーターメルティングの際に直接DNAとコンタクトするのはTFIIEβであろう。スーパーコイル型と直鎖型での転写系の違いは前述したようにプロモーターメルティングやトランジッションを通じたTFIIH等の因子との関わり合いの必要性である。TFIIHと直接相互作用するのはTFIIEαのC末端領域である。実際、TFIIHのp62サブユニットと強く結合し、その結合能は野生型とすべての変異体で変化しなかった。従って、亜鉛結合ドメインは直接DNAとコンタクトしメルティングを推し進めたり、その状態を安定化したり、また、TFIIHをリクルートしている役割を持っているわけではない。このことは全ての変異体でGTFとの相互作用にほとんど変化がみられなかったことと一致する。しかしC129AやC132Aではもともと野生型では弱いTFIIFβとの結合能が3倍程度増していた。このことは亜鉛結合ドメインの構造が壊れて相互作用が逆に強くなったと考えられる。このことが、構造が壊れているにも関わらず、C129AやC132Aでは転写開始活性が約15〜30%見られることを説明する。一方、亜鉛結合ドメインのC末側の変異であるC154AやC157Aは転写開始の際のプロモーターメルティングの際にDNAをそのヘリカーゼ活性で開裂させて機能しているXPBとの結合ができなくなることで転写開始活性が全く無くなっていることが良く説明できる。また、データは示していないが、PolIIをリガンドとしたカラムを用いた結合アッセイからPol IIはTFIIEβとは結合するが、TFIIEαとはできないことが明らかになった。つまり、亜鉛結合ドメインはプロモーターメルティングやトランジッションの際に、それらを行うドメインのポジショニングに寄与している可能性がある。PIC形成に続くプロモーターメルティングやトランジッションでは、亜鉛結合ドメインの構造が崩れたことで、TFIIE分子内のドメインの配置は影響を受ける。TFIIHと直接相互作用するC末端ドメインもPICにおける正確なポジションにつくことができなくなっているかもしれない。しかしながら、スーパーコイル型DNAを鋳型として用いた転写系では、TFIIHのプロモーターメルティング能やトランジッションが必ずしも必要でない為、TFIIEのプロモーターメルティング能やトランジッション能が完全に不能でなければ、効率は低いもののこの段階をクリアすることができるのではないであろうか。ところが、直鎖型での転写では、プロモーターメルティングやトランジションの段階で、TFIIHや他の因子との正確な位置での協調的な作業が重要となるため、亜鉛結合ドメインの完全な構造でないとC129AやC132Aでも完全に失活するのであろう。   Let us consider the molecular mechanism. Zinc binding domains do not bind to DNA from negatively charged clusters on the surface of the molecule. The single-stranded and double-stranded DNA binding domain of TFIIE is found in TFIIEβ. It is likely that TFIIEβ will contact DNA directly during promoter melting. As described above, the difference between the supercoiled type and the linear type transcription system is the necessity of involvement with factors such as TFIIH through promoter melting and transition. It is the C-terminal region of TFIIEα that interacts directly with TFIIH. In fact, it binds strongly to the p62 subunit of TFIIH, and its binding ability did not change between the wild type and all mutants. Therefore, the zinc-binding domain does not have a role of directly contacting DNA to promote melting, stabilize its state, or recruit TFIIH. This is consistent with almost no change in the interaction with GTF in all mutants. However, C129A and C132A originally increased the ability to bind to weak TFIIFβ in the wild type by about 3 times. This is probably because the structure of the zinc-binding domain was broken and the interaction became stronger. This explains that although the structure is broken, about 15-30% of transcription initiation activity is observed in C129A and C132A. On the other hand, C154A and C157A, mutations on the C-terminal side of the zinc-binding domain, are unable to bind to functioning XPB by cleaving DNA with its helicase activity during promoter melting at the start of transcription. It can be well explained that there is no transcription initiation activity. Although data are not shown, binding assay using a column with PolII as a ligand revealed that Pol II binds to TFIIEβ but not TFIIEα. That is, the zinc-binding domain may contribute to the positioning of the domain that performs them during promoter melting and transition. In promoter melting and transition following PIC formation, the arrangement of domains within the TFIIE molecule is affected by the disruption of the structure of the zinc-binding domain. The C-terminal domain that interacts directly with TFIIH may also be unable to position correctly in PIC. However, a transcription system using supercoiled DNA as a template does not necessarily require TFIII promoter melting or transition, so efficiency is low unless TFIIE promoter melting or transition is completely impossible. I think we can clear this stage. However, in linear transcription, coordinated work with TFIIH and other factors is important at the stage of promoter melting and transition, so the structure of the zinc-binding domain must be complete. C129A and C132A will be completely deactivated.

一方で、亜鉛結合ドメインが他のタンパク質との相互作用ドメインである可能性は、別の変異体から示唆された。ヒトから酵母まで高度に保存されている2つの酸性残基E140とD164に対し、アラニンおよびリジン残基への置換を行った。その結果、スーパーコイル型鋳型での転写においてE140Aでは野生型とほぼ変わらず、E140Kでは50%程度に減少した。直鎖型ではE140A でも活性の減少がみられ、E140Kでは更に減少した。興味深いのはD164である。スーパーコイル型においてD164AやD164Kの活性は野生型よりもどちらも約2倍上昇した。直鎖型ではD164Kは2倍程度に活性が上昇したが、D164Aでは活性上昇は著しく野生型の3.5倍以上の活性に達した。E140やD164の変異が立体構造に影響を及ぼしているはずがない。D164は亜鉛イオン結合部位の窪んだ反対面上の負ポテンシャルクラスターからつづく亜鉛結合面に位置している。Kにすると活性が上昇しAにすると更に上昇することからこの負電荷周辺が他因子との相互作用表面になっている可能性がある。本発明者らはGTFやPol IIとの結合を解析し、野生型と変異体とで結合能の変化を殆ど確認できなかったが、転写開始段階ではPICが活性化するにつれて大きな構造変化が予想される。従って、ある段階の複合体構造に特異的に亜鉛結合ドメインが結合することも考えられる。また、in vivoではユビキタスに機能しているクロマチンリモデリング因子、メディエーター、転写調節因子、転写伸長因子など多くの因子が転写装置に相互作用し転写を制御しているので、それらとの相互作用ドメインとしての機能も考えられる。以上から、TFIIEαの亜鉛結合ドメインは、その構造が今までにない特徴的であるのに加えて非常に微妙な転写の調節に関与している重要な機能ドメインであることが変異体実験から示された。
On the other hand, the possibility that the zinc-binding domain is an interaction domain with other proteins was suggested by another mutant. Two acidic residues E140 and D164, which are highly conserved from human to yeast, were substituted with alanine and lysine residues. As a result, in the transcription with the supercoiled template, E140A was almost the same as the wild type, and E140K was reduced to about 50%. In the linear form, the activity decreased even with E140A, and further decreased with E140K. Interesting is D164. In the supercoiled type, the activities of D164A and D164K were both about two times higher than in the wild type. In the linear type, the activity of D164K was increased by about 2 times, but in D164A, the activity increase was markedly 3.5 times that of the wild type. E140 and D164 mutations should not affect the conformation. D164 is located on the zinc binding surface following the negative potential cluster on the opposite side of the zinc ion binding site. When K is selected, the activity increases, and when A is selected, the activity increases further. Therefore, there is a possibility that the area around this negative charge is a surface that interacts with other factors. The present inventors analyzed the binding to GTF and Pol II and could hardly confirm the change in binding ability between the wild type and the mutant, but a large structural change was expected as PIC was activated at the transcription initiation stage. Is done. Therefore, it is conceivable that the zinc binding domain specifically binds to a complex structure at a certain stage. In vivo, many factors such as chromatin remodeling factors, mediators, transcriptional regulatory factors, and transcription elongation factors that function ubiquitously interact with the transcription apparatus and regulate transcription. As a function is also conceivable. Based on the above, mutant experiments show that the zinc-binding domain of TFIIEα is an important functional domain that is involved in the regulation of very subtle transcription, in addition to its distinctive structure. It was done.

方法
サンプル調製
プラスミドを大腸菌 BL21(DE3) pLysS (Novagen)に導入して形質転換した。得られた大腸菌細胞を、LB液体培地または[15N]塩化アンモニウム含有M9最小培地で、37℃で、[13C]グルコースの存在下または非存在下で培養した。OD600が0.3-0.4になった時点で1 mM IPTGを添加した。4-7時間増殖させた後、集菌した。細胞ペレットをバッファーA(20 mM Tris-HCl, pH 7.0, 10 % グリセリン, 30 μM ZnCl2, 1 mM PMSF, 1 mM ベンズアミジンおよび0.1 M NaCl)に再懸濁した。細胞を氷上で超音波処理して溶解し、遠心し、上清を20 mMイミダソール含有バッファーAで平衡化したNi-ニトリロ三酢酸(NTA)アガロース(Qiagen)カラムに導入した。20 mMから0.35 Mのイミダゾール線勾配によってタンパク質サンプルを溶出した。ピーク画分をプールし、バッファーを50 mM Tris-HCl, pH 8.0, 30 μM ZnCl2, 2.5 mM CaCl2および0.15 M NaClに交換した。トロンビンプロテアーゼを用いてサンプルを室温で16時間切断した。次に、バッファーB (20 mM リン酸カリウムバッファー, pH 7.0, 30μM ZnCl2および0.2 M NaCl)で平衡化したNi-NTAアガロース (Qiagen)カラムにこれを導入し、バッファーBで洗浄した。N末端の6個のヒスチジンタグを除去したサンプルを上記カラムに通した。カットオフがMW3000のCentriprep Membrane (Amicon)を用いて容量が2.5 ml以下になるまでサンプルを濃縮し、これを20 mM リン酸カリウムバッファー, pH 7.0, 30μM ZnCl2, 5.0 mM DTT および 50 mM NaClで平衡化したSuperdex 30カラム(Amersham Pharmacia Biotech)に導入した。最終サンプル画分を回収した。
Method Sample preparation Plasmids were introduced into E. coli BL21 (DE3) pLysS (Novagen) and transformed. The resulting E. coli cells were cultured in LB liquid medium or M 9 minimal medium containing [ 15 N] ammonium chloride at 37 ° C. in the presence or absence of [ 13 C] glucose. When OD600 became 0.3-0.4, 1 mM IPTG was added. Bacteria were collected after growth for 4-7 hours. The cell pellet was resuspended in buffer A (20 mM Tris-HCl, pH 7.0, 10% glycerin, 30 μM ZnCl 2 , 1 mM PMSF, 1 mM benzamidine and 0.1 M NaCl). The cells were lysed by sonication on ice, centrifuged, and the supernatant was introduced onto a Ni-nitrilotriacetic acid (NTA) agarose (Qiagen) column equilibrated with buffer A containing 20 mM imidazole. Protein samples were eluted with an imidazole linear gradient from 20 mM to 0.35 M. The peak fractions were pooled and the buffer was replaced with 50 mM Tris-HCl, pH 8.0, 30 μM ZnCl 2 , 2.5 mM CaCl 2 and 0.15 M NaCl. Samples were cleaved for 16 hours at room temperature using thrombin protease. Next, this was introduced into a Ni-NTA agarose (Qiagen) column equilibrated with buffer B (20 mM potassium phosphate buffer, pH 7.0, 30 μM ZnCl 2 and 0.2 M NaCl), and washed with buffer B. The sample from which the 6 N-terminal histidine tags had been removed was passed through the column. Concentrate the sample using a Centriprep Membrane (Amicon) with a cutoff of MW3000 until the volume is less than 2.5 ml, and add this to 20 mM potassium phosphate buffer, pH 7.0, 30 μM ZnCl 2 , 5.0 mM DTT and 50 mM NaCl. It was introduced into an equilibrated Superdex 30 column (Amersham Pharmacia Biotech). The final sample fraction was collected.

NMR分光法
NMR実験用のタンパク質濃度は、90% H2O/10% D2O または 99.9% D2Oに溶解した 20 mM リン酸カリウムバッファー, pH 6.0, 30 μM ZnCl2, 5.0 mM 過重水素化1,4-ジチオトレイトール, 50 mM NaCl中で約3-4 mMである。全てのNMR実験は、三重共鳴勾配プローブを備えたBruker DRX-500 または DRX-600分光測定装置を用いて32℃で実施した。以下のNMR実験を用いて、主鎖および側鎖共鳴の帰属を決定した:3D CBCA(CO)NH, 3D CBCANH, 3D HN(CA)CO, 3D HNCO, 2D DQF-COSY, 2D TOCSY, 3D HBHA(CO)NH, 3D 15Nでエディットした TOCSY-HSQC, 3D HCCH-COSY, 3D HCCH-TOCSY (Cavanagh, J., Fairbroher, W.J., Palmer III, A.G. & Skelton, N.J. Protein NMR spectroscopy (Academic Press, San Diego; 1996).), 2D (Hβ)Cβ(CγCδ)Hδ, 2D (Hβ)Cβ(CγCδCε)Hε(Yamazaki, T., Forman-Kay, J.D. & Kay, L.E. Two-dimensional NMR experiments for correlating 13Cβ and 1Hδ/ε chemical shifts of aromatic residues in 13C-labeled proteins via scalar coupling. J. Am. Chem. Soc. 115, 11054-11055 (1993).), 2D CG(CB)H, 2D CG(CD)Hおよび2D CG(CDCE)H(Prompers, J.J., Groenewegen, A., Hilbers, C.W. & Pepermans, H.A.M. Two-dimensional NMR experiments for the assignment of aromatic side chains in 13C-labaled proteins. J. Magn. Reson. 130, 68-75 (1998).)実験。立体特異的帰属は3D HNHB, 3D HN(CO)HB, 3D HNCG, 3D HN(CO)CG(Krichna, N.R & Berliner, L.J. Biological Magnetic Resonance 16 (Kluwer Academic / Plenum Publishers, New York; 1998)), 2D DQF-COSYおよび3D 15NでエディットしたNOESY-HSQC (混合時間50 ms)(Yamazaki, T., Forman-Kay, J.D. & Kay, L.E. Two-dimensional NMR experiments for correlating 13Cβ and 1Hδ/ε chemical shifts of aromatic residues in 13C-labeled proteins via scalar coupling. J. Am. Chem. Soc. 115, 11054-11055 (1993).)実験の組合せから得られた。距離情報は2D NOESY, 3D 15Nでエディットした NOESY-HSQC (混合時間50 ms および 150 ms)および 3D 13CでエディットしたNOESY-HSQC(Yamazaki, T., Forman-Kay, J.D. & Kay, L.E. Two-dimensional NMR experiments for correlating 13Cβ and 1Hδ/ε chemical shifts of aromatic residues in 13C-labeled proteins via scalar coupling. J. Am. Chem. Soc. 115, 11054-11055 (1993).)実験から得た。主鎖ねじれ角度φは3D HNHA および3D HNCA-J(Yamazaki, T., Forman-Kay, J.D. & Kay, L.E. Two-dimensional NMR experiments for correlating 13Cβ and 1Hδ/ε chemical shifts of aromatic residues in 13C-labeled proteins via scalar coupling. J. Am. Chem. Soc. 115, 11054-11055 (1993).)から得た。また、側鎖ねじれ角度χ1およびχ2は、3D HNHB, 3D HN(CO)HB, 3D HNCG, 3D HN(CO)CG(Lui, A., Hu, W., Majumdar, A., Rosen, M.K. & Patel, D.J. Detection of very weak side chain-main chain hydrogen bonding interactions in medium-size 13C/15N-labeled proteins by sensitivity-enhanced NMR spectroscopy. J.Biomol.NMR 17, 79-82 (2000).), 3D 15NでエディットしたNOESY-HSQC および 3D 13CでエディットしたNOESY-HSQC (Yamazaki, T., Forman-Kay, J.D. & Kay, L.E. Two-dimensional NMR experiments for correlating 13Cβ and 1Hδ/ε chemical shifts of aromatic residues in 13C-labeled proteins via scalar coupling. J. Am. Chem. Soc. 115, 11054-11055 (1993).)実験の組合せから得た。水素結合拘束は、主鎖アミドH/D交換実験およびトランス水素結合3hJNC’結合を検出するための2D CPD-H(N)CO 実験(Lui, A., Hu, W., Majumdar, A., Rosen, M.K. & Patel, D.J. Detection of very weak side chain-main chain hydrogen bonding interactions in medium-size 13C/15N-labeled proteins by sensitivity-enhanced NMR spectroscopy. J.Biomol.NMR 17, 79-82 (2000).)によって得た。NMRPipe(Delaglio, F.et al. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277-293 (1995))を用いてスペクトルをプロセシングし、プログラムPIPP、 CAPP、 STAPP(Garrett, D.S., Powers, R., Gronenborn, A.M. & Clore, G.M. A common sense approach to peak picking in two-, three-, and four-dimensional spectra using automatic computer analysis of contour diagrams. J. Magn. Reson. 95, 214-220 (1991).)および NMRView(Johnson, B.A. & Blevins, R.A. NMRView: a computer program for the visualization and analysis of NMR data. J.Biomol.NMR 4, 603-614 (1994).)を用いて分析した。
NMR spectroscopy
Protein concentration for NMR experiments is 20 mM potassium phosphate buffer, pH 6.0, 30 μM ZnCl 2 , 5.0 mM perdeuterated 1, dissolved in 90% H 2 O / 10% D 2 O or 99.9% D 2 O. 4-dithiothreitol, about 3-4 mM in 50 mM NaCl. All NMR experiments were performed at 32 ° C. using a Bruker DRX-500 or DRX-600 spectrometer equipped with a triple resonance gradient probe. The following NMR experiments were used to determine the assignment of main chain and side chain resonances: 3D CBCA (CO) NH, 3D CBCANH, 3D HN (CA) CO, 3D HNCO, 2D DQF-COSY, 2D TOCSY, 3D HBHA TOCSY-HSQC, 3D HCCH-COSY, 3D HCCH-TOCSY edited with (CO) NH, 3D 15 N (Cavanagh, J., Fairbroher, WJ, Palmer III, AG & Skelton, NJ Protein NMR spectroscopy (Academic Press, San Diego; 1996).), 2D (Hβ) Cβ (CγCδ) Hδ, 2D (Hβ) Cβ (CγCδCε) Hε (Yamazaki, T., Forman-Kay, JD & Kay, LE Two-dimensional NMR experiments for correlating 13 Cβ and 1 Hδ / ε chemical shifts of aromatic residues in 13 C-labeled proteins via scalar coupling.J. Am. Chem. Soc. 115, 11054-11055 (1993)), 2D CG (CB) H, 2D CG (CD ) H and 2D CG (CDCE) H (Prompers, JJ, Groenewegen, A., Hilbers, CW & Pepermans, HAM Two-dimensional NMR experiments for the assignment of aromatic side chains in 13 C-labaled proteins. J. Magn. Reson 130, 68-75 (1998).) Experiment. Stereospecific assignments are 3D HNHB, 3D HN (CO) HB, 3D HNCG, 3D HN (CO) CG (Krichna, NR & Berliner, LJ Biological Magnetic Resonance 16 (Kluwer Academic / Plenum Publishers, New York; 1998)), NOESY-HSQC edited with 2D DQF-COSY and 3D 15 N (mixing time 50 ms) (Yamazaki, T., Forman-Kay, JD & Kay, LE Two-dimensional NMR experiments for correlating 13 Cβ and 1 Hδ / ε chemical shifts of aromatic residues in 13 C- labeled proteins via scalar coupling. J. Am. Chem. Soc. 115, 11054-11055 (1993).) obtained from the combination experiments. Distance information is NOESY-HSQC edited with 2D NOESY, 3D 15 N (mixing time 50 ms and 150 ms) and NOESY-HSQC edited with 3D 13 C (Yamazaki, T., Forman-Kay, JD & Kay, LE Two -dimensional NMR experiments for correlating 13 Cβ and 1 Hδ / ε chemical shifts of aromatic residues in 13 C-labeled proteins via scalar coupling. J. Am. Chem. Soc. 115, 11054-11055 (1993)) . The main chain twist angle φ is 3D HNHA and 3D HNCA-J (Yamazaki, T., Forman-Kay, JD & Kay, LE Two-dimensional NMR experiments for correlating 13 Cβ and 1 Hδ / ε chemical shifts of aromatic residues in 13 C -labeled proteins via scalar coupling. J. Am. Chem. Soc. 115, 11054-11055 (1993)). The side chain twist angles χ 1 and χ 2 are 3D HNHB, 3D HN (CO) HB, 3D HNCG, 3D HN (CO) CG (Lui, A., Hu, W., Majumdar, A., Rosen, MK & Patel, DJ Detection of very weak side chain-main chain hydrogen bonding interactions in medium-size 13 C / 15 N-labeled proteins by sensitivity-enhanced NMR spectroscopy.J. Biomol.NMR 17, 79-82 (2000). ), NOESY-HSQC edited with 3D 15 N and NOESY-HSQC edited with 3D 13 C (Yamazaki, T., Forman-Kay, JD & Kay, LE Two-dimensional NMR experiments for correlating 13 Cβ and 1 Hδ / ε Chemical shifts of aromatic residues in 13 C-labeled proteins via scalar coupling. J. Am. Chem. Soc. 115, 11054-11055 (1993)). Hydrogen bond constraints include main chain amide H / D exchange experiments and 2D CPD-H (N) CO experiments to detect trans hydrogen bond 3h J NC ' bonds (Lui, A., Hu, W., Majumdar, A ., Rosen, MK & Patel, DJ Detection of very weak side chain-main chain hydrogen bonding interactions in medium-size 13 C / 15 N-labeled proteins by sensitivity-enhanced NMR spectroscopy. J. Biomol. NMR 17, 79-82 (2000).). NMRPipe (Delaglio, F. et al. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277-293 (1995)) is used to process the spectrum and program PIPP, CAPP, STAPP ( Garrett, DS, Powers, R., Gronenborn, AM & Clore, GM A common sense approach to peak picking in two-, three-, and four-dimensional spectra using automatic computer analysis of contour diagrams. J. Magn. Reson. 95 , 214-220 (1991)) and NMRView (Johnson, BA & Blevins, RA NMRView: a computer program for the visualization and analysis of NMR data.J. Biomol. NMR 4, 603-614 (1994).) And analyzed.

構造計算
NOE強度に由来するプロトン間距離拘束は、強いNOE、中程度のNOEおよび弱いNOEにそれぞれ対応する3つの距離範囲1.8-3.0Å、1.8-4.0Åおよび 1.8-5.0Åに分類された。メチル基を含む距離には、メチル共鳴のより高い見掛け強度を考慮して、上限にさらに0.5Åが加えられた。また、2.0オングストロームの偽原子(pseudoatom)補正は縮重したフェニルアラニン環プロトンに加えた。3JHNα結合定数から推定されたφ角度は、3JHNα<7.0 Hzの場合は-90 o< φ <-40oで、3JHNα >10.0 Hzの場合は-160 o< φ <-80oであった。χ1角度は、3つの側鎖回転異性体について±30°拘束された。亜鉛は4個のシステイン残基によって正四面体配位結合するよう、下記のように拘束された。すなわち、Zn-SγおよびSγ-Sγ結合長は 2.3Åおよび3.8Åに、そしてZn-Sγ-CβおよびSγ-Zn-Sγ角度が108°および109°に設定された。精密化の最終段階で、正規の二次構造領域において水素結合拘束を導入した。構造計算は、距離幾何学およびプログラムX-PLOR (Brunger, A.T. X-PLOR Version 3.1: A system for X-ray crystallography and NMR (Yale University Press, New Haven, Connecticut; 1993).)を用いたシミュレーションされたアニーリングによって実施した。合計100個の構造を計算した。そのうち20個は、0.5Åより大きいNOEバイオレーション(violation)も5°以上の二面角バイオレーションも有さなかった。構造統計の要約を表Iに示す。PROCHECK-NMR (Laskowski, R.A., Rullmann, J.A.C., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR : Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477-486 (1996).), GRASP (Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Prot. Struct. Funct. Genet. 11, 281-296 (1991).), MOLMOL (Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: A program for display and analysis of macromolecular structures. J. Mol. Graphics 14, 51-55 (1996).) およびSYBYL (Tripos Inc., St. Louis)を用いて構造を分析し、表示した。
Structural calculation
Interproton distance constraints derived from NOE intensity were classified into three distance ranges 1.8-3.0 mm, 1.8-4.0 mm, and 1.8-5.0 mm, corresponding to strong NOE, moderate NOE, and weak NOE, respectively. The distance including the methyl group was further increased by 0.5% in consideration of the higher apparent intensity of methyl resonance. A 2.0 Å pseudoatom correction was added to the degenerate phenylalanine ring proton. The φ angle estimated from the 3 J HNα coupling constant is -90 o <φ <-40 o for 3 J HNα <7.0 Hz and -160 o <φ <-80 for 3 J HNα > 10.0 Hz. o . The χ 1 angle was constrained ± 30 ° for the three side chain rotamers. Zinc was constrained as follows to be tetrahedrally coordinated by four cysteine residues. That is, the Zn-Sγ and Sγ-Sγ bond lengths were set to 2.3 and 3.8, and the Zn-Sγ-Cβ and Sγ-Zn-Sγ angles were set to 108 ° and 109 °. In the final stage of refinement, hydrogen bond constraints were introduced in the regular secondary structure region. Structural calculations are simulated using distance geometry and the program X-PLOR (Brunger, AT X-PLOR Version 3.1: A system for X-ray crystallography and NMR (Yale University Press, New Haven, Connecticut; 1993)). Carried out by annealing. A total of 100 structures were calculated. Twenty of them had no NOE violation greater than 0.5 cm and dihedral angle biolation greater than 5 °. A summary of the structural statistics is shown in Table I. PROCHECK-NMR (Laskowski, RA, Rullmann, JAC, MacArthur, MW, Kaptein, R. & Thornton, JM AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR.J. Biomol.NMR 8, 477 -486 (1996).), GRASP (Nicholls, A., Sharp, KA & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons.Prot.Struct. Funct. Genet. 11, 281- 296 (1991).), MOLMOL (Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: A program for display and analysis of macromolecular structures.J. Mol. Graphics 14, 51-55 (1996).) And the structure was analyzed and displayed using SYBYL (Tripos Inc., St. Louis).

部位特異的突然変異体の作製
野生型ヒトTFIIEαは、ヒト培養細胞であるHeLa細胞から転写活性を指標に精製したTFIIE(Ohkuma, Y. et al., Proc Natl Acad Sci USA. 87, 9163-9167, 1990)から逆相高速液体クロマトグラフィーにより2つのサブユニットαとβを分離精製し、そのうちαサブユニットの方を限定分解して得られたペプチド断片のアミノ酸配列を基に、PCRでcDNAの部分配列を増幅した後に、ヒトNAM細胞cDNAライブラリーをスクリーニングすることでその全長cDNAを単離した(Ohkuma, Y. et al., Nature, 354, 398-401, 1991) 。このヒトTFIIEαcDNAは、pBluescriptII-SK(-)に組み込まれており、そのタンパク質コード領域の289番目と290番目のコドンにまたがってNdeI切断部位を持っているため、アミノ酸に変異を入れない形でこの部位を潰して、N末端に新たにNdeI認識部位を、またC末のストップコドンの3'下流にBamHI認識部位を作成する目的で、Mutan-K変異導入キット(TaKaRa)を用い、変異を導入した。これをNdeI認識部位とBamHI認識部位で切り出し、N末側に6個のヒスチジン残基を付加した6Hisタグ融合蛋白質を発現できるpET-11dベクター(Novagen)に組み込み、野生型ヒトTFIIEα発現プラスミドとした。
亜鉛結合ドメインの変異体(E140A, E140K, D164A, D164K, C129A, C132A, C154A, C157A)も、各々のアミノ酸に変異を入れるためのオリゴDNAを合成し、これらと上記のMutan-K変異導入キット(TaKaRa)を用い、pBluescriptII-SK(-)に組み込まれた形の野生型ヒトTFIIEαに変異を導入して、これも上記のようにNdeI認識部位とBamHI認識部位で切り出し、N末側に6個のヒスチジン残基を付加した6Hisタグ融合蛋白質を発現できるpET-11dベクター(Novagen)に組み込んだ。
Generation of a site-specific mutant Wild-type human TFIIEα is TFIIE (Ohkuma, Y. et al., Proc Natl Acad Sci USA. 87, 9163-9167) purified from HeLa cells, which are cultured human cells, using transcriptional activity as an indicator. , 1990) using reverse-phase high-performance liquid chromatography to separate and purify the two subunits α and β, of which the α subunit is subjected to limited digestion, based on the amino acid sequence of the peptide fragment obtained by PCR. After amplification of the partial sequence, the full-length cDNA was isolated by screening a human NAM cell cDNA library (Ohkuma, Y. et al., Nature, 354, 398-401, 1991). This human TFIIEα cDNA is incorporated into pBluescriptII-SK (-) and has an NdeI cleavage site that spans the 289th and 290th codons of the protein coding region. In order to crush the site and create a new NdeI recognition site at the N-terminus and a BamHI recognition site 3 'downstream of the C-terminal stop codon, mutations were introduced using the Mutan-K mutagenesis kit (TaKaRa). did. This was excised at the NdeI recognition site and the BamHI recognition site, and incorporated into a pET-11d vector (Novagen) capable of expressing a 6His-tagged fusion protein with 6 histidine residues added to the N-terminal side, resulting in a wild-type human TFIIEα expression plasmid .
Zinc-binding domain mutants (E140A, E140K, D164A, D164K, C129A, C132A, C154A, C157A) were also synthesized with oligo DNAs to mutate each amino acid, and the above Mutan-K mutagenesis kit Using (TaKaRa), a mutation was introduced into wild-type human TFIIEα incorporated into pBluescriptII-SK (-), and this was also excised at the NdeI recognition site and the BamHI recognition site as described above. It was incorporated into a pET-11d vector (Novagen) capable of expressing a 6His-tag fusion protein with one histidine residue added.

In vitro転写アッセイ
(スーパーコイル型)
DNA鋳型のプロモーターはアデノウイルス主要後期プロモーター(AdML)の-50から+10領域までを有し、その下流にG塩基の入っていない鋳型(Gフリーカセット)を挿入したpML(C2AT)Δ-50のスーパーコイル型DNAと直鎖型DNAのものを鋳型として用いた。プロモーター下流のGフリーカセットは、G塩基の入っていない約390ヌクレオチドの転写産物を生じ、G塩基が現れると3’-O-methyl GTPが取り込まれて、それ以降の転写が停止する。これを利用して、一定長の転写産物の有無で基本転写活性を測定した。
基本転写因子とRNAポリメラーゼII(Pol II)を加えた反応液25μl中で30℃、45分、転写反応を行った。このとき、TFIIEα野生型または点変異体を6,12,18 ngと加えた。フェノール/クロロフォルム抽出後、エタノール沈殿をして転写反応を停止し、4%アクリルアミド-尿素変性ゲル(4%acrylamide,50%urea,1xTBE)に展開した。ゲル乾燥後、[α-32P]CTPの取り込みをオートラジオグラフィーで検出し、BAS2000にて活性を測定した。
鋳型; 100 ng pML(C2AT)Δ-50(スーパーコイル型)
因子;Pol II,TFIIB 20 ng,TBP 10 ng,TFIIEβ 8 ng,TFIIF 16 ng
反応液;12 mM Tris-HCl (pH 7.9 at 4℃),12%Glycerol,60 mM KCl,0.12 mM EDTA,0.12 mM PMSF,0.6 mM β-mercaptothanol,12 mg/ml BSA,125 μM ATP,125 μM UTP,25μM CTP,40 mM Hepes(pH8.4),8mM MgCl2,5.6 mM DTT,50μM 3’-O-methyl GTP,0.8 U RNasin,0.15 URNaseT1,0.5μCi[α-32P]CTP
(直鎖型)
スーパーコイル型の鋳型を用いたときと同様に転写反応を行い、[α-32P]CTPの取り込みをオートラジオグラフィーで検出し、BAS2000にて活性を測定した。ここでは、TFIIEα野生型または点変異体を12,18 ngと2点とって加えた。
鋳型; 100 ng pML(C2AT)Δ-50(直鎖型)
因子;Pol II,TFIIB 20 ng,TBP 10 ng,TFIIEβ 8 ng,TFIIF 16 ng,TFIIH 78 ng
反応液;スーパーコイル型の鋳型を用いたときと同様である。
In vitro transcription assay (supercoil type)
The promoter of the DNA template is pML (C2AT) Δ-50 in which a template containing no G base (G free cassette) is inserted downstream from the -50 to +10 region of the adenovirus major late promoter (AdML). Supercoiled DNA and linear DNA were used as templates. The G-free cassette downstream of the promoter produces a transcription product of about 390 nucleotides that does not contain a G base. When a G base appears, 3′-O-methyl GTP is incorporated, and subsequent transcription stops. Using this, basic transcriptional activity was measured in the presence or absence of a transcript of a certain length.
The transcription reaction was performed at 25 ° C. for 45 minutes in 25 μl of a reaction solution containing basic transcription factor and RNA polymerase II (Pol II). At this time, TFIIEα wild type or point mutant was added at 6,12,18 ng. After extraction with phenol / chloroform, the transcription reaction was stopped by ethanol precipitation, and developed on a 4% acrylamide-urea modified gel (4% acrylamide, 50% urea, 1 × TBE). After drying the gel, uptake of [α- 32 P] CTP was detected by autoradiography, and the activity was measured with BAS2000.
Mold: 100 ng pML (C2AT) Δ-50 (super coil type)
Factor: Pol II, TFIIB 20 ng, TBP 10 ng, TFIIEβ 8 ng, TFIIF 16 ng
Reaction solution: 12 mM Tris-HCl (pH 7.9 at 4 ° C), 12% Glycerol, 60 mM KCl, 0.12 mM EDTA, 0.12 mM PMSF, 0.6 mM β-mercaptothanol, 12 mg / ml BSA, 125 μM ATP, 125 μM UTP, 25 μM CTP, 40 mM Hepes (pH 8.4), 8 mM MgCl2, 5.6 mM DTT, 50 μM 3'-O-methyl GTP, 0.8 U RNasin, 0.15 URNaseT1, 0.5 μCi [α- 32 P] CTP
(Linear type)
A transcription reaction was performed in the same manner as when using a supercoiled template, and [α- 32 P] CTP incorporation was detected by autoradiography, and the activity was measured with BAS2000. Here, TFIIEα wild type or point mutants were added at 12,18 ng and 2 points.
Template: 100 ng pML (C2AT) Δ-50 (linear type)
Factors: Pol II, TFIIB 20 ng, TBP 10 ng, TFIIEβ 8 ng, TFIIF 16 ng, TFIH 78 ng
Reaction solution: the same as when using a supercoiled mold.

GSTプルダウンアッセイ
ヒトTFIIEαの野生型と点変異体の各基本転写因子との相互作用の検討を行った。Glutathione-S-transferase(GST)-基本転写因子[TFIIB,TBP,RAP74,RAP30,TFIIAα,β,γ,TFIIH(XPB,XPD,p62,p52,p44,p34,cdk7/MO15,cyclinH,MAT1)]融合蛋白質300ngとヒトTFIIEαの野生型または点変異体200 ngにGlutathion-sepharose (Amersham Pharmacia Biotech)7.5 μlとSepharoseCL-4B(Amersham Pharmacia Biotech)7.5 μlをBuffer C(0.1)+BSA 500 μl中で4℃、4時間反応した。レジンを回収し、Buffer C(0.2)で二回、Buffer C(0.1)で一回レジンを洗い、Glutathion-sepharoseに結合した蛋白質をSDS-PAGEで分離し、PVDF膜(Immobion-P,Millipore)にブロットし、ブロッキングを行った。一次抗体は抗TFIIEα抗体(MBL)をRinse Bufferで5000倍希釈し、4℃で一晩反応させ、二次抗体は抗マウスIg G goat Fab-PODをRinse Bufferで5000倍希釈し、室温で30分間反応させた。検出はECL(Amersham Pharmacia Biotech)により化学発光させ、Fuji New RX Filmに感光させた。
Buffer C(0.1)+BSA:20 mM Tris-HCl(pH7.9 at 4℃),20%Glycerol,0.1 M KCl,0.2 mM EDTA,0.2 mM PMSF,10 mM β-mercaptoethanol,0.1%NP40,0.2 mg/ml BSA
Buffer C(0.2):20 mM Tris HCl(pH7.9 at 4℃),20%Glycerol,0.2 M KCl,0.2 mM EDTA,0.2 mM PMSF,10 mM β-mercaptoethanol
ブロッキング溶液:5%nonfat skim milk,25 mM Tris-HCl(pH 7.5 at r.t),150 mM NaCl
Rinse Buffer:10 mM Tris-HCl(pH 7.5 at r.t),1 mM EDTA,150 mM NaCl,0.1%NP40,0.4% nonfat skim milk
GST pull-down assay The interaction between human TFIIEα wild-type and point mutants of each basic transcription factor was examined. Glutathione-S-transferase (GST)-basic transcription factor [TFIIB, TBP, RAP74, RAP30, TFIIAα, β, γ, TFIIH (XPB, XPD, p62, p52, p44, p34, cdk7 / MO15, cyclinH, MAT1) Glutathion-sepharose (Amersham Pharmacia Biotech) 7.5 μl and Sepharose CL-4B (Amersham Pharmacia Biotech) 7.5 μl in Buffer C (0.1) + BSA 500 μl The reaction was carried out at 4 ° C. for 4 hours. Collect the resin, wash the resin twice with Buffer C (0.2), and once with Buffer C (0.1), separate the protein bound to Glutathion-sepharose by SDS-PAGE, and PVDF membrane (Immobion-P, Millipore) Were blotted and blocked. The primary antibody is anti-TFIIEα antibody (MBL) diluted 5000-fold with Rinse Buffer and allowed to react overnight at 4 ° C. The secondary antibody is anti-mouse Ig G goat Fab-POD diluted 5000-fold with Rinse Buffer and diluted to 30 at room temperature. Reacted for 1 minute. Detection was performed by chemiluminescence using ECL (Amersham Pharmacia Biotech) and exposed to Fuji New RX Film.
Buffer C (0.1) + BSA: 20 mM Tris-HCl (pH 7.9 at 4 ° C), 20% Glycerol, 0.1 M KCl, 0.2 mM EDTA, 0.2 mM PMSF, 10 mM β-mercaptoethanol, 0.1% NP40, 0.2 mg / ml BSA
Buffer C (0.2): 20 mM Tris HCl (pH 7.9 at 4 ° C), 20% Glycerol, 0.2 M KCl, 0.2 mM EDTA, 0.2 mM PMSF, 10 mM β-mercaptoethanol
Blocking solution: 5% nonfat skim milk, 25 mM Tris-HCl (pH 7.5 at rt), 150 mM NaCl
Rinse Buffer: 10 mM Tris-HCl (pH 7.5 at rt), 1 mM EDTA, 150 mM NaCl, 0.1% NP40, 0.4% nonfat skim milk

CD分光法
15μMの野生型および突然変異体亜鉛結合ドメインを10 mM リン酸カリウムバッファー, pH 6.0, 30 μM ZnCl2, 1.0 mM 1,4-ジチオトレイトールに溶解した。1 mmの路長セルを有するJasco J-720W分光旋光計を用いて25°でCDスペクトルを得た。各スペクトルは、185-260 nmの波長範囲で16回スキャンした結果の平均である。
CD spectroscopy
15 μM wild type and mutant zinc binding domains were dissolved in 10 mM potassium phosphate buffer, pH 6.0, 30 μM ZnCl 2 , 1.0 mM 1,4-dithiothreitol. CD spectra were obtained at 25 ° using a Jasco J-720W spectropolarimeter with a 1 mm path length cell. Each spectrum is an average of the results of 16 scans in the wavelength range of 185-260 nm.

EDTA滴定
20 mM リン酸カリウムバッファー, pH 6.0, 30 μM ZnCl2, 5.0 mM 過重水素化1,4-ジチオトレイトール, 50 mM NaCl, 90% H2O/10% D2O中の1 mMの野生型または突然変異体亜鉛結合ドメインに、EDTAを0.5 mMずつ増加させながら2.0 mMまで添加した。各EDTA添加後、1H-15N HSQCスペクトルを記録した。
EDTA titration
1 mM wild-type in 20 mM potassium phosphate buffer, pH 6.0, 30 μM ZnCl 2 , 5.0 mM perdeuterated 1,4-dithiothreitol, 50 mM NaCl, 90% H 2 O / 10% D 2 O Alternatively, EDTA was added to the mutant zinc binding domain in increments of 0.5 mM to 2.0 mM. A 1 H- 15 N HSQC spectrum was recorded after each EDTA addition.

座標
TFIIEα亜鉛結合ドメイン構造の座標を表Aに示す。
Coordinate
The coordinates of the TFIIEα zinc binding domain structure are shown in Table A.

Figure 2005245202
Figure 2005245202

〔表A〕
野生型ヒトTFIIEα亜鉛結合ドメイン構造の座標

MODEL 1
ATOM 1 CA ARG 1 -13.547 .248 -24.620 1.00 .00
ATOM 2 HA ARG 1 -12.896 -.589 -24.815 1.00 .00
ATOM 3 CB ARG 1 -12.761 1.378 -23.954 1.00 .00
ATOM 4 HB1 ARG 1 -13.423 1.954 -23.323 1.00 .00
ATOM 5 HB2 ARG 1 -12.338 2.019 -24.714 1.00 .00
ATOM 6 CG ARG 1 -11.637 .785 -23.101 1.00 .00
ATOM 7 HG1 ARG 1 -11.923 -.200 -22.763 1.00 .00
ATOM 8 HG2 ARG 1 -11.460 1.422 -22.247 1.00 .00
ATOM 9 CD ARG 1 -10.359 .683 -23.937 1.00 .00
ATOM 10 HD1 ARG 1 -10.140 1.629 -24.408 1.00 .00
ATOM 11 HD2 ARG 1 -10.458 -.097 -24.680 1.00 .00
ATOM 12 NE ARG 1 -9.288 .341 -22.959 1.00 .00
ATOM 13 HE ARG 1 -9.526 .091 -22.042 1.00 .00
ATOM 14 CZ ARG 1 -8.035 .372 -23.324 1.00 .00
ATOM 15 NH1 ARG 1 -7.249 1.313 -22.876 1.00 .00
ATOM 16 HH11 ARG 1 -7.608 2.010 -22.254 1.00 .00
ATOM 17 HH12 ARG 1 -6.289 1.338 -23.154 1.00 .00
ATOM 18 NH2 ARG 1 -7.568 -.539 -24.134 1.00 .00
ATOM 19 HH21 ARG 1 -8.170 -1.260 -24.476 1.00 .00
ATOM 20 HH22 ARG 1 -6.608 -.516 -24.412 1.00 .00
ATOM 21 C ARG 1 -14.723 -.181 -23.739 1.00 .00
ATOM 22 O ARG 1 -15.720 .505 -23.641 1.00 .00
ATOM 23 N ARG 1 -14.049 .828 -25.899 1.00 .00
ATOM 24 HT1 ARG 1 -14.781 .206 -26.299 1.00 .00
ATOM 25 HT2 ARG 1 -13.261 .915 -26.573 1.00 .00
ATOM 26 HT3 ARG 1 -14.457 1.766 -25.718 1.00 .00
ATOM 27 N ILE 2 -14.614 -1.313 -23.098 1.00 .00
ATOM 28 HN ILE 2 -13.801 -1.852 -23.191 1.00 .00
ATOM 29 CA ILE 2 -15.727 -1.785 -22.226 1.00 .00
ATOM 30 HA ILE 2 -16.643 -1.855 -22.791 1.00 .00
ATOM 31 CB ILE 2 -15.297 -3.175 -21.756 1.00 .00
ATOM 32 HB ILE 2 -15.162 -3.819 -22.614 1.00 .00
ATOM 33 CG1 ILE 2 -16.375 -3.761 -20.840 1.00 .00
ATOM 34 HG11 ILE 2 -17.324 -3.293 -21.056 1.00 .00
ATOM 35 HG12 ILE 2 -16.109 -3.578 -19.809 1.00 .00
ATOM 36 CG2 ILE 2 -13.979 -3.071 -20.987 1.00 .00
ATOM 37 HG21 ILE 2 -14.186 -2.925 -19.937 1.00 .00
ATOM 38 HG22 ILE 2 -13.409 -2.234 -21.361 1.00 .00
ATOM 39 HG23 ILE 2 -13.413 -3.981 -21.119 1.00 .00
ATOM 40 CD1 ILE 2 -16.486 -5.268 -21.080 1.00 .00
ATOM 41 HD11 ILE 2 -16.141 -5.797 -20.205 1.00 .00
ATOM 42 HD12 ILE 2 -15.879 -5.543 -21.930 1.00 .00
ATOM 43 HD13 ILE 2 -17.516 -5.527 -21.274 1.00 .00
ATOM 44 C ILE 2 -15.904 -.841 -21.033 1.00 .00
ATOM 45 O ILE 2 -15.218 -.948 -20.036 1.00 .00
ATOM 46 N GLU 3 -16.820 .084 -21.129 1.00 .00
ATOM 47 HN GLU 3 -17.362 .153 -21.943 1.00 .00
ATOM 48 CA GLU 3 -17.043 1.037 -20.003 1.00 .00
ATOM 49 HA GLU 3 -16.238 1.752 -19.949 1.00 .00
ATOM 50 CB GLU 3 -18.352 1.750 -20.344 1.00 .00
ATOM 51 HB1 GLU 3 -19.157 1.324 -19.764 1.00 .00
ATOM 52 HB2 GLU 3 -18.564 1.629 -21.397 1.00 .00
ATOM 53 CG GLU 3 -18.225 3.238 -20.017 1.00 .00
ATOM 54 HG1 GLU 3 -17.253 3.593 -20.325 1.00 .00
ATOM 55 HG2 GLU 3 -18.342 3.383 -18.953 1.00 .00
ATOM 56 CD GLU 3 -19.309 4.019 -20.763 1.00 .00
ATOM 57 OE1 GLU 3 -19.277 5.237 -20.710 1.00 .00
ATOM 58 OE2 GLU 3 -20.154 3.384 -21.373 1.00 .00
ATOM 59 C GLU 3 -17.175 .276 -18.681 1.00 .00
ATOM 60 O GLU 3 -18.069 -.528 -18.504 1.00 .00
ATOM 61 N THR 4 -16.292 .522 -17.752 1.00 .00
ATOM 62 HN THR 4 -15.578 1.174 -17.915 1.00 .00
ATOM 63 CA THR 4 -16.368 -.189 -16.443 1.00 .00
ATOM 64 HA THR 4 -17.314 -.700 -16.348 1.00 .00
ATOM 65 CB THR 4 -15.225 -1.208 -16.469 1.00 .00
ATOM 66 HB THR 4 -14.591 -1.059 -15.608 1.00 .00
ATOM 67 OG1 THR 4 -14.460 -1.038 -17.656 1.00 .00
ATOM 68 HG1 THR 4 -13.745 -.427 -17.463 1.00 .00
ATOM 69 CG2 THR 4 -15.801 -2.624 -16.429 1.00 .00
ATOM 70 HG21 THR 4 -15.231 -3.225 -15.737 1.00 .00
ATOM 71 HG22 THR 4 -15.748 -3.062 -17.415 1.00 .00
ATOM 72 HG23 THR 4 -16.831 -2.584 -16.107 1.00 .00
ATOM 73 C THR 4 -16.177 .798 -15.288 1.00 .00
ATOM 74 O THR 4 -16.248 1.998 -15.465 1.00 .00
ATOM 75 N ASP 5 -15.933 .300 -14.107 1.00 .00
ATOM 76 HN ASP 5 -15.880 -.671 -13.987 1.00 .00
ATOM 77 CA ASP 5 -15.736 1.205 -12.938 1.00 .00
ATOM 78 HA ASP 5 -15.260 2.122 -13.247 1.00 .00
ATOM 79 CB ASP 5 -17.146 1.495 -12.423 1.00 .00
ATOM 80 HB1 ASP 5 -17.100 1.763 -11.379 1.00 .00
ATOM 81 HB2 ASP 5 -17.761 .614 -12.543 1.00 .00
ATOM 82 CG ASP 5 -17.753 2.654 -13.219 1.00 .00
ATOM 83 OD1 ASP 5 -18.624 2.395 -14.033 1.00 .00
ATOM 84 OD2 ASP 5 -17.337 3.779 -13.000 1.00 .00
ATOM 85 C ASP 5 -14.903 .502 -11.862 1.00 .00
ATOM 86 O ASP 5 -15.418 .067 -10.851 1.00 .00
ATOM 87 N GLU 6 -13.620 .387 -12.072 1.00 .00
ATOM 88 HN GLU 6 -13.224 .743 -12.895 1.00 .00
ATOM 89 CA GLU 6 -12.757 -.290 -11.061 1.00 .00
ATOM 90 HA GLU 6 -13.345 -.952 -10.446 1.00 .00
ATOM 91 CB GLU 6 -11.747 -1.096 -11.878 1.00 .00
ATOM 92 HB1 GLU 6 -10.797 -.584 -11.883 1.00 .00
ATOM 93 HB2 GLU 6 -12.106 -1.201 -12.892 1.00 .00
ATOM 94 CG GLU 6 -11.574 -2.480 -11.250 1.00 .00
ATOM 95 HG1 GLU 6 -12.350 -2.642 -10.518 1.00 .00
ATOM 96 HG2 GLU 6 -10.608 -2.539 -10.771 1.00 .00
ATOM 97 CD GLU 6 -11.671 -3.552 -12.337 1.00 .00
ATOM 98 OE1 GLU 6 -11.854 -4.707 -11.988 1.00 .00
ATOM 99 OE2 GLU 6 -11.560 -3.201 -13.500 1.00 .00
ATOM 100 C GLU 6 -12.039 .749 -10.197 1.00 .00
ATOM 101 O GLU 6 -12.513 1.852 -10.013 1.00 .00
ATOM 102 N ARG 7 -10.897 .405 -9.665 1.00 .00
ATOM 103 HN ARG 7 -10.531 -.490 -9.826 1.00 .00
ATOM 104 CA ARG 7 -10.150 1.374 -8.813 1.00 .00
ATOM 105 HA ARG 7 -10.418 2.387 -9.071 1.00 .00
ATOM 106 CB ARG 7 -10.591 1.067 -7.380 1.00 .00
ATOM 107 HB1 ARG 7 -11.654 1.232 -7.288 1.00 .00
ATOM 108 HB2 ARG 7 -10.066 1.716 -6.695 1.00 .00
ATOM 109 CG ARG 7 -10.275 -.393 -7.046 1.00 .00
ATOM 110 HG1 ARG 7 -9.621 -.432 -6.188 1.00 .00
ATOM 111 HG2 ARG 7 -9.790 -.859 -7.892 1.00 .00
ATOM 112 CD ARG 7 -11.574 -1.136 -6.726 1.00 .00
ATOM 113 HD1 ARG 7 -12.070 -1.435 -7.636 1.00 .00
ATOM 114 HD2 ARG 7 -12.224 -.513 -6.127 1.00 .00
ATOM 115 NE ARG 7 -11.151 -2.339 -5.957 1.00 .00
ATOM 116 HE ARG 7 -11.420 -2.441 -5.021 1.00 .00
ATOM 117 CZ ARG 7 -10.422 -3.257 -6.531 1.00 .00
ATOM 118 NH1 ARG 7 -10.994 -4.227 -7.190 1.00 .00
ATOM 119 HH11 ARG 7 -11.991 -4.267 -7.256 1.00 .00
ATOM 120 HH12 ARG 7 -10.436 -4.931 -7.630 1.00 .00
ATOM 121 NH2 ARG 7 -9.121 -3.206 -6.444 1.00 .00
ATOM 122 HH21 ARG 7 -8.682 -2.464 -5.937 1.00 .00
ATOM 123 HH22 ARG 7 -8.563 -3.909 -6.885 1.00 .00
ATOM 124 C ARG 7 -8.642 1.164 -8.969 1.00 .00
ATOM 125 O ARG 7 -8.049 .335 -8.308 1.00 .00
ATOM 126 N ASP 8 -8.017 1.911 -9.838 1.00 .00
ATOM 127 HN ASP 8 -8.514 2.575 -10.360 1.00 .00
ATOM 128 CA ASP 8 -6.547 1.757 -10.036 1.00 .00
ATOM 129 HA ASP 8 -6.181 2.493 -10.734 1.00 .00
ATOM 130 CB ASP 8 -5.935 1.997 -8.655 1.00 .00
ATOM 131 HB1 ASP 8 -5.182 1.248 -8.459 1.00 .00
ATOM 132 HB2 ASP 8 -6.708 1.937 -7.903 1.00 .00
ATOM 133 CG ASP 8 -5.291 3.384 -8.615 1.00 .00
ATOM 134 OD1 ASP 8 -5.532 4.154 -9.531 1.00 .00
ATOM 135 OD2 ASP 8 -4.568 3.653 -7.670 1.00 .00
ATOM 136 C ASP 8 -6.222 .344 -10.527 1.00 .00
ATOM 137 O ASP 8 -6.033 .112 -11.704 1.00 .00
ATOM 138 N SER 9 -6.154 -.601 -9.630 1.00 .00
ATOM 139 HN SER 9 -6.309 -.392 -8.686 1.00 .00
ATOM 140 CA SER 9 -5.840 -2.000 -10.041 1.00 .00
ATOM 141 HA SER 9 -6.506 -2.322 -10.825 1.00 .00
ATOM 142 CB SER 9 -4.405 -1.947 -10.562 1.00 .00
ATOM 143 HB1 SER 9 -4.213 -.970 -10.986 1.00 .00
ATOM 144 HB2 SER 9 -4.267 -2.698 -11.322 1.00 .00
ATOM 145 OG SER 9 -3.506 -2.197 -9.489 1.00 .00
ATOM 146 HG SER 9 -3.388 -1.377 -9.004 1.00 .00
ATOM 147 C SER 9 -5.940 -2.936 -8.833 1.00 .00
ATOM 148 O SER 9 -6.598 -2.636 -7.857 1.00 .00
ATOM 149 N THR 10 -5.291 -4.066 -8.891 1.00 .00
ATOM 150 HN THR 10 -4.765 -4.290 -9.687 1.00 .00
ATOM 151 CA THR 10 -5.349 -5.018 -7.744 1.00 .00
ATOM 152 HA THR 10 -5.963 -4.618 -6.953 1.00 .00
ATOM 153 CB THR 10 -5.987 -6.290 -8.310 1.00 .00
ATOM 154 HB THR 10 -5.384 -7.144 -8.041 1.00 .00
ATOM 155 OG1 THR 10 -6.066 -6.194 -9.726 1.00 .00
ATOM 156 HG1 THR 10 -5.172 -6.139 -10.070 1.00 .00
ATOM 157 CG2 THR 10 -7.391 -6.463 -7.728 1.00 .00
ATOM 158 HG21 THR 10 -8.094 -5.884 -8.307 1.00 .00
ATOM 159 HG22 THR 10 -7.400 -6.121 -6.703 1.00 .00
ATOM 160 HG23 THR 10 -7.668 -7.506 -7.762 1.00 .00
ATOM 161 C THR 10 -3.937 -5.313 -7.232 1.00 .00
ATOM 162 O THR 10 -3.755 -5.996 -6.244 1.00 .00
ATOM 163 N ASN 11 -2.937 -4.806 -7.900 1.00 .00
ATOM 164 HN ASN 11 -3.106 -4.262 -8.697 1.00 .00
ATOM 165 CA ASN 11 -1.537 -5.062 -7.455 1.00 .00
ATOM 166 HA ASN 11 -1.523 -5.756 -6.630 1.00 .00
ATOM 167 CB ASN 11 -.850 -5.685 -8.671 1.00 .00
ATOM 168 HB1 ASN 11 .079 -5.169 -8.864 1.00 .00
ATOM 169 HB2 ASN 11 -1.496 -5.597 -9.533 1.00 .00
ATOM 170 CG ASN 11 -.563 -7.161 -8.395 1.00 .00
ATOM 171 OD1 ASN 11 -1.149 -8.031 -9.008 1.00 .00
ATOM 172 ND2 ASN 11 .320 -7.483 -7.490 1.00 .00
ATOM 173 HD21 ASN 11 .793 -6.781 -6.996 1.00 .00
ATOM 174 HD22 ASN 11 .511 -8.426 -7.306 1.00 .00
ATOM 175 C ASN 11 -.851 -3.750 -7.065 1.00 .00
ATOM 176 O ASN 11 .234 -3.447 -7.519 1.00 .00
ATOM 177 N ARG 12 -1.475 -2.969 -6.226 1.00 .00
ATOM 178 HN ARG 12 -2.349 -3.231 -5.870 1.00 .00
ATOM 179 CA ARG 12 -.855 -1.678 -5.810 1.00 .00
ATOM 180 HA ARG 12 .172 -1.631 -6.134 1.00 .00
ATOM 181 CB ARG 12 -1.678 -.602 -6.521 1.00 .00
ATOM 182 HB1 ARG 12 -2.162 .024 -5.787 1.00 .00
ATOM 183 HB2 ARG 12 -2.426 -1.074 -7.141 1.00 .00
ATOM 184 CG ARG 12 -.758 .256 -7.392 1.00 .00
ATOM 185 HG1 ARG 12 .194 .379 -6.900 1.00 .00
ATOM 186 HG2 ARG 12 -1.212 1.224 -7.547 1.00 .00
ATOM 187 CD ARG 12 -.545 -.431 -8.744 1.00 .00
ATOM 188 HD1 ARG 12 -1.462 -.436 -9.312 1.00 .00
ATOM 189 HD2 ARG 12 -.183 -1.440 -8.600 1.00 .00
ATOM 190 NE ARG 12 .480 .398 -9.438 1.00 .00
ATOM 191 HE ARG 12 .201 1.117 -10.043 1.00 .00
ATOM 192 CZ ARG 12 1.749 .166 -9.242 1.00 .00
ATOM 193 NH1 ARG 12 2.186 -1.062 -9.172 1.00 .00
ATOM 194 HH11 ARG 12 1.548 -1.826 -9.268 1.00 .00
ATOM 195 HH12 ARG 12 3.159 -1.239 -9.023 1.00 .00
ATOM 196 NH2 ARG 12 2.582 1.163 -9.116 1.00 .00
ATOM 197 HH21 ARG 12 2.248 2.104 -9.170 1.00 .00
ATOM 198 HH22 ARG 12 3.555 .986 -8.965 1.00 .00
ATOM 199 C ARG 12 -.949 -1.510 -4.290 1.00 .00
ATOM 200 O ARG 12 -2.008 -1.267 -3.747 1.00 .00
ATOM 201 N ALA 13 .152 -1.638 -3.598 1.00 .00
ATOM 202 HN ALA 13 .997 -1.835 -4.054 1.00 .00
ATOM 203 CA ALA 13 .121 -1.486 -2.114 1.00 .00
ATOM 204 HA ALA 13 -.658 -2.087 -1.690 1.00 .00
ATOM 205 CB ALA 13 1.483 -1.982 -1.628 1.00 .00
ATOM 206 HB1 ALA 13 1.625 -1.690 -.598 1.00 .00
ATOM 207 HB2 ALA 13 2.262 -1.547 -2.235 1.00 .00
ATOM 208 HB3 ALA 13 1.524 -3.058 -1.706 1.00 .00
ATOM 209 C ALA 13 -.080 -.023 -1.733 1.00 .00
ATOM 210 O ALA 13 -.256 .831 -2.580 1.00 .00
ATOM 211 N SER 14 -.044 .273 -.463 1.00 .00
ATOM 212 HN SER 14 .106 -.435 .198 1.00 .00
ATOM 213 CA SER 14 -.225 1.681 -.012 1.00 .00
ATOM 214 HA SER 14 .553 2.309 -.416 1.00 .00
ATOM 215 CB SER 14 -1.583 2.107 -.568 1.00 .00
ATOM 216 HB1 SER 14 -1.525 2.176 -1.646 1.00 .00
ATOM 217 HB2 SER 14 -1.852 3.068 -.166 1.00 .00
ATOM 218 OG SER 14 -2.565 1.151 -.193 1.00 .00
ATOM 219 HG SER 14 -2.415 .916 .726 1.00 .00
ATOM 220 C SER 14 -.224 1.745 1.517 1.00 .00
ATOM 221 O SER 14 -1.104 2.322 2.123 1.00 .00
ATOM 222 N PHE 15 .758 1.151 2.145 1.00 .00
ATOM 223 HN PHE 15 1.455 .691 1.634 1.00 .00
ATOM 224 CA PHE 15 .813 1.176 3.639 1.00 .00
ATOM 225 HA PHE 15 .153 .430 4.054 1.00 .00
ATOM 226 CB PHE 15 2.264 .860 4.016 1.00 .00
ATOM 227 HB1 PHE 15 2.317 .632 5.071 1.00 .00
ATOM 228 HB2 PHE 15 2.882 1.720 3.806 1.00 .00
ATOM 229 CG PHE 15 2.766 -.322 3.225 1.00 .00
ATOM 230 CD1 PHE 15 4.108 -.372 2.831 1.00 .00
ATOM 231 HD1 PHE 15 4.778 .432 3.094 1.00 .00
ATOM 232 CD2 PHE 15 1.896 -1.364 2.885 1.00 .00
ATOM 233 HD2 PHE 15 .860 -1.324 3.189 1.00 .00
ATOM 234 CE1 PHE 15 4.581 -1.464 2.097 1.00 .00
ATOM 235 HE1 PHE 15 5.616 -1.501 1.795 1.00 .00
ATOM 236 CE2 PHE 15 2.370 -2.457 2.150 1.00 .00
ATOM 237 HE2 PHE 15 1.699 -3.262 1.887 1.00 .00
ATOM 238 CZ PHE 15 3.713 -2.507 1.756 1.00 .00
ATOM 239 HZ PHE 15 4.080 -3.349 1.189 1.00 .00
ATOM 240 C PHE 15 .439 2.565 4.150 1.00 .00
ATOM 241 O PHE 15 .671 3.558 3.492 1.00 .00
ATOM 242 N LYS 16 -.129 2.647 5.319 1.00 .00
ATOM 243 HN LYS 16 -.303 1.833 5.838 1.00 .00
ATOM 244 CA LYS 16 -.506 3.980 5.866 1.00 .00
ATOM 245 HA LYS 16 -.240 4.759 5.169 1.00 .00
ATOM 246 CB LYS 16 -2.025 3.930 6.035 1.00 .00
ATOM 247 HB1 LYS 16 -2.309 2.985 6.475 1.00 .00
ATOM 248 HB2 LYS 16 -2.496 4.031 5.068 1.00 .00
ATOM 249 CG LYS 16 -2.478 5.075 6.946 1.00 .00
ATOM 250 HG1 LYS 16 -1.625 5.674 7.226 1.00 .00
ATOM 251 HG2 LYS 16 -2.939 4.668 7.835 1.00 .00
ATOM 252 CD LYS 16 -3.488 5.952 6.201 1.00 .00
ATOM 253 HD1 LYS 16 -3.811 5.447 5.304 1.00 .00
ATOM 254 HD2 LYS 16 -3.024 6.892 5.940 1.00 .00
ATOM 255 CE LYS 16 -4.699 6.212 7.100 1.00 .00
ATOM 256 HE1 LYS 16 -4.586 5.699 8.042 1.00 .00
ATOM 257 HE2 LYS 16 -5.608 5.899 6.604 1.00 .00
ATOM 258 NZ LYS 16 -4.704 7.685 7.319 1.00 .00
ATOM 259 HZ1 LYS 16 -5.682 8.013 7.453 1.00 .00
ATOM 260 HZ2 LYS 16 -4.289 8.160 6.491 1.00 .00
ATOM 261 HZ3 LYS 16 -4.146 7.912 8.166 1.00 .00
ATOM 262 C LYS 16 .185 4.211 7.211 1.00 .00
ATOM 263 O LYS 16 .269 3.326 8.040 1.00 .00
ATOM 264 N CYS 17 .685 5.396 7.432 1.00 .00
ATOM 265 HN CYS 17 .609 6.094 6.748 1.00 .00
ATOM 266 CA CYS 17 1.376 5.687 8.719 1.00 .00
ATOM 267 HA CYS 17 1.941 4.829 9.045 1.00 .00
ATOM 268 HB1 CYS 17 1.757 7.758 8.329 1.00 .00
ATOM 269 HB2 CYS 17 2.822 6.652 7.463 1.00 .00
ATOM 270 C CYS 17 .360 6.104 9.788 1.00 .00
ATOM 271 O CYS 17 -.437 6.995 9.572 1.00 .00
ATOM 272 ZN CYS 17 4.829 8.852 9.299 1.00 .00
ATOM 273 CB CYS 17 2.321 6.842 8.401 1.00 .00
ATOM 274 SG CYS 17 3.547 6.992 9.720 1.00 .00
ATOM 275 N PRO 18 .423 5.438 10.910 1.00 .00
ATOM 276 CA PRO 18 -.504 5.737 12.027 1.00 .00
ATOM 277 HA PRO 18 -1.514 5.845 11.666 1.00 .00
ATOM 278 CB PRO 18 -.398 4.503 12.916 1.00 .00
ATOM 279 HB1 PRO 18 -1.168 3.791 12.663 1.00 .00
ATOM 280 HB2 PRO 18 -.473 4.786 13.957 1.00 .00
ATOM 281 CG PRO 18 .952 3.921 12.628 1.00 .00
ATOM 282 HG1 PRO 18 .904 2.844 12.673 1.00 .00
ATOM 283 HG2 PRO 18 1.668 4.288 13.349 1.00 .00
ATOM 284 CD PRO 18 1.352 4.352 11.239 1.00 .00
ATOM 285 HD2 PRO 18 2.373 4.710 11.235 1.00 .00
ATOM 286 HD1 PRO 18 1.232 3.538 10.541 1.00 .00
ATOM 287 C PRO 18 -.061 6.990 12.794 1.00 .00
ATOM 288 O PRO 18 -.710 7.410 13.731 1.00 .00
ATOM 289 N VAL 19 1.039 7.589 12.417 1.00 .00
ATOM 290 HN VAL 19 1.559 7.240 11.663 1.00 .00
ATOM 291 CA VAL 19 1.501 8.806 13.152 1.00 .00
ATOM 292 HA VAL 19 .921 8.935 14.052 1.00 .00
ATOM 293 CB VAL 19 2.961 8.529 13.520 1.00 .00
ATOM 294 HB VAL 19 3.451 8.026 12.699 1.00 .00
ATOM 295 CG1 VAL 19 3.685 9.845 13.814 1.00 .00
ATOM 296 HG11 VAL 19 4.007 10.293 12.886 1.00 .00
ATOM 297 HG12 VAL 19 4.544 9.652 14.438 1.00 .00
ATOM 298 HG13 VAL 19 3.013 10.519 14.324 1.00 .00
ATOM 299 CG2 VAL 19 3.006 7.644 14.768 1.00 .00
ATOM 300 HG21 VAL 19 2.522 8.154 15.587 1.00 .00
ATOM 301 HG22 VAL 19 4.035 7.441 15.029 1.00 .00
ATOM 302 HG23 VAL 19 2.495 6.714 14.570 1.00 .00
ATOM 303 C VAL 19 1.383 10.055 12.271 1.00 .00
ATOM 304 O VAL 19 1.123 11.137 12.758 1.00 .00
ATOM 305 N CYS 20 1.557 9.927 10.982 1.00 .00
ATOM 306 HN CYS 20 1.753 9.047 10.587 1.00 .00
ATOM 307 CA CYS 20 1.433 11.131 10.111 1.00 .00
ATOM 308 HA CYS 20 .966 11.933 10.663 1.00 .00
ATOM 309 HB1 CYS 20 3.504 11.408 10.611 1.00 .00
ATOM 310 HB2 CYS 20 2.885 12.559 9.430 1.00 .00
ATOM 311 C CYS 20 .586 10.789 8.881 1.00 .00
ATOM 312 O CYS 20 .547 11.515 7.907 1.00 .00
ATOM 313 CB CYS 20 2.869 11.526 9.744 1.00 .00
ATOM 314 SG CYS 20 3.487 10.487 8.402 1.00 .00
ATOM 315 N SER 21 -.113 9.691 8.951 1.00 .00
ATOM 316 HN SER 21 -.069 9.145 9.763 1.00 .00
ATOM 317 CA SER 21 -1.002 9.264 7.834 1.00 .00
ATOM 318 HA SER 21 -1.443 8.312 8.073 1.00 .00
ATOM 319 CB SER 21 -2.093 10.330 7.772 1.00 .00
ATOM 320 HB1 SER 21 -2.203 10.788 8.746 1.00 .00
ATOM 321 HB2 SER 21 -3.027 9.876 7.485 1.00 .00
ATOM 322 OG SER 21 -1.735 11.313 6.810 1.00 .00
ATOM 323 HG SER 21 -2.542 11.640 6.406 1.00 .00
ATOM 324 C SER 21 -.261 9.176 6.495 1.00 .00
ATOM 325 O SER 21 -.876 9.061 5.453 1.00 .00
ATOM 326 N SER 22 1.041 9.213 6.496 1.00 .00
ATOM 327 HN SER 22 1.534 9.298 7.338 1.00 .00
ATOM 328 CA SER 22 1.773 9.112 5.200 1.00 .00
ATOM 329 HA SER 22 1.449 9.886 4.522 1.00 .00
ATOM 330 CB SER 22 3.246 9.304 5.550 1.00 .00
ATOM 331 HB1 SER 22 3.858 8.834 4.792 1.00 .00
ATOM 332 HB2 SER 22 3.454 8.853 6.505 1.00 .00
ATOM 333 OG SER 22 3.533 10.693 5.613 1.00 .00
ATOM 334 HG SER 22 3.592 11.024 4.713 1.00 .00
ATOM 335 C SER 22 1.543 7.728 4.584 1.00 .00
ATOM 336 O SER 22 1.813 6.716 5.199 1.00 .00
ATOM 337 N THR 23 1.041 7.672 3.380 1.00 .00
ATOM 338 HN THR 23 .823 8.497 2.898 1.00 .00
ATOM 339 CA THR 23 .793 6.345 2.743 1.00 .00
ATOM 340 HA THR 23 .493 5.626 3.487 1.00 .00
ATOM 341 CB THR 23 -.351 6.576 1.751 1.00 .00
ATOM 342 HB THR 23 .020 6.480 .743 1.00 .00
ATOM 343 OG1 THR 23 -.887 7.879 1.936 1.00 .00
ATOM 344 HG1 THR 23 -1.593 8.003 1.297 1.00 .00
ATOM 345 CG2 THR 23 -1.448 5.535 1.984 1.00 .00
ATOM 346 HG21 THR 23 -.997 4.591 2.252 1.00 .00
ATOM 347 HG22 THR 23 -2.028 5.413 1.081 1.00 .00
ATOM 348 HG23 THR 23 -2.094 5.865 2.784 1.00 .00
ATOM 349 C THR 23 2.052 5.863 2.013 1.00 .00
ATOM 350 O THR 23 2.986 6.612 1.810 1.00 .00
ATOM 351 N PHE 24 2.085 4.618 1.619 1.00 .00
ATOM 352 HN PHE 24 1.322 4.028 1.794 1.00 .00
ATOM 353 CA PHE 24 3.287 4.092 .906 1.00 .00
ATOM 354 HA PHE 24 3.721 4.856 .282 1.00 .00
ATOM 355 CB PHE 24 4.265 3.703 2.016 1.00 .00
ATOM 356 HB1 PHE 24 5.141 3.246 1.579 1.00 .00
ATOM 357 HB2 PHE 24 3.789 3.001 2.685 1.00 .00
ATOM 358 CG PHE 24 4.675 4.935 2.787 1.00 .00
ATOM 359 CD1 PHE 24 5.617 5.819 2.248 1.00 .00
ATOM 360 HD1 PHE 24 6.048 5.623 1.277 1.00 .00
ATOM 361 CD2 PHE 24 4.117 5.190 4.046 1.00 .00
ATOM 362 HD2 PHE 24 3.390 4.508 4.462 1.00 .00
ATOM 363 CE1 PHE 24 6.000 6.958 2.967 1.00 .00
ATOM 364 HE1 PHE 24 6.727 7.640 2.551 1.00 .00
ATOM 365 CE2 PHE 24 4.499 6.329 4.764 1.00 .00
ATOM 366 HE2 PHE 24 4.068 6.526 5.735 1.00 .00
ATOM 367 CZ PHE 24 5.442 7.213 4.225 1.00 .00
ATOM 368 HZ PHE 24 5.738 8.091 4.780 1.00 .00
ATOM 369 C PHE 24 2.916 2.862 .071 1.00 .00
ATOM 370 O PHE 24 2.575 1.823 .599 1.00 .00
ATOM 371 N THR 25 2.983 2.968 -1.227 1.00 .00
ATOM 372 HN THR 25 3.262 3.813 -1.638 1.00 .00
ATOM 373 CA THR 25 2.634 1.799 -2.087 1.00 .00
ATOM 374 HA THR 25 1.759 1.296 -1.704 1.00 .00
ATOM 375 CB THR 25 2.333 2.393 -3.464 1.00 .00
ATOM 376 HB THR 25 2.045 1.604 -4.142 1.00 .00
ATOM 377 OG1 THR 25 3.491 3.049 -3.960 1.00 .00
ATOM 378 HG1 THR 25 4.253 2.503 -3.752 1.00 .00
ATOM 379 CG2 THR 25 1.187 3.398 -3.346 1.00 .00
ATOM 380 HG21 THR 25 .657 3.452 -4.285 1.00 .00
ATOM 381 HG22 THR 25 1.586 4.371 -3.100 1.00 .00
ATOM 382 HG23 THR 25 .508 3.081 -2.568 1.00 .00
ATOM 383 C THR 25 3.810 .824 -2.165 1.00 .00
ATOM 384 O THR 25 4.777 .938 -1.437 1.00 .00
ATOM 385 N ASP 26 3.727 -.140 -3.037 1.00 .00
ATOM 386 HN ASP 26 2.931 -.215 -3.606 1.00 .00
ATOM 387 CA ASP 26 4.831 -1.136 -3.162 1.00 .00
ATOM 388 HA ASP 26 4.959 -1.671 -2.235 1.00 .00
ATOM 389 CB ASP 26 4.375 -2.100 -4.258 1.00 .00
ATOM 390 HB1 ASP 26 3.373 -2.440 -4.044 1.00 .00
ATOM 391 HB2 ASP 26 5.044 -2.948 -4.291 1.00 .00
ATOM 392 CG ASP 26 4.391 -1.384 -5.610 1.00 .00
ATOM 393 OD1 ASP 26 3.364 -.841 -5.983 1.00 .00
ATOM 394 OD2 ASP 26 5.430 -1.392 -6.250 1.00 .00
ATOM 395 C ASP 26 6.139 -.447 -3.563 1.00 .00
ATOM 396 O ASP 26 7.205 -.811 -3.107 1.00 .00
ATOM 397 N LEU 27 6.072 .540 -4.415 1.00 .00
ATOM 398 HN LEU 27 5.206 .819 -4.777 1.00 .00
ATOM 399 CA LEU 27 7.321 1.238 -4.840 1.00 .00
ATOM 400 HA LEU 27 8.014 .533 -5.271 1.00 .00
ATOM 401 CB LEU 27 6.872 2.243 -5.908 1.00 .00
ATOM 402 HB1 LEU 27 6.122 1.786 -6.536 1.00 .00
ATOM 403 HB2 LEU 27 7.721 2.528 -6.512 1.00 .00
ATOM 404 CG LEU 27 6.282 3.487 -5.240 1.00 .00
ATOM 405 HG LEU 27 5.904 3.225 -4.263 1.00 .00
ATOM 406 CD1 LEU 27 7.370 4.553 -5.098 1.00 .00
ATOM 407 HD11 LEU 27 7.607 4.958 -6.070 1.00 .00
ATOM 408 HD12 LEU 27 8.256 4.109 -4.668 1.00 .00
ATOM 409 HD13 LEU 27 7.016 5.345 -4.455 1.00 .00
ATOM 410 CD2 LEU 27 5.142 4.037 -6.101 1.00 .00
ATOM 411 HD21 LEU 27 4.694 4.885 -5.605 1.00 .00
ATOM 412 HD22 LEU 27 4.396 3.269 -6.244 1.00 .00
ATOM 413 HD23 LEU 27 5.531 4.345 -7.060 1.00 .00
ATOM 414 C LEU 27 7.964 1.950 -3.644 1.00 .00
ATOM 415 O LEU 27 9.135 2.275 -3.659 1.00 .00
ATOM 416 N GLU 28 7.208 2.190 -2.607 1.00 .00
ATOM 417 HN GLU 28 6.267 1.917 -2.614 1.00 .00
ATOM 418 CA GLU 28 7.774 2.874 -1.409 1.00 .00
ATOM 419 HA GLU 28 8.609 3.497 -1.687 1.00 .00
ATOM 420 CB GLU 28 6.633 3.737 -.867 1.00 .00
ATOM 421 HB1 GLU 28 7.004 4.371 -.076 1.00 .00
ATOM 422 HB2 GLU 28 5.853 3.097 -.480 1.00 .00
ATOM 423 CG GLU 28 6.070 4.606 -1.992 1.00 .00
ATOM 424 HG1 GLU 28 5.005 4.448 -2.070 1.00 .00
ATOM 425 HG2 GLU 28 6.544 4.337 -2.924 1.00 .00
ATOM 426 CD GLU 28 6.344 6.079 -1.686 1.00 .00
ATOM 427 OE1 GLU 28 5.745 6.591 -.756 1.00 .00
ATOM 428 OE2 GLU 28 7.148 6.669 -2.389 1.00 .00
ATOM 429 C GLU 28 8.200 1.836 -.368 1.00 .00
ATOM 430 O GLU 28 8.860 2.148 .605 1.00 .00
ATOM 431 N ALA 29 7.825 .603 -.566 1.00 .00
ATOM 432 HN ALA 29 7.293 .376 -1.357 1.00 .00
ATOM 433 CA ALA 29 8.201 -.462 .406 1.00 .00
ATOM 434 HA ALA 29 7.957 -.160 1.414 1.00 .00
ATOM 435 CB ALA 29 7.356 -1.671 .003 1.00 .00
ATOM 436 HB1 ALA 29 7.078 -2.227 .885 1.00 .00
ATOM 437 HB2 ALA 29 7.928 -2.305 -.657 1.00 .00
ATOM 438 HB3 ALA 29 6.465 -1.333 -.506 1.00 .00
ATOM 439 C ALA 29 9.692 -.789 .286 1.00 .00
ATOM 440 O ALA 29 10.374 -.996 1.268 1.00 .00
ATOM 441 N ASN 30 10.200 -.843 -.914 1.00 .00
ATOM 442 HN ASN 30 9.629 -.678 -1.693 1.00 .00
ATOM 443 CA ASN 30 11.644 -1.165 -1.104 1.00 .00
ATOM 444 HA ASN 30 11.837 -2.193 -.843 1.00 .00
ATOM 445 CB ASN 30 11.895 -.954 -2.597 1.00 .00
ATOM 446 HB1 ASN 30 12.957 -.951 -2.788 1.00 .00
ATOM 447 HB2 ASN 30 11.471 -.008 -2.903 1.00 .00
ATOM 448 CG ASN 30 11.239 -2.087 -3.388 1.00 .00
ATOM 449 OD1 ASN 30 11.215 -3.218 -2.944 1.00 .00
ATOM 450 ND2 ASN 30 10.702 -1.831 -4.549 1.00 .00
ATOM 451 HD21 ASN 30 10.721 -.920 -4.908 1.00 .00
ATOM 452 HD22 ASN 30 10.279 -2.551 -5.063 1.00 .00
ATOM 453 C ASN 30 12.528 -.228 -.273 1.00 .00
ATOM 454 O ASN 30 13.371 -.667 .484 1.00 .00
ATOM 455 N GLN 31 12.354 1.058 -.414 1.00 .00
ATOM 456 HN GLN 31 11.675 1.395 -1.036 1.00 .00
ATOM 457 CA GLN 31 13.198 2.015 .361 1.00 .00
ATOM 458 HA GLN 31 14.240 1.759 .265 1.00 .00
ATOM 459 CB GLN 31 12.938 3.378 -.280 1.00 .00
ATOM 460 HB1 GLN 31 13.156 3.328 -1.336 1.00 .00
ATOM 461 HB2 GLN 31 13.571 4.121 .185 1.00 .00
ATOM 462 CG GLN 31 11.470 3.764 -.083 1.00 .00
ATOM 463 HG1 GLN 31 11.363 4.318 .837 1.00 .00
ATOM 464 HG2 GLN 31 10.866 2.869 -.037 1.00 .00
ATOM 465 CD GLN 31 11.009 4.631 -1.255 1.00 .00
ATOM 466 OE1 GLN 31 10.905 5.836 -1.131 1.00 .00
ATOM 467 NE2 GLN 31 10.727 4.066 -2.396 1.00 .00
ATOM 468 HE21 GLN 31 10.812 3.095 -2.496 1.00 .00
ATOM 469 HE22 GLN 31 10.430 4.613 -3.154 1.00 .00
ATOM 470 C GLN 31 12.787 2.035 1.838 1.00 .00
ATOM 471 O GLN 31 13.584 2.327 2.707 1.00 .00
ATOM 472 N LEU 32 11.551 1.740 2.128 1.00 .00
ATOM 473 HN LEU 32 10.919 1.516 1.414 1.00 .00
ATOM 474 CA LEU 32 11.095 1.757 3.549 1.00 .00
ATOM 475 HA LEU 32 11.642 2.498 4.110 1.00 .00
ATOM 476 CB LEU 32 9.620 2.148 3.476 1.00 .00
ATOM 477 HB1 LEU 32 9.196 2.151 4.468 1.00 .00
ATOM 478 HB2 LEU 32 9.090 1.436 2.859 1.00 .00
ATOM 479 CG LEU 32 9.496 3.545 2.865 1.00 .00
ATOM 480 HG LEU 32 9.967 3.555 1.893 1.00 .00
ATOM 481 CD1 LEU 32 8.019 3.911 2.719 1.00 .00
ATOM 482 HD11 LEU 32 7.743 4.611 3.494 1.00 .00
ATOM 483 HD12 LEU 32 7.417 3.019 2.808 1.00 .00
ATOM 484 HD13 LEU 32 7.854 4.361 1.751 1.00 .00
ATOM 485 CD2 LEU 32 10.184 4.564 3.778 1.00 .00
ATOM 486 HD21 LEU 32 9.449 5.256 4.162 1.00 .00
ATOM 487 HD22 LEU 32 10.929 5.107 3.215 1.00 .00
ATOM 488 HD23 LEU 32 10.658 4.049 4.600 1.00 .00
ATOM 489 C LEU 32 11.252 .375 4.192 1.00 .00
ATOM 490 O LEU 32 11.183 .231 5.396 1.00 .00
ATOM 491 N PHE 33 11.458 -.641 3.402 1.00 .00
ATOM 492 HN PHE 33 11.508 -.506 2.432 1.00 .00
ATOM 493 CA PHE 33 11.612 -2.012 3.973 1.00 .00
ATOM 494 HA PHE 33 10.706 -2.314 4.472 1.00 .00
ATOM 495 CB PHE 33 11.867 -2.916 2.766 1.00 .00
ATOM 496 HB1 PHE 33 12.791 -2.625 2.289 1.00 .00
ATOM 497 HB2 PHE 33 11.054 -2.816 2.065 1.00 .00
ATOM 498 CG PHE 33 11.968 -4.354 3.218 1.00 .00
ATOM 499 CD1 PHE 33 13.178 -4.846 3.721 1.00 .00
ATOM 500 HD1 PHE 33 14.036 -4.195 3.794 1.00 .00
ATOM 501 CD2 PHE 33 10.854 -5.198 3.126 1.00 .00
ATOM 502 HD2 PHE 33 9.919 -4.819 2.741 1.00 .00
ATOM 503 CE1 PHE 33 13.276 -6.181 4.131 1.00 .00
ATOM 504 HE1 PHE 33 14.210 -6.560 4.519 1.00 .00
ATOM 505 CE2 PHE 33 10.951 -6.533 3.537 1.00 .00
ATOM 506 HE2 PHE 33 10.092 -7.184 3.466 1.00 .00
ATOM 507 CZ PHE 33 12.162 -7.025 4.039 1.00 .00
ATOM 508 HZ PHE 33 12.238 -8.055 4.355 1.00 .00
ATOM 509 C PHE 33 12.798 -2.063 4.942 1.00 .00
ATOM 510 O PHE 33 13.842 -1.493 4.693 1.00 .00
ATOM 511 N ASP 34 12.642 -2.747 6.043 1.00 .00
ATOM 512 HN ASP 34 11.791 -3.201 6.219 1.00 .00
ATOM 513 CA ASP 34 13.756 -2.846 7.031 1.00 .00
ATOM 514 HA ASP 34 14.537 -2.142 6.793 1.00 .00
ATOM 515 CB ASP 34 13.123 -2.491 8.378 1.00 .00
ATOM 516 HB1 ASP 34 13.238 -3.320 9.060 1.00 .00
ATOM 517 HB2 ASP 34 12.071 -2.285 8.237 1.00 .00
ATOM 518 CG ASP 34 13.813 -1.256 8.959 1.00 .00
ATOM 519 OD1 ASP 34 14.509 -1.402 9.950 1.00 .00
ATOM 520 OD2 ASP 34 13.632 -.184 8.405 1.00 .00
ATOM 521 C ASP 34 14.307 -4.275 7.057 1.00 .00
ATOM 522 O ASP 34 13.556 -5.229 7.025 1.00 .00
ATOM 523 N PRO 35 15.608 -4.372 7.108 1.00 .00
ATOM 524 CA PRO 35 16.272 -5.698 7.131 1.00 .00
ATOM 525 HA PRO 35 15.886 -6.332 6.349 1.00 .00
ATOM 526 CB PRO 35 17.737 -5.369 6.859 1.00 .00
ATOM 527 HB1 PRO 35 17.952 -5.451 5.806 1.00 .00
ATOM 528 HB2 PRO 35 18.380 -6.027 7.429 1.00 .00
ATOM 529 CG PRO 35 17.908 -3.952 7.308 1.00 .00
ATOM 530 HG1 PRO 35 18.645 -3.458 6.696 1.00 .00
ATOM 531 HG2 PRO 35 18.213 -3.931 8.346 1.00 .00
ATOM 532 CD PRO 35 16.573 -3.269 7.147 1.00 .00
ATOM 533 HD2 PRO 35 16.378 -2.619 7.990 1.00 .00
ATOM 534 HD1 PRO 35 16.540 -2.714 6.222 1.00 .00
ATOM 535 C PRO 35 16.114 -6.369 8.501 1.00 .00
ATOM 536 O PRO 35 15.994 -7.573 8.599 1.00 .00
ATOM 537 N MET 36 16.119 -5.602 9.559 1.00 .00
ATOM 538 HN MET 36 16.223 -4.632 9.461 1.00 .00
ATOM 539 CA MET 36 15.978 -6.206 10.919 1.00 .00
ATOM 540 HA MET 36 16.924 -6.603 11.250 1.00 .00
ATOM 541 CB MET 36 15.551 -5.056 11.837 1.00 .00
ATOM 542 HB1 MET 36 16.419 -4.482 12.116 1.00 .00
ATOM 543 HB2 MET 36 15.089 -5.461 12.726 1.00 .00
ATOM 544 CG MET 36 14.553 -4.144 11.118 1.00 .00
ATOM 545 HG1 MET 36 14.285 -4.576 10.167 1.00 .00
ATOM 546 HG2 MET 36 15.003 -3.175 10.958 1.00 .00
ATOM 547 SD MET 36 13.068 -3.956 12.136 1.00 .00
ATOM 548 CE MET 36 13.364 -2.247 12.652 1.00 .00
ATOM 549 HE1 MET 36 14.357 -1.947 12.348 1.00 .00
ATOM 550 HE2 MET 36 13.280 -2.173 13.724 1.00 .00
ATOM 551 HE3 MET 36 12.630 -1.601 12.190 1.00 .00
ATOM 552 C MET 36 14.916 -7.309 10.912 1.00 .00
ATOM 553 O MET 36 15.070 -8.335 11.544 1.00 .00
ATOM 554 N THR 37 13.843 -7.106 10.202 1.00 .00
ATOM 555 HN THR 37 13.740 -6.272 9.700 1.00 .00
ATOM 556 CA THR 37 12.772 -8.141 10.154 1.00 .00
ATOM 557 HA THR 37 13.185 -9.121 10.334 1.00 .00
ATOM 558 CB THR 37 11.808 -7.762 11.278 1.00 .00
ATOM 559 HB THR 37 12.314 -7.839 12.228 1.00 .00
ATOM 560 OG1 THR 37 10.694 -8.643 11.260 1.00 .00
ATOM 561 HG1 THR 37 11.026 -9.542 11.320 1.00 .00
ATOM 562 CG2 THR 37 11.330 -6.324 11.077 1.00 .00
ATOM 563 HG21 THR 37 11.053 -5.901 12.032 1.00 .00
ATOM 564 HG22 THR 37 10.475 -6.319 10.419 1.00 .00
ATOM 565 HG23 THR 37 12.125 -5.738 10.640 1.00 .00
ATOM 566 C THR 37 12.064 -8.095 8.799 1.00 .00
ATOM 567 O THR 37 11.769 -9.113 8.205 1.00 .00
ATOM 568 N GLY 38 11.797 -6.918 8.302 1.00 .00
ATOM 569 HN GLY 38 12.051 -6.110 8.795 1.00 .00
ATOM 570 CA GLY 38 11.117 -6.804 6.981 1.00 .00
ATOM 571 HA1 GLY 38 10.773 -7.778 6.668 1.00 .00
ATOM 572 HA2 GLY 38 11.816 -6.418 6.254 1.00 .00
ATOM 573 C GLY 38 9.919 -5.857 7.087 1.00 .00
ATOM 574 O GLY 38 8.952 -5.986 6.361 1.00 .00
ATOM 575 N THR 39 9.970 -4.903 7.976 1.00 .00
ATOM 576 HN THR 39 10.757 -4.807 8.551 1.00 .00
ATOM 577 CA THR 39 8.827 -3.954 8.107 1.00 .00
ATOM 578 HA THR 39 7.921 -4.406 7.737 1.00 .00
ATOM 579 CB THR 39 8.696 -3.673 9.606 1.00 .00
ATOM 580 HB THR 39 8.790 -2.612 9.785 1.00 .00
ATOM 581 OG1 THR 39 9.714 -4.366 10.314 1.00 .00
ATOM 582 HG1 THR 39 9.345 -4.664 11.149 1.00 .00
ATOM 583 CG2 THR 39 7.324 -4.143 10.088 1.00 .00
ATOM 584 HG21 THR 39 7.168 -5.167 9.782 1.00 .00
ATOM 585 HG22 THR 39 6.558 -3.517 9.655 1.00 .00
ATOM 586 HG23 THR 39 7.279 -4.077 11.164 1.00 .00
ATOM 587 C THR 39 9.126 -2.662 7.343 1.00 .00
ATOM 588 O THR 39 10.251 -2.392 6.976 1.00 .00
ATOM 589 N PHE 40 8.123 -1.864 7.099 1.00 .00
ATOM 590 HN PHE 40 7.223 -2.103 7.402 1.00 .00
ATOM 591 CA PHE 40 8.346 -.592 6.357 1.00 .00
ATOM 592 HA PHE 40 9.320 -.592 5.895 1.00 .00
ATOM 593 CB PHE 40 7.259 -.570 5.282 1.00 .00
ATOM 594 HB1 PHE 40 7.369 .315 4.675 1.00 .00
ATOM 595 HB2 PHE 40 6.287 -.568 5.753 1.00 .00
ATOM 596 CG PHE 40 7.398 -1.797 4.414 1.00 .00
ATOM 597 CD1 PHE 40 6.575 -2.908 4.634 1.00 .00
ATOM 598 HD1 PHE 40 5.837 -2.886 5.422 1.00 .00
ATOM 599 CD2 PHE 40 8.354 -1.827 3.392 1.00 .00
ATOM 600 HD2 PHE 40 8.990 -.970 3.222 1.00 .00
ATOM 601 CE1 PHE 40 6.708 -4.048 3.832 1.00 .00
ATOM 602 HE1 PHE 40 6.073 -4.905 4.001 1.00 .00
ATOM 603 CE2 PHE 40 8.487 -2.966 2.590 1.00 .00
ATOM 604 HE2 PHE 40 9.223 -2.988 1.801 1.00 .00
ATOM 605 CZ PHE 40 7.664 -4.076 2.809 1.00 .00
ATOM 606 HZ PHE 40 7.767 -4.955 2.191 1.00 .00
ATOM 607 C PHE 40 8.202 .602 7.302 1.00 .00
ATOM 608 O PHE 40 7.155 .832 7.874 1.00 .00
ATOM 609 N ARG 41 9.250 1.360 7.476 1.00 .00
ATOM 610 HN ARG 41 10.087 1.155 7.010 1.00 .00
ATOM 611 CA ARG 41 9.174 2.534 8.390 1.00 .00
ATOM 612 HA ARG 41 8.397 2.390 9.124 1.00 .00
ATOM 613 CB ARG 41 10.537 2.587 9.081 1.00 .00
ATOM 614 HB1 ARG 41 10.794 3.615 9.291 1.00 .00
ATOM 615 HB2 ARG 41 11.286 2.153 8.435 1.00 .00
ATOM 616 CG ARG 41 10.475 1.802 10.393 1.00 .00
ATOM 617 HG1 ARG 41 9.829 .946 10.270 1.00 .00
ATOM 618 HG2 ARG 41 10.084 2.439 11.173 1.00 .00
ATOM 619 CD ARG 41 11.879 1.329 10.777 1.00 .00
ATOM 620 HD1 ARG 41 12.604 2.104 10.586 1.00 .00
ATOM 621 HD2 ARG 41 12.133 .429 10.233 1.00 .00
ATOM 622 NE ARG 41 11.803 1.050 12.238 1.00 .00
ATOM 623 HE ARG 41 11.061 .520 12.598 1.00 .00
ATOM 624 CZ ARG 41 12.723 1.512 13.041 1.00 .00
ATOM 625 NH1 ARG 41 13.850 .870 13.179 1.00 .00
ATOM 626 HH11 ARG 41 14.010 .024 12.671 1.00 .00
ATOM 627 HH12 ARG 41 14.555 1.223 13.795 1.00 .00
ATOM 628 NH2 ARG 41 12.514 2.615 13.707 1.00 .00
ATOM 629 HH21 ARG 41 11.649 3.107 13.602 1.00 .00
ATOM 630 HH22 ARG 41 13.219 2.969 14.321 1.00 .00
ATOM 631 C ARG 41 8.928 3.818 7.595 1.00 .00
ATOM 632 O ARG 41 9.385 3.969 6.479 1.00 .00
ATOM 633 N CYS 42 8.211 4.743 8.168 1.00 .00
ATOM 634 HN CYS 42 7.857 4.596 9.070 1.00 .00
ATOM 635 CA CYS 42 7.931 6.027 7.463 1.00 .00
ATOM 636 HA CYS 42 7.178 5.895 6.704 1.00 .00
ATOM 637 HB1 CYS 42 8.256 7.321 9.130 1.00 .00
ATOM 638 HB2 CYS 42 6.757 6.398 9.207 1.00 .00
ATOM 639 C CYS 42 9.215 6.600 6.868 1.00 .00
ATOM 640 O CYS 42 10.284 6.045 7.023 1.00 .00
ATOM 641 CB CYS 42 7.419 6.949 8.558 1.00 .00
ATOM 642 SG CYS 42 6.524 8.341 7.834 1.00 .00
ATOM 643 N THR 43 9.124 7.715 6.198 1.00 .00
ATOM 644 HN THR 43 8.259 8.155 6.086 1.00 .00
ATOM 645 CA THR 43 10.346 8.316 5.612 1.00 .00
ATOM 646 HA THR 43 11.168 7.625 5.688 1.00 .00
ATOM 647 CB THR 43 10.018 8.570 4.141 1.00 .00
ATOM 648 HB THR 43 9.981 9.632 3.957 1.00 .00
ATOM 649 OG1 THR 43 8.761 7.988 3.825 1.00 .00
ATOM 650 HG1 THR 43 8.679 7.960 2.869 1.00 .00
ATOM 651 CG2 THR 43 11.107 7.945 3.269 1.00 .00
ATOM 652 HG21 THR 43 11.704 8.726 2.823 1.00 .00
ATOM 653 HG22 THR 43 10.649 7.352 2.491 1.00 .00
ATOM 654 HG23 THR 43 11.738 7.313 3.878 1.00 .00
ATOM 655 C THR 43 10.697 9.623 6.325 1.00 .00
ATOM 656 O THR 43 11.826 10.069 6.275 1.00 .00
ATOM 657 N PHE 44 9.764 10.247 7.003 1.00 .00
ATOM 658 HN PHE 44 8.850 9.885 7.058 1.00 .00
ATOM 659 CA PHE 44 10.135 11.514 7.704 1.00 .00
ATOM 660 HA PHE 44 11.207 11.635 7.663 1.00 .00
ATOM 661 CB PHE 44 9.478 12.660 6.928 1.00 .00
ATOM 662 HB1 PHE 44 9.846 12.654 5.912 1.00 .00
ATOM 663 HB2 PHE 44 9.744 13.597 7.392 1.00 .00
ATOM 664 CG PHE 44 7.977 12.531 6.912 1.00 .00
ATOM 665 CD1 PHE 44 7.344 11.861 5.859 1.00 .00
ATOM 666 HD1 PHE 44 7.933 11.410 5.073 1.00 .00
ATOM 667 CD2 PHE 44 7.215 13.114 7.930 1.00 .00
ATOM 668 HD2 PHE 44 7.705 13.629 8.743 1.00 .00
ATOM 669 CE1 PHE 44 5.949 11.776 5.824 1.00 .00
ATOM 670 HE1 PHE 44 5.460 11.259 5.011 1.00 .00
ATOM 671 CE2 PHE 44 5.820 13.025 7.899 1.00 .00
ATOM 672 HE2 PHE 44 5.232 13.472 8.686 1.00 .00
ATOM 673 CZ PHE 44 5.187 12.357 6.844 1.00 .00
ATOM 674 HZ PHE 44 4.111 12.297 6.815 1.00 .00
ATOM 675 C PHE 44 9.698 11.485 9.171 1.00 .00
ATOM 676 O PHE 44 10.319 12.103 10.013 1.00 .00
ATOM 677 N CYS 45 8.674 10.750 9.508 1.00 .00
ATOM 678 HN CYS 45 8.193 10.223 8.834 1.00 .00
ATOM 679 CA CYS 45 8.284 10.685 10.947 1.00 .00
ATOM 680 HA CYS 45 8.840 11.424 11.506 1.00 .00
ATOM 681 HB1 CYS 45 6.482 11.473 10.064 1.00 .00
ATOM 682 HB2 CYS 45 6.596 11.715 11.800 1.00 .00
ATOM 683 C CYS 45 8.628 9.276 11.466 1.00 .00
ATOM 684 O CYS 45 8.132 8.823 12.479 1.00 .00
ATOM 685 CB CYS 45 6.774 11.015 10.999 1.00 .00
ATOM 686 SG CYS 45 5.760 9.538 11.282 1.00 .00
ATOM 687 N HIS 46 9.501 8.608 10.749 1.00 .00
ATOM 688 HN HIS 46 9.875 9.031 9.950 1.00 .00
ATOM 689 CA HIS 46 9.969 7.231 11.106 1.00 .00
ATOM 690 HA HIS 46 10.106 6.656 10.204 1.00 .00
ATOM 691 CB HIS 46 11.332 7.453 11.755 1.00 .00
ATOM 692 HB1 HIS 46 11.672 6.536 12.212 1.00 .00
ATOM 693 HB2 HIS 46 11.255 8.228 12.504 1.00 .00
ATOM 694 CG HIS 46 12.300 7.873 10.684 1.00 .00
ATOM 695 ND1 HIS 46 13.274 7.021 10.186 1.00 .00
ATOM 696 HD1 HIS 46 13.449 6.104 10.484 1.00 .00
ATOM 697 CD2 HIS 46 12.429 9.043 9.976 1.00 .00
ATOM 698 HD2 HIS 46 11.817 9.921 10.109 1.00 .00
ATOM 699 CE1 HIS 46 13.936 7.683 9.219 1.00 .00
ATOM 700 HE1 HIS 46 14.744 7.262 8.638 1.00 .00
ATOM 701 NE2 HIS 46 13.463 8.920 9.052 1.00 .00
ATOM 702 C HIS 46 9.017 6.480 12.043 1.00 .00
ATOM 703 O HIS 46 9.428 5.918 13.039 1.00 .00
ATOM 704 N THR 47 7.761 6.423 11.707 1.00 .00
ATOM 705 HN THR 47 7.454 6.855 10.887 1.00 .00
ATOM 706 CA THR 47 6.798 5.662 12.549 1.00 .00
ATOM 707 HA THR 47 7.217 5.464 13.523 1.00 .00
ATOM 708 CB THR 47 5.566 6.561 12.672 1.00 .00
ATOM 709 HB THR 47 5.290 6.929 11.697 1.00 .00
ATOM 710 OG1 THR 47 5.867 7.656 13.527 1.00 .00
ATOM 711 HG1 THR 47 6.524 7.364 14.164 1.00 .00
ATOM 712 CG2 THR 47 4.401 5.755 13.257 1.00 .00
ATOM 713 HG21 THR 47 3.466 6.213 12.970 1.00 .00
ATOM 714 HG22 THR 47 4.478 5.742 14.334 1.00 .00
ATOM 715 HG23 THR 47 4.434 4.744 12.883 1.00 .00
ATOM 716 C THR 47 6.442 4.354 11.834 1.00 .00
ATOM 717 O THR 47 6.176 4.342 10.648 1.00 .00
ATOM 718 N GLU 48 6.439 3.252 12.535 1.00 .00
ATOM 719 HN GLU 48 6.659 3.274 13.489 1.00 .00
ATOM 720 CA GLU 48 6.102 1.957 11.873 1.00 .00
ATOM 721 HA GLU 48 6.872 1.685 11.169 1.00 .00
ATOM 722 CB GLU 48 6.043 .929 13.003 1.00 .00
ATOM 723 HB1 GLU 48 5.024 .596 13.135 1.00 .00
ATOM 724 HB2 GLU 48 6.398 1.378 13.918 1.00 .00
ATOM 725 CG GLU 48 6.925 -.270 12.647 1.00 .00
ATOM 726 HG1 GLU 48 6.912 -.421 11.578 1.00 .00
ATOM 727 HG2 GLU 48 6.548 -1.154 13.141 1.00 .00
ATOM 728 CD GLU 48 8.360 -.001 13.104 1.00 .00
ATOM 729 OE1 GLU 48 9.059 -.959 13.391 1.00 .00
ATOM 730 OE2 GLU 48 8.736 1.158 13.159 1.00 .00
ATOM 731 C GLU 48 4.748 2.064 11.165 1.00 .00
ATOM 732 O GLU 48 3.718 2.224 11.791 1.00 .00
ATOM 733 N VAL 49 4.745 1.980 9.862 1.00 .00
ATOM 734 HN VAL 49 5.589 1.854 9.380 1.00 .00
ATOM 735 CA VAL 49 3.464 2.080 9.106 1.00 .00
ATOM 736 HA VAL 49 2.891 2.928 9.445 1.00 .00
ATOM 737 CB VAL 49 3.883 2.281 7.651 1.00 .00
ATOM 738 HB VAL 49 3.003 2.408 7.037 1.00 .00
ATOM 739 CG1 VAL 49 4.766 3.526 7.541 1.00 .00
ATOM 740 HG11 VAL 49 5.488 3.387 6.751 1.00 .00
ATOM 741 HG12 VAL 49 5.282 3.685 8.477 1.00 .00
ATOM 742 HG13 VAL 49 4.150 4.385 7.320 1.00 .00
ATOM 743 CG2 VAL 49 4.669 1.057 7.176 1.00 .00
ATOM 744 HG21 VAL 49 5.492 1.376 6.554 1.00 .00
ATOM 745 HG22 VAL 49 4.018 .408 6.609 1.00 .00
ATOM 746 HG23 VAL 49 5.053 .522 8.033 1.00 .00
ATOM 747 C VAL 49 2.652 .789 9.258 1.00 .00
ATOM 748 O VAL 49 2.988 -.078 10.040 1.00 .00
ATOM 749 N GLU 50 1.586 .658 8.516 1.00 .00
ATOM 750 HN GLU 50 1.333 1.370 7.892 1.00 .00
ATOM 751 CA GLU 50 .751 -.575 8.616 1.00 .00
ATOM 752 HA GLU 50 1.367 -1.431 8.839 1.00 .00
ATOM 753 CB GLU 50 -.212 -.306 9.774 1.00 .00
ATOM 754 HB1 GLU 50 -1.064 -.964 9.694 1.00 .00
ATOM 755 HB2 GLU 50 -.545 .721 9.733 1.00 .00
ATOM 756 CG GLU 50 .503 -.560 11.103 1.00 .00
ATOM 757 HG1 GLU 50 1.088 .308 11.369 1.00 .00
ATOM 758 HG2 GLU 50 1.154 -1.417 11.003 1.00 .00
ATOM 759 CD GLU 50 -.531 -.828 12.198 1.00 .00
ATOM 760 OE1 GLU 50 -.465 -.169 13.223 1.00 .00
ATOM 761 OE2 GLU 50 -1.373 -1.688 11.994 1.00 .00
ATOM 762 C GLU 50 -.024 -.795 7.313 1.00 .00
ATOM 763 O GLU 50 -.492 .139 6.694 1.00 .00
ATOM 764 N GLU 51 -.161 -2.023 6.891 1.00 .00
ATOM 765 HN GLU 51 .226 -2.764 7.404 1.00 .00
ATOM 766 CA GLU 51 -.905 -2.299 5.626 1.00 .00
ATOM 767 HA GLU 51 -.284 -2.089 4.770 1.00 .00
ATOM 768 CB GLU 51 -1.237 -3.792 5.678 1.00 .00
ATOM 769 HB1 GLU 51 -2.274 -3.921 5.946 1.00 .00
ATOM 770 HB2 GLU 51 -.611 -4.275 6.414 1.00 .00
ATOM 771 CG GLU 51 -.987 -4.420 4.305 1.00 .00
ATOM 772 HG1 GLU 51 -.346 -3.775 3.724 1.00 .00
ATOM 773 HG2 GLU 51 -1.929 -4.550 3.792 1.00 .00
ATOM 774 CD GLU 51 -.310 -5.781 4.481 1.00 .00
ATOM 775 OE1 GLU 51 .022 -6.390 3.478 1.00 .00
ATOM 776 OE2 GLU 51 -.137 -6.191 5.617 1.00 .00
ATOM 777 C GLU 51 -2.188 -1.465 5.575 1.00 .00
ATOM 778 O GLU 51 -3.000 -1.503 6.478 1.00 .00
ATOM 779 N ASP 52 -2.378 -.714 4.523 1.00 .00
ATOM 780 HN ASP 52 -1.711 -.699 3.804 1.00 .00
ATOM 781 CA ASP 52 -3.611 .119 4.417 1.00 .00
ATOM 782 HA ASP 52 -3.667 .814 5.241 1.00 .00
ATOM 783 CB ASP 52 -3.459 .883 3.100 1.00 .00
ATOM 784 HB1 ASP 52 -3.079 .218 2.340 1.00 .00
ATOM 785 HB2 ASP 52 -2.769 1.702 3.240 1.00 .00
ATOM 786 CG ASP 52 -4.818 1.432 2.661 1.00 .00
ATOM 787 OD1 ASP 52 -5.519 1.968 3.504 1.00 .00
ATOM 788 OD2 ASP 52 -5.133 1.311 1.489 1.00 .00
ATOM 789 C ASP 52 -4.853 -.781 4.391 1.00 .00
ATOM 790 O ASP 52 -4.751 -1.990 4.328 1.00 .00
ATOM 791 N GLU 53 -6.021 -.203 4.449 1.00 .00
ATOM 792 HN GLU 53 -6.083 .773 4.508 1.00 .00
ATOM 793 CA GLU 53 -7.264 -1.028 4.440 1.00 .00
ATOM 794 HA GLU 53 -7.128 -1.918 5.033 1.00 .00
ATOM 795 CB GLU 53 -8.330 -.137 5.078 1.00 .00
ATOM 796 HB1 GLU 53 -9.265 -.674 5.130 1.00 .00
ATOM 797 HB2 GLU 53 -8.458 .755 4.482 1.00 .00
ATOM 798 CG GLU 53 -7.888 .251 6.490 1.00 .00
ATOM 799 HG1 GLU 53 -8.309 1.210 6.749 1.00 .00
ATOM 800 HG2 GLU 53 -6.809 .308 6.525 1.00 .00
ATOM 801 CD GLU 53 -8.376 -.803 7.485 1.00 .00
ATOM 802 OE1 GLU 53 -9.393 -.568 8.116 1.00 .00
ATOM 803 OE2 GLU 53 -7.724 -1.828 7.600 1.00 .00
ATOM 804 C GLU 53 -7.661 -1.397 3.006 1.00 .00
ATOM 805 O GLU 53 -8.690 -2.002 2.776 1.00 .00
ATOM 806 N SER 54 -6.858 -1.043 2.041 1.00 .00
ATOM 807 HN SER 54 -6.032 -.556 2.242 1.00 .00
ATOM 808 CA SER 54 -7.202 -1.382 .629 1.00 .00
ATOM 809 HA SER 54 -8.268 -1.510 .522 1.00 .00
ATOM 810 CB SER 54 -6.736 -.182 -.194 1.00 .00
ATOM 811 HB1 SER 54 -6.825 .717 .401 1.00 .00
ATOM 812 HB2 SER 54 -7.349 -.087 -1.075 1.00 .00
ATOM 813 OG SER 54 -5.384 -.377 -.585 1.00 .00
ATOM 814 HG SER 54 -5.381 -.764 -1.464 1.00 .00
ATOM 815 C SER 54 -6.466 -2.652 .194 1.00 .00
ATOM 816 O SER 54 -6.113 -2.812 -.959 1.00 .00
ATOM 817 N ALA 55 -6.228 -3.558 1.104 1.00 .00
ATOM 818 HN ALA 55 -6.518 -3.412 2.029 1.00 .00
ATOM 819 CA ALA 55 -5.513 -4.813 .734 1.00 .00
ATOM 820 HA ALA 55 -5.236 -4.793 -.308 1.00 .00
ATOM 821 CB ALA 55 -4.256 -4.827 1.604 1.00 .00
ATOM 822 HB1 ALA 55 -4.363 -5.572 2.379 1.00 .00
ATOM 823 HB2 ALA 55 -4.119 -3.856 2.055 1.00 .00
ATOM 824 HB3 ALA 55 -3.397 -5.065 .994 1.00 .00
ATOM 825 C ALA 55 -6.384 -6.038 1.030 1.00 .00
ATOM 826 O ALA 55 -6.441 -6.969 .251 1.00 .00
ATOM 827 N MET 56 -7.060 -6.052 2.148 1.00 .00
ATOM 828 HN MET 56 -7.003 -5.296 2.768 1.00 .00
ATOM 829 CA MET 56 -7.917 -7.228 2.476 1.00 .00
ATOM 830 HA MET 56 -7.736 -8.025 1.773 1.00 .00
ATOM 831 CB MET 56 -7.451 -7.665 3.865 1.00 .00
ATOM 832 HB1 MET 56 -8.311 -7.870 4.485 1.00 .00
ATOM 833 HB2 MET 56 -6.865 -6.875 4.312 1.00 .00
ATOM 834 CG MET 56 -6.598 -8.930 3.748 1.00 .00
ATOM 835 HG1 MET 56 -6.019 -9.058 4.650 1.00 .00
ATOM 836 HG2 MET 56 -5.933 -8.838 2.902 1.00 .00
ATOM 837 SD MET 56 -7.676 -10.365 3.515 1.00 .00
ATOM 838 CE MET 56 -8.286 -10.470 5.216 1.00 .00
ATOM 839 HE1 MET 56 -8.119 -11.468 5.597 1.00 .00
ATOM 840 HE2 MET 56 -9.341 -10.252 5.235 1.00 .00
ATOM 841 HE3 MET 56 -7.761 -9.751 5.830 1.00 .00
ATOM 842 C MET 56 -9.425 -6.884 2.509 1.00 .00
ATOM 843 O MET 56 -10.190 -7.626 3.093 1.00 .00
ATOM 844 N PRO 57 -9.830 -5.792 1.890 1.00 .00
ATOM 845 CA PRO 57 -11.272 -5.436 1.893 1.00 .00
ATOM 846 HA PRO 57 -11.688 -5.529 2.883 1.00 .00
ATOM 847 CB PRO 57 -11.287 -3.979 1.448 1.00 .00
ATOM 848 HB1 PRO 57 -11.277 -3.324 2.305 1.00 .00
ATOM 849 HB2 PRO 57 -12.157 -3.785 .835 1.00 .00
ATOM 850 CG PRO 57 -10.035 -3.798 .652 1.00 .00
ATOM 851 HG1 PRO 57 -9.650 -2.800 .793 1.00 .00
ATOM 852 HG2 PRO 57 -10.238 -3.970 -.395 1.00 .00
ATOM 853 CD PRO 57 -9.029 -4.803 1.153 1.00 .00
ATOM 854 HD2 PRO 57 -8.517 -5.269 .322 1.00 .00
ATOM 855 HD1 PRO 57 -8.325 -4.327 1.816 1.00 .00
ATOM 856 C PRO 57 -12.037 -6.312 .893 1.00 .00
ATOM 857 O PRO 57 -12.591 -5.826 -.072 1.00 .00
ATOM 858 N LYS 58 -12.070 -7.597 1.115 1.00 .00
ATOM 859 HN LYS 58 -11.615 -7.971 1.898 1.00 .00
ATOM 860 CA LYS 58 -12.796 -8.500 .174 1.00 .00
ATOM 861 HA LYS 58 -12.566 -9.531 .394 1.00 .00
ATOM 862 CB LYS 58 -14.281 -8.234 .435 1.00 .00
ATOM 863 HB1 LYS 58 -14.519 -7.218 .157 1.00 .00
ATOM 864 HB2 LYS 58 -14.494 -8.380 1.484 1.00 .00
ATOM 865 CG LYS 58 -15.127 -9.200 -.397 1.00 .00
ATOM 866 HG1 LYS 58 -14.487 -9.754 -1.067 1.00 .00
ATOM 867 HG2 LYS 58 -15.852 -8.641 -.972 1.00 .00
ATOM 868 CD LYS 58 -15.854 -10.175 .532 1.00 .00
ATOM 869 HD1 LYS 58 -16.898 -9.904 .593 1.00 .00
ATOM 870 HD2 LYS 58 -15.412 -10.132 1.516 1.00 .00
ATOM 871 CE LYS 58 -15.731 -11.595 -.023 1.00 .00
ATOM 872 HE1 LYS 58 -14.703 -11.922 .002 1.00 .00
ATOM 873 HE2 LYS 58 -16.118 -11.638 -1.032 1.00 .00
ATOM 874 NZ LYS 58 -16.557 -12.436 .889 1.00 .00
ATOM 875 HZ1 LYS 58 -17.559 -12.179 .786 1.00 .00
ATOM 876 HZ2 LYS 58 -16.256 -12.276 1.872 1.00 .00
ATOM 877 HZ3 LYS 58 -16.431 -13.438 .645 1.00 .00
ATOM 878 C LYS 58 -12.416 -8.170 -1.279 1.00 .00
ATOM 879 O LYS 58 -11.291 -8.376 -1.689 1.00 .00
ATOM 880 N LYS 59 -13.334 -7.663 -2.063 1.00 .00
ATOM 881 HN LYS 59 -14.238 -7.501 -1.726 1.00 .00
ATOM 882 CA LYS 59 -13.002 -7.333 -3.480 1.00 .00
ATOM 883 HA LYS 59 -13.885 -7.013 -4.010 1.00 .00
ATOM 884 CB LYS 59 -11.999 -6.183 -3.393 1.00 .00
ATOM 885 HB1 LYS 59 -11.361 -6.195 -4.264 1.00 .00
ATOM 886 HB2 LYS 59 -11.397 -6.297 -2.503 1.00 .00
ATOM 887 CG LYS 59 -12.752 -4.852 -3.336 1.00 .00
ATOM 888 HG1 LYS 59 -13.679 -4.985 -2.799 1.00 .00
ATOM 889 HG2 LYS 59 -12.961 -4.513 -4.340 1.00 .00
ATOM 890 CD LYS 59 -11.894 -3.814 -2.614 1.00 .00
ATOM 891 HD1 LYS 59 -11.314 -3.261 -3.337 1.00 .00
ATOM 892 HD2 LYS 59 -11.229 -4.315 -1.926 1.00 .00
ATOM 893 CE LYS 59 -12.797 -2.849 -1.843 1.00 .00
ATOM 894 HE1 LYS 59 -12.622 -2.935 -.782 1.00 .00
ATOM 895 HE2 LYS 59 -13.836 -3.045 -2.072 1.00 .00
ATOM 896 NZ LYS 59 -12.403 -1.493 -2.317 1.00 .00
ATOM 897 HZ1 LYS 59 -12.464 -1.457 -3.354 1.00 .00
ATOM 898 HZ2 LYS 59 -11.427 -1.293 -2.019 1.00 .00
ATOM 899 HZ3 LYS 59 -13.044 -.783 -1.909 1.00 .00
ATOM 900 C LYS 59 -12.370 -8.544 -4.172 1.00 .00
ATOM 901 O LYS 59 -12.082 -9.547 -3.549 1.00 .00
ATOM 902 N ASP 60 -12.152 -8.459 -5.457 1.00 .00
ATOM 903 HN ASP 60 -12.391 -7.641 -5.940 1.00 .00
ATOM 904 CA ASP 60 -11.538 -9.606 -6.188 1.00 .00
ATOM 905 HA ASP 60 -10.770 -10.068 -5.588 1.00 .00
ATOM 906 CB ASP 60 -12.686 -10.591 -6.416 1.00 .00
ATOM 907 HB1 ASP 60 -12.598 -11.024 -7.401 1.00 .00
ATOM 908 HB2 ASP 60 -13.629 -10.069 -6.334 1.00 .00
ATOM 909 CG ASP 60 -12.623 -11.701 -5.365 1.00 .00
ATOM 910 OD1 ASP 60 -13.672 -12.087 -4.877 1.00 .00
ATOM 911 OD2 ASP 60 -11.526 -12.146 -5.068 1.00 .00
ATOM 912 C ASP 60 -10.962 -9.134 -7.526 1.00 .00
ATOM 913 O ASP 60 -10.732 -7.959 -7.733 1.00 .00
ATOM 914 N ALA 61 -10.725 -10.040 -8.435 1.00 .00
ATOM 915 HN ALA 61 -10.917 -10.983 -8.249 1.00 .00
ATOM 916 CA ALA 61 -10.162 -9.641 -9.758 1.00 .00
ATOM 917 HA ALA 61 -9.865 -8.605 -9.744 1.00 .00
ATOM 918 CB ALA 61 -8.936 -10.534 -9.949 1.00 .00
ATOM 919 HB1 ALA 61 -8.233 -10.356 -9.148 1.00 .00
ATOM 920 HB2 ALA 61 -8.468 -10.306 -10.895 1.00 .00
ATOM 921 HB3 ALA 61 -9.240 -11.570 -9.937 1.00 .00
ATOM 922 C ALA 61 -11.187 -9.891 -10.868 1.00 .00
ATOM 923 O ALA 61 -12.380 -9.879 -10.639 1.00 .00
ATOM 924 N ARG 62 -10.729 -10.117 -12.070 1.00 .00
ATOM 925 HN ARG 62 -9.763 -10.121 -12.232 1.00 .00
ATOM 926 CA ARG 62 -11.673 -10.368 -13.198 1.00 .00
ATOM 927 HA ARG 62 -12.066 -9.437 -13.575 1.00 .00
ATOM 928 CB ARG 62 -10.827 -11.052 -14.272 1.00 .00
ATOM 929 HB1 ARG 62 -11.065 -12.105 -14.302 1.00 .00
ATOM 930 HB2 ARG 62 -9.780 -10.925 -14.040 1.00 .00
ATOM 931 CG ARG 62 -11.127 -10.426 -15.636 1.00 .00
ATOM 932 HG1 ARG 62 -12.003 -9.799 -15.560 1.00 .00
ATOM 933 HG2 ARG 62 -11.305 -11.209 -16.360 1.00 .00
ATOM 934 CD ARG 62 -9.933 -9.579 -16.082 1.00 .00
ATOM 935 HD1 ARG 62 -9.472 -9.100 -15.232 1.00 .00
ATOM 936 HD2 ARG 62 -10.248 -8.841 -16.807 1.00 .00
ATOM 937 NE ARG 62 -8.984 -10.546 -16.699 1.00 .00
ATOM 938 HE ARG 62 -8.839 -10.540 -17.668 1.00 .00
ATOM 939 CZ ARG 62 -8.344 -11.402 -15.950 1.00 .00
ATOM 940 NH1 ARG 62 -7.101 -11.180 -15.622 1.00 .00
ATOM 941 HH11 ARG 62 -6.638 -10.354 -15.944 1.00 .00
ATOM 942 HH12 ARG 62 -6.609 -11.837 -15.049 1.00 .00
ATOM 943 NH2 ARG 62 -8.948 -12.480 -15.529 1.00 .00
ATOM 944 HH21 ARG 62 -9.900 -12.651 -15.781 1.00 .00
ATOM 945 HH22 ARG 62 -8.457 -13.136 -14.955 1.00 .00
ATOM 946 C ARG 62 -12.811 -11.286 -12.744 1.00 .00
ATOM 947 OT1 ARG 62 -13.909 -11.130 -13.251 1.00 .00
ATOM 948 OT2 ARG 62 -12.563 -12.130 -11.899 1.00 .00
ENDMDL
[Table A]
Coordinates of wild-type human TFIIE alpha zinc-binding domain structure

MODEL 1
ATOM 1 CA ARG 1 -13.547 .248 -24.620 1.00 .00
ATOM 2 HA ARG 1 -12.896 -.589 -24.815 1.00 .00
ATOM 3 CB ARG 1 -12.761 1.378 -23.954 1.00 .00
ATOM 4 HB1 ARG 1 -13.423 1.954 -23.323 1.00 .00
ATOM 5 HB2 ARG 1 -12.338 2.019 -24.714 1.00 .00
ATOM 6 CG ARG 1 -11.637 .785 -23.101 1.00 .00
ATOM 7 HG1 ARG 1 -11.923 -.200 -22.763 1.00 .00
ATOM 8 HG2 ARG 1 -11.460 1.422 -22.247 1.00 .00
ATOM 9 CD ARG 1 -10.359 .683 -23.937 1.00 .00
ATOM 10 HD1 ARG 1 -10.140 1.629 -24.408 1.00 .00
ATOM 11 HD2 ARG 1 -10.458 -.097 -24.680 1.00 .00
ATOM 12 NE ARG 1 -9.288 .341 -22.959 1.00 .00
ATOM 13 HE ARG 1 -9.526 .091 -22.042 1.00 .00
ATOM 14 CZ ARG 1 -8.035 .372 -23.324 1.00 .00
ATOM 15 NH1 ARG 1 -7.249 1.313 -22.876 1.00 .00
ATOM 16 HH11 ARG 1 -7.608 2.010 -22.254 1.00 .00
ATOM 17 HH12 ARG 1 -6.289 1.338 -23.154 1.00 .00
ATOM 18 NH2 ARG 1 -7.568 -.539 -24.134 1.00 .00
ATOM 19 HH21 ARG 1 -8.170 -1.260 -24.476 1.00 .00
ATOM 20 HH22 ARG 1 -6.608 -.516 -24.412 1.00 .00
ATOM 21 C ARG 1 -14.723 -.181 -23.739 1.00 .00
ATOM 22 O ARG 1 -15.720 .505 -23.641 1.00 .00
ATOM 23 N ARG 1 -14.049 .828 -25.899 1.00 .00
ATOM 24 HT1 ARG 1 -14.781 .206 -26.299 1.00 .00
ATOM 25 HT2 ARG 1 -13.261 .915 -26.573 1.00 .00
ATOM 26 HT3 ARG 1 -14.457 1.766 -25.718 1.00 .00
ATOM 27 N ILE 2 -14.614 -1.313 -23.098 1.00 .00
ATOM 28 HN ILE 2 -13.801 -1.852 -23.191 1.00 .00
ATOM 29 CA ILE 2 -15.727 -1.785 -22.226 1.00 .00
ATOM 30 HA ILE 2 -16.643 -1.855 -22.791 1.00 .00
ATOM 31 CB ILE 2 -15.297 -3.175 -21.756 1.00 .00
ATOM 32 HB ILE 2 -15.162 -3.819 -22.614 1.00 .00
ATOM 33 CG1 ILE 2 -16.375 -3.761 -20.840 1.00 .00
ATOM 34 HG11 ILE 2 -17.324 -3.293 -21.056 1.00 .00
ATOM 35 HG12 ILE 2 -16.109 -3.578 -19.809 1.00 .00
ATOM 36 CG2 ILE 2 -13.979 -3.071 -20.987 1.00 .00
ATOM 37 HG21 ILE 2 -14.186 -2.925 -19.937 1.00 .00
ATOM 38 HG22 ILE 2 -13.409 -2.234 -21.361 1.00 .00
ATOM 39 HG23 ILE 2 -13.413 -3.981 -21.119 1.00 .00
ATOM 40 CD1 ILE 2 -16.486 -5.268 -21.080 1.00 .00
ATOM 41 HD11 ILE 2 -16.141 -5.797 -20.205 1.00 .00
ATOM 42 HD12 ILE 2 -15.879 -5.543 -21.930 1.00 .00
ATOM 43 HD13 ILE 2 -17.516 -5.527 -21.274 1.00 .00
ATOM 44 C ILE 2 -15.904 -.841 -21.033 1.00 .00
ATOM 45 O ILE 2 -15.218 -.948 -20.036 1.00 .00
ATOM 46 N GLU 3 -16.820 .084 -21.129 1.00 .00
ATOM 47 HN GLU 3 -17.362 .153 -21.943 1.00 .00
ATOM 48 CA GLU 3 -17.043 1.037 -20.003 1.00 .00
ATOM 49 HA GLU 3 -16.238 1.752 -19.949 1.00 .00
ATOM 50 CB GLU 3 -18.352 1.750 -20.344 1.00 .00
ATOM 51 HB1 GLU 3 -19.157 1.324 -19.764 1.00 .00
ATOM 52 HB2 GLU 3 -18.564 1.629 -21.397 1.00 .00
ATOM 53 CG GLU 3 -18.225 3.238 -20.017 1.00 .00
ATOM 54 HG1 GLU 3 -17.253 3.593 -20.325 1.00 .00
ATOM 55 HG2 GLU 3 -18.342 3.383 -18.953 1.00 .00
ATOM 56 CD GLU 3 -19.309 4.019 -20.763 1.00 .00
ATOM 57 OE1 GLU 3 -19.277 5.237 -20.710 1.00 .00
ATOM 58 OE2 GLU 3 -20.154 3.384 -21.373 1.00 .00
ATOM 59 C GLU 3 -17.175 .276 -18.681 1.00 .00
ATOM 60 O GLU 3 -18.069 -.528 -18.504 1.00 .00
ATOM 61 N THR 4 -16.292 .522 -17.752 1.00 .00
ATOM 62 HN THR 4 -15.578 1.174 -17.915 1.00 .00
ATOM 63 CA THR 4 -16.368 -.189 -16.443 1.00 .00
ATOM 64 HA THR 4 -17.314 -.700 -16.348 1.00 .00
ATOM 65 CB THR 4 -15.225 -1.208 -16.469 1.00 .00
ATOM 66 HB THR 4 -14.591 -1.059 -15.608 1.00 .00
ATOM 67 OG1 THR 4 -14.460 -1.038 -17.656 1.00 .00
ATOM 68 HG1 THR 4 -13.745 -.427 -17.463 1.00 .00
ATOM 69 CG2 THR 4 -15.801 -2.624 -16.429 1.00 .00
ATOM 70 HG21 THR 4 -15.231 -3.225 -15.737 1.00 .00
ATOM 71 HG22 THR 4 -15.748 -3.062 -17.415 1.00 .00
ATOM 72 HG23 THR 4 -16.831 -2.584 -16.107 1.00 .00
ATOM 73 C THR 4 -16.177 .798 -15.288 1.00 .00
ATOM 74 O THR 4 -16.248 1.998 -15.465 1.00 .00
ATOM 75 N ASP 5 -15.933 .300 -14.107 1.00 .00
ATOM 76 HN ASP 5 -15.880 -.671 -13.987 1.00 .00
ATOM 77 CA ASP 5 -15.736 1.205 -12.938 1.00 .00
ATOM 78 HA ASP 5 -15.260 2.122 -13.247 1.00 .00
ATOM 79 CB ASP 5 -17.146 1.495 -12.423 1.00 .00
ATOM 80 HB1 ASP 5 -17.100 1.763 -11.379 1.00 .00
ATOM 81 HB2 ASP 5 -17.761 .614 -12.543 1.00 .00
ATOM 82 CG ASP 5 -17.753 2.654 -13.219 1.00 .00
ATOM 83 OD1 ASP 5 -18.624 2.395 -14.033 1.00 .00
ATOM 84 OD2 ASP 5 -17.337 3.779 -13.000 1.00 .00
ATOM 85 C ASP 5 -14.903 .502 -11.862 1.00 .00
ATOM 86 O ASP 5 -15.418 .067 -10.851 1.00 .00
ATOM 87 N GLU 6 -13.620 .387 -12.072 1.00 .00
ATOM 88 HN GLU 6 -13.224 .743 -12.895 1.00 .00
ATOM 89 CA GLU 6 -12.757 -.290 -11.061 1.00 .00
ATOM 90 HA GLU 6 -13.345 -.952 -10.446 1.00 .00
ATOM 91 CB GLU 6 -11.747 -1.096 -11.878 1.00 .00
ATOM 92 HB1 GLU 6 -10.797 -.584 -11.883 1.00 .00
ATOM 93 HB2 GLU 6 -12.106 -1.201 -12.892 1.00 .00
ATOM 94 CG GLU 6 -11.574 -2.480 -11.250 1.00 .00
ATOM 95 HG1 GLU 6 -12.350 -2.642 -10.518 1.00 .00
ATOM 96 HG2 GLU 6 -10.608 -2.539 -10.771 1.00 .00
ATOM 97 CD GLU 6 -11.671 -3.552 -12.337 1.00 .00
ATOM 98 OE1 GLU 6 -11.854 -4.707 -11.988 1.00 .00
ATOM 99 OE2 GLU 6 -11.560 -3.201 -13.500 1.00 .00
ATOM 100 C GLU 6 -12.039 .749 -10.197 1.00 .00
ATOM 101 O GLU 6 -12.513 1.852 -10.013 1.00 .00
ATOM 102 N ARG 7 -10.897 .405 -9.665 1.00 .00
ATOM 103 HN ARG 7 -10.531 -.490 -9.826 1.00 .00
ATOM 104 CA ARG 7 -10.150 1.374 -8.813 1.00 .00
ATOM 105 HA ARG 7 -10.418 2.387 -9.071 1.00 .00
ATOM 106 CB ARG 7 -10.591 1.067 -7.380 1.00 .00
ATOM 107 HB1 ARG 7 -11.654 1.232 -7.288 1.00 .00
ATOM 108 HB2 ARG 7 -10.066 1.716 -6.695 1.00 .00
ATOM 109 CG ARG 7 -10.275 -.393 -7.046 1.00 .00
ATOM 110 HG1 ARG 7 -9.621 -.432 -6.188 1.00 .00
ATOM 111 HG2 ARG 7 -9.790 -.859 -7.892 1.00 .00
ATOM 112 CD ARG 7 -11.574 -1.136 -6.726 1.00 .00
ATOM 113 HD1 ARG 7 -12.070 -1.435 -7.636 1.00 .00
ATOM 114 HD2 ARG 7 -12.224 -.513 -6.127 1.00 .00
ATOM 115 NE ARG 7 -11.151 -2.339 -5.957 1.00 .00
ATOM 116 HE ARG 7 -11.420 -2.441 -5.021 1.00 .00
ATOM 117 CZ ARG 7 -10.422 -3.257 -6.531 1.00 .00
ATOM 118 NH1 ARG 7 -10.994 -4.227 -7.190 1.00 .00
ATOM 119 HH11 ARG 7 -11.991 -4.267 -7.256 1.00 .00
ATOM 120 HH12 ARG 7 -10.436 -4.931 -7.630 1.00 .00
ATOM 121 NH2 ARG 7 -9.121 -3.206 -6.444 1.00 .00
ATOM 122 HH21 ARG 7 -8.682 -2.464 -5.937 1.00 .00
ATOM 123 HH22 ARG 7 -8.563 -3.909 -6.885 1.00 .00
ATOM 124 C ARG 7 -8.642 1.164 -8.969 1.00 .00
ATOM 125 O ARG 7 -8.049 .335 -8.308 1.00 .00
ATOM 126 N ASP 8 -8.017 1.911 -9.838 1.00 .00
ATOM 127 HN ASP 8 -8.514 2.575 -10.360 1.00 .00
ATOM 128 CA ASP 8 -6.547 1.757 -10.036 1.00 .00
ATOM 129 HA ASP 8 -6.181 2.493 -10.734 1.00 .00
ATOM 130 CB ASP 8 -5.935 1.997 -8.655 1.00 .00
ATOM 131 HB1 ASP 8 -5.182 1.248 -8.459 1.00 .00
ATOM 132 HB2 ASP 8 -6.708 1.937 -7.903 1.00 .00
ATOM 133 CG ASP 8 -5.291 3.384 -8.615 1.00 .00
ATOM 134 OD1 ASP 8 -5.532 4.154 -9.531 1.00 .00
ATOM 135 OD2 ASP 8 -4.568 3.653 -7.670 1.00 .00
ATOM 136 C ASP 8 -6.222 .344 -10.527 1.00 .00
ATOM 137 O ASP 8 -6.033 .112 -11.704 1.00 .00
ATOM 138 N SER 9 -6.154 -.601 -9.630 1.00 .00
ATOM 139 HN SER 9 -6.309 -.392 -8.686 1.00 .00
ATOM 140 CA SER 9 -5.840 -2.000 -10.041 1.00 .00
ATOM 141 HA SER 9 -6.506 -2.322 -10.825 1.00 .00
ATOM 142 CB SER 9 -4.405 -1.947 -10.562 1.00 .00
ATOM 143 HB1 SER 9 -4.213 -.970 -10.986 1.00 .00
ATOM 144 HB2 SER 9 -4.267 -2.698 -11.322 1.00 .00
ATOM 145 OG SER 9 -3.506 -2.197 -9.489 1.00 .00
ATOM 146 HG SER 9 -3.388 -1.377 -9.004 1.00 .00
ATOM 147 C SER 9 -5.940 -2.936 -8.833 1.00 .00
ATOM 148 O SER 9 -6.598 -2.636 -7.857 1.00 .00
ATOM 149 N THR 10 -5.291 -4.066 -8.891 1.00 .00
ATOM 150 HN THR 10 -4.765 -4.290 -9.687 1.00 .00
ATOM 151 CA THR 10 -5.349 -5.018 -7.744 1.00 .00
ATOM 152 HA THR 10 -5.963 -4.618 -6.953 1.00 .00
ATOM 153 CB THR 10 -5.987 -6.290 -8.310 1.00 .00
ATOM 154 HB THR 10 -5.384 -7.144 -8.041 1.00 .00
ATOM 155 OG1 THR 10 -6.066 -6.194 -9.726 1.00 .00
ATOM 156 HG1 THR 10 -5.172 -6.139 -10.070 1.00 .00
ATOM 157 CG2 THR 10 -7.391 -6.463 -7.728 1.00 .00
ATOM 158 HG21 THR 10 -8.094 -5.884 -8.307 1.00 .00
ATOM 159 HG22 THR 10 -7.400 -6.121 -6.703 1.00 .00
ATOM 160 HG23 THR 10 -7.668 -7.506 -7.762 1.00 .00
ATOM 161 C THR 10 -3.937 -5.313 -7.232 1.00 .00
ATOM 162 O THR 10 -3.755 -5.996 -6.244 1.00 .00
ATOM 163 N ASN 11 -2.937 -4.806 -7.900 1.00 .00
ATOM 164 HN ASN 11 -3.106 -4.262 -8.697 1.00 .00
ATOM 165 CA ASN 11 -1.537 -5.062 -7.455 1.00 .00
ATOM 166 HA ASN 11 -1.523 -5.756 -6.630 1.00 .00
ATOM 167 CB ASN 11 -.850 -5.685 -8.671 1.00 .00
ATOM 168 HB1 ASN 11.079 -5.169 -8.864 1.00 .00
ATOM 169 HB2 ASN 11 -1.496 -5.597 -9.533 1.00 .00
ATOM 170 CG ASN 11 -.563 -7.161 -8.395 1.00 .00
ATOM 171 OD1 ASN 11 -1.149 -8.031 -9.008 1.00 .00
ATOM 172 ND2 ASN 11 .320 -7.483 -7.490 1.00 .00
ATOM 173 HD21 ASN 11 .793 -6.781 -6.996 1.00 .00
ATOM 174 HD22 ASN 11 .511 -8.426 -7.306 1.00 .00
ATOM 175 C ASN 11 -.851 -3.750 -7.065 1.00 .00
ATOM 176 O ASN 11 .234 -3.447 -7.519 1.00 .00
ATOM 177 N ARG 12 -1.475 -2.969 -6.226 1.00 .00
ATOM 178 HN ARG 12 -2.349 -3.231 -5.870 1.00 .00
ATOM 179 CA ARG 12 -.855 -1.678 -5.810 1.00 .00
ATOM 180 HA ARG 12 .172 -1.631 -6.134 1.00 .00
ATOM 181 CB ARG 12 -1.678 -.602 -6.521 1.00 .00
ATOM 182 HB1 ARG 12 -2.162 .024 -5.787 1.00 .00
ATOM 183 HB2 ARG 12 -2.426 -1.074 -7.141 1.00 .00
ATOM 184 CG ARG 12 -.758 .256 -7.392 1.00 .00
ATOM 185 HG1 ARG 12 .194 .379 -6.900 1.00 .00
ATOM 186 HG2 ARG 12 -1.212 1.224 -7.547 1.00 .00
ATOM 187 CD ARG 12 -.545 -.431 -8.744 1.00 .00
ATOM 188 HD1 ARG 12 -1.462 -.436 -9.312 1.00 .00
ATOM 189 HD2 ARG 12 -.183 -1.440 -8.600 1.00 .00
ATOM 190 NE ARG 12 .480 .398 -9.438 1.00 .00
ATOM 191 HE ARG 12.201 1.117 -10.043 1.00 .00
ATOM 192 CZ ARG 12 1.749 .166 -9.242 1.00 .00
ATOM 193 NH1 ARG 12 2.186 -1.062 -9.172 1.00 .00
ATOM 194 HH11 ARG 12 1.548 -1.826 -9.268 1.00 .00
ATOM 195 HH12 ARG 12 3.159 -1.239 -9.023 1.00 .00
ATOM 196 NH2 ARG 12 2.582 1.163 -9.116 1.00 .00
ATOM 197 HH21 ARG 12 2.248 2.104 -9.170 1.00 .00
ATOM 198 HH22 ARG 12 3.555 .986 -8.965 1.00 .00
ATOM 199 C ARG 12 -.949 -1.510 -4.290 1.00 .00
ATOM 200 O ARG 12 -2.008 -1.267 -3.747 1.00 .00
ATOM 201 N ALA 13 .152 -1.638 -3.598 1.00 .00
ATOM 202 HN ALA 13 .997 -1.835 -4.054 1.00 .00
ATOM 203 CA ALA 13 .121 -1.486 -2.114 1.00 .00
ATOM 204 HA ALA 13 -.658 -2.087 -1.690 1.00 .00
ATOM 205 CB ALA 13 1.483 -1.982 -1.628 1.00 .00
ATOM 206 HB1 ALA 13 1.625 -1.690 -.598 1.00 .00
ATOM 207 HB2 ALA 13 2.262 -1.547 -2.235 1.00 .00
ATOM 208 HB3 ALA 13 1.524 -3.058 -1.706 1.00 .00
ATOM 209 C ALA 13 -.080 -.023 -1.733 1.00 .00
ATOM 210 O ALA 13 -.256 .831 -2.580 1.00 .00
ATOM 211 N SER 14 -.044 .273 -.463 1.00 .00
ATOM 212 HN SER 14 .106 -.435 .198 1.00 .00
ATOM 213 CA SER 14 -.225 1.681 -.012 1.00 .00
ATOM 214 HA SER 14 .553 2.309 -.416 1.00 .00
ATOM 215 CB SER 14 -1.583 2.107 -.568 1.00 .00
ATOM 216 HB1 SER 14 -1.525 2.176 -1.646 1.00 .00
ATOM 217 HB2 SER 14 -1.852 3.068 -.166 1.00 .00
ATOM 218 OG SER 14 -2.565 1.151 -.193 1.00 .00
ATOM 219 HG SER 14 -2.415 .916 .726 1.00 .00
ATOM 220 C SER 14 -.224 1.745 1.517 1.00 .00
ATOM 221 O SER 14 -1.104 2.322 2.123 1.00 .00
ATOM 222 N PHE 15 .758 1.151 2.145 1.00 .00
ATOM 223 HN PHE 15 1.455 .691 1.634 1.00 .00
ATOM 224 CA PHE 15 .813 1.176 3.639 1.00 .00
ATOM 225 HA PHE 15 .153 .430 4.054 1.00 .00
ATOM 226 CB PHE 15 2.264 .860 4.016 1.00 .00
ATOM 227 HB1 PHE 15 2.317 .632 5.071 1.00 .00
ATOM 228 HB2 PHE 15 2.882 1.720 3.806 1.00 .00
ATOM 229 CG PHE 15 2.766 -.322 3.225 1.00 .00
ATOM 230 CD1 PHE 15 4.108 -.372 2.831 1.00 .00
ATOM 231 HD1 PHE 15 4.778 .432 3.094 1.00 .00
ATOM 232 CD2 PHE 15 1.896 -1.364 2.885 1.00 .00
ATOM 233 HD2 PHE 15 .860 -1.324 3.189 1.00 .00
ATOM 234 CE1 PHE 15 4.581 -1.464 2.097 1.00 .00
ATOM 235 HE1 PHE 15 5.616 -1.501 1.795 1.00 .00
ATOM 236 CE2 PHE 15 2.370 -2.457 2.150 1.00 .00
ATOM 237 HE2 PHE 15 1.699 -3.262 1.887 1.00 .00
ATOM 238 CZ PHE 15 3.713 -2.507 1.756 1.00 .00
ATOM 239 HZ PHE 15 4.080 -3.349 1.189 1.00 .00
ATOM 240 C PHE 15 .439 2.565 4.150 1.00 .00
ATOM 241 O PHE 15 .671 3.558 3.492 1.00 .00
ATOM 242 N LYS 16 -.129 2.647 5.319 1.00 .00
ATOM 243 HN LYS 16 -.303 1.833 5.838 1.00 .00
ATOM 244 CA LYS 16 -.506 3.980 5.866 1.00 .00
ATOM 245 HA LYS 16 -.240 4.759 5.169 1.00 .00
ATOM 246 CB LYS 16 -2.025 3.930 6.035 1.00 .00
ATOM 247 HB1 LYS 16 -2.309 2.985 6.475 1.00 .00
ATOM 248 HB2 LYS 16 -2.496 4.031 5.068 1.00 .00
ATOM 249 CG LYS 16 -2.478 5.075 6.946 1.00 .00
ATOM 250 HG1 LYS 16 -1.625 5.674 7.226 1.00 .00
ATOM 251 HG2 LYS 16 -2.939 4.668 7.835 1.00 .00
ATOM 252 CD LYS 16 -3.488 5.952 6.201 1.00 .00
ATOM 253 HD1 LYS 16 -3.811 5.447 5.304 1.00 .00
ATOM 254 HD2 LYS 16 -3.024 6.892 5.940 1.00 .00
ATOM 255 CE LYS 16 -4.699 6.212 7.100 1.00 .00
ATOM 256 HE1 LYS 16 -4.586 5.699 8.042 1.00 .00
ATOM 257 HE2 LYS 16 -5.608 5.899 6.604 1.00 .00
ATOM 258 NZ LYS 16 -4.704 7.685 7.319 1.00 .00
ATOM 259 HZ1 LYS 16 -5.682 8.013 7.453 1.00 .00
ATOM 260 HZ2 LYS 16 -4.289 8.160 6.491 1.00 .00
ATOM 261 HZ3 LYS 16 -4.146 7.912 8.166 1.00 .00
ATOM 262 C LYS 16 .185 4.211 7.211 1.00 .00
ATOM 263 O LYS 16 .269 3.326 8.040 1.00 .00
ATOM 264 N CYS 17.685 5.396 7.432 1.00 .00
ATOM 265 HN CYS 17 .609 6.094 6.748 1.00 .00
ATOM 266 CA CYS 17 1.376 5.687 8.719 1.00 .00
ATOM 267 HA CYS 17 1.941 4.829 9.045 1.00 .00
ATOM 268 HB1 CYS 17 1.757 7.758 8.329 1.00 .00
ATOM 269 HB2 CYS 17 2.822 6.652 7.463 1.00 .00
ATOM 270 C CYS 17 .360 6.104 9.788 1.00 .00
ATOM 271 O CYS 17 -.437 6.995 9.572 1.00 .00
ATOM 272 ZN CYS 17 4.829 8.852 9.299 1.00 .00
ATOM 273 CB CYS 17 2.321 6.842 8.401 1.00 .00
ATOM 274 SG CYS 17 3.547 6.992 9.720 1.00 .00
ATOM 275 N PRO 18 .423 5.438 10.910 1.00 .00
ATOM 276 CA PRO 18 -.504 5.737 12.027 1.00 .00
ATOM 277 HA PRO 18 -1.514 5.845 11.666 1.00 .00
ATOM 278 CB PRO 18 -.398 4.503 12.916 1.00 .00
ATOM 279 HB1 PRO 18 -1.168 3.791 12.663 1.00 .00
ATOM 280 HB2 PRO 18 -.473 4.786 13.957 1.00 .00
ATOM 281 CG PRO 18 .952 3.921 12.628 1.00 .00
ATOM 282 HG1 PRO 18 .904 2.844 12.673 1.00 .00
ATOM 283 HG2 PRO 18 1.668 4.288 13.349 1.00 .00
ATOM 284 CD PRO 18 1.352 4.352 11.239 1.00 .00
ATOM 285 HD2 PRO 18 2.373 4.710 11.235 1.00 .00
ATOM 286 HD1 PRO 18 1.232 3.538 10.541 1.00 .00
ATOM 287 C PRO 18 -.061 6.990 12.794 1.00 .00
ATOM 288 O PRO 18 -.710 7.410 13.731 1.00 .00
ATOM 289 N VAL 19 1.039 7.589 12.417 1.00 .00
ATOM 290 HN VAL 19 1.559 7.240 11.663 1.00 .00
ATOM 291 CA VAL 19 1.501 8.806 13.152 1.00 .00
ATOM 292 HA VAL 19.921 8.935 14.052 1.00 .00
ATOM 293 CB VAL 19 2.961 8.529 13.520 1.00 .00
ATOM 294 HB VAL 19 3.451 8.026 12.699 1.00 .00
ATOM 295 CG1 VAL 19 3.685 9.845 13.814 1.00 .00
ATOM 296 HG11 VAL 19 4.007 10.293 12.886 1.00 .00
ATOM 297 HG12 VAL 19 4.544 9.652 14.438 1.00 .00
ATOM 298 HG13 VAL 19 3.013 10.519 14.324 1.00 .00
ATOM 299 CG2 VAL 19 3.006 7.644 14.768 1.00 .00
ATOM 300 HG21 VAL 19 2.522 8.154 15.587 1.00 .00
ATOM 301 HG22 VAL 19 4.035 7.441 15.029 1.00 .00
ATOM 302 HG23 VAL 19 2.495 6.714 14.570 1.00 .00
ATOM 303 C VAL 19 1.383 10.055 12.271 1.00 .00
ATOM 304 O VAL 19 1.123 11.137 12.758 1.00 .00
ATOM 305 N CYS 20 1.557 9.927 10.982 1.00 .00
ATOM 306 HN CYS 20 1.753 9.047 10.587 1.00 .00
ATOM 307 CA CYS 20 1.433 11.131 10.111 1.00 .00
ATOM 308 HA CYS 20 .966 11.933 10.663 1.00 .00
ATOM 309 HB1 CYS 20 3.504 11.408 10.611 1.00 .00
ATOM 310 HB2 CYS 20 2.885 12.559 9.430 1.00 .00
ATOM 311 C CYS 20 .586 10.789 8.881 1.00 .00
ATOM 312 O CYS 20 .547 11.515 7.907 1.00 .00
ATOM 313 CB CYS 20 2.869 11.526 9.744 1.00 .00
ATOM 314 SG CYS 20 3.487 10.487 8.402 1.00 .00
ATOM 315 N SER 21 -.113 9.691 8.951 1.00 .00
ATOM 316 HN SER 21 -.069 9.145 9.763 1.00 .00
ATOM 317 CA SER 21 -1.002 9.264 7.834 1.00 .00
ATOM 318 HA SER 21 -1.443 8.312 8.073 1.00 .00
ATOM 319 CB SER 21 -2.093 10.330 7.772 1.00 .00
ATOM 320 HB1 SER 21 -2.203 10.788 8.746 1.00 .00
ATOM 321 HB2 SER 21 -3.027 9.876 7.485 1.00 .00
ATOM 322 OG SER 21 -1.735 11.313 6.810 1.00 .00
ATOM 323 HG SER 21 -2.542 11.640 6.406 1.00 .00
ATOM 324 C SER 21 -.261 9.176 6.495 1.00 .00
ATOM 325 O SER 21 -.876 9.061 5.453 1.00 .00
ATOM 326 N SER 22 1.041 9.213 6.496 1.00 .00
ATOM 327 HN SER 22 1.534 9.298 7.338 1.00 .00
ATOM 328 CA SER 22 1.773 9.112 5.200 1.00 .00
ATOM 329 HA SER 22 1.449 9.886 4.522 1.00 .00
ATOM 330 CB SER 22 3.246 9.304 5.550 1.00 .00
ATOM 331 HB1 SER 22 3.858 8.834 4.792 1.00 .00
ATOM 332 HB2 SER 22 3.454 8.853 6.505 1.00 .00
ATOM 333 OG SER 22 3.533 10.693 5.613 1.00 .00
ATOM 334 HG SER 22 3.592 11.024 4.713 1.00 .00
ATOM 335 C SER 22 1.543 7.728 4.584 1.00 .00
ATOM 336 O SER 22 1.813 6.716 5.199 1.00 .00
ATOM 337 N THR 23 1.041 7.672 3.380 1.00 .00
ATOM 338 HN THR 23 .823 8.497 2.898 1.00 .00
ATOM 339 CA THR 23 .793 6.345 2.743 1.00 .00
ATOM 340 HA THR 23 .493 5.626 3.487 1.00 .00
ATOM 341 CB THR 23 -.351 6.576 1.751 1.00 .00
ATOM 342 HB THR 23 .020 6.480 .743 1.00 .00
ATOM 343 OG1 THR 23 -.887 7.879 1.936 1.00 .00
ATOM 344 HG1 THR 23 -1.593 8.003 1.297 1.00 .00
ATOM 345 CG2 THR 23 -1.448 5.535 1.984 1.00 .00
ATOM 346 HG21 THR 23 -.997 4.591 2.252 1.00 .00
ATOM 347 HG22 THR 23 -2.028 5.413 1.081 1.00 .00
ATOM 348 HG23 THR 23 -2.094 5.865 2.784 1.00 .00
ATOM 349 C THR 23 2.052 5.863 2.013 1.00 .00
ATOM 350 O THR 23 2.986 6.612 1.810 1.00 .00
ATOM 351 N PHE 24 2.085 4.618 1.619 1.00 .00
ATOM 352 HN PHE 24 1.322 4.028 1.794 1.00 .00
ATOM 353 CA PHE 24 3.287 4.092 .906 1.00 .00
ATOM 354 HA PHE 24 3.721 4.856 .282 1.00 .00
ATOM 355 CB PHE 24 4.265 3.703 2.016 1.00 .00
ATOM 356 HB1 PHE 24 5.141 3.246 1.579 1.00 .00
ATOM 357 HB2 PHE 24 3.789 3.001 2.685 1.00 .00
ATOM 358 CG PHE 24 4.675 4.935 2.787 1.00 .00
ATOM 359 CD1 PHE 24 5.617 5.819 2.248 1.00 .00
ATOM 360 HD1 PHE 24 6.048 5.623 1.277 1.00 .00
ATOM 361 CD2 PHE 24 4.117 5.190 4.046 1.00 .00
ATOM 362 HD2 PHE 24 3.390 4.508 4.462 1.00 .00
ATOM 363 CE1 PHE 24 6.000 6.958 2.967 1.00 .00
ATOM 364 HE1 PHE 24 6.727 7.640 2.551 1.00 .00
ATOM 365 CE2 PHE 24 4.499 6.329 4.764 1.00 .00
ATOM 366 HE2 PHE 24 4.068 6.526 5.735 1.00 .00
ATOM 367 CZ PHE 24 5.442 7.213 4.225 1.00 .00
ATOM 368 HZ PHE 24 5.738 8.091 4.780 1.00 .00
ATOM 369 C PHE 24 2.916 2.862 .071 1.00 .00
ATOM 370 O PHE 24 2.575 1.823 .599 1.00 .00
ATOM 371 N THR 25 2.983 2.968 -1.227 1.00 .00
ATOM 372 HN THR 25 3.262 3.813 -1.638 1.00 .00
ATOM 373 CA THR 25 2.634 1.799 -2.087 1.00 .00
ATOM 374 HA THR 25 1.759 1.296 -1.704 1.00 .00
ATOM 375 CB THR 25 2.333 2.393 -3.464 1.00 .00
ATOM 376 HB THR 25 2.045 1.604 -4.142 1.00 .00
ATOM 377 OG1 THR 25 3.491 3.049 -3.960 1.00 .00
ATOM 378 HG1 THR 25 4.253 2.503 -3.752 1.00 .00
ATOM 379 CG2 THR 25 1.187 3.398 -3.346 1.00 .00
ATOM 380 HG21 THR 25 .657 3.452 -4.285 1.00 .00
ATOM 381 HG22 THR 25 1.586 4.371 -3.100 1.00 .00
ATOM 382 HG23 THR 25 .508 3.081 -2.568 1.00 .00
ATOM 383 C THR 25 3.810 .824 -2.165 1.00 .00
ATOM 384 O THR 25 4.777 .938 -1.437 1.00 .00
ATOM 385 N ASP 26 3.727 -.140 -3.037 1.00 .00
ATOM 386 HN ASP 26 2.931 -.215 -3.606 1.00 .00
ATOM 387 CA ASP 26 4.831 -1.136 -3.162 1.00 .00
ATOM 388 HA ASP 26 4.959 -1.671 -2.235 1.00 .00
ATOM 389 CB ASP 26 4.375 -2.100 -4.258 1.00 .00
ATOM 390 HB1 ASP 26 3.373 -2.440 -4.044 1.00 .00
ATOM 391 HB2 ASP 26 5.044 -2.948 -4.291 1.00 .00
ATOM 392 CG ASP 26 4.391 -1.384 -5.610 1.00 .00
ATOM 393 OD1 ASP 26 3.364 -.841 -5.983 1.00 .00
ATOM 394 OD2 ASP 26 5.430 -1.392 -6.250 1.00 .00
ATOM 395 C ASP 26 6.139 -.447 -3.563 1.00 .00
ATOM 396 O ASP 26 7.205 -.811 -3.107 1.00 .00
ATOM 397 N LEU 27 6.072 .540 -4.415 1.00 .00
ATOM 398 HN LEU 27 5.206 .819 -4.777 1.00 .00
ATOM 399 CA LEU 27 7.321 1.238 -4.840 1.00 .00
ATOM 400 HA LEU 27 8.014 .533 -5.271 1.00 .00
ATOM 401 CB LEU 27 6.872 2.243 -5.908 1.00 .00
ATOM 402 HB1 LEU 27 6.122 1.786 -6.536 1.00 .00
ATOM 403 HB2 LEU 27 7.721 2.528 -6.512 1.00 .00
ATOM 404 CG LEU 27 6.282 3.487 -5.240 1.00 .00
ATOM 405 HG LEU 27 5.904 3.225 -4.263 1.00 .00
ATOM 406 CD1 LEU 27 7.370 4.553 -5.098 1.00 .00
ATOM 407 HD11 LEU 27 7.607 4.958 -6.070 1.00 .00
ATOM 408 HD12 LEU 27 8.256 4.109 -4.668 1.00 .00
ATOM 409 HD13 LEU 27 7.016 5.345 -4.455 1.00 .00
ATOM 410 CD2 LEU 27 5.142 4.037 -6.101 1.00 .00
ATOM 411 HD21 LEU 27 4.694 4.885 -5.605 1.00 .00
ATOM 412 HD22 LEU 27 4.396 3.269 -6.244 1.00 .00
ATOM 413 HD23 LEU 27 5.531 4.345 -7.060 1.00 .00
ATOM 414 C LEU 27 7.964 1.950 -3.644 1.00 .00
ATOM 415 O LEU 27 9.135 2.275 -3.659 1.00 .00
ATOM 416 N GLU 28 7.208 2.190 -2.607 1.00 .00
ATOM 417 HN GLU 28 6.267 1.917 -2.614 1.00 .00
ATOM 418 CA GLU 28 7.774 2.874 -1.409 1.00 .00
ATOM 419 HA GLU 28 8.609 3.497 -1.687 1.00 .00
ATOM 420 CB GLU 28 6.633 3.737 -.867 1.00 .00
ATOM 421 HB1 GLU 28 7.004 4.371 -.076 1.00 .00
ATOM 422 HB2 GLU 28 5.853 3.097 -.480 1.00 .00
ATOM 423 CG GLU 28 6.070 4.606 -1.992 1.00 .00
ATOM 424 HG1 GLU 28 5.005 4.448 -2.070 1.00 .00
ATOM 425 HG2 GLU 28 6.544 4.337 -2.924 1.00 .00
ATOM 426 CD GLU 28 6.344 6.079 -1.686 1.00 .00
ATOM 427 OE1 GLU 28 5.745 6.591 -.756 1.00 .00
ATOM 428 OE2 GLU 28 7.148 6.669 -2.389 1.00 .00
ATOM 429 C GLU 28 8.200 1.836 -.368 1.00 .00
ATOM 430 O GLU 28 8.860 2.148 .605 1.00 .00
ATOM 431 N ALA 29 7.825 .603 -.566 1.00 .00
ATOM 432 HN ALA 29 7.293 .376 -1.357 1.00 .00
ATOM 433 CA ALA 29 8.201 -.462 .406 1.00 .00
ATOM 434 HA ALA 29 7.957 -.160 1.414 1.00 .00
ATOM 435 CB ALA 29 7.356 -1.671 .003 1.00 .00
ATOM 436 HB1 ALA 29 7.078 -2.227 .885 1.00 .00
ATOM 437 HB2 ALA 29 7.928 -2.305 -.657 1.00 .00
ATOM 438 HB3 ALA 29 6.465 -1.333 -.506 1.00 .00
ATOM 439 C ALA 29 9.692 -.789 .286 1.00 .00
ATOM 440 O ALA 29 10.374 -.996 1.268 1.00 .00
ATOM 441 N ASN 30 10.200 -.843 -.914 1.00 .00
ATOM 442 HN ASN 30 9.629 -.678 -1.693 1.00 .00
ATOM 443 CA ASN 30 11.644 -1.165 -1.104 1.00 .00
ATOM 444 HA ASN 30 11.837 -2.193 -.843 1.00 .00
ATOM 445 CB ASN 30 11.895 -.954 -2.597 1.00 .00
ATOM 446 HB1 ASN 30 12.957 -.951 -2.788 1.00 .00
ATOM 447 HB2 ASN 30 11.471 -.008 -2.903 1.00 .00
ATOM 448 CG ASN 30 11.239 -2.087 -3.388 1.00 .00
ATOM 449 OD1 ASN 30 11.215 -3.218 -2.944 1.00 .00
ATOM 450 ND2 ASN 30 10.702 -1.831 -4.549 1.00 .00
ATOM 451 HD21 ASN 30 10.721 -.920 -4.908 1.00 .00
ATOM 452 HD22 ASN 30 10.279 -2.551 -5.063 1.00 .00
ATOM 453 C ASN 30 12.528 -.228 -.273 1.00 .00
ATOM 454 O ASN 30 13.371 -.667 .484 1.00 .00
ATOM 455 N GLN 31 12.354 1.058 -.414 1.00 .00
ATOM 456 HN GLN 31 11.675 1.395 -1.036 1.00 .00
ATOM 457 CA GLN 31 13.198 2.015 .361 1.00 .00
ATOM 458 HA GLN 31 14.240 1.759 .265 1.00 .00
ATOM 459 CB GLN 31 12.938 3.378 -.280 1.00 .00
ATOM 460 HB1 GLN 31 13.156 3.328 -1.336 1.00 .00
ATOM 461 HB2 GLN 31 13.571 4.121 .185 1.00 .00
ATOM 462 CG GLN 31 11.470 3.764 -.083 1.00 .00
ATOM 463 HG1 GLN 31 11.363 4.318 .837 1.00 .00
ATOM 464 HG2 GLN 31 10.866 2.869 -.037 1.00 .00
ATOM 465 CD GLN 31 11.009 4.631 -1.255 1.00 .00
ATOM 466 OE1 GLN 31 10.905 5.836 -1.131 1.00 .00
ATOM 467 NE2 GLN 31 10.727 4.066 -2.396 1.00 .00
ATOM 468 HE21 GLN 31 10.812 3.095 -2.496 1.00 .00
ATOM 469 HE22 GLN 31 10.430 4.613 -3.154 1.00 .00
ATOM 470 C GLN 31 12.787 2.035 1.838 1.00 .00
ATOM 471 O GLN 31 13.584 2.327 2.707 1.00 .00
ATOM 472 N LEU 32 11.551 1.740 2.128 1.00 .00
ATOM 473 HN LEU 32 10.919 1.516 1.414 1.00 .00
ATOM 474 CA LEU 32 11.095 1.757 3.549 1.00 .00
ATOM 475 HA LEU 32 11.642 2.498 4.110 1.00 .00
ATOM 476 CB LEU 32 9.620 2.148 3.476 1.00 .00
ATOM 477 HB1 LEU 32 9.196 2.151 4.468 1.00 .00
ATOM 478 HB2 LEU 32 9.090 1.436 2.859 1.00 .00
ATOM 479 CG LEU 32 9.496 3.545 2.865 1.00 .00
ATOM 480 HG LEU 32 9.967 3.555 1.893 1.00 .00
ATOM 481 CD1 LEU 32 8.019 3.911 2.719 1.00 .00
ATOM 482 HD11 LEU 32 7.743 4.611 3.494 1.00 .00
ATOM 483 HD12 LEU 32 7.417 3.019 2.808 1.00 .00
ATOM 484 HD13 LEU 32 7.854 4.361 1.751 1.00 .00
ATOM 485 CD2 LEU 32 10.184 4.564 3.778 1.00 .00
ATOM 486 HD21 LEU 32 9.449 5.256 4.162 1.00 .00
ATOM 487 HD22 LEU 32 10.929 5.107 3.215 1.00 .00
ATOM 488 HD23 LEU 32 10.658 4.049 4.600 1.00 .00
ATOM 489 C LEU 32 11.252 .375 4.192 1.00 .00
ATOM 490 O LEU 32 11.183 .231 5.396 1.00 .00
ATOM 491 N PHE 33 11.458 -.641 3.402 1.00 .00
ATOM 492 HN PHE 33 11.508 -.506 2.432 1.00 .00
ATOM 493 CA PHE 33 11.612 -2.012 3.973 1.00 .00
ATOM 494 HA PHE 33 10.706 -2.314 4.472 1.00 .00
ATOM 495 CB PHE 33 11.867 -2.916 2.766 1.00 .00
ATOM 496 HB1 PHE 33 12.791 -2.625 2.289 1.00 .00
ATOM 497 HB2 PHE 33 11.054 -2.816 2.065 1.00 .00
ATOM 498 CG PHE 33 11.968 -4.354 3.218 1.00 .00
ATOM 499 CD1 PHE 33 13.178 -4.846 3.721 1.00 .00
ATOM 500 HD1 PHE 33 14.036 -4.195 3.794 1.00 .00
ATOM 501 CD2 PHE 33 10.854 -5.198 3.126 1.00 .00
ATOM 502 HD2 PHE 33 9.919 -4.819 2.741 1.00 .00
ATOM 503 CE1 PHE 33 13.276 -6.181 4.131 1.00 .00
ATOM 504 HE1 PHE 33 14.210 -6.560 4.519 1.00 .00
ATOM 505 CE2 PHE 33 10.951 -6.533 3.537 1.00 .00
ATOM 506 HE2 PHE 33 10.092 -7.184 3.466 1.00 .00
ATOM 507 CZ PHE 33 12.162 -7.025 4.039 1.00 .00
ATOM 508 HZ PHE 33 12.238 -8.055 4.355 1.00 .00
ATOM 509 C PHE 33 12.798 -2.063 4.942 1.00 .00
ATOM 510 O PHE 33 13.842 -1.493 4.693 1.00 .00
ATOM 511 N ASP 34 12.642 -2.747 6.043 1.00 .00
ATOM 512 HN ASP 34 11.791 -3.201 6.219 1.00 .00
ATOM 513 CA ASP 34 13.756 -2.846 7.031 1.00 .00
ATOM 514 HA ASP 34 14.537 -2.142 6.793 1.00 .00
ATOM 515 CB ASP 34 13.123 -2.491 8.378 1.00 .00
ATOM 516 HB1 ASP 34 13.238 -3.320 9.060 1.00 .00
ATOM 517 HB2 ASP 34 12.071 -2.285 8.237 1.00 .00
ATOM 518 CG ASP 34 13.813 -1.256 8.959 1.00 .00
ATOM 519 OD1 ASP 34 14.509 -1.402 9.950 1.00 .00
ATOM 520 OD2 ASP 34 13.632 -.184 8.405 1.00 .00
ATOM 521 C ASP 34 14.307 -4.275 7.057 1.00 .00
ATOM 522 O ASP 34 13.556 -5.229 7.025 1.00 .00
ATOM 523 N PRO 35 15.608 -4.372 7.108 1.00 .00
ATOM 524 CA PRO 35 16.272 -5.698 7.131 1.00 .00
ATOM 525 HA PRO 35 15.886 -6.332 6.349 1.00 .00
ATOM 526 CB PRO 35 17.737 -5.369 6.859 1.00 .00
ATOM 527 HB1 PRO 35 17.952 -5.451 5.806 1.00 .00
ATOM 528 HB2 PRO 35 18.380 -6.027 7.429 1.00 .00
ATOM 529 CG PRO 35 17.908 -3.952 7.308 1.00 .00
ATOM 530 HG1 PRO 35 18.645 -3.458 6.696 1.00 .00
ATOM 531 HG2 PRO 35 18.213 -3.931 8.346 1.00 .00
ATOM 532 CD PRO 35 16.573 -3.269 7.147 1.00 .00
ATOM 533 HD2 PRO 35 16.378 -2.619 7.990 1.00 .00
ATOM 534 HD1 PRO 35 16.540 -2.714 6.222 1.00 .00
ATOM 535 C PRO 35 16.114 -6.369 8.501 1.00 .00
ATOM 536 O PRO 35 15.994 -7.573 8.599 1.00 .00
ATOM 537 N MET 36 16.119 -5.602 9.559 1.00 .00
ATOM 538 HN MET 36 16.223 -4.632 9.461 1.00 .00
ATOM 539 CA MET 36 15.978 -6.206 10.919 1.00 .00
ATOM 540 HA MET 36 16.924 -6.603 11.250 1.00 .00
ATOM 541 CB MET 36 15.551 -5.056 11.837 1.00 .00
ATOM 542 HB1 MET 36 16.419 -4.482 12.116 1.00 .00
ATOM 543 HB2 MET 36 15.089 -5.461 12.726 1.00 .00
ATOM 544 CG MET 36 14.553 -4.144 11.118 1.00 .00
ATOM 545 HG1 MET 36 14.285 -4.576 10.167 1.00 .00
ATOM 546 HG2 MET 36 15.003 -3.175 10.958 1.00 .00
ATOM 547 SD MET 36 13.068 -3.956 12.136 1.00 .00
ATOM 548 CE MET 36 13.364 -2.247 12.652 1.00 .00
ATOM 549 HE1 MET 36 14.357 -1.947 12.348 1.00 .00
ATOM 550 HE2 MET 36 13.280 -2.173 13.724 1.00 .00
ATOM 551 HE3 MET 36 12.630 -1.601 12.190 1.00 .00
ATOM 552 C MET 36 14.916 -7.309 10.912 1.00 .00
ATOM 553 O MET 36 15.070 -8.335 11.544 1.00 .00
ATOM 554 N THR 37 13.843 -7.106 10.202 1.00 .00
ATOM 555 HN THR 37 13.740 -6.272 9.700 1.00 .00
ATOM 556 CA THR 37 12.772 -8.141 10.154 1.00 .00
ATOM 557 HA THR 37 13.185 -9.121 10.334 1.00 .00
ATOM 558 CB THR 37 11.808 -7.762 11.278 1.00 .00
ATOM 559 HB THR 37 12.314 -7.839 12.228 1.00 .00
ATOM 560 OG1 THR 37 10.694 -8.643 11.260 1.00 .00
ATOM 561 HG1 THR 37 11.026 -9.542 11.320 1.00 .00
ATOM 562 CG2 THR 37 11.330 -6.324 11.077 1.00 .00
ATOM 563 HG21 THR 37 11.053 -5.901 12.032 1.00 .00
ATOM 564 HG22 THR 37 10.475 -6.319 10.419 1.00 .00
ATOM 565 HG23 THR 37 12.125 -5.738 10.640 1.00 .00
ATOM 566 C THR 37 12.064 -8.095 8.799 1.00 .00
ATOM 567 O THR 37 11.769 -9.113 8.205 1.00 .00
ATOM 568 N GLY 38 11.797 -6.918 8.302 1.00 .00
ATOM 569 HN GLY 38 12.051 -6.110 8.795 1.00 .00
ATOM 570 CA GLY 38 11.117 -6.804 6.981 1.00 .00
ATOM 571 HA1 GLY 38 10.773 -7.778 6.668 1.00 .00
ATOM 572 HA2 GLY 38 11.816 -6.418 6.254 1.00 .00
ATOM 573 C GLY 38 9.919 -5.857 7.087 1.00 .00
ATOM 574 O GLY 38 8.952 -5.986 6.361 1.00 .00
ATOM 575 N THR 39 9.970 -4.903 7.976 1.00 .00
ATOM 576 HN THR 39 10.757 -4.807 8.551 1.00 .00
ATOM 577 CA THR 39 8.827 -3.954 8.107 1.00 .00
ATOM 578 HA THR 39 7.921 -4.406 7.737 1.00 .00
ATOM 579 CB THR 39 8.696 -3.673 9.606 1.00 .00
ATOM 580 HB THR 39 8.790 -2.612 9.785 1.00 .00
ATOM 581 OG1 THR 39 9.714 -4.366 10.314 1.00 .00
ATOM 582 HG1 THR 39 9.345 -4.664 11.149 1.00 .00
ATOM 583 CG2 THR 39 7.324 -4.143 10.088 1.00 .00
ATOM 584 HG21 THR 39 7.168 -5.167 9.782 1.00 .00
ATOM 585 HG22 THR 39 6.558 -3.517 9.655 1.00 .00
ATOM 586 HG23 THR 39 7.279 -4.077 11.164 1.00 .00
ATOM 587 C THR 39 9.126 -2.662 7.343 1.00 .00
ATOM 588 O THR 39 10.251 -2.392 6.976 1.00 .00
ATOM 589 N PHE 40 8.123 -1.864 7.099 1.00 .00
ATOM 590 HN PHE 40 7.223 -2.103 7.402 1.00 .00
ATOM 591 CA PHE 40 8.346 -.592 6.357 1.00 .00
ATOM 592 HA PHE 40 9.320 -.592 5.895 1.00 .00
ATOM 593 CB PHE 40 7.259 -.570 5.282 1.00 .00
ATOM 594 HB1 PHE 40 7.369 .315 4.675 1.00 .00
ATOM 595 HB2 PHE 40 6.287 -.568 5.753 1.00 .00
ATOM 596 CG PHE 40 7.398 -1.797 4.414 1.00 .00
ATOM 597 CD1 PHE 40 6.575 -2.908 4.634 1.00 .00
ATOM 598 HD1 PHE 40 5.837 -2.886 5.422 1.00 .00
ATOM 599 CD2 PHE 40 8.354 -1.827 3.392 1.00 .00
ATOM 600 HD2 PHE 40 8.990 -.970 3.222 1.00 .00
ATOM 601 CE1 PHE 40 6.708 -4.048 3.832 1.00 .00
ATOM 602 HE1 PHE 40 6.073 -4.905 4.001 1.00 .00
ATOM 603 CE2 PHE 40 8.487 -2.966 2.590 1.00 .00
ATOM 604 HE2 PHE 40 9.223 -2.988 1.801 1.00 .00
ATOM 605 CZ PHE 40 7.664 -4.076 2.809 1.00 .00
ATOM 606 HZ PHE 40 7.767 -4.955 2.191 1.00 .00
ATOM 607 C PHE 40 8.202 .602 7.302 1.00 .00
ATOM 608 O PHE 40 7.155 .832 7.874 1.00 .00
ATOM 609 N ARG 41 9.250 1.360 7.476 1.00 .00
ATOM 610 HN ARG 41 10.087 1.155 7.010 1.00 .00
ATOM 611 CA ARG 41 9.174 2.534 8.390 1.00 .00
ATOM 612 HA ARG 41 8.397 2.390 9.124 1.00 .00
ATOM 613 CB ARG 41 10.537 2.587 9.081 1.00 .00
ATOM 614 HB1 ARG 41 10.794 3.615 9.291 1.00 .00
ATOM 615 HB2 ARG 41 11.286 2.153 8.435 1.00 .00
ATOM 616 CG ARG 41 10.475 1.802 10.393 1.00 .00
ATOM 617 HG1 ARG 41 9.829 .946 10.270 1.00 .00
ATOM 618 HG2 ARG 41 10.084 2.439 11.173 1.00 .00
ATOM 619 CD ARG 41 11.879 1.329 10.777 1.00 .00
ATOM 620 HD1 ARG 41 12.604 2.104 10.586 1.00 .00
ATOM 621 HD2 ARG 41 12.133 .429 10.233 1.00 .00
ATOM 622 NE ARG 41 11.803 1.050 12.238 1.00 .00
ATOM 623 HE ARG 41 11.061 .520 12.598 1.00 .00
ATOM 624 CZ ARG 41 12.723 1.512 13.041 1.00 .00
ATOM 625 NH1 ARG 41 13.850 .870 13.179 1.00 .00
ATOM 626 HH11 ARG 41 14.010 .024 12.671 1.00 .00
ATOM 627 HH12 ARG 41 14.555 1.223 13.795 1.00 .00
ATOM 628 NH2 ARG 41 12.514 2.615 13.707 1.00 .00
ATOM 629 HH21 ARG 41 11.649 3.107 13.602 1.00 .00
ATOM 630 HH22 ARG 41 13.219 2.969 14.321 1.00 .00
ATOM 631 C ARG 41 8.928 3.818 7.595 1.00 .00
ATOM 632 O ARG 41 9.385 3.969 6.479 1.00 .00
ATOM 633 N CYS 42 8.211 4.743 8.168 1.00 .00
ATOM 634 HN CYS 42 7.857 4.596 9.070 1.00 .00
ATOM 635 CA CYS 42 7.931 6.027 7.463 1.00 .00
ATOM 636 HA CYS 42 7.178 5.895 6.704 1.00 .00
ATOM 637 HB1 CYS 42 8.256 7.321 9.130 1.00 .00
ATOM 638 HB2 CYS 42 6.757 6.398 9.207 1.00 .00
ATOM 639 C CYS 42 9.215 6.600 6.868 1.00 .00
ATOM 640 O CYS 42 10.284 6.045 7.023 1.00 .00
ATOM 641 CB CYS 42 7.419 6.949 8.558 1.00 .00
ATOM 642 SG CYS 42 6.524 8.341 7.834 1.00 .00
ATOM 643 N THR 43 9.124 7.715 6.198 1.00 .00
ATOM 644 HN THR 43 8.259 8.155 6.086 1.00 .00
ATOM 645 CA THR 43 10.346 8.316 5.612 1.00 .00
ATOM 646 HA THR 43 11.168 7.625 5.688 1.00 .00
ATOM 647 CB THR 43 10.018 8.570 4.141 1.00 .00
ATOM 648 HB THR 43 9.981 9.632 3.957 1.00 .00
ATOM 649 OG1 THR 43 8.761 7.988 3.825 1.00 .00
ATOM 650 HG1 THR 43 8.679 7.960 2.869 1.00 .00
ATOM 651 CG2 THR 43 11.107 7.945 3.269 1.00 .00
ATOM 652 HG21 THR 43 11.704 8.726 2.823 1.00 .00
ATOM 653 HG22 THR 43 10.649 7.352 2.491 1.00 .00
ATOM 654 HG23 THR 43 11.738 7.313 3.878 1.00 .00
ATOM 655 C THR 43 10.697 9.623 6.325 1.00 .00
ATOM 656 O THR 43 11.826 10.069 6.275 1.00 .00
ATOM 657 N PHE 44 9.764 10.247 7.003 1.00 .00
ATOM 658 HN PHE 44 8.850 9.885 7.058 1.00 .00
ATOM 659 CA PHE 44 10.135 11.514 7.704 1.00 .00
ATOM 660 HA PHE 44 11.207 11.635 7.663 1.00 .00
ATOM 661 CB PHE 44 9.478 12.660 6.928 1.00 .00
ATOM 662 HB1 PHE 44 9.846 12.654 5.912 1.00 .00
ATOM 663 HB2 PHE 44 9.744 13.597 7.392 1.00 .00
ATOM 664 CG PHE 44 7.977 12.531 6.912 1.00 .00
ATOM 665 CD1 PHE 44 7.344 11.861 5.859 1.00 .00
ATOM 666 HD1 PHE 44 7.933 11.410 5.073 1.00 .00
ATOM 667 CD2 PHE 44 7.215 13.114 7.930 1.00 .00
ATOM 668 HD2 PHE 44 7.705 13.629 8.743 1.00 .00
ATOM 669 CE1 PHE 44 5.949 11.776 5.824 1.00 .00
ATOM 670 HE1 PHE 44 5.460 11.259 5.011 1.00 .00
ATOM 671 CE2 PHE 44 5.820 13.025 7.899 1.00 .00
ATOM 672 HE2 PHE 44 5.232 13.472 8.686 1.00 .00
ATOM 673 CZ PHE 44 5.187 12.357 6.844 1.00 .00
ATOM 674 HZ PHE 44 4.111 12.297 6.815 1.00 .00
ATOM 675 C PHE 44 9.698 11.485 9.171 1.00 .00
ATOM 676 O PHE 44 10.319 12.103 10.013 1.00 .00
ATOM 677 N CYS 45 8.674 10.750 9.508 1.00 .00
ATOM 678 HN CYS 45 8.193 10.223 8.834 1.00 .00
ATOM 679 CA CYS 45 8.284 10.685 10.947 1.00 .00
ATOM 680 HA CYS 45 8.840 11.424 11.506 1.00 .00
ATOM 681 HB1 CYS 45 6.482 11.473 10.064 1.00 .00
ATOM 682 HB2 CYS 45 6.596 11.715 11.800 1.00 .00
ATOM 683 C CYS 45 8.628 9.276 11.466 1.00 .00
ATOM 684 O CYS 45 8.132 8.823 12.479 1.00 .00
ATOM 685 CB CYS 45 6.774 11.015 10.999 1.00 .00
ATOM 686 SG CYS 45 5.760 9.538 11.282 1.00 .00
ATOM 687 N HIS 46 9.501 8.608 10.749 1.00 .00
ATOM 688 HN HIS 46 9.875 9.031 9.950 1.00 .00
ATOM 689 CA HIS 46 9.969 7.231 11.106 1.00 .00
ATOM 690 HA HIS 46 10.106 6.656 10.204 1.00 .00
ATOM 691 CB HIS 46 11.332 7.453 11.755 1.00 .00
ATOM 692 HB1 HIS 46 11.672 6.536 12.212 1.00 .00
ATOM 693 HB2 HIS 46 11.255 8.228 12.504 1.00 .00
ATOM 694 CG HIS 46 12.300 7.873 10.684 1.00 .00
ATOM 695 ND1 HIS 46 13.274 7.021 10.186 1.00 .00
ATOM 696 HD1 HIS 46 13.449 6.104 10.484 1.00 .00
ATOM 697 CD2 HIS 46 12.429 9.043 9.976 1.00 .00
ATOM 698 HD2 HIS 46 11.817 9.921 10.109 1.00 .00
ATOM 699 CE1 HIS 46 13.936 7.683 9.219 1.00 .00
ATOM 700 HE1 HIS 46 14.744 7.262 8.638 1.00 .00
ATOM 701 NE2 HIS 46 13.463 8.920 9.052 1.00 .00
ATOM 702 C HIS 46 9.017 6.480 12.043 1.00 .00
ATOM 703 O HIS 46 9.428 5.918 13.039 1.00 .00
ATOM 704 N THR 47 7.761 6.423 11.707 1.00 .00
ATOM 705 HN THR 47 7.454 6.855 10.887 1.00 .00
ATOM 706 CA THR 47 6.798 5.662 12.549 1.00 .00
ATOM 707 HA THR 47 7.217 5.464 13.523 1.00 .00
ATOM 708 CB THR 47 5.566 6.561 12.672 1.00 .00
ATOM 709 HB THR 47 5.290 6.929 11.697 1.00 .00
ATOM 710 OG1 THR 47 5.867 7.656 13.527 1.00 .00
ATOM 711 HG1 THR 47 6.524 7.364 14.164 1.00 .00
ATOM 712 CG2 THR 47 4.401 5.755 13.257 1.00 .00
ATOM 713 HG21 THR 47 3.466 6.213 12.970 1.00 .00
ATOM 714 HG22 THR 47 4.478 5.742 14.334 1.00 .00
ATOM 715 HG23 THR 47 4.434 4.744 12.883 1.00 .00
ATOM 716 C THR 47 6.442 4.354 11.834 1.00 .00
ATOM 717 O THR 47 6.176 4.342 10.648 1.00 .00
ATOM 718 N GLU 48 6.439 3.252 12.535 1.00 .00
ATOM 719 HN GLU 48 6.659 3.274 13.489 1.00 .00
ATOM 720 CA GLU 48 6.102 1.957 11.873 1.00 .00
ATOM 721 HA GLU 48 6.872 1.685 11.169 1.00 .00
ATOM 722 CB GLU 48 6.043 .929 13.003 1.00 .00
ATOM 723 HB1 GLU 48 5.024 .596 13.135 1.00 .00
ATOM 724 HB2 GLU 48 6.398 1.378 13.918 1.00 .00
ATOM 725 CG GLU 48 6.925 -.270 12.647 1.00 .00
ATOM 726 HG1 GLU 48 6.912 -.421 11.578 1.00 .00
ATOM 727 HG2 GLU 48 6.548 -1.154 13.141 1.00 .00
ATOM 728 CD GLU 48 8.360 -.001 13.104 1.00 .00
ATOM 729 OE1 GLU 48 9.059 -.959 13.391 1.00 .00
ATOM 730 OE2 GLU 48 8.736 1.158 13.159 1.00 .00
ATOM 731 C GLU 48 4.748 2.064 11.165 1.00 .00
ATOM 732 O GLU 48 3.718 2.224 11.791 1.00 .00
ATOM 733 N VAL 49 4.745 1.980 9.862 1.00 .00
ATOM 734 HN VAL 49 5.589 1.854 9.380 1.00 .00
ATOM 735 CA VAL 49 3.464 2.080 9.106 1.00 .00
ATOM 736 HA VAL 49 2.891 2.928 9.445 1.00 .00
ATOM 737 CB VAL 49 3.883 2.281 7.651 1.00 .00
ATOM 738 HB VAL 49 3.003 2.408 7.037 1.00 .00
ATOM 739 CG1 VAL 49 4.766 3.526 7.541 1.00 .00
ATOM 740 HG11 VAL 49 5.488 3.387 6.751 1.00 .00
ATOM 741 HG12 VAL 49 5.282 3.685 8.477 1.00 .00
ATOM 742 HG13 VAL 49 4.150 4.385 7.320 1.00 .00
ATOM 743 CG2 VAL 49 4.669 1.057 7.176 1.00 .00
ATOM 744 HG21 VAL 49 5.492 1.376 6.554 1.00 .00
ATOM 745 HG22 VAL 49 4.018 .408 6.609 1.00 .00
ATOM 746 HG23 VAL 49 5.053 .522 8.033 1.00 .00
ATOM 747 C VAL 49 2.652 .789 9.258 1.00 .00
ATOM 748 O VAL 49 2.988 -.078 10.040 1.00 .00
ATOM 749 N GLU 50 1.586 .658 8.516 1.00 .00
ATOM 750 HN GLU 50 1.333 1.370 7.892 1.00 .00
ATOM 751 CA GLU 50 .751 -.575 8.616 1.00 .00
ATOM 752 HA GLU 50 1.367 -1.431 8.839 1.00 .00
ATOM 753 CB GLU 50 -.212 -.306 9.774 1.00 .00
ATOM 754 HB1 GLU 50 -1.064 -.964 9.694 1.00 .00
ATOM 755 HB2 GLU 50 -.545 .721 9.733 1.00 .00
ATOM 756 CG GLU 50 .503 -.560 11.103 1.00 .00
ATOM 757 HG1 GLU 50 1.088 .308 11.369 1.00 .00
ATOM 758 HG2 GLU 50 1.154 -1.417 11.003 1.00 .00
ATOM 759 CD GLU 50 -.531 -.828 12.198 1.00 .00
ATOM 760 OE1 GLU 50 -.465 -.169 13.223 1.00 .00
ATOM 761 OE2 GLU 50 -1.373 -1.688 11.994 1.00 .00
ATOM 762 C GLU 50 -.024 -.795 7.313 1.00 .00
ATOM 763 O GLU 50 -.492 .139 6.694 1.00 .00
ATOM 764 N GLU 51 -.161 -2.023 6.891 1.00 .00
ATOM 765 HN GLU 51 .226 -2.764 7.404 1.00 .00
ATOM 766 CA GLU 51 -.905 -2.299 5.626 1.00 .00
ATOM 767 HA GLU 51 -.284 -2.089 4.770 1.00 .00
ATOM 768 CB GLU 51 -1.237 -3.792 5.678 1.00 .00
ATOM 769 HB1 GLU 51 -2.274 -3.921 5.946 1.00 .00
ATOM 770 HB2 GLU 51 -.611 -4.275 6.414 1.00 .00
ATOM 771 CG GLU 51 -.987 -4.420 4.305 1.00 .00
ATOM 772 HG1 GLU 51 -.346 -3.775 3.724 1.00 .00
ATOM 773 HG2 GLU 51 -1.929 -4.550 3.792 1.00 .00
ATOM 774 CD GLU 51 -.310 -5.781 4.481 1.00 .00
ATOM 775 OE1 GLU 51 .022 -6.390 3.478 1.00 .00
ATOM 776 OE2 GLU 51 -.137 -6.191 5.617 1.00 .00
ATOM 777 C GLU 51 -2.188 -1.465 5.575 1.00 .00
ATOM 778 O GLU 51 -3.000 -1.503 6.478 1.00 .00
ATOM 779 N ASP 52 -2.378 -.714 4.523 1.00 .00
ATOM 780 HN ASP 52 -1.711 -.699 3.804 1.00 .00
ATOM 781 CA ASP 52 -3.611 .119 4.417 1.00 .00
ATOM 782 HA ASP 52 -3.667 .814 5.241 1.00 .00
ATOM 783 CB ASP 52 -3.459 .883 3.100 1.00 .00
ATOM 784 HB1 ASP 52 -3.079 .218 2.340 1.00 .00
ATOM 785 HB2 ASP 52 -2.769 1.702 3.240 1.00 .00
ATOM 786 CG ASP 52 -4.818 1.432 2.661 1.00 .00
ATOM 787 OD1 ASP 52 -5.519 1.968 3.504 1.00 .00
ATOM 788 OD2 ASP 52 -5.133 1.311 1.489 1.00 .00
ATOM 789 C ASP 52 -4.853 -.781 4.391 1.00 .00
ATOM 790 O ASP 52 -4.751 -1.990 4.328 1.00 .00
ATOM 791 N GLU 53 -6.021 -.203 4.449 1.00 .00
ATOM 792 HN GLU 53 -6.083 .773 4.508 1.00 .00
ATOM 793 CA GLU 53 -7.264 -1.028 4.440 1.00 .00
ATOM 794 HA GLU 53 -7.128 -1.918 5.033 1.00 .00
ATOM 795 CB GLU 53 -8.330 -.137 5.078 1.00 .00
ATOM 796 HB1 GLU 53 -9.265 -.674 5.130 1.00 .00
ATOM 797 HB2 GLU 53 -8.458 .755 4.482 1.00 .00
ATOM 798 CG GLU 53 -7.888 .251 6.490 1.00 .00
ATOM 799 HG1 GLU 53 -8.309 1.210 6.749 1.00 .00
ATOM 800 HG2 GLU 53 -6.809 .308 6.525 1.00 .00
ATOM 801 CD GLU 53 -8.376 -.803 7.485 1.00 .00
ATOM 802 OE1 GLU 53 -9.393 -.568 8.116 1.00 .00
ATOM 803 OE2 GLU 53 -7.724 -1.828 7.600 1.00 .00
ATOM 804 C GLU 53 -7.661 -1.397 3.006 1.00 .00
ATOM 805 O GLU 53 -8.690 -2.002 2.776 1.00 .00
ATOM 806 N SER 54 -6.858 -1.043 2.041 1.00 .00
ATOM 807 HN SER 54 -6.032 -.556 2.242 1.00 .00
ATOM 808 CA SER 54 -7.202 -1.382 .629 1.00 .00
ATOM 809 HA SER 54 -8.268 -1.510 .522 1.00 .00
ATOM 810 CB SER 54 -6.736 -.182 -.194 1.00 .00
ATOM 811 HB1 SER 54 -6.825 .717 .401 1.00 .00
ATOM 812 HB2 SER 54 -7.349 -.087 -1.075 1.00 .00
ATOM 813 OG SER 54 -5.384 -.377 -.585 1.00 .00
ATOM 814 HG SER 54 -5.381 -.764 -1.464 1.00 .00
ATOM 815 C SER 54 -6.466 -2.652 .194 1.00 .00
ATOM 816 O SER 54 -6.113 -2.812 -.959 1.00 .00
ATOM 817 N ALA 55 -6.228 -3.558 1.104 1.00 .00
ATOM 818 HN ALA 55 -6.518 -3.412 2.029 1.00 .00
ATOM 819 CA ALA 55 -5.513 -4.813 .734 1.00 .00
ATOM 820 HA ALA 55 -5.236 -4.793 -.308 1.00 .00
ATOM 821 CB ALA 55 -4.256 -4.827 1.604 1.00 .00
ATOM 822 HB1 ALA 55 -4.363 -5.572 2.379 1.00 .00
ATOM 823 HB2 ALA 55 -4.119 -3.856 2.055 1.00 .00
ATOM 824 HB3 ALA 55 -3.397 -5.065 .994 1.00 .00
ATOM 825 C ALA 55 -6.384 -6.038 1.030 1.00 .00
ATOM 826 O ALA 55 -6.441 -6.969 .251 1.00 .00
ATOM 827 N MET 56 -7.060 -6.052 2.148 1.00 .00
ATOM 828 HN MET 56 -7.003 -5.296 2.768 1.00 .00
ATOM 829 CA MET 56 -7.917 -7.228 2.476 1.00 .00
ATOM 830 HA MET 56 -7.736 -8.025 1.773 1.00 .00
ATOM 831 CB MET 56 -7.451 -7.665 3.865 1.00 .00
ATOM 832 HB1 MET 56 -8.311 -7.870 4.485 1.00 .00
ATOM 833 HB2 MET 56 -6.865 -6.875 4.312 1.00 .00
ATOM 834 CG MET 56 -6.598 -8.930 3.748 1.00 .00
ATOM 835 HG1 MET 56 -6.019 -9.058 4.650 1.00 .00
ATOM 836 HG2 MET 56 -5.933 -8.838 2.902 1.00 .00
ATOM 837 SD MET 56 -7.676 -10.365 3.515 1.00 .00
ATOM 838 CE MET 56 -8.286 -10.470 5.216 1.00 .00
ATOM 839 HE1 MET 56 -8.119 -11.468 5.597 1.00 .00
ATOM 840 HE2 MET 56 -9.341 -10.252 5.235 1.00 .00
ATOM 841 HE3 MET 56 -7.761 -9.751 5.830 1.00 .00
ATOM 842 C MET 56 -9.425 -6.884 2.509 1.00 .00
ATOM 843 O MET 56 -10.190 -7.626 3.093 1.00 .00
ATOM 844 N PRO 57 -9.830 -5.792 1.890 1.00 .00
ATOM 845 CA PRO 57 -11.272 -5.436 1.893 1.00 .00
ATOM 846 HA PRO 57 -11.688 -5.529 2.883 1.00 .00
ATOM 847 CB PRO 57 -11.287 -3.979 1.448 1.00 .00
ATOM 848 HB1 PRO 57 -11.277 -3.324 2.305 1.00 .00
ATOM 849 HB2 PRO 57 -12.157 -3.785 .835 1.00 .00
ATOM 850 CG PRO 57 -10.035 -3.798 .652 1.00 .00
ATOM 851 HG1 PRO 57 -9.650 -2.800 .793 1.00 .00
ATOM 852 HG2 PRO 57 -10.238 -3.970 -.395 1.00 .00
ATOM 853 CD PRO 57 -9.029 -4.803 1.153 1.00 .00
ATOM 854 HD2 PRO 57 -8.517 -5.269 .322 1.00 .00
ATOM 855 HD1 PRO 57 -8.325 -4.327 1.816 1.00 .00
ATOM 856 C PRO 57 -12.037 -6.312 .893 1.00 .00
ATOM 857 O PRO 57 -12.591 -5.826 -.072 1.00 .00
ATOM 858 N LYS 58 -12.070 -7.597 1.115 1.00 .00
ATOM 859 HN LYS 58 -11.615 -7.971 1.898 1.00 .00
ATOM 860 CA LYS 58 -12.796 -8.500 .174 1.00 .00
ATOM 861 HA LYS 58 -12.566 -9.531 .394 1.00 .00
ATOM 862 CB LYS 58 -14.281 -8.234 .435 1.00 .00
ATOM 863 HB1 LYS 58 -14.519 -7.218 .157 1.00 .00
ATOM 864 HB2 LYS 58 -14.494 -8.380 1.484 1.00 .00
ATOM 865 CG LYS 58 -15.127 -9.200 -.397 1.00 .00
ATOM 866 HG1 LYS 58 -14.487 -9.754 -1.067 1.00 .00
ATOM 867 HG2 LYS 58 -15.852 -8.641 -.972 1.00 .00
ATOM 868 CD LYS 58 -15.854 -10.175 .532 1.00 .00
ATOM 869 HD1 LYS 58 -16.898 -9.904 .593 1.00 .00
ATOM 870 HD2 LYS 58 -15.412 -10.132 1.516 1.00 .00
ATOM 871 CE LYS 58 -15.731 -11.595 -.023 1.00 .00
ATOM 872 HE1 LYS 58 -14.703 -11.922 .002 1.00 .00
ATOM 873 HE2 LYS 58 -16.118 -11.638 -1.032 1.00 .00
ATOM 874 NZ LYS 58 -16.557 -12.436 .889 1.00 .00
ATOM 875 HZ1 LYS 58 -17.559 -12.179 .786 1.00 .00
ATOM 876 HZ2 LYS 58 -16.256 -12.276 1.872 1.00 .00
ATOM 877 HZ3 LYS 58 -16.431 -13.438 .645 1.00 .00
ATOM 878 C LYS 58 -12.416 -8.170 -1.279 1.00 .00
ATOM 879 O LYS 58 -11.291 -8.376 -1.689 1.00 .00
ATOM 880 N LYS 59 -13.334 -7.663 -2.063 1.00 .00
ATOM 881 HN LYS 59 -14.238 -7.501 -1.726 1.00 .00
ATOM 882 CA LYS 59 -13.002 -7.333 -3.480 1.00 .00
ATOM 883 HA LYS 59 -13.885 -7.013 -4.010 1.00 .00
ATOM 884 CB LYS 59 -11.999 -6.183 -3.393 1.00 .00
ATOM 885 HB1 LYS 59 -11.361 -6.195 -4.264 1.00 .00
ATOM 886 HB2 LYS 59 -11.397 -6.297 -2.503 1.00 .00
ATOM 887 CG LYS 59 -12.752 -4.852 -3.336 1.00 .00
ATOM 888 HG1 LYS 59 -13.679 -4.985 -2.799 1.00 .00
ATOM 889 HG2 LYS 59 -12.961 -4.513 -4.340 1.00 .00
ATOM 890 CD LYS 59 -11.894 -3.814 -2.614 1.00 .00
ATOM 891 HD1 LYS 59 -11.314 -3.261 -3.337 1.00 .00
ATOM 892 HD2 LYS 59 -11.229 -4.315 -1.926 1.00 .00
ATOM 893 CE LYS 59 -12.797 -2.849 -1.843 1.00 .00
ATOM 894 HE1 LYS 59 -12.622 -2.935 -.782 1.00 .00
ATOM 895 HE2 LYS 59 -13.836 -3.045 -2.072 1.00 .00
ATOM 896 NZ LYS 59 -12.403 -1.493 -2.317 1.00 .00
ATOM 897 HZ1 LYS 59 -12.464 -1.457 -3.354 1.00 .00
ATOM 898 HZ2 LYS 59 -11.427 -1.293 -2.019 1.00 .00
ATOM 899 HZ3 LYS 59 -13.044 -.783 -1.909 1.00 .00
ATOM 900 C LYS 59 -12.370 -8.544 -4.172 1.00 .00
ATOM 901 O LYS 59 -12.082 -9.547 -3.549 1.00 .00
ATOM 902 N ASP 60 -12.152 -8.459 -5.457 1.00 .00
ATOM 903 HN ASP 60 -12.391 -7.641 -5.940 1.00 .00
ATOM 904 CA ASP 60 -11.538 -9.606 -6.188 1.00 .00
ATOM 905 HA ASP 60 -10.770 -10.068 -5.588 1.00 .00
ATOM 906 CB ASP 60 -12.686 -10.591 -6.416 1.00 .00
ATOM 907 HB1 ASP 60 -12.598 -11.024 -7.401 1.00 .00
ATOM 908 HB2 ASP 60 -13.629 -10.069 -6.334 1.00 .00
ATOM 909 CG ASP 60 -12.623 -11.701 -5.365 1.00 .00
ATOM 910 OD1 ASP 60 -13.672 -12.087 -4.877 1.00 .00
ATOM 911 OD2 ASP 60 -11.526 -12.146 -5.068 1.00 .00
ATOM 912 C ASP 60 -10.962 -9.134 -7.526 1.00 .00
ATOM 913 O ASP 60 -10.732 -7.959 -7.733 1.00 .00
ATOM 914 N ALA 61 -10.725 -10.040 -8.435 1.00 .00
ATOM 915 HN ALA 61 -10.917 -10.983 -8.249 1.00 .00
ATOM 916 CA ALA 61 -10.162 -9.641 -9.758 1.00 .00
ATOM 917 HA ALA 61 -9.865 -8.605 -9.744 1.00 .00
ATOM 918 CB ALA 61 -8.936 -10.534 -9.949 1.00 .00
ATOM 919 HB1 ALA 61 -8.233 -10.356 -9.148 1.00 .00
ATOM 920 HB2 ALA 61 -8.468 -10.306 -10.895 1.00 .00
ATOM 921 HB3 ALA 61 -9.240 -11.570 -9.937 1.00 .00
ATOM 922 C ALA 61 -11.187 -9.891 -10.868 1.00 .00
ATOM 923 O ALA 61 -12.380 -9.879 -10.639 1.00 .00
ATOM 924 N ARG 62 -10.729 -10.117 -12.070 1.00 .00
ATOM 925 HN ARG 62 -9.763 -10.121 -12.232 1.00 .00
ATOM 926 CA ARG 62 -11.673 -10.368 -13.198 1.00 .00
ATOM 927 HA ARG 62 -12.066 -9.437 -13.575 1.00 .00
ATOM 928 CB ARG 62 -10.827 -11.052 -14.272 1.00 .00
ATOM 929 HB1 ARG 62 -11.065 -12.105 -14.302 1.00 .00
ATOM 930 HB2 ARG 62 -9.780 -10.925 -14.040 1.00 .00
ATOM 931 CG ARG 62 -11.127 -10.426 -15.636 1.00 .00
ATOM 932 HG1 ARG 62 -12.003 -9.799 -15.560 1.00 .00
ATOM 933 HG2 ARG 62 -11.305 -11.209 -16.360 1.00 .00
ATOM 934 CD ARG 62 -9.933 -9.579 -16.082 1.00 .00
ATOM 935 HD1 ARG 62 -9.472 -9.100 -15.232 1.00 .00
ATOM 936 HD2 ARG 62 -10.248 -8.841 -16.807 1.00 .00
ATOM 937 NE ARG 62 -8.984 -10.546 -16.699 1.00 .00
ATOM 938 HE ARG 62 -8.839 -10.540 -17.668 1.00 .00
ATOM 939 CZ ARG 62 -8.344 -11.402 -15.950 1.00 .00
ATOM 940 NH1 ARG 62 -7.101 -11.180 -15.622 1.00 .00
ATOM 941 HH11 ARG 62 -6.638 -10.354 -15.944 1.00 .00
ATOM 942 HH12 ARG 62 -6.609 -11.837 -15.049 1.00 .00
ATOM 943 NH2 ARG 62 -8.948 -12.480 -15.529 1.00 .00
ATOM 944 HH21 ARG 62 -9.900 -12.651 -15.781 1.00 .00
ATOM 945 HH22 ARG 62 -8.457 -13.136 -14.955 1.00 .00
ATOM 946 C ARG 62 -12.811 -11.286 -12.744 1.00 .00
ATOM 947 OT1 ARG 62 -13.909 -11.130 -13.251 1.00 .00
ATOM 948 OT2 ARG 62 -12.563 -12.130 -11.899 1.00 .00
ENDMDL

表Aは、最初の行(すなわち、MODEL 1の表示)ならびに最後から1行(すなわち、ENDMDLの表示)を除いて、各原子の3次元座標を記述している。1列目のATOMはこの行が原子座標の行であることを示し、2列目は、その原子の順番を、3列目はアミノ酸残基等における原子の区別を、4列目はアミノ酸残基等を、5列目はその原子を含むアミノ酸残基の番号を、6、7、8列目はその原子の座標(Å単位)を示している。最終行は、この表の終わりの行であることを示している。なお、本表は当業者にとって一般的に用いられている表記法であるプロテイン・データ・バンクの形式に従って記述している。(9、10列目はデータベースの形式に合わせるための数字であり、本発明においては特に意味のある数字ではなく、9列目はすべて1.00を、10列目はすべて0.00を使用した。)

Table A describes the three-dimensional coordinates of each atom except for the first line (ie, MODEL 1 indication) as well as the last line (ie, ENDMDL indication). ATOM in the first column indicates that this row is a row of atomic coordinates, the second column shows the order of the atoms, the third column shows the distinction of atoms in amino acid residues, etc., and the fourth column shows the amino acid residues. The fifth column shows the number of the amino acid residue containing the atom, and the sixth, seventh and eighth columns show the coordinates of the atom (in units of Å). The last line indicates the last line of this table. This table is described according to the format of the protein data bank, which is a notation commonly used by those skilled in the art. (The ninth and tenth columns are numbers for matching with the database format. In the present invention, the numbers are not particularly meaningful, and the ninth column uses all 1.00 and the tenth column uses all 0.00.)

本発明により、基本転写因子TFIIEα亜鉛結合ドメインの構造とその機能が解析され、転写活性を調節することができる物質のスクリーニングが可能となった。   According to the present invention, the structure and function of the basic transcription factor TFIIEα zinc-binding domain have been analyzed, and it has become possible to screen for substances that can regulate transcriptional activity.

また、本発明により、転写活性が野生型より高いあるいは低いTFIIEα亜鉛結合ドメイン変異体が提供された。本発明の変異体は、TFIIEαが関与する事象(例えば、転写活性、TFIIEβ及び他の基本転写因子への結合など)の制御に利用することができる。例えば、本発明のTFIIEα亜鉛結合ドメイン変異体タンパク質及びその塩を利用して、転写が関与する疾患(例えば、癌、リウマチ、生活習慣病、遺伝病など)の予防及び/又は治療を行うことができるかもしれない。また、本発明のTFIIEα亜鉛結合ドメイン変異体タンパク質及びその塩を利用して、転写のメカニズムを解明することができるかもしれない。
In addition, the present invention provides a TFIIEα zinc-binding domain mutant that has higher or lower transcriptional activity than the wild type. The mutants of the present invention can be used to control events involving TFIIEα (eg, transcriptional activity, binding to TFIIEβ and other basic transcription factors). For example, the prevention and / or treatment of diseases involving transcription (for example, cancer, rheumatism, lifestyle-related diseases, genetic diseases, etc.) can be carried out using the TFIIE α zinc-binding domain mutant protein and salts thereof of the present invention. I may be able to do it. In addition, the transcription mechanism may be elucidated using the TFIIE α zinc-binding domain mutant protein of the present invention and salts thereof.

TFIIEα亜鉛結合ドメインの配列アライメント。保存されたアミノ酸を太字で示す。Zn2+に配位してキレートを形成するシステインを赤色(実線)の枠に囲んで示す。疎水性コアの形成に寄与する残基を黄色(点線)の枠で囲んで示す。配列の上にヒト亜鉛結合ドメインの二次構造を示す。矢印および長方形は、それぞれβ鎖およびαヘリックスを表す。Sequence alignment of TFIIEα zinc binding domain. Conserved amino acids are shown in bold. Cysteine that coordinates to Zn 2+ to form a chelate is shown enclosed in a red (solid line) frame. Residues contributing to the formation of the hydrophobic core are shown surrounded by a yellow (dotted line) frame. The secondary structure of the human zinc binding domain is shown above the sequence. Arrows and rectangles represent β chain and α helix, respectively. TFIIEα亜鉛結合ドメインの最終的な20個のNMR構造のファミリーの重ね合わせ。残基127-145および152-163の主鎖原子のr.m.s.d.を最小限にすることにより構造を重ね合わせた。Superposition of the final 20 NMR structural families of TFIIEα zinc binding domains. The structures were superimposed by minimizing the r.m.s.d. of the main chain atoms of residues 127-145 and 152-163. TFIIEα亜鉛結合ドメインの平均構造のリボン表示。6個のβ鎖、1個のαヘリックスおよび2個のターンをそれぞれS1〜S6、H1およびt1〜t2で示す。Zn2+をピンク色の球として示す。Ribbon representation of the average structure of the TFIIEα zinc binding domain. Six β-strands, one α-helix and two turns are indicated by S1-S6, H1 and t1-t2, respectively. Zn 2+ is shown as a pink sphere. TFIIEα亜鉛結合ドメインのトポロジー図。第1および第2のβシートを黄色および緑色で、αヘリックスを淡青色で示す。ターン上の4個のCはZn2+に配位してキレートを形成するシステインを示す。Topology diagram of TFIIEα zinc binding domain. The first and second β sheets are shown in yellow and green, and the α helix is shown in light blue. The four Cs on the turn represent cysteines that coordinate to Zn 2+ to form chelates. TFIIEα亜鉛結合ドメインの亜鉛結合部位。ピンク色の球はZn2+を示す。Zn2+配位結合(赤色の点線で示す)および二股に分かれた水素結合(青色の点線で示す)に関与する残基を側鎖と共に示す。ZFI binding site of TFIIEα zinc binding domain. Pink spheres indicate Zn 2+ . Residues involved in Zn 2+ coordination bonds (shown in red dotted line) and bifurcated hydrogen bonds (shown in blue dotted line) are shown with side chains. TFIIEα亜鉛結合ドメインの疎水性コア。疎水性コアおよび亜鉛結合ドメインに関与する残基を側鎖と共に示す。Zn2+に配位してキレートを形成するシステインを緑色で示す。5個のフェニルアラニンを赤色で示す。その他を青色で示す。Hydrophobic core of TFIIEα zinc binding domain. Residues involved in the hydrophobic core and zinc binding domain are shown with side chains. Cysteine that coordinates to Zn 2+ to form a chelate is shown in green. Five phenylalanines are shown in red. Others are shown in blue. TFIIEα亜鉛結合ドメインの分子表面の静電ポテンシャル。陽性ポテンシャルを青色で、陰性ポテンシャルを赤で示す。保存された陰性ポテンシャルクラスターがマークされている。Electrostatic potential of the molecular surface of TFIIEα zinc binding domain. Positive potential is shown in blue and negative potential is shown in red. Conserved negative potential clusters are marked. TFIIEα亜鉛結合ドメインと亜鉛リボンドメインの構造比較。TFIIE:ヒトTFIIEαの亜鉛結合ドメイン、TFIISc:ヒト由来転写伸長因子TFIISのC末端ドメイン、TFIIBn:古細菌由来基本転写因子TFIIBのN末端領域、RPB9c:酵母RNAポリメラーゼII由来RPB9のC末端領域。Zn2+をピンク色の球として示す。Structural comparison of TFIIEα zinc binding domain and zinc ribbon domain. TFIIE: zinc binding domain of human TFIIEα, TFIISc: C-terminal domain of human transcription elongation factor TFIIS, TFIIBn: N-terminal region of archaeal basic transcription factor TFIIB, RPB9c: C-terminal region of yeast RNA polymerase II-derived RPB9. Zn 2+ is shown as a pink sphere. 亜鉛結合ドメインの構造比較。最小限のr.m.s.d.で重ね合わせることによって2つのターンを示す。赤色:TFIIE、青緑色:TFIISc、緑色:TFIIBn、橙色:RPB9c。Structural comparison of zinc binding domains. Show two turns by overlapping with a minimal r.m.s.d. Red: TFIIE, blue-green: TFIISc, green: TFIIBn, orange: RBP9c. 精製した野生型(IIEαwt)および点突然変異TFIIEαのSDS-ポリアクリルアミド電気泳動SDS-polyacrylamide electrophoresis of purified wild-type (IIEαwt) and point mutant TFIIEα スーパーコイルDNA鋳型を用いたIn vitro転写アッセイ。野生型(IIEαwt)およびシステイン点突然変異TFIIEα(C129A、C132A、C154A、C157A)の結果。In vitro transcription assay using supercoiled DNA template. Results for wild type (IIEαwt) and cysteine point mutation TFIIEα (C129A, C132A, C154A, C157A). スーパーコイルDNA鋳型を用いたIn vitro転写アッセイ。野生型(IIEαwt)および高度に保存された酸性残基の点突然変異TFIIEα(E140A、E140K、D164A、C164K)の結果。In vitro transcription assay using supercoiled DNA template. Results for wild type (IIEαwt) and highly conserved acidic residue point mutations TFIIEα (E140A, E140K, D164A, C164K). リニアDNA鋳型を用いたIn vitro転写アッセイ。野生型(IIEαwt)およびシステイン点突然変異TFIIEα(C129A、C132A、C154A、C157A)の結果。In vitro transcription assay using linear DNA template. Results for wild type (IIEαwt) and cysteine point mutation TFIIEα (C129A, C132A, C154A, C157A). リニアDNA鋳型を用いたIn vitro転写アッセイ。野生型(IIEαwt)および高度に保存された酸性残基の点突然変異TFIIEα(E140A、E140K、D164A、C164K)の結果。In vitro transcription assay using linear DNA template. Results for wild type (IIEαwt) and highly conserved acidic residue point mutations TFIIEα (E140A, E140K, D164A, C164K). GSTプルダウンアッセイ。野生型(IIEαwt)および点突然変異TFIIEαの基本転写因子(TFIIHを除く。)との結合結果。GST pull-down assay. Binding results of wild type (IIEαwt) and point mutation TFIIEα with basic transcription factors (except TFIIH). GSTプルダウンアッセイ。野生型(IIEαwt)および点突然変異TFIIEαの基本転写因子TFIIHサブユニットとの結合結果。GST pull-down assay. Results of binding of wild type (IIEαwt) and point mutation TFIIEα to the basic transcription factor TFIIH subunit. 野生型および点突然変異させた亜鉛結合ドメインの遠紫外CDスペクトル。野生型(WT)、および点突然変異亜鉛結合ドメインC129A、C132A、C154A、C157Aの遠紫外CDスペクトルを示す。Far ultraviolet CD spectra of wild-type and point-mutated zinc binding domains. The far ultraviolet CD spectra of wild type (WT) and point mutant zinc binding domains C129A, C132A, C154A, C157A are shown. 野生型および点突然変異させた亜鉛結合ドメインの1D 1H NMRスペクトル。2倍過剰のEDTAを野生型亜鉛結合ドメインに添加した後のスペクトルを一番下に示す(WT+EDTA)。1D 1 H NMR spectra of wild-type and point-mutated zinc binding domains. The spectrum after adding a 2-fold excess of EDTA to the wild-type zinc binding domain is shown at the bottom (WT + EDTA). EDTA滴定実験。EDTA添加前(- EDTA)および2倍過剰のEDTAを15N標識化野生型および点突然変異体亜鉛結合ドメインに添加後(+ EDTA)の15N-1H HSQCスペクトルおよびシグナル分布をプロットしたグラフをそれぞれ右側および左側に示す。グラフ中、横軸の数字は以下のように規定されるスペクトル範囲を示す。EDTA titration experiment. Graph plotting 15 N- 1 H HSQC spectra and signal distribution before addition of EDTA (-EDTA) and after addition of 2-fold excess EDTA to 15 N-labeled wild-type and point mutant zinc binding domains (+ EDTA) Are shown on the right and left sides, respectively. In the graph, the numbers on the horizontal axis indicate the spectral range defined as follows.

Figure 2005245202
縦軸は、規定された領域内で観察された主鎖シグナルの数を示す。右側のグラフにおいて、左側のグラフと同一の色は左側のスペクトルで観察されたシグナルと一致するシグナルを意味する。グラフの上に記載されている”N”、”Ave.”および”S.D.”は、それぞれ主鎖シグナルの数、平均ケミカルシフト、および標準偏差を示す。
亜鉛結合部位の点突然変異体間の構造的類似。 アスパラギンおよびグルタミンの側鎖シグナルを上段のパネルに示す。対をなすシグナルを線で結んである。黒色の線:EDTA添加後のスペクトル内のシグナルと一致するシグナル。赤色の線:C129AおよびC132Aの両方のスペクトルに観察された共通シグナル。青色の線:C132Aのスペクトルにのみ観察されたシグナル。橙色の線:C154AおよびC157Aに共通のシグナル。緑色の線:C157Aのスペクトルにのみ観察されたシグナル。分散した主鎖シグナルを中段パネルに示す。下段左側のグラフはC132Aについてプロットしたもので、ピンク色および赤色はC129Aのスペクトルのシグナルと一致したシグナルを意味する。下段右側のグラフはC157Aについてプロットしたもので、淡い橙色および橙色はC154Aのスペクトルのシグナルと一致したシグナルを意味する。軸と着色はパネルcと同じものを表す。
Figure 2005245202
The vertical axis shows the number of main chain signals observed within the defined region. In the right graph, the same color as in the left graph means a signal that matches the signal observed in the left spectrum. “N”, “Ave.” and “SD” described above the graph indicate the number of main chain signals, the average chemical shift, and the standard deviation, respectively.
Structural similarity between point mutants at the zinc binding site. The asparagine and glutamine side chain signals are shown in the upper panel. Paired signals are connected by a line. Black line: signal consistent with the signal in the spectrum after EDTA addition. Red line: common signal observed in both C129A and C132A spectra. Blue line: signal observed only in the spectrum of C132A. Orange line: signal common to C154A and C157A. Green line: signal observed only in the spectrum of C157A. Dispersed backbone signals are shown in the middle panel. The lower left graph is plotted for C132A, and pink and red mean signals that are consistent with the signals in the spectrum of C129A. The graph on the lower right is plotted for C157A, and light orange and orange colors represent signals consistent with the C154A spectrum signal. The axis and color represent the same as panel c.

<配列番号1>
配列番号1は、野生型ヒトTFIIEα亜鉛結合ドメインのDNA配列を示す。
<配列番号2>
配列番号2は、野生型ヒトTFIIEα亜鉛結合ドメインのアミノ酸配列を示す。
<配列番号3>
変異体E140AのDNA配列を示す。
<配列番号4>
変異体E140Aのアミノ酸配列を示す。
<配列番号5>
変異体E140KのDNA配列を示す。
<配列番号6>
変異体E140Kのアミノ酸配列を示す。
<配列番号7>
変異体D164AのDNA配列を示す。
<配列番号8>
変異体D164Aのアミノ酸配列を示す。
<配列番号9>
変異体D164KのDNA配列を示す。
<配列番号10>
変異体D164Kのアミノ酸配列を示す。
<配列番号11>
変異体C129AのDNA配列を示す。
<配列番号12>
変異体C129Aのアミノ酸配列を示す。
<配列番号13>
変異体C132AのDNA配列を示す。
<配列番号14>
変異体C132Aのアミノ酸配列を示す。
<配列番号15>
変異体C154AのDNA配列を示す。
<配列番号16>
変異体C154Aのアミノ酸配列を示す。
<配列番号17>
変異体C157AのDNA配列を示す。
<配列番号18>
変異体C157Aのアミノ酸配列を示す。
<配列番号19>
野生型ヒトTFIIEαのアミノ酸配列を示す。
<SEQ ID NO: 1>
SEQ ID NO: 1 shows the DNA sequence of the wild type human TFIIE α zinc binding domain.
<SEQ ID NO: 2>
SEQ ID NO: 2 shows the amino acid sequence of the wild type human TFIIE α zinc binding domain.
<SEQ ID NO: 3>
The DNA sequence of mutant E140A is shown.
<SEQ ID NO: 4>
The amino acid sequence of mutant E140A is shown.
<SEQ ID NO: 5>
The DNA sequence of mutant E140K is shown.
<SEQ ID NO: 6>
The amino acid sequence of mutant E140K is shown.
<SEQ ID NO: 7>
The DNA sequence of mutant D164A is shown.
<SEQ ID NO: 8>
The amino acid sequence of mutant D164A is shown.
<SEQ ID NO: 9>
The DNA sequence of mutant D164K is shown.
<SEQ ID NO: 10>
The amino acid sequence of mutant D164K is shown.
<SEQ ID NO: 11>
The DNA sequence of mutant C129A is shown.
<SEQ ID NO: 12>
The amino acid sequence of mutant C129A is shown.
<SEQ ID NO: 13>
The DNA sequence of mutant C132A is shown.
<SEQ ID NO: 14>
The amino acid sequence of mutant C132A is shown.
<SEQ ID NO: 15>
The DNA sequence of mutant C154A is shown.
<SEQ ID NO: 16>
The amino acid sequence of mutant C154A is shown.
<SEQ ID NO: 17>
The DNA sequence of mutant C157A is shown.
<SEQ ID NO: 18>
The amino acid sequence of mutant C157A is shown.
<SEQ ID NO: 19>
The amino acid sequence of wild type human TFIIEα is shown.

Claims (11)

亜鉛結合ドメインを含むタンパク質または該タンパク質と該タンパク質に結合しうる物質との複合体の立体構造を予測する方法であって、
(i)表Aの原子座標または表Aの原子座標により規定される三次元構造からの距離に関する根平均二乗偏差が0.0096±0.0012オングストロームであり、二面角に関する根平均二乗偏差が0.75±0.09°である原子座標により規定されるヒトTFIIEαの亜鉛結合ドメイン又はその一部の三次元構造を用意する工程、及び
(ii)(i)の工程で用意した三次元構造を鋳型とするホモロジーモデリングにより、亜鉛結合ドメインを含むタンパク質または該タンパク質と該タンパク質に結合しうる物質との複合体の三次元構造を構築する工程
を含む前記方法。
A method for predicting the three-dimensional structure of a protein containing a zinc-binding domain or a complex of the protein and a substance capable of binding to the protein,
(i) The root mean square deviation for the distance from the three-dimensional structure defined by the atomic coordinates in Table A or the atomic coordinates in Table A is 0.0096 ± 0.0012 angstroms, and the root mean square deviation for the dihedral angle is 0.75 ± 0.09 ° Providing a three-dimensional structure of a human TFIIEα zinc-binding domain or part thereof defined by atomic coordinates of:
(ii) Build a three-dimensional structure of a protein containing a zinc-binding domain or a complex of the protein and a substance capable of binding to the protein by homology modeling using the three-dimensional structure prepared in step (i) as a template Said method comprising the steps.
亜鉛結合ドメインを含むタンパク質又はその一部の機能を予測する方法であって、
(i)表Aの原子座標または表Aの原子座標により規定される三次元構造からの距離に関する根平均二乗偏差が0.0096±0.0012オングストロームであり、二面角に関する根平均二乗偏差が0.75±0.09°である原子座標により規定されるヒトTFIIEαの亜鉛結合ドメイン又はその一部の三次元構造を用意する工程、
(ii) 亜鉛結合ドメインを含むタンパク質の亜鉛結合ドメイン又はその一部の三次元構造を用意する工程、
(iii)
(i)の工程で用意した三次元構造と(ii)の工程で用意した三次元構造の構造アラインメントを行う工程、
(iv)(iii)の工程で行った構造アラインメントの結果、構造類似性があると判定された場合には、(ii)の亜鉛結合ドメインを含むタンパク質又はその一部が、(i)のヒトTFIIEαの亜鉛結合ドメイン又はその一部と類似の機能を有すると予測する工程
を含む前記方法。
A method for predicting the function of a protein comprising a zinc binding domain or a part thereof,
(i) The root mean square deviation with respect to the distance from the three-dimensional structure defined by the atomic coordinates in Table A or the atomic coordinates in Table A is 0.0096 ± 0.0012 angstroms, and the root mean square deviation with respect to the dihedral angle is 0.75 ± 0.09 ° Providing a three-dimensional structure of a human TFIIEα zinc-binding domain or part thereof defined by atomic coordinates
(ii) providing a three-dimensional structure of a zinc-binding domain of a protein containing a zinc-binding domain or a part thereof;
(iii)
a step of performing structural alignment of the three-dimensional structure prepared in the step (i) and the three-dimensional structure prepared in the step (ii);
(iv) When it is determined that there is structural similarity as a result of the structural alignment performed in the step (iii), the protein containing the zinc-binding domain of (ii) or a part thereof is Said method comprising the step of predicting that it has a function similar to the zinc-binding domain of TFIIEα or a part thereof.
配列番号2のアミノ酸配列を有するヒトTFIIEαの亜鉛結合ドメイン又は該ドメインを含むタンパク質が、28位のグルタミン酸、52位のアスパラギン酸、17位のシステイン、20位のシステイン、42位のシステイン及び45位のシステインからなる群より選択される少なくとも1つのアミノ酸部位で、被験物質と相互作用するか否かを解析し、相互作用する場合には、被験物質が転写活性を調節することができると判定することを含む、転写活性を調節することができる物質をスクリーニングする方法。 The human TFIIEα zinc-binding domain having the amino acid sequence of SEQ ID NO: 2 or a protein containing the domain is glutamic acid at position 28, aspartic acid at position 52, cysteine at position 17, cysteine at position 20, cysteine at position 42, and position 45 Whether or not it interacts with the test substance at at least one amino acid site selected from the group consisting of cysteine, and if it interacts, determines that the test substance can regulate transcriptional activity Screening a substance capable of regulating transcriptional activity. 亜鉛イオンの存在下で、配列番号2のアミノ酸配列を有するヒトTFIIEαの亜鉛結合ドメイン又は該ドメインを含むタンパク質が、28位のグルタミン酸、52位のアスパラギン酸、17位のシステイン、20位のシステイン、42位のシステイン及び45位のシステインからなる群より選択される少なくとも1つのアミノ酸部位で、被験物質と相互作用するか否かを解析する請求項3記載の方法。 In the presence of zinc ion, the human TFIIEα zinc-binding domain having the amino acid sequence of SEQ ID NO: 2 or a protein containing the domain is 28th glutamic acid, 52nd aspartic acid, 17th cysteine, 20th cysteine, 4. The method according to claim 3, wherein at least one amino acid site selected from the group consisting of cysteine at position 42 and cysteine at position 45 is analyzed for interaction with the test substance. 以下の(a)、(b)、(c)又は(d)のいずれかのタンパク質であるTFIIEαの亜鉛結合ドメイン変異体タンパク質又はその塩。
(a)配列番号2のアミノ酸配列において、28位のグルタミン酸からアラニン又はリシンへの置換、17位のシステインからアラニンへの置換、20位のシステインからアラニンへの置換、42位のシステインからアラニンへの置換及び45位のシステインからアラニンへの置換からなる群より選択される少なくとも1つの置換がなされているアミノ酸配列を有するタンパク質
(b)(a)のタンパク質のアミノ酸配列において、28位のアミノ酸、17位のアミノ酸、20位のアミノ酸、42位のアミノ酸及び45位のアミノ酸以外の1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有し、かつ転写活性が配列番号2のアミノ酸配列を有する野生型TFIIEαの亜鉛結合ドメインよりも低いタンパク質
(c) 配列番号2のアミノ酸配列において、52位のアスパラギン酸からアラニン又はリシンへの置換がなされているアミノ酸配列を有するタンパク質
(d)(c)のタンパク質のアミノ酸配列において、52位のアミノ酸以外の1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有し、かつ転写活性が配列番号2のアミノ酸配列を有する野生型TFIIEαの亜鉛結合ドメインよりも高いタンパク質
A zinc-binding domain mutant protein of TFIIEα, which is a protein of any of the following (a), (b), (c) or (d), or a salt thereof.
(a) In the amino acid sequence of SEQ ID NO: 2, substitution of glutamic acid at position 28 with alanine or lysine, substitution of cysteine at position 17 with alanine, substitution of cysteine at position 20 with alanine, cysteine at position 42 with alanine And a protein having an amino acid sequence in which at least one substitution selected from the group consisting of substitution at position 45 and substitution from cysteine to alanine at position 45 is made
(b) In the amino acid sequence of the protein of (a), one or several amino acids other than the 28th amino acid, the 17th amino acid, the 20th amino acid, the 42nd amino acid and the 45th amino acid are deleted or substituted. Alternatively, a protein having an added amino acid sequence and having a transcriptional activity lower than that of the wild-type TFIIEα zinc-binding domain having the amino acid sequence of SEQ ID NO: 2.
(c) a protein having an amino acid sequence in which substitution of aspartic acid at position 52 with alanine or lysine is performed in the amino acid sequence of SEQ ID NO: 2
(d) the amino acid sequence of the protein of (c), which has an amino acid sequence in which one or several amino acids other than the amino acid at position 52 are deleted, substituted or added, and whose transcription activity is SEQ ID NO: 2 Protein higher than the zinc-binding domain of wild-type TFIIEα
以下の(1)〜(8)のいずれかのタンパク質である請求項5記載のTFIIEαの亜鉛結合ドメイン変異体タンパク質又はその塩。
(1) 配列番号2のアミノ酸配列において、28位のグルタミン酸からアラニンへの置換がなされているアミノ酸配列を有するタンパク質
(2) 配列番号2のアミノ酸配列において、28位のグルタミン酸からリシンへの置換がなされているアミノ酸配列を有するタンパク質
(3) 配列番号2のアミノ酸配列において、17位のシステインからアラニンへの置換がなされているアミノ酸配列を有するタンパク質
(4) 配列番号2のアミノ酸配列において、20位のシステインからアラニンへの置換がなされているアミノ酸配列を有するタンパク質
(5) 配列番号2のアミノ酸配列において、42位のシステインからアラニンへの置換がなされているアミノ酸配列を有するタンパク質
(6) 配列番号2のアミノ酸配列において、45位のシステインからアラニンへの置換がなされているアミノ酸配列を有するタンパク質
(7) 配列番号2のアミノ酸配列において、52位のアスパラギン酸からアラニンへの置換がなされているアミノ酸配列を有するタンパク質
(8) 配列番号2のアミノ酸配列において、52位のアスパラギン酸からリシンへの置換がなされているアミノ酸配列を有するタンパク質
6. The TFIIEα zinc-binding domain mutant protein or a salt thereof according to claim 5, which is a protein of any one of the following (1) to (8).
(1) a protein having an amino acid sequence in which glutamic acid at position 28 is substituted with alanine in the amino acid sequence of SEQ ID NO: 2
(2) A protein having an amino acid sequence in which glutamic acid at position 28 is substituted with lysine in the amino acid sequence of SEQ ID NO: 2
(3) A protein having an amino acid sequence in which the cysteine at position 17 is substituted with alanine in the amino acid sequence of SEQ ID NO: 2.
(4) In the amino acid sequence of SEQ ID NO: 2, a protein having an amino acid sequence in which substitution of cysteine to alanine at position 20 is made
(5) A protein having an amino acid sequence in which cysteine is substituted with alanine at position 42 in the amino acid sequence of SEQ ID NO: 2.
(6) A protein having an amino acid sequence in which the cysteine at position 45 is substituted with alanine in the amino acid sequence of SEQ ID NO: 2.
(7) a protein having an amino acid sequence in which aspartic acid is substituted with alanine at position 52 in the amino acid sequence of SEQ ID NO: 2
(8) A protein having an amino acid sequence in which the substitution of aspartic acid to lysine at position 52 in the amino acid sequence of SEQ ID NO: 2
請求項5記載のタンパク質をコードするDNA。 DNA encoding the protein according to claim 5. 請求項7記載のDNAを含有する組換えベクター。 A recombinant vector containing the DNA according to claim 7. 請求項8記載の組換えベクターを含む形質転換体。 A transformant comprising the recombinant vector according to claim 8. 請求項7記載のDNAで形質転換した宿主を培養し、培養物からTFIIEαの亜鉛結合ドメイン変異体タンパク質を採取することを含むTFIIEαの亜鉛結合ドメイン変異体タンパク質の製造方法。 A method for producing a TFIIEα zinc-binding domain mutant protein, comprising culturing a host transformed with the DNA according to claim 7, and collecting the TFIIEα zinc-binding domain mutant protein from the culture. 請求項5記載のTFIIEαの亜鉛結合ドメイン変異体タンパク質又はその塩に対する抗体。


6. An antibody against the TFIIEα zinc-binding domain mutant protein or a salt thereof according to claim 5.


JP2004055645A 2004-03-01 2004-03-01 STRUCTURAL CHARACTERISTIC AND FUNCTION OF NEW ZINC BINDING DOMAIN OF HUMAN TFIIEalpha Pending JP2005245202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004055645A JP2005245202A (en) 2004-03-01 2004-03-01 STRUCTURAL CHARACTERISTIC AND FUNCTION OF NEW ZINC BINDING DOMAIN OF HUMAN TFIIEalpha

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004055645A JP2005245202A (en) 2004-03-01 2004-03-01 STRUCTURAL CHARACTERISTIC AND FUNCTION OF NEW ZINC BINDING DOMAIN OF HUMAN TFIIEalpha

Publications (1)

Publication Number Publication Date
JP2005245202A true JP2005245202A (en) 2005-09-15

Family

ID=35026302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004055645A Pending JP2005245202A (en) 2004-03-01 2004-03-01 STRUCTURAL CHARACTERISTIC AND FUNCTION OF NEW ZINC BINDING DOMAIN OF HUMAN TFIIEalpha

Country Status (1)

Country Link
JP (1) JP2005245202A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013505707A (en) * 2009-09-25 2013-02-21 上海抗体薬物国家工程研究中心有限公司 Method for obtaining high affinity antibodies or protein molecules by computer aided design
JP2020502056A (en) * 2016-11-13 2020-01-23 イマジン ファーマ Compositions and methods for treating diabetes, hypertension and hypercholesterolemia

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013505707A (en) * 2009-09-25 2013-02-21 上海抗体薬物国家工程研究中心有限公司 Method for obtaining high affinity antibodies or protein molecules by computer aided design
JP2020502056A (en) * 2016-11-13 2020-01-23 イマジン ファーマ Compositions and methods for treating diabetes, hypertension and hypercholesterolemia

Similar Documents

Publication Publication Date Title
Käshammer et al. Mechanism of DNA end sensing and processing by the Mre11-Rad50 complex
Soh et al. Molecular basis for SMC rod formation and its dissolution upon DNA binding
Bosanac et al. Crystal structure of the ligand binding suppressor domain of type 1 inositol 1, 4, 5-trisphosphate receptor
Gully et al. The design and structural characterization of a synthetic pentatricopeptide repeat protein
JP2018524311A (en) Novel TNF-alpha structure for use in therapy
Argunhan et al. Cooperative interactions facilitate stimulation of Rad51 by the Swi5-Sfr1 auxiliary factor complex
Pastrana-Ríos et al. Relative stability of human centrins and its relationship to calcium binding
AU2009301631A1 (en) Amyloid-beta peptide crystal structure
US7432093B2 (en) Soluble, functional apoptotic protease-activating factor 1 fragments
JP2005245202A (en) STRUCTURAL CHARACTERISTIC AND FUNCTION OF NEW ZINC BINDING DOMAIN OF HUMAN TFIIEalpha
CA2352399A1 (en) Crystal structure of the 30s ribosome and its use
Kalyoncu et al. Effects of protein engineering and rational mutagenesis on crystal lattice of single chain antibody fragments
Park et al. Solution structure of the RecQ C-terminal domain of human Bloom syndrome protein
Schacherl et al. Crystallographic and biochemical characterization of the dimeric architecture of site-2 protease
WO2007010285A2 (en) Crystal structure of human soluble adenylate cyclase
Holloway et al. Structure of murine angiogenin: features of the substrate-and cell-binding regions and prospects for inhibitor-binding studies
US20090176205A1 (en) Mutant proteins in the dna-binding domain of a telomeric protein, trf2, and telomeric dna mutants, and use of the complex structure of the trf2 dna-binding domain and telomeric dna
WO2007075414A2 (en) Chemically derivatized cd4 and uses thereof
US7606670B2 (en) Crystal structure of the 30S ribosome and its use
Wiuf et al. Structure and binding properties of a cameloid nanobody raised against KDM5B
Zhang et al. Structure basis of the phytoplasma effector SAP05 recognition specificities to plant Rpn10 in ubiquitin-independent protein degradation
Oppenheim et al. The Cdc48 N-terminal domain has a molecular switch that mediates the Npl4-Ufd1-Cdc48 complex formation
AU770150B2 (en) Three-dimensional model of a FC epsilon receptor alpha chain and uses thereof
EP0996634A1 (en) Crystal of sm3 antibody (fragment) and recognizing epitope, its preparation, encoded data storage medium containing its coordinates and its diagnostical or medical use
Lakhanpal Biophysical Characterization of Cell Signalling Proteins from Arabidopsis thaliana: CYP71, Chromatin Remodelling Protein and CNGC18, Ca 2+ Permeable Cation Channel